高等数学基础综合练习题精选精选及答案.docx

合集下载

高数基础考试题库及答案

高数基础考试题库及答案

高数基础考试题库及答案一、选择题(每题4分,共20分)1. 函数f(x)=x^2+3x+2的导数为:A. 2x+3B. x^2+3C. 2x+6D. x+2答案:A2. 极限lim(x→0) (sin(x)/x)的值为:A. 0B. 1C. -1D. 2答案:B3. 以下哪个函数是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x+1答案:B4. 函数y=e^x的不定积分为:A. e^x + CB. e^(-x) + CC. ln(x) + CD. x^e + C答案:A5. 曲线y=x^3在点(1,1)处的切线斜率为:A. 1B. 3C. 9D. -3答案:B二、填空题(每题3分,共15分)1. 函数f(x)=x^3-3x的极值点为______。

答案:x=-1或x=22. 函数y=ln(x)的定义域为______。

答案:(0, +∞)3. 若函数f(x)在区间[a,b]上连续,则f(x)在[a,b]上一定有______。

答案:最大值和最小值4. 曲线y=x^2+2x+1与x轴的交点个数为______。

答案:05. 微分方程dy/dx=2x的通解为______。

答案:y=x^2+C三、解答题(每题10分,共20分)1. 求函数f(x)=x^3-6x^2+11x-6在区间[1,3]上的最大值和最小值。

解:首先求导数f'(x)=3x^2-12x+11,令f'(x)=0,解得x=1或x=3。

计算f(1)=0,f(3)=0,f(2)=-2,因此最大值为0,最小值为-2。

2. 求极限lim(x→∞) (x^2-3x+2)/(x^3+2x^2-5x)。

解:将分子分母同时除以x^3,得到lim(x→∞) [(1-3/x+2/x^2)/(1+2/x-5/x^2)],当x趋向于无穷大时,极限值为1/1=1。

四、证明题(每题15分,共30分)1. 证明函数f(x)=x^2在区间(-∞,0)上是减函数。

高等数学题库综合题

高等数学题库综合题

综合一一、 填空题(每小题2分) 1、____________)(=⎰x dF2、_________1d dx x=3、⎰⎰==____________sec cos 122xdx dx x4、_________)13cos(0='⎥⎦⎤⎢⎣⎡+⎰x dt t 5、_________1sin 114225=++⎰-dx x x xx6、不计算定积分,比较大小:⎰⎰2020_____sin ππxdx xdx7、若,2)2(1=+⎰dx k x 则________=k8、原点到点()2,3,1-的距离是__________9、函数222y x a y --=的定义域是___________10、如果在区域D 上.1),(≡y x f A 是区域D 的面积则⎰⎰=Dd _________σ二:求下列不定积分(每题5分,共20分) 1、dx x x 273⎰ 2、dx x x x ⎰+--31223、⎰>-)0(22a dx x a4、⎰xdx 3sec 三、 下列定积分(每题5分,共10分) 1、⎰--1145dx xx 2、dx xe x ⎰-1四、 求下列函数的偏导数(每题6分,共18分)1、 由方程z y x xyz ++=所确定的函数),(y x f z =求yz x z ∂∂∂∂, 2、 已知函数)cos()sin(y x y y x x z +++=求xy zx z ∂∂∂∂∂222,3、 已知2,2,sin s t y st x y e u x +===求t s u u '', 五、 求函数22ln y x z +=的全微分(7分)六、 求下列图形的面积或体积(共15分)1、 求抛物线x y 22=与直线4-=x y 所围城的图形的面积(7分)2、 求由曲线2x y =与2y x =所围成的平面图形绕x 轴旋转所产生的立体的体积(8分)七、 计算二重积分⎰⎰Ddxdy y x 32且D 是由x y 42=和1=x 所围成的区域(10分)综合二一、填空题(每小题2分)1、若)(x f 在],[b a 上连续,且⎰=b adx x f 0)(,则.________]1)([⎰=+badx x f2、._______cos _________;22010⎰⎰==πxdx xdx 3、比较两个积分的大小(填不等号):⎰⎰13102_____dx x dx x .4、124322+=+'+'''x y x y x y x 是______阶微分方程.5、点)1,2,4(--A 在第_____卦限,点)3,5,1(--B 第_____卦限.6、点)1,2,3(--P 关于xoy 坐标面的对称点是____________,关于x 轴的对称点是___________.7、方程122=-y x 在平面直角坐标系中表示____________,在空间直角坐标系中表示____________. 8、设223),(y x yx y x f +-=,则._______)2,1(______,)1,2(=-=-f f 9、设122=+y x ,则.________________,1===x dx dy dx dy 10、交换二次积分⎰⎰=1),(xdy y x f dx I 的积分次序,得._______________=I 二、选择题(每小题3分)1、设函数)(x f 在区间],[b a 上连续,则变上限积分⎰xdt t f 0)(是( )A. )(x f 的一个原函数B. )(x f 的全体原函数C. )(x f '的一个原函数D.)(x f '的全体原函数2、设函数)(x f 在],[b a 上连续,则由曲线)(x f y =与直线0,,===y b x a x 所围平面图形的面积为( ) A.⎰ba dx x f )( B.⎰badx x f )( C. ⎰badx x f )( D.b a a b f <<-'ξξ),)((3、=⎰-22sin ππdx x ( )A. 0B. πC.2πD. 2 4、下列函数中,( )是微分方程0127=+'-''y y y 的解. A. 3x y = B. 2x y = C. x e y 3= D. x e y 2=5、设2232y xy x z -+=,则=∂∂∂yx z2( )A. 6B. 3C. 2-D. 2 6、对函数xy y x f =),(,点)0,0(( )A.不是驻点B.是驻点却非极值点C.是极大值点D.是极小值点 三、计算下列定积分(每小题4分)1、⎰203sin cos πxdx x2、⎰π202cos xdx x3、⎰+411dx x4、⎰2121dx xex四、求下列函数的偏导数或全微分(每小题5分)1、设)ln(22y x z +=,求yz x z ∂∂∂∂, 2、求xy xy y x z +-=3233的二阶偏导数 3、设3322,,y x v y x u ue z v -=+==,求yz x z ∂∂∂∂, 4、求xy e z =在)1,2(处的全微分 五、计算下列二重积分(每小题5分) 1、交换二次积分⎰⎰12),(xx dy y x f dx 的次序2、计算dy e dx I xy ⎰⎰-=2202六、解下列微分方程(每小题5分)1、求微分方程012=-+dy x xydx 的通解2、求微分方程y x y +='满足初始条件0)0(=y 的特解七、求由抛物线22x y =,直线1=x 及x 轴所围成的图形分别饶x 轴、y 轴旋转一周所形成的旋转体的体积.(6分)综合三一、填空题(每小题2分)1、若)(x f 在],[b a 上连续,且⎰=b adx x f 0)(,则.________]1)([⎰=+badx x f2、._______cos _________;22010⎰⎰==πxdx xdx 3、比较两个积分的大小(填不等号):⎰⎰13102_____dx x dx x .4、124322+=+'+'''x y x y x y x 是______阶微分方程.5、点)1,2,4(--A 在第_____卦限,点)3,5,1(--B 第_____卦限.6、点)1,2,3(--P 关于xoy 坐标面的对称点是____________,关于x 轴的对称点是___________.7、方程122=-y x 在平面直角坐标系中表示____________,在空间直角坐标系中表示____________. 8、设223),(y x yx y x f +-=,则._______)2,1(______,)1,2(=-=-f f 9、设122=+y x ,则.________________,1===x dx dy dx dy 10、交换二次积分⎰⎰=1),(xdy y x f dx I 的积分次序,得._______________=I 二、选择题(每小题3分)1、设函数)(x f 在区间],[b a 上连续,则变上限积分⎰xdt t f 0)(是( )A. )(x f 的一个原函数B. )(x f 的全体原函数C. )(x f '的一个原函数D.)(x f '的全体原函数2、设函数)(x f 在],[b a 上连续,则由曲线)(x f y =与直线0,,===y b x a x 所围平面图形的面积为( ) A.⎰ba dx x f )( B.⎰badx x f )( C. ⎰badx x f )( D.b a a b f <<-'ξξ),)((3、=⎰-22sin ππdx x ( )A. 0B. πC.2πD. 2 4、下列函数中,( )是微分方程0127=+'-''y y y 的解. A. 3x y = B. 2x y = C. x e y 3= D. x e y 2=5、设2232y xy x z -+=,则=∂∂∂yx z2( )A. 6B. 3C. 2-D. 2 6、对函数xy y x f =),(,点)0,0(( )A.不是驻点B.是驻点却非极值点C.是极大值点D.是极小值点 三、计算下列定积分(每小题4分) 1、⎰+31dx xx2、⎰202sin πxdx x3、⎰2121dx x ex4、⎰-a dx x a 02四、求下列函数的偏导数或全微分(每小题5分)1、求32y xy x z ++=在点)2,1(处的偏导数2、求xy xy y x z +-=3233的二阶偏导数3、设x v x u v u z sin ,3),32ln(2==+=,求dxdz 4、求y x z cos sin =的全微分五、计算下列二重积分(每小题5分) 1、交换二次积分⎰⎰22),(xxdy y x f dx 的次序2、计算⎰⎰-+Ddxdy y y x )(22,D 是由2,xy x y ==及2=y 所围成的区域 六、解下列微分方程(每小题5分)1、求微分方程xydy dx y x 2)(22=+的通解2、求微分方程y x y +='满足初始条件0)0(=y 的特解 七、求函数22442),(y xy x y x y x f ---+=的极值(6分)答案一、1、()c x F +2、x d ln 或()a x d +ln3、c x +tan4、()13cos +-x5、06、<7、18、149、(){}222,a y x y x ≤+10、A二、1、c x+147ln 1472、c x x ++-3ln 23、三、1、612、121+--e 四、1、11--=∂∂xy yz x z 11--=∂∂xy xz y z2、()()()y x x y x y xz+-+-=∂∂sin cos 222()()()()y x y y x x xy z+-+++-=∂∂∂cos 1sin 123、()y s y t e u x s cos sin 2+=' ()y y s e u x t cos sin 2+='五、dz dy yx ydx y x x =+++2222 六、1、182、π103七、58综合二一、填空题(每小题2分,共20分)1、a b -2、1,03、>4、35、Ⅲ,Ⅷ6、)1,2,3(-,)1,2,3(--7、双曲线,双曲柱面 8、1,57- 9、yx-,0 10、dx y x f dy y⎰⎰11),(二、选择题(每小题3分,共18分)1、A2、C3、D4、C5、B6、B 三、(每小题4分,共16分)1、41]cos 41[cos cos sin cos 2024323=-=-=⎰⎰πππx x xd xdx x2、πππππ202020220202]2sin 41[412sin 41)12(cos 21cos ⎰⎰⎰=+=+=x x x x xd dx x x xdx x 22022sin 41πππ=+-⎰xdx 3、令3ln 24)]1ln (2[11121211,20202040-=+-=+-+=+=+=⎰⎰⎰t t dt t t dt t t dx xt x 4、e e e x d e dx x e x x x-=-=-=⎰⎰2112112121][1 四、(每小题5分,共20分)1、22222,2yx y y z y x x x z +=∂∂+=∂∂ 2、x xy y x y z y y y x x z +-=∂∂+-=∂∂2322292,33 xy x yz y y x x y z y x z xy x z 182,196,63222222222-=∂∂+-=∂∂∂=∂∂∂=∂∂ 3、33)332(23y x xe xy x x z -++=∂∂,33)332(32y x ye y y x yz ---=∂∂ 4、xy ye x z =∂∂,xy xe y z =∂∂,()21,2e x z =∂∂,()21,22e y z =∂∂,dy e dx e dz 222+=五、(每小题5分,共10分)1、先画D (略),再改变次序:dx y x f dy dy y x f dx yyx x⎰⎰⎰⎰=1010),(),(22、先交换积分次序,然后积分。

高等数学试题库及答案doc

高等数学试题库及答案doc

高等数学试题库及答案doc一、选择题1. 下列函数中,哪一个是偶函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = |x|D. f(x) = sin(x)答案:A2. 曲线 y = x^2 在点 (1,1) 处的切线斜率是多少?A. 0B. 1C. 2D. -2答案:C二、填空题1. 极限lim(x→0) (sin(x)/x) 的值是 __________。

答案:12. 函数 f(x) = x + 1 在 x = 2 处的导数是 __________。

答案:1三、计算题1. 求函数 f(x) = x^3 - 2x^2 + 3x 的导数。

解:f'(x) = 3x^2 - 4x + 32. 计算定积分∫(0 到 1) x^2 dx。

解:∫(0 到 1) x^2 dx = [1/3 * x^3] (从0到1) = 1/3四、证明题1. 证明函数 f(x) = e^x 是严格单调递增的。

证明:设任意 x1 < x2,则 f(x1) - f(x2) = e^x1 - e^x2。

由于e^x 是严格单调递增的,所以当 x1 < x2 时,e^x1 < e^x2,从而f(x1) < f(x2)。

因此,函数 f(x) 是严格单调递增的。

五、应用题1. 一个物体从静止开始,以初速度为零的匀加速直线运动,其加速度为 2 m/s²。

求物体在前 3 秒内的位移。

解:根据匀加速直线运动的位移公式 s = 1/2 * a * t²,代入 a = 2 m/s²和 t = 3 s,得到 s = 1/2 * 2 * 3² = 9 m。

六、论述题1. 论述微积分在物理学中的应用。

答案:微积分在物理学中有广泛的应用,例如在力学中计算物体的运动轨迹、在电磁学中分析电场和磁场的变化、在热力学中研究温度分布等。

微积分的基本原理—极限和导数,为物理学家提供了一种强大的工具,用以描述和预测物理现象的变化趋势。

高等数学基础(1)综合练习参考答案

高等数学基础(1)综合练习参考答案

高等数学基础(1)综合练习参考答案一.选择题1.B2.B3.D4.B5.C6.B7.D8.D9.C 10.C 11.C 12D 13B 14A 15D 16B 17D 18B 19A 20B 21C 22B 23A 24A二.填空题1. x <-1≤4 2. x x x f 2)(2+= 3.奇函数 原点 4. )(0x f 5.可去或第一类 6.0=x 7.1 8.ek 21=9.010.12742-x11.)0,(-∞∈x 12.x =-113.(1,2) 14. a 为实数 b =615.k =116.3,1-==b a 17. (1) c x +cos (2) x sin (3)c x F +-)32(2118. 1 19.1三.计算题 1.求极限 解:(1)原式=22521152lim221=+-=+++-→x x x x(2)原式=)11)(2()11)(11(lim22221++--+++--+-→x x x x x x x x x61)11)(1)(2()1(lim21=++--+-=→x x x x x x x(3)eee x x x x xxx xx ==⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=⎪⎪⎪⎪⎭⎫⎝⎛++∞→∞→2322332131lim2131lim(4)原式=1)11ln(lim 1lnlim =+=++∞→∞→xx x xxx x(5)原式=])11)(11()11(2sin )31[(lim 1++-++++-→x x x x x x x=4])11(2sin )31[(lim 3)3(31+=+++----→exx x x xx(6)原式=278)3(22325-=-(7)原式=2211211lim 21...41211lim 1=--=⎪⎭⎫ ⎝⎛+++++∞→∞→n n n n(8)原式=11lim 111lim 1arctan 2lim2222=+=-+-=-+∞→∞→+∞→x x xx x x x x x π(9)原式=1ln 21lim1ln 121limln )1(ln lim21121-++-=-++-=-+-→→→x x x x x xx x x xx x x x x x x x2311ln 14lim1-=+++-=→x x x(10)原式=2)2(lim223=→xx x x (无穷小量替换)2.解:1)1)(()1(lim)(11lim22+++-+=+-++∞→∞→x x b ax x b ax x x x x011)()1(lim2=+-++--=∞→x bx b a x a x由条件知,必有⎩⎨⎧-==⇒⎩⎨⎧=+=-11001b a b a a 3.解:9lim 11lim lim 2===⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛-+-∞→∞→∞→aaax x xx xx e e e x a x a a x a x ,所以3ln =a .4.解:当y 在0=x 处连续知:)0()(lim 0f x f x =→k xx x x =⋅-⇒→s i n c o s 1limk x x xx =⇒→s i n .2lim221=⇒k5.解:(1)由于-→0l i m x 1)0(=f ,+→0limx b f =)0(又)(lim 0x f x →存在等价于-→0lim x =)0(f +→0lim x )0(f ,所以,1=b ,a 可为任意实数;(2))(x f 在0=x 处连续等价于-→0limx =)0(f +→0lim x )0(f )0(f =,又a f =)0( 所以1==b a .6.证明:设12)(-=xx x f ,因 1)0(-=f ,1)1(=f由零点存在定理知,存在)1,0(∈ξ,使得0)(=ξf , 即有10<<ξ,使12=ξξ.7.解:切点为)1,12(-π,则斜率为1cos 1sin 22=-====ππt t tt dxdy k⇒切线方程为)12(11+-⋅=-πx y 即22+-=πx y8.求下列函数的导数或微分(1) 解:2312621)2ln(xx xex ey xx+++++-='--⇒ dxxx xex edy xx]3132)2ln([2+++++-=--(2) 解:两边对x 求导y y y y x '+='⋅+⋅+1)21()cos(2⇒1)cos(2)cos(122-++-='=y x y y x y dxdy(3)解:xx y sin cos =' ⇒ x xx xx y 22222cscsin1sin cossin-=-=--=''(4)解:22ln 1ln 11ln arcsin 2xx x xx x x x y -⋅⋅⎪⎭⎫⎝⎛-⋅⎪⎭⎫⎝⎛='xx xx x x ln arcsinln )ln 1(22⋅-⋅-=(5)解:两边取对数得:x x y sin ln ln = 两边对x 求导:x xx x y ycos sin 1sin ln 1⋅⋅+=')cot sin (ln x x x y dxdy y +=='dx x x x x dy x)cot sin (ln )(sin +=(6)解:两边对x 求导02)1(2='⋅--'+⋅+y xy y y e yx ⇒yx yx exy yey ++--='22把0=x 代入原方程得:0=y把0=y 代入上述方程得:1)0(-='y(7)解:221arctan2221)1(112ln 2)1(21xxx x x x y x-⋅+⋅++⋅-+='⇒dxxx xdy x]212ln )1(1[1arctan2222⋅+-+-=(8) 解:)1(31)3ln(ln )1(--+-⋅-⋅='--xax a a y xx⇒dx xax a ady xx]3)3ln(ln [-+-⋅⋅-=--(9)解:021)(='⋅-+'+y y y x y e xy⇒xyxy xey yedxdy -+=219.解:设矩形与椭圆在第一象限的交点为),(y x ,则矩形面积为:xy S 4=又因为y x ,满足16422=+yx⇒ )61(442yy S -=⇒)61(426244)61(4422yy yyS -⋅-+-='令0='S ⇒⎩⎨⎧==23x y ⇒矩形边长为32,2210.. )1)(3(39632+-=--='x x x x y)1(6-=x y ),(y x 则所求面积为: xy S 2=又因为y x ,满足21x y -= )1(22x x S -=⇒⇒ )2(2)1(22x x x S -⋅+-='令0='S ⇒ ⎪⎪⎩⎪⎪⎨⎧==3233y x⇒ 最大矩形面积为9342==xy S12. 解:设圆柱形容器底半径为r,则由题意高为brVr a r C ⋅⋅⋅⋅+⋅=222πππ则总造价为3223,0b Va h aVbr C ⋅=⋅=⇒='ππ令.,3223时总造价最小高为因此当底半径bVa h aVbr ⋅=⋅=ππ13.证明:对任意的x 有)0(01111222≠>+=+-='x xxx y所以函数x x y arctan -=单调增加,证毕14.法一:设)1ln()(x x x f +-=,则在],0[x 上满足拉格朗日中值定理条件,存在一点x <<ξξ0,,使)(0)0()(/ξf x f x f =--即,1111)1ln(ξξξ+=+-=+-xx x )0(x <<ξ由0>x ,01>+ξξ,即,0)1ln(>+-xx x )1ln(x x +>⇒法二:,01111)(>+=+-='xxx x f 当),0(+∞∈x 时)(x f ⇒单调增加)0()(f x f >⇒又因为0)(0)0(>⇒=x f f )1ln(x x +>⇒15.计算不定积分(1)xxde x x d e x 11111:⎰⎰-=-=原式解x de e xxx 1111⎰+-=ce e xx x ++-=111brV a r C ⋅-⋅⋅='222π由,2rV h ⋅=π(2)⎰⋅+=+==-tdttttxtx21:2112令原式解ctt++=2323cxx+-+-=12)1(3223(3)xdxlnln21:⎰-=原式解)ln2()ln2(21xdx---=⎰-cx+--=21)ln2(2(4)xdxxsin)sin1(sin:2⎰+=原式解)sin1()sin1(1)sin1(sin112xdxxdx++-++=⎰⎰cxx++++=sin11)sin1ln((5)⎰+⋅=2)(1:xxedxe原式解=earctan(6)dxx))32(52(⎰-=原式cxx+-=32ln)32(5216.计算定积分(1)⎰-=202sinsin41:πxdx原式解⎰++-⋅=2sin)sin21sin21(41πxdxx2sin2sin2ln41πxx-+=3ln41=(2)⎰⋅=π02sin2:xdx原式解⎰+=2)(1xxededxx x x ⎰-⋅=ππ02sin202sin242-=π(3)⎰=20sin 2:πxdxx 原式解02)sin cos (2πx x x +-=2=(4))1(:2212-+--=⎰-+-x x d ex x原式解0212-+--=x xe31---=ee(5)⎰+=32)2(2x dex 原式dxe e x xx⎰-+=322203)2(2236e =17. 解:dx x x x S ⎰--=32)4(03]3123[32x x -=29=18.由题意知:xy y y )1(+=' ⇒⎰⎰-=+xdx y y dy )1(⎪⎭⎪⎬⎫=+-=+⇒1)1(ln ln 1lny c x yy21ln ln =⇒c xyy 211=+⇒19.]2[121c dx e xe e y dx xdx +⎰⋅⎰=---⎰]2[2c dx exee xxx +⋅=-⎰)22(c e xe e xxx+-=⎭⎬⎫=+-=1)0()22(y c e xee xxx3=⇒c xx e e x y 3)1(22+-=⇒20.解:特征方程为042=+λ i i 2,221-==⇒λλxc x c y 2sin 2cos 21+=⇒2cos42ππx +=21. 解:特征方程为0652=+-λλ⇒3,221==λλxxec ec y 3221+=⇒-设特解x Ae y =*由待定系数法得A =1xxxe ec e c y y y ++=+=-3221*⎩⎨⎧=='1)0(0)0(y y 1,121-==⇒c cxxxe eey +-=⇒3222.解:特征方程为0232=++λλ⇒2,121-=-=λλ对应的齐次方程的通解:xxec ec y 221---+=设x B x A y sin cos *+=代入原方程得:x x B x A x B x A x B x A sin 3)sin cos (2)cos sin (3sin cos =+++-+--⇒ 103,109=-=B A⇒ x x y cos 109sin 103*-= ⇒ x x ec e c y x x c o s 109sin 103221-++=--。

《高等数学练习题》全部答案

《高等数学练习题》全部答案

《高等数学》第一章综合练习题(一)参考答案一、填空题1.函数()ln =--142y x x 的定义域为{1,2,3,4}x x R x ι且。

提示:即解不等式组40ln 2020x x xì-¹ï-¹íï-¹î,可得1,2,3,4x ¹2.设函数)(x f 的定义域为]11[,-,则)13(2++x x f 的定义域为[3,2][1,0]--- 。

提示:即解不等式:21311x x -£++£。

3.若函数()f x 的定义域为[0,1],则函数(sin )f x 的定义域为[2,2]k k p p p +。

提示:即解不等式0sin 1x ££。

4.若函数()f x 的定义域为[1,0]-,则函数(cos )f x 的定义域为3[2,2]22k k p p p p ++。

提示:即解不等式1cos 0x -££5.若函数()f x 的定义域为[0,1],则函数(arctan 2)f x 的定义域为1[0,tan 1]2。

提示:即解不等式0arctan 21x ££,可得02tan 1x ££6.函数arcsin ln2x y x =+的定义域为(1,1]-。

提示:即解不等式组11ln 2020x x x -££ìï+¹íï+>î,可得11x -<£7.若极限223lim 2x x x a b x®-+=-,则=a 2 ,b =1-。

提示:要使此极限存在,则22lim (3)0x x x a ®-+=,即20a -=,所以2a =;又222232(2)(1)lim lim lim (1)122x x x x x x x x xx®®®-+--==-=---,所以1b =-。

(完整版)高等数学基础作业答案.doc

(完整版)高等数学基础作业答案.doc

高等数学基础第一次作业点评1责任教师:许院年 第1章 函数第 2 章 极限与连续(一)单项选择题 ⒈下列各函数对中,(C )中的两个函数相等.A. f ( x) ( x) 2, g (x)xB.f ( x)x 2 , g( x) xC. f ( x) ln x 3 , g(x) 3ln xD. f ( x)x 1, g( x)x 2 1x1点评:从函数的两要素可知:两个函数相等,当且仅当他们的定义域相同,对应规则也 相同。

而与自变量或因变量所用的字母无关。

⒉设函数 f ( x) 的定义域为 ( , ) ,则函数f ( x) f ( x) 的图形关于( C )对称.A. 坐标原点B. x 轴C.y 轴D.y x点评:可先用奇偶函数的定义来判断它是什么函数,若是奇函数就关于坐标原点对称,若是偶函数就关于 Y 轴对称。

⒊下列函数中为奇函数是( B ).A. y ln(1 x 2 )B.yx cos xC. ya x a xD. yln(1 x)2f ( x) f (x) ,则函数为偶函点评:可直接用奇偶函数的定义来判断它是什么函数。

若 数;若 f ( x)f ( x) ,则函数为奇函数。

⒋下列函数中为基本初等函数是( C ).A. y x 1B. y xC.y x2D.y1, x 0 1 ,x点评:基本初等函数是指:常数函数、幂函数、指数函数、对数函数及三角函数。

⒌下列极限存计算不正确的是( D ).A. limx 21B.lim ln(1 x)2xx2x 0C.lim sin xD. lim x sin1xxxx点评:只有无穷小量乘以有界变量才为无穷小量,如 C ,没有无穷大量乘以有界变量为无穷小量。

⒍当 x0 时,变量( C )是无穷小量.A.sin xB.1xxC.x sin1D. ln( x 2)x点评:无穷小量乘以有界变量为无穷小量⒎若函数 f ( x) 在点 x 0 满足( A ),则 f ( x) 在点 x 0 连续。

高等数学基础习题集(含答案)

高等数学基础习题集(含答案)

【详解】①原式= lim
x 0
x2 x2 1 =2 ;②原式= lim 2 = ; x 0 2x 1 2 2 x 2 x sin x = lim x 0 x3 x (x 1 3 x + (x 3 )) 1 3! = 3 x 6
③原式= lim
x 0
6、求下列极限
2 x x 1 ) ① lim( x 1 x 1
x a
子也以 0 为极限,故 lim f ( x) f (a) 0 ,所以 lim f ( x) 存在,为 f (a) .
1 2 ex sin x 8、极限 lim 2 x 0 1 e x ln(1 x)
.
4
高等数学基础练习题
【解题思路】因为中间变量出现了
2019 考研 高等数学基础习题集 答案详解

第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章 第十章

函数、极限、连续............................................................................................................ 3 导数与微分........................................................................................................................ 9 中值定理及导数应用...................................................................................................... 14 不定积分.......................................................................................................................... 24 定积分及其应用.............................................................................................................. 29 常微分方程...................................................................................................................... 37 向量代数和空间解析几何(数一)..............................................................................47 多元函数微分学.............................................................................................................. 52 多元函数积分学.............................................................................................................. 60 无穷级数(数一、三).................................................................................................. 71

(完整word版)高等数学练习题(附答案)

(完整word版)高等数学练习题(附答案)

《高等数学》专业 年级 学号 姓名一、判断题. 将√或×填入相应的括号内.(每题2分,共20分)( )1. 收敛的数列必有界.( )2. 无穷大量与有界量之积是无穷大量. ( )3. 闭区间上的间断函数必无界. ( )4. 单调函数的导函数也是单调函数.( )5. 若)(x f 在0x 点可导,则)(x f 也在0x 点可导.( )6. 若连续函数)(x f y =在0x 点不可导,则曲线)(x f y =在))(,(00x f x 点没有切线.( )7. 若)(x f 在[b a ,]上可积,则)(x f 在[b a ,]上连续.( )8. 若),(y x f z =在(00,y x )处的两个一阶偏导数存在,则函数),(y x f z =在(00,y x )处可微.( )9. 微分方程的含有任意常数的解是该微分方程的通解.( )10. 设偶函数)(x f 在区间)1,1(-内具有二阶导数,且 1)0()0(+'=''f f , 则)0(f 为)(x f 的一个极小值.二、填空题.(每题2分,共20分)1. 设2)1(x x f =-,则=+)1(x f .2. 若1212)(11+-=xxx f ,则=+→0lim x .3. 设单调可微函数)(x f 的反函数为)(x g , 6)3(,2)1(,3)1(=''='=f f f 则=')3(g .4. 设yxxy u +=, 则=du .5. 曲线326y y x -=在)2,2(-点切线的斜率为 .6. 设)(x f 为可导函数,)()1()(,1)1(2x f xf x F f +==',则=')1(F .7. 若),1(2)(02x x dt t x f +=⎰则=)2(f .8. x x x f 2)(+=在[0,4]上的最大值为 . 9. 广义积分=-+∞⎰dx e x 20.10. 设D 为圆形区域=+≤+⎰⎰dxdy x y y x D5221,1 . 三、计算题(每题5分,共40分)1. 计算))2(1)1(11(lim 222n n n n ++++∞→Λ. 2. 求1032)10()3()2)(1(++++=x x x x y ΛΛ在(0,+∞)内的导数.3. 求不定积分dx x x ⎰-)1(1.4. 计算定积分dx x x ⎰-π53sin sin .5. 求函数22324),(y xy x x y x f -+-=的极值. 6. 设平面区域D 是由x y x y ==,围成,计算dxdy yyD⎰⎰sin . 7. 计算由曲线x y x y xy xy 3,,2,1====围成的平面图形在第一象限的面积.8. 求微分方程yxy y 2-='的通解. 四、证明题(每题10分,共20分)1. 证明:2tan arcsin1x arc x x=+ )(+∞<<-∞x .2. 设)(x f 在闭区间[],b a 上连续,且,0)(>x fdt t f dt t f x F x xb⎰⎰+=0)(1)()( 证明:方程0)(=x F 在区间),(b a 内有且仅有一个实根.《高等数学》参考答案一、判断题. 将√或×填入相应的括号内(每题2分,共20分)1.√ ;2.× ;3.×;4.× ;5.×;6.× ;7.× ;8.× ;9.√ ;10.√.二、 填空题.(每题2分,共20分)1.442++x x ; 2. 1; 3. 1/2; 4.dy y x x dx y y )/()/1(2-++;5. 2/3 ;6. 1 ;7.336 ; 8. 8 ; 9. 1/2 ; 10. 0.三、计算题(每题5分,共40分)1.解:因为 21(2)n n +222111(1)(2)n n n <+++<+L 21n n+ 且 21lim 0(2)n n n →∞+=,21lim n n n →∞+=0由迫敛性定理知: ))2(1)1(11(lim 222n n n n ++++∞→Λ=0 2.解:先求对数)10ln(10)2ln(2)1ln(ln +++++=x x x y Λ101022111++++++='∴x x x y y Λ )(10()1(++='∴x x y Λ)10102211++++++x x x Λ 3.解:原式=⎰-x d x112=⎰-x d x 2)(112=2c x +arcsin4.解:原式=dx x x ⎰π23cos sin=⎰-2023sin cos πxdx x ⎰ππ223sin cos xdx x=⎰-2023sin sin πx xd ⎰ππ223sin sin x xd=2025][sin 52πx ππ225][sin 52x -=4/55.解: 02832=--='y x x f x 022=-='y x f y故 ⎩⎨⎧==00y x 或⎩⎨⎧==22y x当 ⎩⎨⎧==0y x 时8)0,0(-=''xxf ,2)0,0(-=''yy f ,2)0,0(=''xy f 02)2()8(2>--⨯-=∆Θ 且A=08<-∴ (0,0)为极大值点 且0)0,0(=f当 ⎩⎨⎧==22y x 时4)2,2(=''xxf , 2)2,2(-=''yy f ,2)2,2(=''xy f 02)2(42<--⨯=∆Θ ∴无法判断6.解:D={}y x y y y x ≤≤≤≤2,10),(⎰⎰⎰⎰=∴102sin sin y y Ddx y y dy dxdy y y=dy x y y y y 2][sin 10⎰=dy y y y )sin (sin 1⎰-=⎰+-110cos ]cos [y yd y=⎰-+-110cos ]cos [1cos 1ydy y y=1sin 1- 7.解:令xy u =,xyv =;则21≤≤u ,31≤≤v v vuu vv v uuv y y x x J v uvu 212221=-==∴ 3ln 212131===⎰⎰⎰⎰Ddv v du d A σ 8.解:令 u y =2,知x u u 42)(-=' 由微分公式知:)4(222c dx xe e y u dxdx+⎰-⎰==⎰-)4(22c dx xe e x x +-=⎰-)2(222c e xe e x x x ++=--四.证明题(每题10分,共20分)1.解:设 21arcsinarctan )(xx x x f +-=222222211111111)(xx x x x x xx f ++-+⋅+--+='Θ=0c x f =∴)( +∞<<∞-x令0=x 0000)0(=∴=-=c f Θ 即:原式成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

试卷代号: 7032上海开放大学 2017 至 2018 学年第一学期《高等数学基础》期末复习题一.选择题1.函数 f ( x)sin(x 2 4) x2在 x 2 连续,则常数 k 的值为()。

x 2kx 2A . 1;B . 2 ;C . 4;D . 42.下列函数中()的图像关于 y 轴对称。

A . x cos .31xx3.下列函数中()不是奇函数。

1A . sin( x 1) ;B . e x e x ;C . sin 2x cosx ;D . ln x x 2 14.当 x0 时,()是无穷小量。

A .sin 2xB . (1 1) xcos 1. x sin 1x xx x 5.函数 f ( x)f ( x) ()。

sin 4x ,则 lim xx 0A . 0 ;B . 4;C . 1;D .不存在 4 f (x)f (2)6.函数 f ( x) ln x ,则 lim ()。

x 2 x 2A . ln 2 ;B . 1; C . 1;D .2x27. 设 f ( x) 在点 x x 0 可微,且 f (x 0 ) 0 ,则下列结论成立的是()。

A .x x 0 是 f ( x) 的极小值点 . x x 0 是 f ( x) 的极大值点;BC . x x 0 是 f ( x) 的驻点; . x x 0 是 f (x) 的最大值点;D8.下列等式中,成立的是()。

A .1dxd. e 2 xdx2de 2 xxx BC . e 3 x dx1 de 3 x . 1dxd ln 3x3 D 3x9.当函数 f ( x) 不恒为 0, a, b 为常数时,下列等式不成立的是()( f ( x) dx) f ( x) .d bf ( x) dx f ( x) dxaf ( x)dx f ( x) c .a bd f ( x) f ( b) f (a)10.曲线y e x x 在 (0,) 内是()。

A.下降且凹; B.上升且凹; C.下降且凸; D.上升且凸11.曲线 y 1 x3 2 x23x 在区间 2,3内是()。

3A.下降且凹 B.上升且凹 C.下降且凸 D.上升且凸12.下列无穷积分为收敛的是()。

A.sin xdxB.0e2 x dxC.0 1 e x dxD.11 dx02x 13.下列无穷积分为收敛的是()。

x2dx 1dx x 2dx xA. B.1C. D.1e2 dx1x1 14.下列广义积分中()发散。

1113A.x 2 dx ;B.dx ;C.dx ;D.x 2 dx 11x31x2115.设函数 f ( x) 的原函数为 F (x) ,则11()。

x2 f (x )dxA. F ( x)C;B.1;.1;.1F ( ) C C F ( ) C D f ( ) Cx x x 16.下列广义积分中收敛的是()x 3 dx2x3 dx cosxdx1xdx 二.填空题1111.函数f ( x)ln( x 3)的定义域是。

4x2.函数y x 1的定义域是。

x33.函数 y5x 的定义域是。

ln( x1)4.曲线y e 2 x在点M处的切线斜率为2e 2,则点M处的坐标为。

5.曲线y ln x 在x 2 处的切线方程为。

6.设函数y f (cos 2x) 可导,则dy。

7. 设 f ( x) x 21,则 f ( f ( x)) 。

8. 设 f ( x) 的一个原函数是 sin 2x ,则 f ( x) 。

9.已知 F ( x)f ( x) ,则xf (x 2 1)dx 。

1 x( x1x 2 )dx 。

10.11x 3 (cosx 1)dx11. 。

112.dt cost 2dt =。

dx x13.设 F ( x)xe sin tdt ,则 F ( )。

0214.设 F ( x) 为 f (x) 的原函数,那么 f (cos x)sin xdx 。

15.设 F ( x)xe (t 1) 2dt ,那么 F (1) 。

三.计算题1 2x4 x 11、求极限 lim 4x 12、求极限 lim 2x 1 x 4x 1x2 x 33x 4xsin 3x 3、求极限 lim4、求极限 lim3x 21 4x 1xx 05、求极限 lim x ln(1 3x 2 )6、求极限 lim ln(12x)x 01 3x 31 x 01 4x 17、设函数 y x cosx2 x ,求 dy。

、设函数 yx cos(3x 1) ,求dye89、设函数y x 2ln 2xx ,求 dy 。

、设函数y 3x 1 ,求 dy 。

10 cos2x11、设函数 y 2xe 2 x,求 dy 。

1 3 x ,求 dy 。

12、设函数 yx 2e113、设函数 y1 sin2x ,求 dy 。

14、计算不定积分 x 2sin xdxcosx215、计算不定积分x2cos xdx 16、计算不定积分x 2e 3 x dx3四、应用题1、求由抛物线 y 2 x 2 与直线 y x 所围的面积。

2、求由抛物线 yx 2与直线 y2 x所围的面积。

-3、求由抛物线y x2x 与直线 y x 所围的面积。

y4、求由抛物线x 22 与直线y x 所围的面积。

y xyyy x 2x4xy x32x- 15、求由抛物线y x2与直线 y 6x 所围的面积。

y x22126、要做一个有底无盖的圆柱体容器, 已知容器的容积为立方米 , 试问如何选取底半径和高4的尺寸 , 才能使所用材料最省。

7、要做一个有底无盖的圆柱体容器, 已知容器的容积为16 立方米 , 底面单位面积的造价为10 元/ 平方米,侧面单位面积的造价为 20 元/ 平方米,试问如何选取底半径和高的尺寸, 才能使建造费用最省。

8、在半径为 8 的半圆和直径围成的半圆内内接一个长方形(如图),为使长方形的面积最大,该长方形的底长和高各为多少。

9、要用同一种材料建造一个有底无盖的容积为 108 立方米的圆柱体容器,试问如何选取底半径和高的尺寸 , 才能使建造费用最省。

试卷代号: 7032上海开放大学2017 至 2018 学年第一学期《高等数学基础》期末复习题答案一.选择题1.D2.C3.A4.D5..C9.B10.B11. A12.B13.C14.A15.B16. A二.填空题1. 3 x 4 2.x1且 x 33.1x 5且 x 04.1,e2 5.y ln 21 2 6.2sin 2xf (cos2x) dx1224x2 14sin 2x F ( x21)C0xcos x2 e 1 F (cos x) C 三.计算题231、求极限 lim1 2x 4x1x4x 1解: lim 4x12 x 1 2 x 1 2 x 1lim4x 12lim 12= ex4x1x4x1x4x12、求极限 lim4 x 12x 1x2x 3解: lim2x4 x 14 x 14 x 11lim2x3 4lim 14= e 8x2x3x2x3x2x34x3x3、求极限 limx3x 23x 4x24x8解: limlim 1e33x23x 2xxsin 3x 4、求极限 limx1 4x 1解: limsin 3x 3x 31 4x 1lim2x 0x 02x5、求极限 limx ln(1 3x 2 )x1 3x 3 1解: lim x ln(1 3x 2 ) limx3x 221 3x 3 13x 3 x 0x 026、求极限 limln(1 2x)x 01 4x 1解: lim ln(1 2 x)lim 2x1x 01 4x1 x 0 2x7、设函数 yxe cosx2 x ,求 dy 。

xe cos x3解: y2x 28、设函数 y x cos(3x 1) ,求 dy 。

9、设函数 yx 2 ln 2xx ,求 dy 。

x 2 ln 2x 5解: yx 210、设函数 y3x 1,求 dy 。

cos2x3x 1 cos2x3x 1 cos2 x3cos 2x 2 3x 1 sin 2x解: y22cos2 xcos2x11、设函数 y2x ,求 dy 。

1 e 3 x12、设函数 ye 2x ,求 dy 。

1 2x13、设函数 ysin2x ,求 dy 。

1 cosxsin 2x 1 cosx sin 2x1 cos x解: y1 2cosx14、计算不定积分 x 2sin xdx2 解 : x 2 2x 20+—+x 2sin xdx = 2x 2cosx8 x sinx16cosxC222215、计算不定积分 x 2cos xdx3 解 : x 2 2x 20+—+16、计算不定积分 x 2 e 3x dx解: x 2 2x20+—+四、 应用题1、求由抛物线 y 2x 2 与直线 yx 所围的面积。

解:由y 2x 2x 11,x 22yx2、解:抛物线 yx 2 与直线 y2 x 的交点为 ( 2,4),(1,1)面积 A1x x 2dx223、求由抛物线 yx 2x 与直线 y x 所围的面积。

yy 2 x 2xy x解:由 y x 2x x 1 0, x 2 2y x所围的面积 S22 x 2)dx( x (x 2x)) dx(2 x4、解:抛物线 yx 2 2 与直线 y x 的交点为 ( 1, 1),(2,2)面积 A2 (x22) dxx15、解:解:抛物线 y x 2 与直线 y6 x 的交点为 ( 3,9),(2,4)面积 A 6 x x 2 dx 1252366、要做一个有底无盖的圆柱体容器 , 已知容器的容积为 4 立方米 , 试问如何选取底半径和高的尺寸 , 才能使所用材料最省。

解:设圆柱体底半径为 r ,高为 h ,则体积 Vr 2h4h4 r2材料最省即表面积最小表面积 S = r 22 rh = r 22 r4 = r 2 8r 2rS ' = 2 r 8r34r 2 ,令 S ' = 0,得唯一驻点所以当底半径为34米,此时高为 34 米时表面积最小即材料最省。

7、要做一个有底无盖的圆柱体容器 , 已知容器的容积为 16 立方米 , 底面单位面积的造价为 10 元/ 平方米,侧面单位面积的造价为 20 元/ 平方米,试问如何选取底半径和高的尺寸 , 才 能使建造费用最省。

解:设圆柱体底半径为 r ,高为 h ,则体积 Vr 2h 16h 16r2且造价函数 f10 r 220 2 rh10 r 2640r 令 f20 r 6400 ,得唯一驻点 r 2 34r 2所以当底半径为234米,此时高为 34米时造价最低。

8、在半径为 8 的半圆和直径围成的半圆内内接一个长方形(如图),为使长方形的面积最大,该长方形的底长和高各为多少。

相关文档
最新文档