三相三线制与三相四线制

合集下载

三相三线制

三相三线制





UA UB UC 2UC
I 0 , 接电源中将会产生环流。

UC
想多讲一点
为此,当将一组三相电源连成三角形
时,应先不完全闭合,留下一个开口,在
开口处接上一个交流电压表,测量回路中
V
总的电压是否为零。如果电压为零,说明
连接正确,然后再把开口处接在一起。
V型接法的电源:若将接的三相电源去掉一相,则线电压 仍为对称三相电源。
1 1 1•
1• 1• 1•
( )U nN U A U B U C
ZZZ
Z
Z
Z
3• U nN
1

(U
A

U
B

U
C
)
0
Z
Z

U nN 0
电源侧线电压对称,负载侧线电压也对称。
负载侧相电压: 计算电流:




U an U AN U nN U A Uψ

U bn


U BN U nN


Uca UCA
3U 150o
计算相电流:


I ab
U ab
3U 30o
Z |Z|


I bc
U bc
3U 90o
Z |Z|


I ca
U ca
3U 150o
Z |Z|

IA
a
Uab

IB
b

IC
c

UZpha
I ab
Z

三相交流电

三相交流电

三相交流电
三相交流电是由三个频率相同、电势振幅相等、相位差互差120°角的交流电路组成的电力系统。

目前,我国生产、配送的都是三相交流电。

三相交流电是三相对称正弦交流电的组合,其相位差为120度。

它是由三相发电机的三个对称绕组产生的。

每个绕组及其外部电路称为A相,分别记录为A、B和C。

它们的组合称为三相系统。

它们通常由三相三线制和三相四线制供电,即三角形连接和星形连接。

扩展资料:
中国的民用电源使用三相电源作为楼层或住宅区的接入线。

通常使用星形连接。

相电压为220 V,线电压为381 V(近似值)。

它需要一条中性线。

一般有地线,即三相五线制。

输入线为单相,即三相和单相。

接地或中性线的电压为220伏。

一些家用电器如大功率空调也采用三相四线连接。

此时,入口线必须为三相。

工业用电采用6kv以上三相高压电源进入厂区。

总降压变电所、总配电变电所或车间变电所降压后,三相或单相电源深入各车间。

三相三线制和三相四线制是什么意思

三相三线制和三相四线制是什么意思
三相三线制和三相四线制是什么意思?各有什么区别? IT系统(三相三线制)电源端不接地或通过阻抗接地,电气设备的外露导电部分(金属外壳)接地。
TN-C电源的中性占直接接地,负载设备的外露导电部分通过保护导体与该接地点相连接。在整个系统中,中性导体和保护导体的功能合在一根导体上,即我国常用的接零保护系统。(三相四线制)
TT系统 电源系统有一点直接接地,设备外露导电部分的接地与电源的接地在电气上无关联,我国称之为保护接地系统。(三相四线制)
低压配电系统常采用三相四线制(如380V/220V);
从安全方面考虑,如果线路能保持较高的绝缘水平,且对地电容电流又很

三相三线制与三相四线制

三相三线制与三相四线制

三相三线制三相三线制(three-phase three—wiresystem)不引出中性线得星型接法与三角形接法、电力系统高压架空线路一般采用三相三线制,三条线路分别代表a,b,c三相,我们在野外瞧到得输电线路,一回即有三根线(即三相),三根线可能水平排列,也可能就是三角形排列得;对每一相可能就是单独得一根线(一般为钢芯铝绞线),也有可能就是分裂线(电压等级很高得架空线路中,为了减小电晕损耗与线路电抗,采用分裂导线,多根线组成一相线,一般2—4分裂,在特高压交直流工程中可能用到6-8分裂),没有中性线,故称三相三线制。

三相交流发电机得三个定子绕组得末端联结在一起,从三个绕组得始端引出三根火线向外供电、没有中线得三相制叫三相三线制。

电晕:曲率半径小得导体电极对空气放电,便产生了电晕。

(电晕产生热效应与臭氧、氮得氧化物,使线圈内局部温度升高,导致胶粘剂变质、碳化,股线绝缘与云母变白,进而使股线松散、短路,绝缘老化、)三相四线制在低压配电网中,输电线路一般采用三相四线制,其中三相四线制三条线路分别代表A,B,C三相,另一条就是中性线N(如果该回路电源侧得中性点接地,则中性线也称为零线,如果不接地,则从严格意义上来说,中性线不能称为零线)。

在进入用户得单相输电线路中,有两条线,一条我们称为火线,另一条我们称为零线,零线正常情况下要通过电流以构成单相线路中电流得回路、而三相系统中,三相平衡时,中性线(零线)就是无电流得,故称三相四线制;在380V低压配电网中为了从380V线间电压中获得220V相间电压而设N线,有得场合也可以用来进行零序电流检测,以便进行三相供电平衡得监控。

重复接地不论N线还就是PE线,在用户侧都要采用重复接地,以提高可靠性。

但就是,重复接地只就是重复接地,它只能在接地点或靠近接地得位置接到一起,但绝不表明可以在任意位置特别就是户内可以接到一起。

这一点一定要切记,也要注意您得朋友就是否有所违反!!N与PE线应用中最好使用标准、规范得导线颜色:A相用黄色,B相用绿色,C相用红色,N线用蓝色或者黑色,PE线用黄绿双色。

第5章 三相电路

第5章  三相电路

5.3 负载三角形联结的三相电路(自学)
1. 连结形式
i1 L1 + –
结论1:U12=U23=U31=UL=UP
u u 12 31
结论2: 对称负载Δ 形联结时, –
i2
线电流IL 3IP(相电流),
L2 +
Z31
Z12
i i31 12 i23
Z23
且落后相应的相电流 30°。
u23 L3 –
UUU==UUU∠∠-°°
由相量图可得 φ ψU ψU
U12 3U1 30
同理:
U U U U
总结:
UU==UU∠∠-°°
U U
U U U
N R2
i
L2
u+–´2
u–+´3 L3
(b)
结论
(1) 不对称负载Y形连结又未接中性线时,负载相 电压不再对称,且负载电阻越大,负载承受的电压越 高。
(2) 中性线的作用:保证星形联结三相不对称负载 的相电压对称。
(3) 若照明负载三相不对称,必须采用三相四线制 供电方式,且中性线 (指干线) 内不允许接熔断器或刀 闸开关。
220V电压, 正常工作。
② 中性线断开
L2
变为单相电路,如图(b) L3
所示, 由图可求得
I U23 380 A 12 .7 A R2 R3 10 20
U2 IR 2 12 .710V 127 V
U3 IR 3 12 .7 20V 254 V
R1
R3
相电流:流过每相负载的电流 I1‘N’ 、I2N’ 、I3N’ IP 线电流:流过端线的电流 I1、I2、I3 IL

三相三线制与三相四线制

三相三线制与三相四线制

三相三线制三相三线制(three-phase three-wire system)不引出的星型接法和。

电力系统高压一般采用三相三线制,三条线路分别代表a,b,c三相,我们在野外看到的,一回即有三根线(即三相),三根线可能水平排列,也可能是三角形排列的;对每一相可能是单独的一根线(一般为钢芯铝绞线),也有可能是分裂线(电压等级很高的架空线路中,为了减小电晕损耗和线路电抗,采用分裂导线,多根线组成一相线,一般2-4分裂,在特高压交直流工程中可能用到6-8分裂),没有中性线,故称三相三线制。

三相交流发电机的三个定子绕组的末端联结在一起,从三个绕组的始端引出三根火线向外供电、没有中线的三相制叫三相三线制。

电晕:小的导体电极对空气,便产生了电晕。

(电晕产生热效应和臭氧、氮的氧化物,使线圈内局部温度升高,导致胶粘剂变质、碳化,股线绝缘和云母变白,进而使股线松散、短路,绝缘老化。

)三相四线制概述在低压中,输电线路一般采用三相四线制,其中三相四线制三条线路分别代表A,B,C三相,另一条是N(如果该回路电源侧的中性点接地,则中性线也称为零线,如果不接地,则从严格意义上来说,中性线不能称为零线)。

在进入用户的单相输电线路中,有两条线,一条我们称为,另一条我们称为,零线正常情况下要通过以构成单相线路中电流的回路。

而三相系统中,三相平衡时,中性线(零线)是无电流的,故称三相四线制;在380V低压配电网中为了从380V线间电压中获得220V相间电压而设N 线,有的场合也可以用来进行零序电流检测,以便进行三相供电平衡的监控。

重复接地不论N线还是PE线,在用户侧都要采用,以提高可靠性。

但是,重复接地只是重复接地,它只能在接地点或靠近接地的位置接到一起,但绝不表明可以在任意位置特别是户内可以接到一起。

这一点一定要切记,也要注意你的朋友是否有所违反!!N和PE线应用中最好使用标准、规范的导线颜色:A相用黄色,B相用绿色,C相用红色,N线用蓝色或者黑色,PE线用黄绿双色。

三相三线制和四线制

三相三线制和四线制

三相三线制和三相四线制是什么意思?各有什么区别?
是用三相三线制还是用三相四线制的电表,由用户的进线和用电性质决定。

如果用户是纯三相制电器,如三相变压器,三相电动机等,可以使用三相三线制线路,三相三线制只有三根线,没有零线,就只能用三相三线制的表。

如果用户有单相负荷又有三相负荷,那就是三相四线制或三相五线制(多零线接地线)线路,就要使用三相四线制的电表。

三相三线制线路没有调整能力,要求三相负荷基本平衡。

三相三线制和三相四线制的区别是什么?应用场所有哪些不同
三相四线比三相三线多了一根电源中性线,三相三线只能提供380伏电压的电源,三相四线既可以提供380伏电压、又可以提供220伏电压的电源。

三相三线,明显省钱了,但负载不平衡时候无法通过零相回馈电流,容易烧东西了,而三相四线可以解决这个问题
三相三线制,三相四线制,三相五线制各有什么优点
三相三线制就是只用三根相线
三相四线制就是三根相线加一根零线
三相五线制就是三根相线加一根零线再加一根保护接地线
三相三线制和三相四线制电机(动力马达)有什么区别?
三相电机是平衡负载,相电流等于线电流,矢量和为零,所以不需要零线,角形接法的电机是没有零线可接的,星形接法可以在中性点接零线,但没有意义,接或不接都是一样的。

在低压供电系统中,三相四线制较三相三线制的适用范围是什么?有何优点?
三相三线制供电系统,只适用于三相对称负荷(如三相电力变压器,三相电机等),若三相负
荷不对称,中性点就会出现电压。

采用三相四线制供电系统,可以获得线电压和相电压,对于使用者比较方便。

另外在三相负荷不对称时,因中性线阻抗很小,也能消除中性点的电压位移。

6三相电路(电路基础冯澜版本)

6三相电路(电路基础冯澜版本)
或 Q = I Ap X A + I Bp X B + I Cp X C
2 2 2
若三相负载对称: Q 3U P I P sin 或 3.三相负载电路的视在功率
Q = 3I P 2 X
S=
P 2+Q 2
6.6 三相电路的举例分析
6.6.1故障电路的举例分析 1.星形联结负载电路的故障举例
• ′ • UB - U AB ′ IB = = ZB ZB
三相四线制电路,必须确保中性线可靠连接,具有足 够的机械强度、阻抗很小,且中性线上不设熔断器和 开关。
, , , ,
6.3.2 考虑线路阻抗的三相星形联结负载电路
IA


UA Z Zl


UB IB Z Zl
U B I B Z B



UC IC Z Zl
U C I C Z C
6.4.2 考虑线路阻抗的三相三角形联结负载电路 作阻抗的Y-△等效变换 Z Δ = 3Z Y
IA


UA ZY Zl


I AB = I BC = I CA =

• •

I A ∠30° 3 I B ∠30° 3 I C ∠30°
• •

UB IB ZY Zl UC IC ZY Zl
• U BC ′ ′ IB = -IC = (Z AB + Z CA) // Z BC •
• ′ I CA = I AB ′ = •

- U BC Z CA + Z AB

, ,
′ U CA I CA Z CA



′ U BC I BC Z BC
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三相三线制三相三线制(three-phase three-wire system )不引出中性线的星型接法和三角形接法。

电力系统高压架空线路一般采用三相三线制,三条线路分别代表a,b,c 三相,我们在野外看到的输电线路,一回即有三根线(即三相),三根线可能水平排列,也可能是三角形排列的;对每一相可能是单独的一根线(一般为钢芯铝绞线),也有可能是分裂线(电压等级很高的架空线路中,为了减小电晕损耗和线路电抗,采用分裂导线,多根线组成一相线,一般2-4 分裂,在特高压交直流工程中可能用到6-8 分裂),没有中性线,故称三相三线制。

三相交流发电机的三个定子绕组的末端联结在一起,从三个绕组的始端引出三根火线向外供电、没有中线的三相制叫三相三线制。

电晕:曲率半径小的导体电极对空气放电,便产生了电晕。

(电晕产生热效应和臭氧、氮的氧化物,使线圈内局部温度升高,导致胶粘剂变质、碳化,股线绝缘和云母变白,进而使股线松散、短路,绝缘老化。

)三相四线制概述在低压配电网中,输电线路一般采用三相四线制,其中三相四线制三条线路分别代表A,B,C 三相,另一条是中性线N(如果该回路电源侧的中性点接地,则中性线也称为零线,如果不接地,则从严格意义上来说,中性线不能称为零线)。

在进入用户的单相输电线路中,有两条线,一条我们称为火线,另一条我们称为零线,零线正常情况下要通过电流以构成单相线路中电流的回路。

而三相系统中,三相平衡时,中性线(零线)是无电流的,故称三相四线制;在380V 低压配电网中为了从380V 线间电压中获得220V 相间电压而设N 线,有的场合也可以用来进行零序电流检测,以便进行三相供电平衡的监控。

重复接地不论N 线还是PE 线,在用户侧都要采用重复接地,以提高可靠性。

但是,重复接地只是重复接地,它只能在接地点或靠近接地的位置接到一起,但绝不表明可以在任意位置特别是户内可以接到一起。

这一点一定要切记,也要注意你的朋友是否有所违反!!N 和PE 线应用中最好使用标准、规范的导线颜色: A 相用黄色, B 相用绿色, C 相用红色,N 线用蓝色或者黑色,PE 线用黄绿双色。

三相五线制是指A、B 、C、N 和PE 线,其中,PE 线是保护地线,也叫安全线,是专门用于接到诸如设备外壳等保证用电安全之用的。

PE 线在供电变压器侧和N 线接到一起,但进入用户侧后绝不能当作零线使用,否则,发生混乱后就与三相四线制无异了。

但是,由于这种混乱容易让人丧失警惕,可能在实际中更加容易发生触电事故。

现在民用住宅供电已经规定要使用三相五线制,如果你的不是,可以要求整改。

为了安全,要斩钉截铁地要求使用三相五线制!三相五线制简介三相五线制三相三相五线制五线制包括三相电的三个相线( A 、B 、C 线)、中性线(N 线);以及地线(PE 线)。

中性线(N 线)就是零线。

三相负载对称时,三相线路流入中性线的电流矢量和为零,但对于单独的一相来讲,电流不为零。

三相负载不对称时,中性线的电流矢量和不为零,会产生对地电压。

接地方式三相五线制三相五线制分为TT 接地方式和TN 接地方式,其中TN 又具体分为TN-S ,TN-C ,TN-C-S 三种方式。

TT 接地方式:第一个字母T 表示电源中性点接地,第二个T 是设备金属外壳接地,这种方法高压系统普遍采用,低压系统中有大容量用电器时不宜采用。

TN-S 接地方式:字母S 代表N 与PE 分开,设备金属外壳与PE 相连,设备中性点与N 相连。

其优点是PE 中没有电流,故设备金属外壳对地电位为零。

主要用于数据处理,精密检测,高层建筑的供电系统。

TN-C 接地方式:字母 C 表示N 与PE 合并成为PEN ,实际上是四线制供电方式。

设备中性点和金属外壳都和N 相连。

由于N 正常时流通三相不平衡电流和谐波电流,故设备金属外壳正常对地有一定电压,通常用于一般供电场所。

TN-C-S 接地方式:一部分N 与PE 分开,是四线半制供电方式。

应用于环境较差的场所。

当N 和PE 分开后不允许再合并。

中国规定,民用供电线路相线之间的电压(即线电压)为380V ,相线和地线或中性线之间的电压(即相电压)均为220V 。

进户线一般采用单相二线制,即三个相线中的任意一相和中性线(作零线)。

如遇大功率用电器,需自行设置接地线。

三相五线制标准导线颜色为: A 线黄色,B 线绿色,C 线红色,N 线淡蓝色,PE 线黄绿色。

1.电感:电感(inductance of an ideal inductor )是闭合回路的一种属性,是一个物理量。

当线圈通过电流后,在线圈中形成磁场感应,感应磁场又会产生感应电流来抵制通过线圈中的电流。

这种电流与线圈的相互作用关系称为电的感抗,也就是电感,单位是“亨利(H)”,自感当线圈中有电流通过时,线圈的周围就会产生磁场。

当线圈中电流发生变化时,其周围的磁场也产生相应的变化,此变化的磁场可使线圈自身产生感应电动势(感生电动势)(电动势用以表示有源元件理想电源的端电压),这就是自感。

互感两个电感线圈相互靠近时,一个电感线圈的磁场变化将影响另一个电感线圈,这种影响就是互感。

互感的大小取决于电感线圈的自感与两个电感线圈耦合的程度,利用此原理制成的元件叫做互感器。

互感器(instrument transformer )又称为仪用变压器,是电流互感器和电压互感器的统称。

能将高电压变成低电压、大电流变成小电流,用于量测或保护系统。

其功能主要是将高电压或大电流按比例变换成标准低电压(100V )或标准小电流(5A 或1A ,均指额定值),以便实现测量仪表、保护设备及自动控制设备的标准化、小型化。

同时互感器还可用来隔开高电压系统,以保证人身和设备的安全。

互感器与变压器的区别:原理上基本一样的,不过互感器基本都是有隔离作用的,变压器不全是,功能上变压器是其能量变换作用的,主要应用在输送电和供配电方面,工厂也有生产或试验用调压变压器,而互感器主要是测量、计量用的,用于监视、计费及为二次控制提供信号用,变压器的规格一般是按照国标的等级的,种类比较多,互感器一次电压也是一样的,不过电流互感器会有绝缘等级的要求,二次侧,常用的,电压互感器有100V 、220V 的,电流有5A, 和1A 的2.电容:电容器,通常简称其容纳电荷的本领为电容,用字母 C 表示。

定义1:电容器,顾名思义,是‘装电的容器’,是一种容纳电荷的器件。

电容器是电子设备中大量使用的电子元件之一,广泛应用于电路中的隔直通交,耦合,旁路,滤波,调谐回路,能量转换,控制等方面。

定义2:电容器,任何两个彼此绝缘且相隔很近的导体(包括导线)间都构成一个电容器。

电容与电容器不同。

电容为基本物理量,用字母 C 表示,单位为法拉,符号F。

电容的作用:1)旁路旁路电容是为本地器件提供能量的储能器件,它能使稳压器的输出均匀化,降低负载需求。

就像小型可充电电池一样,旁路电容能够被充电,并向器件进行放电。

为尽量减少阻抗,旁路电容要尽量靠近负载器件的供电电源管脚和地管脚。

这能够很好地防止输入值过大而导致的地电位抬高和噪声。

地电位是地连接处在通过大电流毛刺时的电压降。

2)去耦去耦,又称解耦。

从电路来说,总是可以区分为驱动的源和被驱动的负载。

如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作,这就是所谓的“耦合”。

去耦电容就是起到一个“电池”的作用,满足驱动电路电流的变化,避免相互间的耦合干扰,在电路中进一步减小电源与参考地之间的高频干扰阻抗。

将旁路电容和去藕电容结合起来将更容易理解。

旁路电容实际也是去耦合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提高一条低阻抗泄防途径。

高频旁路电容一般比较小,根据谐振频率一般取0.1 μF、0.01 μF 等;而去耦合电容的容量一般较大,可能是10μF 或者更大,依据电路中分布参数、以及驱动电流的变化大小来确定。

旁路是把输入信号中的干扰作为滤除对象,而去耦是把输出信号的干扰作为滤除对象,防止干扰信号返回电源。

这应该是他们的本质区别。

3)滤波从理论上(即假设电容为纯电容)说,电容越大,阻抗越小,通过的频率也越高。

但实际上超过1μF 的电容大多为电解电容,有很大的电感成份,所以频率高后反而阻抗会增大。

有时会看到有一个电容量较大电解电容并联了一个小电容,这时大电容通低频,小电容通高频。

电容的作用就是通高阻低,通高频阻低频。

电容越大低频越容易通过。

具体用在滤波中,大电容(1000μF)滤低频,小电容(20pF )滤高频。

曾有网友形象地将滤波电容比作“水塘”。

由于电容的两端电压不会突变,由此可知,信号频率越高则衰减越大,可很形象的说电容像个水塘,不会因几滴水的加入或蒸发而引起水量的变化。

它把电压的变动转化为电流的变化,频率越高,峰值电流就越大,从而缓冲了电压。

滤波就是充电,放电的过程。

4)储能储能型电容器通过整流器收集电荷,并将存储的能量通过变换器引线传送至电源的输出端。

电压额定值为40 ~450VDC 、电容值在220 ~150 000 μF 之间的铝电解电容器(如EPCOS 公司的B43504 或B43505 )是较为常用的。

根据不同的电源要求,器件有时会采用串联、并联或其组合的形式,对于功率级超过10KW 的电源,通常采用体积较大的罐形螺旋端子电容器。

3.阻抗:在具有电阻、电感和电容的电路里,对交流电所起的阻碍作用叫做阻抗。

阻抗常用Z 表示,是一个复数,实部称为电阻,虚部称为电抗,其中电容在电路中对交流电所起的阻碍作用称为容抗,电感在电路中对交流电所起的阻碍作用称为感抗,电容和电感在电路中对交流电引起的阻碍作用总称为电抗。

阻抗的单位是欧。

阻(resistance )是对能量的消耗,而抗(reactance )是对能量的保存。

相关文档
最新文档