2011二模数学压轴题
挑战中考压轴题_圆压轴100题

第100题(2010.广东省深圳市中考模拟)如图是一圆形纸片,AB 是直径,BC 是弦,将纸片沿弦BC 折叠后,劣弧BC 与AB 交于点D ,得到BDC .(1)若BD ︵=CD ︵,求证:BDC 必经过圆心O ; (2)若AB =8,BD ︵=2CD ︵,求BC 的长.如图甲,分别以两个彼此相邻的正方形OABC与CDEF的边OC、OA 所在直线为x轴、y轴建立平面直角坐标系(O、C、x2+bx+c经过A、C两点,与x轴的另F三点在x轴正半轴上).若⊙P过A、B、E三点(圆心在x轴上),抛物线y=14一交点为G,M是FG的中点,正方形CDEF的面积为1.(1)求B点坐标;(2)求证:ME是⊙P的切线;如图,△ABC内接于⊙O,AD⊥BC,OE⊥BC,OE=12 BC.(1)求∠BAC的度数;(2)将△ACD沿AC折叠为△ACF,将△ABD沿AB折叠为△ABG,延长FC和GB相交于点H;求证:四边形AFHG是正方形;(3)若BD=6,CD=4,求AD的长.已知:如图,抛物线y=13x 2x+m 与x 轴交于A 、B 两点,与y 轴交于C 点,∠ACB=90°, (1)求m 的值及抛物线顶点坐标;(2)过A 、B 、C 的三点的⊙M 交y 轴于另一点D ,连接DM 并延长交⊙M 于点E ,过E 点的⊙M 的切线分别交x 轴、y 轴于点F 、G ,求直线FG 的解析式;(3)在条件(2)下,设P 为CBD 上的动点(P 不与C 、D 重合),连接PA 交y 轴于点H ,问是否存在一个常数k ,始终满足:AH •AP=k ? 如果存在,请写出求解过程;如果不存在,请说明理由.如图1所示,以点M(-1,O)为圆心的圆与y轴、x轴分别交于点A,B,C,D,直线y=⊙M相切于点H,交x轴于点E,交y轴于点F.(1)请直接写出OE、⊙M的半径r、CH的长;(2)如图2所示,弦HQ交x轴于点P,且DP:PH=3:2,求cos∠QHC的值;(3)如图3所示,点K为线段EC上一动点(不与E,C重合),连接BK交⊙M于点T,弦AT交x轴于点N.是否存在一个常数a,始终满足MN•MK=a,如果存在,请求出a的值;如果不存在,请说明理由.第095题(自选)如图,E 点为x 轴正半轴上一点,⊙E 交x 轴于A 、B 两点,交y 轴于C 、D 两点,P 点为劣弧BC 上一个动点,且A (-1,0),E (1,0).(1)求点C 的坐标;(2)连接PA ,PC .若CQ 平分∠PCD 交PA 于Q 点,当P 点在运动时,线段AQ 的长度是否发生变化;若不变求出其值,若发生变化,求出变化的范围;(3)连接PD ,当P 点在运动时(不与B 、C 两点重合),求证:PC PDPA的值不变如图,等腰梯形ABCD中,AD∥BC,AB=DC,以HF为直径的圆与AB、BC、CD、DA相切,切点分别是E、F、G、H.其中H为AD的中点,F为BC的中点.连接HG、GF.(1)若HG和GF的长是关于x的方程x2-6x+k=0的两个实数根,求⊙O的直径HF(用含k的代数式表示),并求出k的取值范围.(2)如图,连接EG、DF. EG与HF交于点M,与DF交于点N,求GN的值.NE直线y=-x+m与直线y=x+2相交于y轴上的点C,与x轴分别交于点A、B.(1)求A、B、C三点的坐标;(2)经过上述A、B、C三点作⊙E,求∠ABC的度数,点E的坐标和⊙E的半径;(3)若点P是第一象限内的一动点,且点P与圆心E在直线AC的同一侧,直线PA、PC分别交⊙E于点M、N,设∠APC=θ,试求点M、N的距离.(可用含θ的三角函数式表示)AB是⊙O的直径,点E是半圆上一动点(点E与点A、B都不重合),点C是BE延长线上的一点,且CD⊥AB,垂足为D,CD与AE交于点H,点H与点A不重合.(1)求证:△AHD∽△CBD;(2)连HO,若CD=AB=2,求HD+HO的值.如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.(1)连接PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由;(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形.在平面直角坐标系xoy中,点M在x轴的正半轴上,⊙M交x轴于A、B两点,交y轴于C、D两点,且C为AE的中点,AE交y轴于G点,若点A的坐标为(-2,0),AE=8.(1)求点C的坐标;(2)连接MG、BC,求证:MG∥BC;(3)过点D作⊙M的切线,交x轴于点P.动点F在⊙M的圆周上运动时,OF的比值是否发生变化?若不变,求出比值;若变PF化,说明变化规律.如图1,⊙O中AB是直径,C是⊙O上一点,∠ABC=45°,等腰直角三角形DCE中∠DCE是直角,点D在线段AC上.(1)若M是线段BE的中点,N是线段AD的中点,证明:MN= ;(2)将△DCE绕点C逆时针旋转α(0°<α<90°)后,记为△D1CE1(图2),若M1是线段BE1的中点,N1是线段AD1的中点,M1N1= 是否成立?若是,请证明;若不是,说明理由.如图,AB、BC、CD分别与⊙O切于E、F、G,且AB∥CD.连接OB、OC,延长CO交⊙O于点M,过点M作MN∥OB 交CD于N.(1)求证:MN是⊙O的切线;(2)当0B=6cm,OC=8cm时,求⊙O的半径及MN的长.如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E,D,连接EC,CD.(1)求证:直线AB是⊙O的切线;(2)试猜想BC,BD,BE三者之间的等量关系,并加以证明;,⊙O的半径为3,求OA的长.(3)若tan∠CED=12如图,⊙O是△ABC的外接圆,且AB=AC,点D在弧BC上运动,过点D作DE∥BC,DE交AB的延长线于点E,连接AD、BD.(1)求证:∠ADB=∠E;(2)当点D运动到什么位置时,DE是⊙O的切线?请说明理由.(3)当AB=5,BC=6时,求⊙O的半径.第085题(2009.北京市房山区九上期末)如图,在直角坐标系xoy中,点A(2,0),点B在第一象限且△OAB为等边三角形,△OAB的外接圆交y轴的正半轴于点C,过点C的圆的切线交x轴于点D.(1)判断点C是否为弧OB的中点?并说明理由;(2)求B、C两点的坐标及直线CD的函数解析式;(3)点P在线段OB上,且满足四边形OPCD是等腰梯形,求点P坐标.第084题(自选)如图,直角坐标系中,已知两点O(0,0),A(2,0),点B在第一象限且△OAB为正三角形,△OAB的外接圆交y 轴的正半轴于点C,过点C的圆的切线交x轴于点D.(1)求B,C两点的坐标;(2)求直线CD的函数解析式;(3)设E,F分别是线段AB,AD上的两个动点,且EF平分四边形ABCD的周长.试探究:△AEF的最大面积.在Rt△ABC中,BC=9,CA=12,∠ABC的平分线BD交AC与点D,DE⊥DB交AB于点E.(1)设⊙O是△BDE的外接圆,求证:AC是⊙O的切线;(2)求⊙O的半径;(3)设⊙O交BC于点F,连接EF,求EF的值.AC如图,△ABC内接于⊙O,过点B作⊙O的切线,交于CA的延长线于点E,∠EBC=2∠C.(1)求证:AB=AC;= 时,①求tan∠ABE的值;(2)当ABBC②如果AE=20,求AC的值.11如图,Rt△ABC内接于⊙O,AC=BC,∠BAC的平分线AD与⊙O交于点D,与BC交于点E,延长BD,与AC的延长线交于点F,连接CD,G是CD的中点,连接OG.(1)判断OG与CD的位置关系,写出你的结论并证明;(2)求证:AE=BF;(3)若OG⋅DE=3(求⊙O的面积.如图,AB、AC分别是⊙O的直径和弦,点D为劣弧AC上一点,弦ED分别交⊙O于点E,交AB于点H,交AC于点F,过点C的切线交ED的延长线于点P.(1)若PC=PF,求证:AB⊥ED;(2)点D在劣弧AC的什么位置时,才能使AD2=DE•DF,为什么?如图,AB、AC分别是⊙O的直径和弦,点D为劣弧AC上一点,弦DE⊥AB分别交⊙O于E,交AB于H,交AC于F.P 是ED延长线上一点且PC=PF.(1)求证:PC是⊙O的切线;(2)点D在劣弧AC什么位置时,才能使AD2=DE•DF,为什么?(3)在(2)的条件下,若OH=1,AH=2,求弦AC的长.如图,以BC为直径的⊙O交△CFB的边CF于点A,BM平分∠ABC交AC于点M,AD⊥BC于点D,AD交BM于点,AD=12.N,ME⊥BC于点E,AB2=AF•AC,cos∠ABD=35(1)求证:△ANM≌△ENM;(2)求证:FB是⊙O的切线;(3)证明四边形AMEN是菱形,并求该菱形的面积S.(1)如图1,圆内接△ABC中,AB=BC=CA,OD、OE为⊙O的半径,OD⊥BC于点F,OE⊥AC于点G,求证:阴影部分四边形OFCG的面积是△ABC的面积的1 3(2)如图2,若∠DOE保持120°角度不变,求证:当∠DOE绕着O点旋转时,由两条半径和△ABC的两条边围成的图形(图中阴影部分)面积始终是△ABC的面积的1 3第076题(2010.辽宁省铁岭市)如图,已知矩形ABCD内接于⊙O,BD为⊙O直径,将△BCD沿BD所在的直线翻折后,得到点C的对应点N仍在⊙O上,BN交AD与点M.若∠AMB=60°,⊙O的半径是3cm.(1)求点O到线段ND的距离;(2)过点A作BN的平行线EF,判断直线EF与⊙O的位置关系并说明理由.如图,已知△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,过D作DE⊥BC,垂足为E,连接OE,,∠ACB=30°.(1)求证:DE是⊙O的切线;(2)分别求AB,OE的长;(3)如果以点E为圆心,r为半径的圆上总存在不同的两点到点O的距离为1,则求r的取值范围.如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连接AF交BC于E,∠ABC的平分线BD交AF 于D,连接BF.(1)证明:AF平分∠BAC;(2)证明:BF=FD;(3)若EF=4,DE=3,求AD的长.如图,在⊙O上位于直径AB的异侧有定点C和动点P,AC=12AB,点P在半圆弧AB上运动(不与A、B两点重合),过点C作直线PB的垂线CD交PB于D点.(1)如图1,求证:△PCD∽△ABC;(2)当点P运动到什么位置时,△PCD≌△ABC?请在图2中画出△PCD并说明理由;(3)如图3,当点P运动到CP⊥AB时,求∠BCD的度数.第072题(2006.山东省莱芜市)半径为2.5的⊙O中,直径AB的不同侧有定点C和动点P.已知43BCCA,点P在AB上运动,过点C作CP的垂线,与PB的延长线交于点Q.(1)当点P与点C关于AB对称时,求CQ的长;(2)当点P运动到AB的中点时,求CQ的长;(3)当点P运动到什么位置时,CQ取到最大值?求此时CQ的长.第071题(2010.湖北省荆门市中考)如图,圆O的直径为5,在圆O上位于直径AB的异侧有定点C和动点P,已知43BCCA,点P在半圆弧AB上运动(不与A、B重合),过C作CP的垂线CD交PB的延长线于D点.(1)求证:AC•CD=PC•BC;(2)当点P运动到AB弧中点时,求CD的长;(3)当点P运动到什么位置时,△PCD的面积最大?并求这个最大面积S.第070题(2006.山东省烟台市中考)如图,已知点C在⊙O上,延长直径AB到点P,连接PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)若AC=PC,且PB=3,M是⊙O下半圆弧上一动点,当M点运动到使△ABM的面积最大时,CM交AB于点N,求MN•MC 的值.第069题(2011.江苏省镇江市实验学校中考数学二模)如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求∠P的度数;(3)点M是弧AB的中点,CM交AB于点N,AB=4,求线段BM、CM及弧BC所围成的图形面积.第068题(2011.北京市昌平区中考数学二模试卷)如图,已知点C在⊙O上,延长直径AB到点P,连接PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)若AC=PC,且PB=3,M是⊙O下半圆弧的中点,求MA的长.第067题(自选)如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)点M是弧AB的中点,CM交AB于点N,求∠CNA的度数.第066题(2010.内蒙古包头市中考)如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;AB;(2)求证:BC=12(3)点M是AB的中点,CM交AB于点N,若AB=4,求MN•MC的值.第065题(2012.江苏省南京市江宁区中考数学一模)如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,斜边AC的垂直平分线交BC于D点,交AC于E点,连接BE.(1)直线BE是否与△DEC的外接圆⊙O相切?为什么?(2)当AB=3时,求图中阴影部分的面积.第064题(2010.陕西省中考)如图,在Rt△ABC中∠ABC=90°,斜边AC的垂直平分线交BC与D点,交AC与E点,连接BE.(1)若BE是△DEC的外接圆的切线,求∠C的大小;(2)当AB=1,BC=2时,求△DEC外接圆的半径.第063题(2011.江苏省无锡市锡中实验学校九上期中考试)四边形ABCD是平行四边形,以AB为直径的⊙O经过点D,E是⊙O上任意一点,且CD切⊙O于点D.(1)试求∠AED的度数.(2)若⊙O的半径为,试求:△ADE面积的最大值.如图,在△ABC中,AB=AC,D是BC中点,AE平分∠BAD交BC于点E,点O是AB上一点,⊙O过A、E两点,交AD于点G,交AB于点F.(1)求证:BC与⊙O相切;(2)若AB=5,BC=8,求⊙O的半径.(3)若∠BAC=120°时,求∠EFG的度数.如图,△ABC内接于⊙O,且∠B=60°.过点C作圆的切线l与直径AD的延长线交于点E,AF⊥l,垂足为F,CG⊥AD,垂足为G.(1)求证:△ACF≌△ACG;(2)若求图中阴影部分的面积.如图,已知AD是△ABC的外角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC的外接圆于点F,连接FB、FC.(1)求证:FB=FC;(2)求证:FB2=FA•FD;(3)若AB是△ABC外接圆的直径,∠EAC=120°,BC=6cm,求AD的长.如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.(1)求证:BD=CD;(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.如图,BD是⊙O的直径,OA⊥OB,M是劣弧AB上一点,过点M点作⊙O的切线MP交OA的延长线于P点,MD 与OA交于N点.(1)求证:PM=PN;AO,过点B作BC∥MP交⊙O于C点,求BC的长.(2)若BD=4,PA=32如图,在以O为圆心的两个同心圆中,AB经过圆心O,且与小圆相交于点A、与大圆相交于点B.小圆的切线AC与大圆相交于点D,且CO平分∠ACB.(1)试判断BC所在直线与小圆的位置关系,并说明理由;(2)试判断线段AC、AD、BC之间的数量关系,并说明理由;(3)若AB=8cm,BC=10cm,求大圆与小圆围成的圆环的面积.(结果保留π)如图,△ABC内接于⊙O,∠BAC=60°,点D是BC的中点.BC,AB边上的高AE,CF相交于点H.试证明:(1)∠FAH=∠CAO;(2)四边形AHDO是菱形.第055题(2008.陕西省中考)如图,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的∠ACB的角平分线,过A、C、D三点的圆O与斜边AB交于点E,连接DE.(1)求证:AC=AE;(2)求AD的长.第054题(2008.山东省枣庄市中考)已知:如图,在半径为4的⊙O中,AB、CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且EM>MC.连接DE,(1)求证:AM•MB=EM•MC;(2)求EM的长;(3)求sin∠EOB的值.第053题(2012.四川省成都市金牛区重点学校中考二模)已知:如图,在半径为4的⊙O中,AB,CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且EM>MC.连接DE,(1)求证:AM•MB=EM•MC;(2)求sin∠EOB的值;(3)若P是直径AB延长线上的点,且BP=12,求证:直线PE是⊙O的切线.如图,AB为⊙O的直径,OE交弦AC于点P,交AM于点M,且AM=CM.BC;(1)求证:OP=12(2)如果AE2=EP•EO,且,BC=6,求⊙O的半径.如图,已知点C是以AB为直径的⊙O上一点,CH⊥AB于点H,过点B作⊙O的切线交直线AC于点D,点E为CH 的中点,连接AE并延长交BD于点F,直线CF交AB的延长线于G.(1)求证:AE•FD=AF•EC;(2)求证:FC=FB;(3)若FB=FE=2,求⊙O的半径R的长.。
2011年数学二模答案

解:(1)画图正确;……………………………………………………………………2分
(2)画图正确;……………………………………………………………………4分
(3)(-2,3).……………………………………………………………………6分
20.(本题7分)
解:表格填写正确;……………………………………………………………………2分
∵k=-1,W随x的增大而减小,
∴当x=48时,即A型住房建48套,B型住房建32套获得利润最大.…5分
(3)由题意知W=5x+(6-a)(80-x)=(a-1)x+480-80a.………………6分
∴当0<a<l时,x=48,W最大,即A型住房建48套,B型住房建32套.
………………………………………………………………………………7分
解得:48≤x≤50.………………………………………………………2分
∵x取非负整数,∴x为48,49,50.
∴有三种建房方案:
方案①
方案②
方案③
A型
48套
49套
50套
B型
32套
31套
30套
………………………………………………………………3分
(2)设该公司建房获得利润W(万元).
由题意知W=5x+6(80-x)=480-x,………………………………………4分
13.2414.4(30+x)=6(30-x)15.(-2,1)或(2,-1)16.①③④
三、解答题(本大题共12小题,共计88分)
17.(本题6分)
解:
由②得y=6-x代入①得2x-3(6-x)=2,解得x=4.……………………3分
代入②得y=2.…………………………………………………………………5分
2011年江苏十三大市各模考填空题压轴题的解答

2012届赣马高级中学填空题压轴题常见题型复习指导1题1(苏锡常镇四市一模) 设m ∈N,若函数()210f x x m =-+存在整数零点,则m 的取值集合为 ▲ .m 的取值集合为{0,3,14,30}.注 将“m ∈N ”改为“m ∈N *”,即得2011年全国高中数学联赛江苏赛区初赛试卷的填空题的压轴题:已知m是正整数,且方程2100x m -+=有整数解,则m 所有可能的值是 ▲ .题2(淮安市一模) 已知数列{a n },{b n }满足a 1=1,a 2=2,b 1=2,且对任意的正整数i ,j ,k ,l ,当i +j =k +l 时都有a i +b j =a k +b l ,则201111()2011i i i a b =+∑的值是 ▲ . 2013.变式1 已知数列{a n },{b n }满足a 1=1,a 2=2,b 1=2,且对任意的正整数i ,j ,k ,l ,当i +j =k +l 时都有a i -b j =a k -b l ,则11()ni i i a b n =+∑的值是 ▲ . 3.变式2 已知数列{a n },{b n }满足a 1=1,a 2=2,b 1=2,且对任意的正整数i ,j ,k ,l ,当i +j =k +l 时都有a i b j =a k b l ,记c n{c n }的通项公式是 ▲ . 1232n -⨯.题3(常州市一模) 若对任意的x ∈D ,均有f 1(x )≤f (x )≤f 2(x )成立,则称函数f (x )为函数f 1(x )到函数f 2(x )在区间D 上的“折中函数”.已知函数f (x )=(k -1)x -1,g (x )=0,h (x )=(x +1)ln x ,且f (x )是g (x )到h (x )在区间[1,2e]上的“折中函数”,则实数k 的取值范围为 ▲ . k =2为所求.题4(泰州市一模) 已知O 是锐角△ABC 的外接圆的圆心,且∠A =θ,若cos cos 2sin sin B C AB AC mAO C B+= ,则m = ▲ .(用θ表示)m =sin θ.A BC OE FD 图1图4题5(南京市一模) 若直角坐标平面内两点P ,Q 满足条件:①P ,Q 都在函数f (x )的图象上;②P ,Q 关于原点对称,则称点对(P ,Q )是函数()f x 的一个“友好点对”(点对(P ,Q )与点对(Q ,P )为同一个“友好点对”).已知函数22410()20ex x x x f x x ⎧++<⎪=⎨⎪⎩≥, , , , 则()f x 的“友好点对”有 ▲ 个.2个.题6(镇江市一模) 直线l 与函数sin y x =([0]x ∈π, )的图象相切于点A ,且l ∥OP ,O为坐标原点,P 为图象的极值点,l 与x 轴交于点B ,过切点A 作x 轴的垂线,垂足为C ,则BA BC ⋅ = ▲ .2224(1)144=ππ=--π.题7(扬州市一模) 若函数f (x )=x 3-ax 2(a >0)在区间20(,)3+∞上是单调递增函数,则使方程f (x )=1000有整数解的实数a 的个数是 ▲ .有4个不同的值.题8(苏州市一模) 在平面直角坐标系xOy 中,点P 是第一象限内曲线31y x =-+上的一个动点,过P 作切线与两个坐标轴交于A ,B 两点,则△AOB 的面积的最小值是 ▲ .值为题9(盐城市一模) 已知函数2342011()12342011x x x x f x x =+-+-+⋅⋅⋅+,2342011()12342011x x x x g x x =-+-+-⋅⋅⋅-,设()(3)(3)F x f x g x =+⋅-,且函数F (x )的零点均在区间[,](,,)a b a b a b <∈Z 内,则b a -的最小值为▲ . 9.题10(南通市一模) 是 ▲ .2.变式1 在等腰三角形ABC 中,AB =AC ,D 在线段AC 上,AD =kAC (k 为常数,且0<k <1),BD =l 为定长,则△ABC 的面积的最大值为 ▲ .2maxmax 21()()2(1)ABC ABD l S S k k ∆∆==-. 变式2 在正三棱锥P -ABC 中,D 为线段BC 的中点,E 在线段PD 上,PE =kPD (k 为常数,且0<k <1),AE =l 为定长,则该棱锥的体积的最大值为 ▲ .3223(1)(2)l k k-+.注 本题的原型题,可能来自于2008年江苏高考数学题:满足条件AB =2,AC的△ABC 的面积的最大值为 ▲ .2012届赣马高级中学填空题压轴题常见题型复习指导2题11(无锡市一模) 已知函数f (x )=|x 2-2|,若f (a )≥f(b ),且0≤a ≤b ,则满足条件的点(a ,b )所围成区域的面积为 ▲ .2π. 题12(高三百校大联考一模) 若函数f (x )=|sin x |(x ≥0)的图象与过原点的直线有且只有三个交点,交点中横坐标的最大值为α,则2(1)sin 2ααα+= ▲ .2.题13(苏北四市二模) 已知函数()|1||2||2011||1||2||2011|f x x x x x x x =+++++++-+-++- ()x ∈R ,且2(32)(1)f a a f a -+=-,则满足条件的所有整数a 的和是 ▲ .6.题14(南京市二模) 已知函数f (x )=2111x ax x +++(a ∈R ),若对于任意的x ∈N *,f (x )≥3恒成立,则a 的取值范围是 ▲ . 83≥-.变式 已知函数f (x )=2111x ax x +++(x ∈N *),且[f (x )]min =3,则实数a 的取值集合是 ▲ . {83-}.题15(盐城市二模) 已知函数f (x )=cos x ,g (x )=sin x ,记S n =2211(1)1(1)2()()222nnnk k k k n f g n n ==-π--π-∑∑,T m =S 1+S 2+…+S m .若T m <11,则m 的最大值为 ▲ . 5.题16(苏锡常镇四市二模) 已知m ,n ∈R ,且m +2n =2,则2122mn m n +⋅+⋅的最小值为▲ . 4.题17(南通市二模) 在平面直角坐标系xOy 中,设A ,B ,C 是圆x 2+y 2=1上相异三点,若存在正实数λ,μ,使得OC OA OB λμ=+,则λ2+(μ-3)2的取值范围是 ▲ . (2,)+∞.x图10λ+图12题18(苏北四市三模) 如图11是一个数表,第1行依次写着从小到大的正整数,然后把每行相邻的两个数的和写在这两数正中间的下方,得到下一行,数表从上到下与从左到右均为无限项,则这个数表中的第13行第10个数为 ▲ . 故第13行第10个数为 111216142922⨯+⨯=.题19(南京市三模) 如图12,已知正方形ABCD 的边长为1,过正方形中心O 的直线MN 分别交正方形的边AB ,CD 于点M ,N ,则当MNBN取最小值时,CN = ▲ .题20(南通市三模) 定义在[1,)+∞上的函数f (x )满足:①f (2x )=cf (x )(c 为正常数);②当2≤x ≤4时,f (x )=1-|x -3|.若函数图象上所有取极大值的点均落在同一条直线上,则c = ▲ .c =2或c =1.变式 定义在[1,)+∞上的函数f (x )满足:①f (2x )=cf (x )(c 为正常数);②当2≤x ≤4时,f (x )=1-|x -3|.若函数图象上所有取极大值的点均落在同一条以原点为顶点的抛物线上,则常数c = ▲ .c =4题22(扬州市三模) 设函数f (x )的定义域为D ,如果存在正实数k ,使对任意x ∈D ,都有x +k ∈D ,且f (x +k )>f (x )恒成立,则称函数f (x )为D 上的“k 型增函数”.已知f (x )是定义在R 上的奇函数,且当x >0时,f (x )=|x -a |-2a ,若f (x )为R 上的“2011型增函数”,则实数a 的取值范围是 ▲ . a <20116.题23(徐州市三模) 若关于x 的方程x 4+ax 3+ax 2+ax +1=0有实数根,则实数a 的取值范围为 ▲ .2(,][2,)3-∞-+∞ .题24(南通市最后一卷) 函数f (x )=32412x x x x -++的最大值与最小值的乘积是 ▲ .116-.题25(淮安市四模) 已知函数f (x )=|x -1|+|2x -1|+|3x -1|+…+|100x -1|,则当x = ▲ 时,f (x )取得最小值.171.2012届赣马高级中学填空题压轴题常见题型复习指导题1(苏锡常镇四市一模) 设m ∈N,若函数()210f x x m =-+存在整数零点,则m 的取值集合为 ▲ . 解 当x ∈Z ,且x ≤10时,Z . 若m =0,则x = -5为函数f (x )的整数零点. 若m ≠0,则令f (x )=0,得m∈N .注意到-5≤x ≤10N ,得x ∈{1,6,9,10},此时m ∈{3,223,14,30}.故m 的取值集合为{0,3,14,30}.注 将“m ∈N ”改为“m ∈N *”,即得2011年全国高中数学联赛江苏赛区初赛试卷的填空题的压轴题:已知m是正整数,且方程2100x m -+=有整数解,则m 所有可能的值是 ▲ .题2(淮安市一模) 已知数列{a n },{b n }满足a 1=1,a 2=2,b 1=2,且对任意的正整数i ,j ,k ,l ,当i +j =k +l 时都有a i +b j =a k +b l ,则201111()2011i i i a b =+∑的值是 ▲ .解 依题设,有b n +1-b n =a 2-a 1=1,从而数列{b n }是以2为首项,1为公差的等差数列. 同理可得,{a n }是以1为首项,1为公差的等差数列. 所以,数列{a n +b n }是以3为首项,2为公差的等差数列. 所以,201111()2011i i i a b =+∑=120112010(201132)20112⋅⨯+⨯=2013.变式1 已知数列{a n },{b n }满足a 1=1,a 2=2,b 1=2,且对任意的正整数i ,j ,k ,l ,当i +j =k +l 时都有a i -b j =a k -b l ,则11()ni i i a b n =+∑的值是 ▲ .略解 依题设,有a i -b j =a j -b i ,于是a i +b i =a j +b j ,所以a n +b n =3,11()ni i i a b n =+∑=3.变式2 已知数列{a n },{b n }满足a 1=1,a 2=2,b 1=2,且对任意的正整数i ,j ,k ,l ,当i +j =k +l 时都有a ib j =a k b l ,记c n{c n }的通项公式是 ▲ . 略解 由a 2b n =a 1b n +1,得1212n n b a b a +==,故b n =2n .同理,a n =12n -,通项公式为1232n -⨯.题3(常州市一模) 若对任意的x ∈D ,均有f 1(x )≤f (x )≤f 2(x )成立,则称函数f (x )为函数f 1(x )到函数f 2(x )在区间D 上的“折中函数”.已知函数f (x )=(k -1)x -1,g (x )=0,h (x )=(x +1)ln x ,且f (x )是g (x )到h (x )在区间[1,2e]上的“折中函数”,则实数k 的取值范围为 ▲ . 解 依题意,有0≤(k -1)x -1≤(x +1)ln x 在x ∈[1,2e]上恒成立.当x ∈[1,2e]时,函数f (x )=(k -1)x -1的图象为一条线段,于是(1)0,(2e)0,f f ≥⎧⎨≥⎩解得k ≥2.另一方面,k -1≤(1)ln 1x x x++在x ∈[1,2e]上恒成立.令m (x )=(1)ln 1x x x ++=ln 1ln x x x x ++,则2ln ()x xm x x -'=.因1≤x ≤2e ,故1(ln )1x x x'-=-≥0,于是函数ln x x -为增函数.所以ln x x -≥1ln1->0,()m x '≥0,m (x )为[1,2e]上的增函数. 所以k -1≤[m (x )]min =m (1)=1,k ≤2.综上,k =2为所求.题4(泰州市一模) 已知O 是锐角△ABC 的外接圆的圆心,且∠A =θ,若cos cos 2sin sin B C AB AC mAO C B+=,则m = ▲ .(用θ表示)解法1 如图1,作OE ∥AC 交AB 于E ,作OF ∥AB 交AC 于F . 由正弦定理,得s i n s i n s i n A E A OA OA O E A E O A==. 又∠AOE =∠OAF =2ADC π-∠=2B π-∠,所以cos sin AO B AE A=,所以cos sin AO B AB AE A AB =⋅.同理,cos sin AO C ACAF A AC=⋅.因AE AF AO += ,故cos cos sin sin AO B AB AO C AC AO A AB A AC⋅+⋅=. 因2sin sin AB AC AO C B ==,故上式可化为cos cos 2sin sin 2sin sin B C AB AC AO A C A B+=, 即cos cos 2sin sin sin B C AB AC A AO C B+=⋅,所以m =sin θ.解法2 将等式cos cos 2sin sin B C AB AC mAO C B+=两边同乘以2AO ,得222cos cos 4sin sin B C AB AC mAO C B +=,即2222cos cos sin 4sin 4B AB C AC m C AO B AO=⋅+⋅.由正弦定理,得m =22cos cos sin sin sin sin B C C B C B+=cos B sin C +cos C sin B =sin(B +C )=sin A =sin θ. 解法3 将已知等式cos cos 2sin sin B C AB AC mAO C B +=两边平方,得22222222cos cos cos cos 2cos 4sin sin sin sin B C B C AB AC AB AC A m AO C B C B++⋅=. 由正弦定理,得m 2=22cos cos 2cos cos cos B C B C A ++ =222cos sin (cos cos cos )B A B A C ++ =222cos sin (cos cos cos())B A B A A B +-+ =222cos sin (sin sin )B A B A + =sin 2A =2sin θ.注意到m >0,故m =sin θ.注 1.本题虽难度较大,但得分率却较高.其主要原因是考生利用了特值法,令△ABC 为正三角形,即得mm =sin θ. 2.题中三种解法均是处理向量问题最常用的基本方法,解法1用的是平面向量基本定理,从不同侧ABC OEF D 图1面表示AO;解法2与解法3,是或将向量等式两边同乘某个向量,或将等式两边同时平方,进而达到去除向量的目的.题5(南京市一模) 若直角坐标平面内两点P ,Q 满足条件:①P ,Q 都在函数f (x )的图象上;②P ,Q 关于原点对称,则称点对(P ,Q )是函数()f x 的一个“友好点对”(点对(P ,Q )与点对(Q ,P )为同一个“友好点对”).已知函数22410()20ex x x x f x x ⎧++<⎪=⎨⎪⎩≥, , , , 则()f x 的“友好点对”有 ▲ 个.解 设x <0,则问题化归为关于x 的方程22(241)0e xx x -+++=,即21e 22xx x =---(0x <)有几个负数解问题.记1=e x y ,221(1)2y x =-++,当1x =-时,11e 2<,所以函数1y 的图象与2y 的图象有两个交点(如图2),且横坐标均为负数,故所求“友好点对”共有2个.题6(镇江市一模) 直线l 与函数sin y x =([0]x ∈π,)的图象相切于点A ,且l ∥OP ,O 为坐标原点,P 为图象的极值点,l 与x 轴交于点B ,过切点A 作x 轴的垂线,垂足为C ,则BA B C ⋅=▲ .解 如图3,(1)P π2, 为极值点,2OP k =π.设点A (x 0,sin x 0),则过点A 的切线l 的斜率为02cos x =π.于是,直线l 的方程为002sin ()y x x x -=-π. 令y =0,得00sin 2x x x π-=,从而BC =00sin 2x x x π-=. BA BC ⋅= cos BA BC ABC ⋅⋅=BC 2=20(sin )2x π2224(1144=ππ=--π.题7(扬州市一模) 若函数f (x )=x 3-ax 2(a >0)在区间20(,)3+∞上是单调递增函数,则使方程f (x )=1000有整数解的实数a 的个数是 ▲ .解 令由22()323()03a f x x ax x x '=-=-=,得x =0或23ax =. 于是,f (x )的单调增区间为(,0)-∞和2(,)3a+∞. 所以220033a <≤,即0<a ≤10. 因f (x )的极大值为f (0)=0,故f (x )=1000的整数解只能在2(,)3a+∞上取得. 令x 3-ax 2=1000,则a =21000x x -. 令g (x )=21000x x -,则32000()1g x x '=+>0,故g (x )在2(,)3a+∞为增函数. 因g (10)=0,g (15)=510109+>,故方程f (x )=1000的整数解集为{11,12,13,14}.图4从而对应的实数a 亦有4个不同的值.题8(苏州市一模) 在平面直角坐标系xOy 中,点P 是第一象限内曲线31y x =-+上的一个动点,过P 作切线与两个坐标轴交于A ,B 两点,则△AOB 的面积的最小值是 ▲ .解 设P (a ,-a 3+1),0<a <1,则切线方程为y = -3a 2x +2a 3+1.于是,两交点分别为(0,2a 3+1),(32213a a+,0),322(21)()6AOB a S S a a ∆+==. 令333(21)(41)()3a a S a a +-'==0,得a ,且可判断此时S .题9(盐城市一模) 已知函数2342011()12342011x x x x f x x =+-+-+⋅⋅⋅+,2342011()12342011x x x x g x x =-+-+-⋅⋅⋅-,设()(3)(3)F x f x g x =+⋅-,且函数F (x )的零点均在区间[,](,,)a b a b a b <∈Z 内,则b a -的最小值为 ▲ .解 23420092()1f x x x x x x x '=-+-+-⋅⋅⋅-+=20111,1,12011, 1.x x xx ⎧+≠-⎪+⎨⎪=-⎩当x ≥0时,()0f x '>;当-1<x <0时,()0f x '>;当x <-1时,()0f x '>,故函数f (x )为R 上的增函数,于是函数f (x )在R 上最多只有一个零点.因f (0)=1>0,f (-1)=111111(11)(()()234520102011-+-++-++⋅⋅⋅+-+<0,故f (0)f (-1)<0,因而f (x )在R上唯一零点在区间(-1,0)上,于是f (x +3)的唯一零点在区间(-4,-3)上.同理可得,函数g (x )为R 上的减函数,于是函数f (x )在R 上最多只有一个零点.又g (1)=111111(11)(()()234520102011-+-+-+⋅⋅⋅+->0,g (2)=242010121212(12)2(2()2()234520102011-+-+-+⋅⋅⋅+-<0,于是g (1)g (2)<0,因而g (x )在R 上唯一零点在区间(1,2)上,于是g (x -3)的唯一零点在区间(4,5)上. 所以,F (x )的两零点落在区间[-4,5]上,b -a 的最小值为9.注 不少考生想对复杂的函数表达式进行求和变形化简,结果当然是徒劳而返,得分率非常低.导数法是解决高次函数或复杂函数的强有力的工具.题10(南通市一模) 是 ▲ . 解 (本题解法很多,仅给出平几解法)如图4,△ABC 中,E ,F 分别为底BC 与腰AC的中点,BF 与AE 交于点G ,则G 为△ABC 的重心,于是BG =CG=23BF =,且AE =3GE .所以,21333sin 222ABC BGCS S GB GC BGC ∆∆==⋅⋅≤⨯=,当且仅当∠BGC =2π,即BG ⊥GC 时,△ABC 的面积取最大值2.变式1 在等腰三角形ABC 中,AB =AC ,D 在线段AC 上,AD =kAC (k 为常数,且0<k <1),BD =l 为定长,则△ABC 的面积的最大值为 ▲ .略解 如图5,以B 为原点,BD 为x 轴建立直角坐标系xBy .设A (x ,y ),y >0. 因AD =kAC =kAB ,故AD 2=k 2AB 2,于是(x -l )2+y 2=k 2(x 2+y 2).所以,22222(1)21k x lx l y k--+-=- =2222222(1)()111l k l k x k k k ---+---≤2222(1)k l k -,于是,max21kly k=-,2max 2()2(1)ABD kl S k ∆=-,2max max 21()()2(1)ABC ABD l S S k k ∆∆==-. 变式2 在正三棱锥P -ABC 中,D 为线段BC 的中点,E 在线段PD 上,PE =kPD (k 为常数,且0<k <1),AE =l 为定长,则该棱锥的体积的最大值为 ▲ .略解 如图6,因PE =kPD ,故EG =kOD . 因AO =2OD ,故2OF AO FG GE k ==,于是22OF GO k =+. 因PG PE k PO PD ==,故1GOk PO =-, 从而OF OF GO PO GO PO =⋅=2(1)2k k-+. 所以,22(1)P ABC F ABC kV V k --+=-.因2AF AO FE GE k ==,故AF =2222AE lk k =++. 于是,F ABC V -≤316FA =3343(2)l k +(当且仅当F A ,FB ,FC 两两垂直时,“≤”中取“=”),所以,22(1)P ABCF ABC k V V k --+=-≤3223(1)(2)l k k -+,于是所求的最大值为3223(1)(2)l k k -+. 注 本题的原型题,可能来自于2008年江苏高考数学题:满足条件AB =2,AC的△ABC 的面积的最大值为 ▲ .题11(无锡市一模) 已知函数f (x )=|x 2-2|,若f (a )≥f(b ),且0≤a ≤b ,则满足条件的点(a ,b )所围成区域的面积为 ▲ .解 易知f (x )在上为减函数,在)+∞上为增函数,于是a ,b不可能同在)+∞上. 若0≤a ≤b2-a 2≥2-b 2恒成立,它围成图7中的区域①; 若0≤ab ,则2-a 2≥b 2-2,即a 2+b 2≤4,它围成图7中的区域②.综上,点(a ,b )所围成的区域恰好是圆a 2+b 2=4的18.故所求区域的面积为2π. 题12(高三百校大联考一模) 若函数f (x )=|sin x |(x ≥0)的图象与过原点的直线有且只有三个交点,交点中横坐标的最大值为α,则2(1)sin2ααα+= ▲ .解 依题意,画出示意图如图8所示. 于是,3(,2)2απ∈π,且A (α,-sin α)为直线y =kx 与函数y =-sin x (3(,2)2x π∈π)图象的切点.x在A 点处的切线斜率为sin cos ααα--=,故α=tan α.所以,2(1)sin 2ααα+=2(1tan )sin 2tan ααα+=sin 2cos sin ααα=2.题13(苏北四市二模) 已知函数()|1||2||2011||1||2||2011|f x x x x x x x =+++++++-+-++- ()x ∈R ,且2(32)(1)f a a f a -+=-,则满足条件的所有整数a 的和是 ▲ . 解 因f (-x )=f (x ),故f (x )为偶函数.记g (x )=|1||2||2011|x x x ++++++ ,h (x )=|1||2||2011|x x x -+-++- . 当x ≥0时,g (x +1)-g (x )=|x +2012|-|x +1|=2011, h (x +1)-h (x )=|x |-|x -2011|=22011,02011,2011,2011.x x x -≤<⎧⎨≥⎩所以,f (x +1)-f (x )=2,02011,4022,2011.x x x ≤<⎧⎨≥⎩所以,f (0)=f (1)<f (2)<f (3)<…. 又当0≤x ≤1时,f (x )=(1)(2)(2011)(1)(2)(2011)x x x x x x +++++++-+-++- =20112012⨯, 故2|32||1|a a a -+=-或21132111a a a ⎧--+⎨--⎩≤≤≤≤,,且a ∈N *,解得a =1,2,3,所以结果为6.注 本题也可以这样思考:从最简单的先开始.先研究函数1()|1||1|f x x x =++-与函数2()|1||2||1||2|f x x x x x =++++-+-的图象与性质,它们都是“平底锅型”,进而猜测函数()f x 的图象与性质,并最终得以解决问题.题14(南京市二模) 已知函数f (x )=2111x ax x +++(a ∈R ),若对于任意的x ∈N *,f (x )≥3恒成立,则a 的取值范围是 ▲ . 解 因x ∈N *,故由f (x )≥3恒成立,得a ≥8()3x x -++,故a ≥max 8[()3]x x -++.当x取最接近于x =3时,8()3x x -++取最大值83-,于是a ≥83-.变式 已知函数f (x )=2111x ax x +++(x ∈N *),且[f (x )]min =3,则实数a 的取值集合是 ▲ .略解 首先a ≥83-.另一方面,∃x ∈N *,使f (x )≤3能成立,即a ≤8()3x x -++能成立,于是a ≤max 8[()3]x x -++=83-.所以,a 的取值集合是{83-}.题15(盐城市二模) 已知函数f (x )=cos x ,g (x )=sin x ,记 S n =2211(1)1(1)2()()222nnnk k k k n f g n n==-π--π-∑∑,T m =S 1+S 2+…+S m . 若T m <11,则m 的最大值为 ▲ .解21(1)()2nk k f n=-π∑=(21)(1)cos0[coscos ][cos cos ]cos22222n n n n n n n n nπ-π(-1)π+ππ++++++ =1. 21(1)()2nk k n g n=--π∑ =1(1)sin[sin sin ][sin sin ]sin022222n n n n n n n n-π(-)π-π-ππ++++++ = -1. 所以,S n =122n +,T m =1212mm +-. 令T m <11,则正整数m 的最大值为5.注 本题的难点在于复杂的S n 的表达式.去掉求和符号∑,展开表达式,化抽象为具体,进而识得庐山真面目. 题16(苏锡常镇四市二模) 已知m ,n ∈R ,且m +2n =2,则2122m n m n +⋅+⋅的最小值 为 ▲ . 解法1 设x =m ,y =2n ,则问题等价于:已知x +y =2,求22x y x y ⋅+⋅的最小值. 令S =22x y x y ⋅+⋅,T =22y x x y ⋅+⋅,则S -T =()(22)x y x y --≥0,即S ≥T .另一方面,S +T =()(22)x y x y ++≥2⨯,故S ≥4,当且仅当x =y =1时取等号. 所以2122m n m n +⋅+⋅的最小值为4.解法2 考虑到对称性,不妨取m ≥1.令g (m )=22(2)2m m m m -⋅+-⋅,m ≥1. 则22()(22)(2(2)2)ln 2m m m m g m m m --'=-+⋅--⋅≥0. 所以函数g (m )(m ≥1)为增函数,故min ()(1)4g m g ==.注 这道题虽然正面求解难度较大,但得分率却相当的高.究其原因大致为:当考生经过变元后,得问题为“已知x +y =2,求22x y x y ⋅+⋅的最小值”,它具有某种对称性,凭直观猜测:让x =y =1,一举得到所求结果.题17(南通市二模) 在平面直角坐标系xOy 中,设A ,B ,C 是圆x 2+y 2=1上相异三点,若存在正实数λ,μ,使得OC OA OB λμ=+,则λ2+(μ-3)2的取值范围是 ▲ .解法1 如图9,作1OA OA λ= ,1OB OB μ=,连B 1C ,A 1C ,则1||OA λ= ,1||OB μ=,||1OC = .因三点A ,B ,C 互异,且11OC OA OB =+ ,故O ,C ,B 1构成三角形的三1,|| 1.λμλμ+>⎧⎨-<⎩个顶点,且11||||B C OA λ== ,于是由三角形的边与边之间的关系有(☆)如图10的阴影部分表示不等式组(☆)所表示的区域,P (λ,μ)为阴影部分内的动点,定点A (0,3),则λ2+(μ-3)2=AP 2.点A (0,3)到直线μ-λ=1的距离d=,AP >d=,故λ2+(μ-3)2>2,从而λ2+(μ-3)2的取值范围为(2,)+∞.解法2 依题意,B ,O ,C 三点不可能在同一条直线上.所以OC OB ⋅ =||||cos OC OB BOC ⋅=cos BOC ∈(-1,1).又由OC OA OB λμ=+ ,得OA OC OB λμ=- ,于是2212OB OC λμμ=+-⋅ .记f (μ)=λ2+(μ-3)2=2212(3)OB OC μμμ+-⋅+- =226210OB OC μμμ--⋅+. 于是,f (μ)>2228102(2)2μμμ-+=-+≥2,图10λ+图12且f (μ)<22410μμ-+=22(1)8μ-+,无最大值. 故λ2+(μ-3)2的取值范围为(2,)+∞.题18(苏北四市三模) 如图11是一个数表,第1行依次写着从小到大的正整数,然后把每行相邻的两个数的和写在这两数正中间的下方,得到下一行,数表从上到下与从左到右均为无限项,则这个数表中的第13行第10个数为 ▲ .解法1 记第n 行第m 个数为a n ,m .为了得到a 13,10,则第1行必须写满22个数.观察可得:a 13,1+a 13,10=2(a 12,1+a 12,11)=22(a 11,1+a 11,12)=…=212(a 1,1+a 1,22)=23×212. 所以,a 13,1+a 13,10=23×212. 另一方面,a 13,10=a 13,1+9×212. 联立解得 a 13,10=216.解法2 记第n 行的第1个数为a n .于是,猜测(1)2n a n =+⋅.因第n 行的数从左到右排列成公差为12n -的等差数列,故第13行第10个数为111216142922⨯+⨯=.解法3 记第n 行的第1个数为a n ,数列{a n }的前n 项和为S n ,则12n n n a S +-=. 所以,S n +1-2S n =2n ,111222n n n n S S ++-=.又11122S =,故22n nS n =,S n =12n n -⋅.所以,2(1)2n n a n -=+⋅.下同解法2. 题19(南京市三模) 如图12,已知正方形ABCD 的边长为1,过正方形中心O 的直线MN 分别交正方形的边AB ,CD 于点M ,N ,则当MNBN取最小值时,CN = ▲ . 解法1 设CN =x ∈1[,1]2,则BM =DN =1-x .作MP ⊥DC 交DC 于点P ,则PN =2x -1. 所以,MN 2=1+(2x -1)2=4x 2-4x +2,BN 2=x 2+1,22MNBN =224421x xx -++=24241x x +-+ =2441(12t t --+=44514t t-+-(其中t =12x +),当且仅当54t t=,即t ,x时,22MN BN取最小值,所以CN. 解法2 设∠CBN =θ(θ∈[0,]4π),则BN =1cos θ,DN =1-tan θ,MN所以,MNBN=cos 1 2 3 4 5 6 7 … 3 5 7 9 11 13 …8 12 16 20 24 … 20 28 36 44 … 48 64 80 …… … …图11其中cos ϕ=sin ϕ=.当sin(2)1θϕ+=时,MN BN 取最小值,此时tan 2tan()2θϕπ=-=1tan ϕ=2.解22tan 21tan θθ=-,得tan θ为所求(另一解为负,舍去).题20(南通市三模) 定义在[1,)+∞上的函数f (x )满足:①f (2x )=cf (x )(c 为正常数);②当2≤x ≤4时,f (x )=1-|x -3|.若函数图象上所有取极大值的点均落在同一条直线上,则c = ▲ .解 可求得,当12n -≤x ≤2n (n ∈N *)时, f (x ) =22(1|3|)2n n x c ----.记函数f (x ) =22(1|3|)2n n x c ----(12n -≤x ≤2n ,n ∈N *)图象上极大值的点为P n (x n ,y n ).令2302nn x --=,即x n =232n -⋅时,y n =2n c -,故P n (232n -⋅,2n c -). 分别令n =1,2,3,得 P 1(32,1c),P 2(3,1),P 3(6,c ). 由2123P P P P k k =(k 表示直线的斜率)得,c =2或c =1.当c =2时,所有极大值的点均在直线13y x =上;当c =1时,y n =1对n ∈N *恒成立,此时极大值的点均在直线y =1上.变式 定义在[1,)+∞上的函数f (x )满足:①f (2x )=cf (x )(c 为正常数);②当2≤x ≤4时,f (x )=1-|x -3|.若函数图象上所有取极大值的点均落在同一条以原点为顶点的抛物线上,则常数c = ▲ .略解 以原点为顶点的抛物线方程可设为x 2=py (p ≠0)或y 2=qx (q ≠0). 若P n (232n -⋅,2n c -)在抛物线x 2=py (p ≠0)上,则(232n -⋅)2=2n pc -,即29()4n cp -=对n ∈N *恒成立,从而c =4;若P n (232n -⋅,2n c -)在抛物线y 2=qx (q ≠0)上,则(2n c -)2=232n q -⋅,即23n q -=对n ∈N *恒成立,从而c综上,c =4题22(扬州市三模) 设函数f (x )的定义域为D ,如果存在正实数k ,使对任意x ∈D ,都有x +k ∈D ,且f (x +k )>f (x )恒成立,则称函数f (x )为D 上的“k 型增函数”.已知f (x )是定义在R 上的奇函数,且当x >0时,f (x )=|x -a |-2a ,若f (x )为R 上的“2011型增函数”,则实数a 的取值范围是 ▲ . 解 若a ≤0,则f (x )在x >0时为增函数,故对任意正实数k ,不等式f (x +k )>f (x )恒成立.若a >0,则函数y =f (x +k )的图象可由函数y =f (x )的图象向左平移k个单位而得(如图13).因k =2011,故仅当2011>6a 时,f (x +2011)>f (x ),所以此时0<a <20116.综上,实数a 的取值范围是a <20116.题23(徐州市三模) 若关于x 的方程x 4+ax 3+ax 2+ax +1=0有实数根,则实数a 的取值范围为 ▲ . 解法1 因x ≠0,故将方程两边同除以x 3,并变形得211()()2x a x a x x++++-=0.令g (t )=22t at a ++-,t =1x x+∈(,2][2,)-∞-+∞ . 原方程有实数根,等价于函数g (t )有零点.因g (-1)= -1,故函数g (t )有零点,只须g (-2)≤0或g (2)≤0.解g (-2)≤0,得a ≥2;解g (2)≤0,得a ≤23-.所以,实数a 的取值范围为2(,][2,)3-∞-+∞ .解法2 易知x =0不是方程的根,故x 3+x 2+x =213(())24x x ++≠0.所以,a =4321x x x x +-++=2111x x x x +-++=212()11x x x x-+++=12t t -+∈2(,][2,)3-∞-+∞ ,其中t =11x x ++∈(,1][3,)-∞-+∞ .解法3 接解法2,a =4321x x x x+-++,于是2432322(1)(2421)()x x x x x a x x x -++++'=++. 因4322421x x x x ++++=x 2(x +1)2+(x +1)2+2x 2>0,故由0a '=可解得x =1或-1.当x >0时,a <0,且当x =1时,a 取极大值23-,故此时a ≤23-;当x <0时,a >0,且当x = -1时,a 取极小值2,故此时a ≥2.综上,实数a 的取值范围为2(,][2,)3-∞-+∞ .题24(南通市最后一卷) 函数f (x )=32412x x x x -++的最大值与最小值的乘积是 ▲ .解法1 当x ≠0,±1时,f (x )=22112x x x x -++=211()4xx x x --+=114()1x x x x-+-. 当1x >x 时,f (x )≤14,且当1x x -=2时,取“=”,故f (x )的最大值为14. 又因为f (x )为奇函数,故f (x )的最小值为14-.所以所求的乘积为116-. 解法2 令422361()(1)x x f x x -+'=+=0,得x 2=21). 函数f (x )的最大值应在x -x 3>0,即0<x <1或x <-1时取得. 所以[f (x )]max =max{f1),f(1)}=14,下同解法1. 解法3 令x =tan θ,则g (θ)=f (x )=222tan (1tan )(1tan )θθθ-+=1sin 44θ∈11[,]44-,所求乘积为116-.注 题23与题24有异曲同工之妙,它们都出现了x ,x 2,x 3,x 4,经换元后,分别得到了只关于整体变量1x x +及1x x-的表达式,进而一举解决了问题. 题25(淮安市四模) 已知函数f (x )=|x -1|+|2x -1|+|3x -1|+…+|100x -1|,则当x = ▲ 时,f (x )取得最小值.解 f (x )=123100111111|1|||||||||||||2233100100x x x x x x x -+-+-+-++-++-++- 项项项项, f (x )共表示为5050项的和,其最中间两项均为1||71x -.x =171,同时使第1项|x -1|与第5050项1||100x -的和, 第2项1||2x -与第5049项1||100x -的和,第3项与第5048项的和,…,第2525项与第2526项的和,取得最小值.故所求的x 为171. 注 1.一般地,设a 1≤a 2≤a 3≤…≤a n (n ∈N *),f (x )=|x -a 1|+|x -a 2|+|x -a 3|+…+|x -a n |.若n 为奇数,则当x =12n a +时,f (x )取最小值;若n 为偶数,则x ∈122[,]n n a a +时,f (x )取最小值.2.本题似于2011年北大自主招生题:“求|x -1|+|2x -1|+|3x -1|+…+|2011x -1|的最小值”相关联.。
2011届杭州二模文科数学(含答案)

杭 州 市(二模)2011届高考科目教学质量检测(二)数学(文)试题考生须知:1. 本卷满分150分, 考试时间120分钟.2. 答题前, 在答题卷密封区内填写学校、班级和姓名.3. 所有答案必须写在答题卷上, 写在试题卷上无效.4. 考试结束, 只需上交答题卷.参考公式:球的表面积公式 棱柱的体积公式 S = 4πR 2 V =Sh球的体积公式 其中S 表示棱柱的底面积, h 表示棱柱的高 V =34πR 3台体的体积公式其中R 表示球的半径 )2211(31S S S S h V ++=棱锥的体积公式 其中S 1, S 2分别表示棱台的上、下底面积, V =31Shh 表示棱台的高其中S 表示棱锥的底面积, h 表示棱锥的高 如果事件A , B 互斥, 那么P (A +B )=P (A )+P (B )选择题部分一、选择题: 本大题共10小题, 每小题5分,共50分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.设函数,0,(),0,x f x x ≥=< 若()(1)2f a f +-=,则a =( )A .– 3B .±3C .– 1D .±12.设,,a b c 是三条不同的直线,,αβ是两个不同的平面,则a b ⊥的一个充分条件为( )A .,a c b c ⊥⊥B .,,a b αβαβ⊥⊂⊂C .,//a b αα⊥D .,a b αα⊥⊥3.设函数y = 3sin(2x+ϕ)(0<ϕ<π,x ∈R )的图象关于直线x =3π对称,则ϕ等于( )A .6π B. 3π C. 23π D. 56π4.已知非零向量a ,b 满足|a + b | =|a –b|a |,则a + b 与a –b 的夹角为( ) A .30︒ B .60︒ C .120︒ D .150︒ 5.若正实数,a b 满足1a b +=,则( )A .11a b +有最大值4 B .ab 有最小值14CD .22a b +6.从1,2,3,4,5中随机取出三个不同的数,则其和为奇数的概率为( ) A .15 B .25 C .35 D .457.已知1tan()42πα+=,且02πα-<<,则22sin sin 2cos()4ααπα+=-( )A.B.8.执行如图所示的程序框图,若输出的结果是8,则判断框内m 的取值可以是( )A .30B . 42C .56D .729.已知双曲线2222:1(,0)x y C a b a b-=>的左、右焦点分别为1F ,2F ,过2F 作双曲线C 的一条渐近线的垂线,垂足为H ,若2F H的中点M 在双曲线C 上,则双曲线C 的离心率为( ) AB .C .2D .310.已知函数3()31,,f x x x x R =-+∈{|1},{||()|A x t x t B x f x =≤≤+=≥集合A B ⋂只含有一个元素,则实数t 的取值范围是( )A.1} B.1]C.1] D.1)开始 k=1 S=0非选择题部分二、填空题:本大题共7小题,每小题4分,共28分. 11.已知i是虚数单位,z =则||z = .12.如图是某赛季甲乙两名篮球运动员每场比赛得分的茎叶图,则甲乙两人比赛得分的中位数之和是 . 13.给出下列命题:命题1:点(1,1)是直线y = x 与双曲线y = x1的一个交点; 命题2:点(2,4)是直线y = 2x 与双曲线y = x8的一个交点; 命题3:点(3,9)是直线y = 3x 与双曲线y = x27的一个交点; … … .请观察上面命题,猜想出命题n (n 是正整数)为: . 14.设圆C 同时满足三个条件:①过原点;②圆心在直线y = x 上;③截y 轴所得的弦长为4,则圆C 的方程是 .15.已知1234,,,a a a a 是各项均为正数的等比数列,且公比1q ≠,若将此数列删去某一项得到的数列(按原来的顺序)是等差数列,则q = _________. 16.一个棱锥的三视图如图,则该棱锥的体积为 .17.设实数,x y 满足不等式组10,260,20.x y x y x y k --≥⎧⎪--≤⎨⎪+--≥⎩且22x y +的最小值为m ,当925m ≤≤时,实数k 的取值范围是 ___________.三、解答题: 本大题共5小题, 共72分.解答应写出文字说明, 证明过程或演算步骤.18. (本题满分14分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,向量m=,n =(cos 1,sin )A A +,且m ∥n .(Ⅰ)求角A 的大小; (Ⅱ)若3a =,cos B =,求b 的长.(第12题)(第16题)19.(本题满分14分)已知正数数列{}n a 的前n 项和为n S ,且对任意的正整数n满足1n a +.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设11n n n b a a +=⋅,求数列{}n b 的前n 项和n B .20. (本题满分14分)如图,已知等腰ABC ∆的底边3BC =,顶角为120︒,D 是BC 边上一点,且1BD =. 把ADC ∆沿AD 折起,使得平面CAD ⊥平面ABD ,连接BC 形成三棱锥C ABD -.(Ⅰ) ① 求证:AC ⊥平面ABD ; ② 求三棱锥C-ABD 的体积;(Ⅱ) 求AC 与平面BCD 所成的角的正弦值.21. (本题满分15分)已知函数2()342ln (0)f x ax x x a =-++>.(Ⅰ) 当12a =时,求函数()f x 在1[,3]2上的最大值; (Ⅱ) 若()f x 在其定义域上是增函数,求实数a 的取值范围.22. (本题满分15分) 已知抛物线2:2(0)C x py p =>的焦点为F ,定点(3,2)A 与点F 在C 的两侧,C 上的动点P 到点A 的距离与到其准线l(Ⅰ)求抛物线C 的方程;(Ⅱ)设l 与y 轴交于点M ,过点M 任作直线与C 交于,P Q 两点,Q 关于y 轴的对称点为/.Q① 求证:/,,Q F P 共线; ② 求/MPQ ∆面积S 的取值范围.(第20题)参考答案一、选择题 (每小题5分,共50分)二、填空题 (每小题4分,共28分)11.1 12.64 13.点(n ,n 2)是直线y = nx 与双曲线y =2n x的一个交点14.(x – 2)2 + (y – 2)2 = 8或(x + 2)2 + (y + 2)2 = 8 15 (根号2也可以)16.2894π17.2,5] 三、解答题(共72分) 18 . (本题满分14分)(Ⅰ)由m ∥n 得cos 10A A --=,得1sin()62A π-=, 因为0A π<<,所以3A π=. 7分(Ⅱ)在△ABC 中,由cos B =sin B =, 又由正弦定理sin sin a bA B=,解得b = 14分19. (本题满分14分)(Ⅰ)由1n a +,1n =代入得11a =,两边平方得24(1)n n S a =+……(1) , (1)式中n 用1n -代入得2114(1)(2)n n S a n --=+≥……(2),(1)-(2),得2214(1)(1)n n n a a a -=+-+,2210(1)(1)n n a a -=--+, 3分11[(1)(1)][(1)(1)]0n n n n a a a a ---++⋅--+=,由正数数列{}n a ,得12n n a a --=,所以数列{}n a 是以1为首项,2为公差的等差数列,有21n a n =-. 7分 (Ⅱ) 111111()(21)(21)22121n n n b a a n n n n +===-⋅-+-+,裂项相消得21n nB n =+. 14分20. (本题满分14分)(Ⅰ) ①由已知得,30B C ∠=∠=︒,AB AC =在△ABD 中,由BD=1,得AD= 3分 在△ACD 中,∵AC 2 + AD 2=4 = CD 2, ∴AC ⊥AD.平面ADC ⊥平面ABD ,∴AC ⊥平面ABD. 5分 ②∵AC ⊥平面ABD ,∴V C -A B D =13ABD S AC ∆⋅⋅=111sin 30)34⋅⋅︒=. 8分 (Ⅱ) 由1BD =,得CD = 2,在平面内作等腰△ABC 底边上的高线AE ,点E 为垂足,则AE=在三棱锥C-ABD 中,连接CE ,作AH ⊥CE 于点H ,∵BD ⊥AC ,BD ⊥AE ,∴BD ⊥平面ACE ,∵AH ⊂平面ACE ,∴ BD ⊥AH ,∴AH ⊥平面BCD ,∴∠ACH 是直线AC 与平面BCD 所成的角.11(第20题)分在Rt ACE ∆中,得CE =,AC AEAH CE ⋅==,∴sin ACH ∠,即直线AC 与平面BCE . 14分21. (本题满分15分) (Ⅰ) 当12a =时,21()342ln 2f x x x x =-++,(1)(2)'()x x f x x --=, 2分即()f x 在区间1[,1)2和(2,3]上单调递增,在区间[1,2]上单调递减. 5分比较31(1),(3)2ln322f f ==-,得函数()f x 在1[,3]2上的最大值为1(3)2ln32f =- . 7分(Ⅱ) 22232'()23ax x f x ax x x-+=-+=, 9分因为()f x 在其定义域上是单调递增函数,所以当(0,)x ∈+∞时'()0f x ≥恒成立,得22320ax x -+≥恒成立, 11分 因为a> 0, x =34a>0, 所以9160a ∆=-≤, 所以,实数a 的取值范围为9[,)16+∞. 15分22.(本题满分15分)(Ⅰ)过P 作1PP l ⊥于1P ,则1||||||||||.PA PP PA PF AF +=+≥当,,P A F 共线时,1||||PA PP +取最小值||AF == 解得6p =,或 2.p = 3分当6p =时,抛物线C 的方程为212,x y =此时,点A 与点F 在抛物线C 同侧,这与已知不符.2p ∴=,抛物线C 的方程为24.x y = 5分 (Ⅱ)①设直线PQ 的方程为1,y kx =-由21,4y kx x y=-⎧⎨=⎩消去y ,整理得2440x kx -+=,由216160k ∆=->,得| k | > 1. 7分 设1122(,),(,),P x y Q x y 则/22(,),Q x y -12124, 4.x x k x x +=⋅=/12121212121212112222()24240.4FP FQ y y kx kx kx x x x k kk k x x x x x x -----+⋅-⋅-=-=+===- /,,Q F P ∴共线. 11分②121211||(||||)2(||||)22S MF x x x x =+-=⋅⋅+12||4||x x k =+=, ∵||1k >,4.S ∴> 15分(第21题)。
2011年高考数学压轴题(三)

2011年高考数学压轴题(三)1.(本小题满分13分)如图,已知双曲线C :x a y ba b 2222100-=>>(),的右准线l 1与一条渐近线l 2交于点M ,F 是双曲线C 的右焦点,O 为坐标原点.(I )求证:OM MF →⊥→;(II )若||MF →=1且双曲线C 的离心率e =62,求双曲线C 的方程;(III )在(II )的条件下,直线l 3过点A (0,1)与双曲线C 右支交于不同的两点P 、Q 且P 在A 、Q 之间,满足AP AQ →=→λ,试判断λ的范围,并用代数方法给出证明.解:(I )Θ右准线l 12:x a c =,渐近线l 2:y b ax =∴=+M a c ab c F c c a b ()()22220,,,,Θ,∴→=OM a c ab c ()2, MF c a c ab c b c abc→=--=-()()22,, ΘOM MF a b c a b c OM MF →⋅→=-=∴→⊥→2222220 ……3分 (II )Θe b a e a b =∴=-=∴=621222222,, Θ||()MF b c a b c b b a c b a →=∴+=∴+=∴==1111142222222222,,, ∴双曲线C 的方程为:x y 2221-= ……7分 (III )由题意可得01<<λ ……8分 证明:设l 31:y kx =+,点P x y Q x y ()()1122,,,由x y y kx 22221-==+⎧⎨⎩得()1244022--+=k x kxΘl 3与双曲线C 右支交于不同的两点P 、Q∴-≠=+->+=->=-->⎧⎨⎪⎪⎪⎩⎪⎪⎪∴≠±<<-<⎧⎨⎪⎪⎪⎩⎪⎪⎪120161612041204120221012022212212222k k k x x k k x x k k k k k ∆() ∴-<<-122k……11分ΘAP AQ x y x y →=→∴-=-λλ,,,()()112211,得x x 12=λ∴+=-=--∴+=--=-=+-()()()1412412116412421222122222222222λλλλx k k x k k k k k k ,Θ-<<-∴<-<∴+>12202111422k k ,,()λλ ∴+>∴-+>()1421022λλλλ ∴λ的取值范围是(0,1) ……13分2.(本小题满分13分)已知函数f x x n x n f n n x n n N ()()[()]()(*)=≤--+--<≤∈⎧⎨⎩00111,,数列{}a n 满足a f n n N n =∈()(*) (I )求数列{}a n 的通项公式;(II )设x 轴、直线x a =与函数y f x =()的图象所围成的封闭图形的面积为S a a ()()≥0,求S n S n n N ()()(*)--∈1;(III )在集合M N N k k Z ==∈{|2,,且10001500≤<k }中,是否存在正整数N ,使得不等式a S n S n n ->--10051()()对一切n N >恒成立?若存在,则这样的正整数N 共有多少个?并求出满足条件的最小的正整数N ;若不存在,请说明理由.(IV )请构造一个与{}a n 有关的数列{}b n ,使得lim()n n b b b →∞+++12Λ存在,并求出这个极限值.解:(I )Θn N ∈*∴=--+-=+-f n n n n f n n f n ()[()]()()111 ∴--=f n f n n ()()1……1分∴-=-=-=f f f f f f ()()()()()()101212323……f n f n n ()()--=1 将这n 个式子相加,得 f n f n n n ()()()-=++++=+012312ΛΘf f n n n ()()()0012=∴=+∴=+∈a n n n N n ()(*)12……3分 (II )S n S n ()()--1为一直角梯形(n =1时为直角三角形)的面积,该梯形的两底边的长分别为f n f n ()()-1,,高为1∴--=-+⨯=+-S n S n f n f n a a n n ()()()()112121=-++=12121222[()()]n n n n n ……6分(III )设满足条件的正整数N 存在,则n n n nn ()+->⇔>⇔>12100522100520102 又M ={}200020022008201020122998,,,,,,,ΛΛ ∴=N 201020122998,,……,均满足条件它们构成首项为2010,公差为2的等差数列.设共有m 个满足条件的正整数N ,则2010212998+-=()m ,解得m =495 ∴M 中满足条件的正整数N 存在,共有495个,N min =2010 ……9分(IV )设b a n n =1,即b n n n n n =+=-+212111()()则b b b n n n n 122112121313*********+++=-+-+-++-+=-+ΛΛ[()()()()]() 显然,其极限存在,并且lim()lim[]n n n b b b n →∞→∞+++=-+=122112Λ ……10分注:b ca n n=(c 为非零常数),b b q q n a n n a n n n ==<<++()(||)12012121,等都能使lim()n n b b b →∞+++12Λ存在.19. (本小题满分14分)设双曲线y ax 22231-=的两个焦点分别为F F 12、,离心率为2. (I )求此双曲线的渐近线l l 12、的方程;(II )若A 、B 分别为l l 12、上的点,且2512||||AB F F =,求线段AB 的中点M 的轨迹方程,并说明轨迹是什么曲线;(III )过点N ()10,能否作出直线l ,使l 与双曲线交于P 、Q 两点,且OP OQ →→=·0.若存在,求出直线l 的方程;若不存在,说明理由. 解:(I )Θe c a =∴=2422, Θc a a c 22312=+∴==,,∴-=双曲线方程为y x 2231,渐近线方程为y x =±33 4分(II )设A x y B x y ()()1122,,,,AB 的中点()M x y ,[]Θ2552522101033332233333331012121221221122121212121212122122||||||||()()()()()()AB F F AB F F c x x y y y x y x x x x y y y y y x x y y x x y y x x =∴==⨯=∴-+-===-=+=+∴+=--=+∴+++⎡⎣⎢⎤⎦⎥=又,,,, ∴+=+=321321007532512222()()y x x y ,即则M 的轨迹是中心在原点,焦点在x 轴上,长轴长为103,短轴长为1033的椭圆.(9分) (III )假设存在满足条件的直线l设l y k x l P x y Q x y :,与双曲线交于,、,=-()()()11122[]ΘOP OQ x x y y x x k x x x x k x x x x i →→=∴+=∴+--=∴+-++=·0110101212122121221212()()()()由得则,y k x y x k x k x k x x k k x x k k ii =--=⎧⎨⎪⎩⎪--+-=+=-=--()()()13131633063133312222212221222由(i )(ii )得k 230+=∴k 不存在,即不存在满足条件的直线l . 14分3. (本小题满分13分)已知数列{}a n 的前n 项和为S n N n ()*∈,且S m ma n n =+-()1对任意自然数都成立,其中m 为常数,且m <-1.(I )求证数列{}a n 是等比数列;(II )设数列{}a n 的公比q f m =(),数列{}b n 满足:b a b f b n n 11113==-,() ()*n n N ≥∈2,,试问当m 为何值时,lim (lg )lim (n b a n b b b b b b n n →∞=→∞+++3122334…+-b b n n 1)成立? 解:(I )由已知S m ma n n ++=+-1111()() S m ma n n =+-()1 (2)由()()12-得:a ma ma n n n ++=-11,即()m a ma n n +=+11对任意n N ∈*都成立{}Θm m a a m m a n n n 为常数,且即为等比数列分<-∴=++1151(II )当n =1时,a m ma 111=+-()∴====+∴==+≥∈---a b I q f m mm b f b bb n n N n n n n 11111113112,从而由()知,()()()*∴=+-=∴⎧⎨⎩⎫⎬⎭∴=+-=+=+∈--1111111131212911b b b b b b n n b n n N n n n n n n n ,即为等差数列,分()()*Θa m m n n =+⎛⎝ ⎫⎭⎪-11∴→∞=→∞-++=+→∞+++=→∞-+-+++-+⎛⎝ ⎫⎭⎪=-lim (lg )lim lg lg lim ()lim n b a n n n m m mm n b b b b b b n n n n n n n 121133131414151112112231·……由题意知lgm m +=11,∴+=∴=-m m m 110109, 13分4.(本小题满分12分)设椭圆)0(12222>>=+b a by a x 的左焦点为F ,上顶点为A ,过点A 与AF 垂直的直线分别交椭圆和x 轴正半轴于P ,Q 两点,且P 分向量所成的比为8∶5.(1)求椭圆的离心率;(2)若过F Q A ,,三点的圆恰好与直线l :033=++y x 相切,求椭圆方程.解:(1)设点),0,(),0,(0c F x Q -其中),0(,22b A b a c -=. 由P 分AQ 所成的比为8∶5,得)135,138(0b x P , 2分∴a x a x 231)135()138(022202=⇒=+.①, 4分 而b x b c ⊥-==),,(),,(0,∴0=⋅AQ FA .cb x b cx 2020,0==-∴.②, 5分由①②知0232,32222=-+∴=a ac c ac b .∴21.02322=∴=-+e e e . 6分(2)满足条件的圆心为)0,2(22cc b O -', )0,(,2222222c O c cc c a c c b '∴=--=-, 8分 圆半径a ca cb r ==+=22222. 10分 由圆与直线l :033=++y x 相切得,a c =+2|3|,又3,2,1,2===∴=b a c c a .∴椭圆方程为13422=+y x . 12分 5.(本小题满分14分)(理)给定正整数n 和正数b ,对于满足条件b a a n ≥-+211的所有无穷等差数列{}n a ,试求1221++++++=n n n a a a y Λ的最大值,并求出y 取最大值时{}n a 的首项和公差.(文)给定正整数n 和正数b ,对于满足条件b a a n =-+211的所有无穷等差数列{}n a ,试求1221++++++=n n n a a a y Λ的最大值,并求出y 取最大值时{}n a 的首项和公差.(理)解:设{}n a 公差为d ,则1111,a a nd nd a a n n -=+=++. 3分dn a n nd a d a a a a a y n n n n n n n )21()1()()(11111221+++++=+++++=+++=+++++++ΛΛΛd n n a n n 2)1()1(1+++=+ 4分)2)(1()2)(1(1111a a a n nda n n n n -++=++=+++)3(2111a a n n -+=+. 7分又211211,++--≤-∴≥-n n a b a b a a .∴449449)23(332112111b b a b a a a a n n n n -≤-+--=-+-≤-++++,当且仅当231=+n a 时,等号成立. 11分∴8)49)(1()3(2111b n a a n y n -+≤-+=+. 13分 当数列{}n a 首项491+=b a ,公差n b d 434+-=时,8)49)(1(b n y -+=,∴y 的最大值为8)49)(1(b n -+. 14分(文)解:设{}n a 公差为d ,则1111,a a nd nd a a n n -=+=++. 3分 )2)(1(2)1()1()21()1()()(1111111221nda n d n n a n d n a n nd a d a a a a a y n n n n n n n n n ++=+++=+++++=++++=+++=+++++++++ΛΛΛ)3(21)2)(1(11111a a n a a a n n n n -+=-++=+++, 6分又211211,++--=-∴=-n n a b a b a a .∴449449)23(332112111b b a b a a a a n n n n -≤-+--=-+-=-++++. 当且仅当231=+n a 时,等号成立. 11分∴8)49)(1()3(2111b n a a n y n -+=-+=+. 13分 当数列{}n a 首项491+=b a ,公差n b d 434+-=时,8)49)(1(b n y -+=.∴y 的最大值为8)49)(1(b n -+. 14分6.(本小题满分12分)垂直于x 轴的直线交双曲线2222=-y x 于M 、N 不同两点,A 1、A 2分别为双曲线的左顶点和右顶点,设直线A 1M 与A 2N 交于点P (x 0,y 0)(Ⅰ)证明:;22020为定值y x +(Ⅱ)过P 作斜率为02y x -的直线l ,原点到直线l 的距离为d ,求d 的最小值. 解(Ⅰ)证明:)0,2(),0,2(),,(),,(211111A A y x N y x M ---Θ则设)2(2111++=∴x x y y M A 的方程为直线 ①直线A 2N 的方程为)2(211---=x x y y ②……4分①×②,得)2(2221212---=x x y y分为定值的交点与是直线即822),(22),2(21,222020210022222121ΛΛΘΘ=+∴=+--=∴=-y x N A M A y x P y x x y y x(Ⅱ)02222),(20020200000=-+=+--=-y y x x y x x x y x y y l 整理得结合的方程为2220201222242y y y x d +=+=+=于是……10分 11221122220202020≥+=∴≤+∴≤∴=+y d y y y x Θ当1,1,1200取最小值时d y y =±=……12分7.(本小题满分14分)已知函数x x x f sin )(-= (Ⅰ)若;)(],,0[的值域试求函数x f x π∈(Ⅱ)若);32(3)()(2:),,0(],,0[xf x f f x +≥+∈∈θθπθπ求证(Ⅲ)若)32(3)()(2,),)1(,(],)1(,[xf x f f Z k k k k k x ++∈+∈+∈θθππθππ与猜想的大小关系(不必写出比较过程).解:(Ⅰ)为增函数时当)(,0cos 1)(,),0(x f x x f x ∴>-='∈π分的值域为即求得所以上连续在区间又4],0[)()(0),()()0(],0[)(ΛΛππππx f x f f x f f x f ≤≤≤≤(Ⅱ)设)32(3)()(2)(x f x f f x g +-+-=θθ,32sin3sin )(2)(xx f x g +++-=θθ即 )32cos cos (31)(xx x g ++-='θ……6分θπθπθπ=='∈+∴∈∈x x g x x 得由,0)(),0(32),0(],,0[Θ.)(,0)(,),0(为减函数时当x g x g x <'∈∴θ分为增函数时当8)(,0)(,),(ΛΛx g x g x >'∈πθ 分因而有对的最小值为则上连续在区间10)32(3)()(20)()(],0[)()(],0[)(ΛΘx f x f f g x g x x g g x g +≥+=≥∈θθθπθπ (Ⅲ)在题设条件下,当k 为偶数时)32(3)()(2xf x f f +≥+θθ当k 为奇数时)32(3)()(2xf x f f +≤+θθ……14分。
【精品】2011中考数学二模北京各区压轴

( 2)解:
( 3)解:
11、(房山 24.)(本小题满分 7 分)如图,已知二次函数 y ax2 2ax c a 0
的图象与 x 轴负半轴交于点 A ( -1,0),与 y 轴正半轴交与点 B,顶点为 P,且 OB=3OA ,一次函数 y=kx+b 的图象经过 A 、B.
( 1)求一次函数解析式; ( 2)求顶点 P 的坐标; ( 3)平移直线 AB 使其过点 P,如果点M在平移后 的直线上,且 tan OAM 3 ,求点 M 坐标;
轴时,求平移后的抛物线 C 对应的函数关系式;
(3)在抛物线 y 1 x2 平移过程中,将△ PAB 沿直线 AB 翻折得到△ DAB ,点 D 能否落在 3
抛物线 C 上?如能,求出y 此时抛物线 C 顶点 P 的坐标;如不能,说明y 理由.
y 1 x2
3
B
B
A
O
x
A
O
x
备用图
数学试卷 第 3 页 (共 6 页)
( 1)求点 B 的坐标; ( 2)点 P 从 C 点出发,沿线段 CO 以 5 个单位 /秒的速度向终点 O 匀速运动, 过点 P 作 PH⊥OB,垂足为 H,设△ HBP 的面积为 S( S≠0),点 P 的运动时间 为 t 秒,求 S 与 t 之间的函数关系式(直接写出自变量 t 的取值范围); ( 3)在( 2)的条件下,过点 P 作 PM∥ CB 交线段 AB 于点 M ,过点 M 作 MR ⊥ OC,垂足为 R,线段 MR 分别交直线 PH、OB 于点 E、G,点 F 为线段 PM 的中点,联结 EF.
度向点 B 匀速运动.伴随着 P、Q 的运动, DE 保持垂直平分 PQ,且交 PQ 于点 D,交 y
组卷代数式难题测试卷
组卷代数式难题测试卷一、选择题(共12小题)1.(2011•德阳)下面是一个按某种规律排列的数阵:根据规律,自然数2 000应该排在从上向下数的第m行,是该行中的从左向右数的第n个数,那么m+n的值是()2.(2011•历下区二模)把边长为3的正三角形各边三等分,分割得到图①,图中含有1个边长是1的正六边形;把边长为4的正三角形各边四等分,分割得到图②,图中含有3个边长是1的正六边形;把边长为5的正三角形各边五等分,分割得到图③,图中含有6个边长是1的正六边形;依此规律,把边长为7的正三角形各边七等分,并按同样的方法分割,得到的图形中含有()个边长是1的正六边形.3.(2012•包河区一模)近年来市政府不断加大对城市绿化的经济投入,使全市绿地面积不断增加.从2006年底到2008年底城市绿地面积变化如图所示,则这两年绿地面积年平均增长的百分数为()4.(2013•咸宁模拟)请观察“杨辉三角”图,并根据数表中前五行的数字所反映的规律,推算出第九行正中间的数应是()5.(2013•合肥模拟)观察分析下列数据,寻找规律:0,,﹣5,…则第101个数据.537.(2012•鄞州区模拟)有依次排列的3个数:3,9,8,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,﹣1,8,这称为第一次操作;做第二次同样的操作后也可产生一个新数串:3,3,6,3,9,﹣10,﹣1,9,8,继续依次操作下去,问:从数串3,9,8开始操作第100次8.(2011•日照)观察图中正方形四个顶点所标的数字规律,可知数2011应标在()9.(2011•丰南区一模)观察下列正方形的四个顶点所标的数字规律,那么2009这个数标在()10.(2010•安徽)下面两个多位数1248624…、6248624…,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字…,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到11.(2010•河北)将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图1.在图2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图1所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是()12.(2010•密云县)下面是按一定规律排列的一列数:第1个数:;第2个数:;第3个数:;…第n个数:.二、填空题(共12小题)(除非特别说明,请填准确值)13.(2011•泸州)如图,是用三角形摆成的图案,摆第一层图需要1个三角形,摆第二层图需要3个三角形,摆第三层图需要7个三角形,摆第四层图需要13个三角形,摆第五层图需要_________个三角形,…,摆第n层图需要_________个三角形.14.(2014•仙桃)将相同的矩形卡片,按如图方式摆放在一个直角上,每个矩形卡片长为2,宽为1,依此类推,摆放2014个时,实线部分长为_________.15.(2011•武侯区二模)已知一列数a1,a2,…,a n(n为正整数)满足,请通过计算推算a n=_________(用含n的代数式表示),a2011=_________.行的等式为_________.17.(2011•东营)如图,观察由棱长为1的小立方体摆成的图形,寻找规律:如图①中:共有1个小立方体,其中1个看得见,0个看不见;如图②中:共有8个小立方体,其中7个看得见,1个看不见;如图③中:共有27个小立方体,其中19个看得见,8个看不见;…,则第⑥个图中,看得见的小立方体有_________个.18.(2011•兴国县模拟)古希腊著名的毕达哥拉斯学派把1、3、6、10 …这样的数称为“三角形数”,而把1、4、9、16 …这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是_________(填序号)①13=3+10;②25=9+16;③36=15+21;④49=18+31.19.(2014•孝感一模)如图①是一块瓷砖的图案,用这种瓷砖来铺设地面,如果铺成一个2×2的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个3×3的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个4×4的正方形图案(如图④),其中完整的圆共有25个.按照这个规律,若这样铺成一个n×n的正方形图案,则其中完整的圆共有_________个.20.(2013•镇江二模)如图,用同样规格的黑白两色的正方形瓷砖铺设矩形地面,请观察图形并解答下列问题.在第n个图中,共有_________块白块瓷砖.(用含n的代数式表示)21.(2012•岳阳一模)如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,….则“17”在射线_________上;“2007”在射线_________上.22.(2012•铜梁县模拟)如图,从左到右,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,可求得c等于3,那么第2009个格子中的数为_________.23.(2011•滨江区模拟)假设一家旅馆一共有30个房间,分别编以1~30三十个号码,现在要在每个房间的钥匙上刻上数字,要求所刻的数字必须使服务员很容易辨认是哪一个房间的钥匙,而使局外人不容易猜到.现在有一种编码的方法是:在每把钥匙上刻上两个数字,左边的一个数字是这把钥匙原来的房间号码除以5所得的余数,而右边的一个数字是这把钥匙原来的房间号码除以7所得的余数.那么刻的数是36的钥匙所对应的原来房间应该是_________号.24.(2011•菏泽)填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值是_________.三、解答题(共6小题)(选答题,不自动判卷)25.(2006•佛山)在数学学习过程中,通常是利用已有的知识与经验,通过对研究对象进行观察、实验、推理、抽象概括,发现数学规律,揭示研究对象的本质特征.比如“同底数幂的乘法法则”的学习过程是利用有理数的乘方概念和乘法结合律,由“特殊”到“一般”进行抽象概括的:22×23=25,23×24=27,22×26=28,…⇒2m×2n=2m+n,…⇒a m×a n=a m+n(m、n都是正整数).我们亦知:,,,,…(1)请你根据上面的材料归纳出a、b、c(a>b>0,c>0)之间的一个数学关系式;(2)试用(1)中你归纳的数学关系式,解释下面生活中的一个现象:“若m克糖水里含有n克糖,再加入k克糖(仍不饱和),则糖水更甜了”;(3)如图,在Rt△ABC中,∠C=90°,CB=a,CA=b,AD=BE=c(a>b),能否根据这个图形提炼出与(1)中相同的关系式并给予证明.26.(2006•青岛)我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休”.数学中,数和形是两个最主要的研究对象,它们之间有着十分密切的联系,在一定条件下,数和形之间可以相互转化,相互渗透.数形结合的基本思想,就是在研究问题的过程中,注意把数和形结合起来考察,斟酌问题的具体情形,把图形性质的问题转化为数量关系的问题,或者把数量关系的问题转化为图形性质的问题,使复杂问题简单化,抽象问题具体化,化难为易,获得简便易行的成功方案.例如:求1+2+3+4+…+n的值,其中n是正整数.对于这个求和问题,如果采用纯代数的方法(首尾两头加),问题虽然可以解决,但在求和过程中,需对n的奇偶性进行讨论.如果采用数形结合的方法,即用图形的性质来说明数量关系的事实,那就非常的直观.现利用图形的性质来求1+2+3+4+…+n的值,方案如下:如图,斜线左边的三角形图案是由上到下每层依次分别为1,2,3,…,n个小圆圈排列组成的.而组成整个三角形小圆圈的个数恰为所求式子1+2+3+4+…+n的值.为求式子的值,现把左边三角形倒放于斜线右边,与原三角形组成一个平行四边形.此时,组成平行四边形的小圆圈共有n行,每行有(n+1)个小圆圈,所以组成平行四边形小圆圈的总个数为n(n+1)个,因此,组成一个三角形小圆圈的个数为,即1+2+3+4+…+n=.(1)仿照上述数形结合的思想方法,设计相关图形,求1+3+5+7+…+(2n﹣1)的值,其中n是正整数.(要求:画出图形,并利用图形做必要的推理说明)(2)试设计另外一种图形,求1+3+5+7+…+(2n﹣1)的值,其中n是正整数.(要求:画出图形,并利用图形做必要的推理说明)27.(2007•镇江)探索、研究:仪器箱按如图方式堆放(自下而上依次为第1层、第2层、…),受堆放条件限制,堆放时应符合下列条件:每层堆放仪器箱的个数a n与层数n之间满足关系式a n=n2﹣32n+247,1≤n<16,n为整数.(1)例如,当n=2时,a2=22﹣32×2+247=187,则a5=_________,a6=_________;(2)第n层比第(n+1)层多堆放多少个仪器箱;(用含n的代数式表示)(3)如果不考虑仪器箱堆放所承受的压力,请根据题设条件判断仪器箱最多可以堆放几层?并说明理由;(4)设每个仪器箱重54N(牛顿),每个仪器箱能承受的最大压力为160N,并且堆放时每个仪器箱承受的压力是均匀的.①若仪器箱仅堆放第1、2两层,求第1层中每个仪器箱承受的平均压力;②在确保仪器箱不被损坏的情况下,仪器箱最多可以堆放几层?为什么?28.(2012•东莞)观察下列等式:第1个等式:a1==×(1﹣);第2个等式:a2==×(﹣);第3个等式:a3==×(﹣);第4个等式:a4==×(﹣);…请解答下列问题:(1)按以上规律列出第5个等式:a5=_________;(2)用含有n的代数式表示第n个等式:a n=_________=_________(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.29.(2007•内江)探索研究(1)观察一列数2,4,8,16,32,…,发现从第二项开始,每一项与前一项之比是一个常数,这个常数是_________;根据此规律,如果a n(n为正整数)表示这个数列的第n项,那么a18=_________,a n=_________;(2)如果欲求1+3+32+33+...+320的值,可令S=1+3+32+33+ (320)将①式两边同乘以3,得_________②由②减去①式,得S=_________.(3)用由特殊到一般的方法知:若数列a1,a2,a3,…,a n,从第二项开始每一项与前一项之比的常数为q,则a n= _________(用含a1,q,n的代数式表示),如果这个常数q≠1,那么a1+a2+a3+…+a n=_________(用含a1,q,n的代数式表示).30.(2006•镇江)将正六边形纸片按下列要求分割(每次分割,纸片均不得有剩余):第一次分割:将正六边形纸片分割成三个全等的菱形,然后选取其中的一个菱形在分割成一个正六边形和两个全等的正三角形;第二次分割:将第一次分割后所得的正六边形纸片分割成三个全等的菱形,然后选取其中的一个菱形在分割成一个正六边形和两个全等的正三角形;按上述分割方法进行下去…(1)请你在下图中画出第一次分割的示意图;(2)若原正六边形的面积为a,请你通过操作和观察,将第1次,第2次,第3次分割后所得的正六边形的面积填S与分割次数n有何关系?(S用含a 和n的代数式表示,不需要写出推理过程)组卷代数式难题测试卷参考答案与试题解析一、选择题(共12小题)1.(2011•德阳)下面是一个按某种规律排列的数阵:根据规律,自然数2 000应该排在从上向下数的第m行,是该行中的从左向右数的第n个数,那么m+n的值是()2.(2011•历下区二模)把边长为3的正三角形各边三等分,分割得到图①,图中含有1个边长是1的正六边形;把边长为4的正三角形各边四等分,分割得到图②,图中含有3个边长是1的正六边形;把边长为5的正三角形各边五等分,分割得到图③,图中含有6个边长是1的正六边形;依此规律,把边长为7的正三角形各边七等分,并按同样的方法分割,得到的图形中含有()个边长是1的正六边形.3.(2012•包河区一模)近年来市政府不断加大对城市绿化的经济投入,使全市绿地面积不断增加.从2006年底到2008年底城市绿地面积变化如图所示,则这两年绿地面积年平均增长的百分数为()4.(2013•咸宁模拟)请观察“杨辉三角”图,并根据数表中前五行的数字所反映的规律,推算出第九行正中间的数应是()5.(2013•合肥模拟)观察分析下列数据,寻找规律:0,,﹣5,…则第101个数据..10537.(2012•鄞州区模拟)有依次排列的3个数:3,9,8,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,﹣1,8,这称为第一次操作;做第二次同样的操作后也可产生一个新数串:3,3,6,3,9,﹣10,﹣1,9,8,继续依次操作下去,问:从数串3,9,8开始操作第100次8.(2011•日照)观察图中正方形四个顶点所标的数字规律,可知数2011应标在()9.(2011•丰南区一模)观察下列正方形的四个顶点所标的数字规律,那么2009这个数标在()10.(2010•安徽)下面两个多位数1248624…、6248624…,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字…,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到11.(2010•河北)将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图1.在图2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图1所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是()12.(2010•密云县)下面是按一定规律排列的一列数:第1个数:;第2个数:;第3个数:;…第n个数:.个数:个数:=;=;=二、填空题(共12小题)(除非特别说明,请填准确值)13.(2011•泸州)如图,是用三角形摆成的图案,摆第一层图需要1个三角形,摆第二层图需要3个三角形,摆第三层图需要7个三角形,摆第四层图需要13个三角形,摆第五层图需要21个三角形,…,摆第n层图需要n2﹣n+1个三角形.14.(2014•仙桃)将相同的矩形卡片,按如图方式摆放在一个直角上,每个矩形卡片长为2,宽为1,依此类推,摆放2014个时,实线部分长为5035.((个图形,实线部分长度等于15.(2011•武侯区二模)已知一列数a1,a2,…,a n(n为正整数)满足,请通过计算推算a n=(用含n的代数式表示),a2011=.,==故答案为.行的等式为2n+1=(n+1)2﹣n2.17.(2011•东营)如图,观察由棱长为1的小立方体摆成的图形,寻找规律:如图①中:共有1个小立方体,其中1个看得见,0个看不见;如图②中:共有8个小立方体,其中7个看得见,1个看不见;如图③中:共有27个小立方体,其中19个看得见,8个看不见;…,则第⑥个图中,看得见的小立方体有91个.18.(2011•兴国县模拟)古希腊著名的毕达哥拉斯学派把1、3、6、10 …这样的数称为“三角形数”,而把1、4、9、16 …这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是③(填序号)①13=3+10;②25=9+16;③36=15+21;④49=18+31.19.(2014•孝感一模)如图①是一块瓷砖的图案,用这种瓷砖来铺设地面,如果铺成一个2×2的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个3×3的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个4×4的正方形图案(如图④),其中完整的圆共有25个.按照这个规律,若这样铺成一个n×n的正方形图案,则其中完整的圆共有n2+(n﹣1)2个.20.(2013•镇江二模)如图,用同样规格的黑白两色的正方形瓷砖铺设矩形地面,请观察图形并解答下列问题.在第n个图中,共有n(n+1)块白块瓷砖.(用含n的代数式表示)21.(2012•岳阳一模)如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,….则“17”在射线OE上;“2007”在射线OC上.22.(2012•铜梁县模拟)如图,从左到右,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,可求得c等于3,那么第2009个格子中的数为﹣1.23.(2011•滨江区模拟)假设一家旅馆一共有30个房间,分别编以1~30三十个号码,现在要在每个房间的钥匙上刻上数字,要求所刻的数字必须使服务员很容易辨认是哪一个房间的钥匙,而使局外人不容易猜到.现在有一种编码的方法是:在每把钥匙上刻上两个数字,左边的一个数字是这把钥匙原来的房间号码除以5所得的余数,而右边的一个数字是这把钥匙原来的房间号码除以7所得的余数.那么刻的数是36的钥匙所对应的原来房间应该是13号.24.(2011•菏泽)填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值是158.三、解答题(共6小题)(选答题,不自动判卷)25.(2006•佛山)在数学学习过程中,通常是利用已有的知识与经验,通过对研究对象进行观察、实验、推理、抽象概括,发现数学规律,揭示研究对象的本质特征.比如“同底数幂的乘法法则”的学习过程是利用有理数的乘方概念和乘法结合律,由“特殊”到“一般”进行抽象概括的:22×23=25,23×24=27,22×26=28,…⇒2m×2n=2m+n,…⇒a m×a n=a m+n(m、n都是正整数).我们亦知:,,,,…(1)请你根据上面的材料归纳出a、b、c(a>b>0,c>0)之间的一个数学关系式;(2)试用(1)中你归纳的数学关系式,解释下面生活中的一个现象:“若m克糖水里含有n克糖,再加入k克糖(仍不饱和),则糖水更甜了”;(3)如图,在Rt△ABC中,∠C=90°,CB=a,CA=b,AD=BE=c(a>b),能否根据这个图形提炼出与(1)中相同的关系式并给予证明.<;<…,则;)因为<,说明原来糖水中糖的质量分数质量分数的数学关系式是<;<,说明原来糖水中糖的质量分数克糖后糖水中糖的质量分数ABC=DEC=.∴∴>∴>26.(2006•青岛)我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休”.数学中,数和形是两个最主要的研究对象,它们之间有着十分密切的联系,在一定条件下,数和形之间可以相互转化,相互渗透.数形结合的基本思想,就是在研究问题的过程中,注意把数和形结合起来考察,斟酌问题的具体情形,把图形性质的问题转化为数量关系的问题,或者把数量关系的问题转化为图形性质的问题,使复杂问题简单化,抽象问题具体化,化难为易,获得简便易行的成功方案.例如:求1+2+3+4+…+n的值,其中n是正整数.对于这个求和问题,如果采用纯代数的方法(首尾两头加),问题虽然可以解决,但在求和过程中,需对n的奇偶性进行讨论.如果采用数形结合的方法,即用图形的性质来说明数量关系的事实,那就非常的直观.现利用图形的性质来求1+2+3+4+…+n的值,方案如下:如图,斜线左边的三角形图案是由上到下每层依次分别为1,2,3,…,n个小圆圈排列组成的.而组成整个三角形小圆圈的个数恰为所求式子1+2+3+4+…+n的值.为求式子的值,现把左边三角形倒放于斜线右边,与原三角形组成一个平行四边形.此时,组成平行四边形的小圆圈共有n行,每行有(n+1)个小圆圈,所以组成平行四边形小圆圈的总个数为n(n+1)个,因此,组成一个三角形小圆圈的个数为,即1+2+3+4+…+n=.(1)仿照上述数形结合的思想方法,设计相关图形,求1+3+5+7+…+(2n﹣1)的值,其中n是正整数.(要求:画出图形,并利用图形做必要的推理说明)(2)试设计另外一种图形,求1+3+5+7+…+(2n﹣1)的值,其中n是正整数.(要求:画出图形,并利用图形做必要的推理说明)=n27.(2007•镇江)探索、研究:仪器箱按如图方式堆放(自下而上依次为第1层、第2层、…),受堆放条件限制,堆放时应符合下列条件:每层堆放仪器箱的个数a n与层数n之间满足关系式a n=n2﹣32n+247,1≤n<16,n为整数.(1)例如,当n=2时,a2=22﹣32×2+247=187,则a5=112,a6=91;(2)第n层比第(n+1)层多堆放多少个仪器箱;(用含n的代数式表示)(3)如果不考虑仪器箱堆放所承受的压力,请根据题设条件判断仪器箱最多可以堆放几层?并说明理由;(4)设每个仪器箱重54N(牛顿),每个仪器箱能承受的最大压力为160N,并且堆放时每个仪器箱承受的压力是均匀的.①若仪器箱仅堆放第1、2两层,求第1层中每个仪器箱承受的平均压力;②在确保仪器箱不被损坏的情况下,仪器箱最多可以堆放几层?为什么?由题意得,28.(2012•东莞)观察下列等式:第1个等式:a1==×(1﹣);第2个等式:a2==×(﹣);第3个等式:a3==×(﹣);第4个等式:a4==×(﹣);…请解答下列问题:(1)按以上规律列出第5个等式:a5==;(2)用含有n的代数式表示第n个等式:a n==(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.;;;;)×﹣)×﹣)×﹣)×+﹣++﹣+﹣))×29.(2007•内江)探索研究(1)观察一列数2,4,8,16,32,…,发现从第二项开始,每一项与前一项之比是一个常数,这个常数是2;根据此规律,如果a n(n为正整数)表示这个数列的第n项,那么a18=218,a n=2n;(2)如果欲求1+3+32+33+...+320的值,可令S=1+3+32+33+ (320)将①式两边同乘以3,得3s=3+32+33+34+ (321)由②减去①式,得S=(321﹣1).(3)用由特殊到一般的方法知:若数列a1,a2,a3,…,a n,从第二项开始每一项与前一项之比的常数为q,则a n=a n=a1q n﹣1(用含a1,q,n的代数式表示),如果这个常数q≠1,那么a1+a2+a3+…+a n=(用含a1,q,n的代数式表示).=.、.30.(2006•镇江)将正六边形纸片按下列要求分割(每次分割,纸片均不得有剩余):第一次分割:将正六边形纸片分割成三个全等的菱形,然后选取其中的一个菱形在分割成一个正六边形和两个全等的正三角形;第二次分割:将第一次分割后所得的正六边形纸片分割成三个全等的菱形,然后选取其中的一个菱形在分割成一个正六边形和两个全等的正三角形;按上述分割方法进行下去…(1)请你在下图中画出第一次分割的示意图;(2)若原正六边形的面积为a,请你通过操作和观察,将第1次,第2次,第3次分割后所得的正六边形的面积填S与分割次数n有何关系?(S用含a 和n的代数式表示,不需要写出推理过程)形的边长的,则面积是上一次的正六边形的面积的S=;1 2 3 ….。
2011合肥市二模数学理科试题及答案
合肥市2011年高三第二次教学质量检测数学试题(理)(考试时间:120分钟满分:150分)注意事项:1. 答题前,务必在答题卡和答题卷规定的地方填写自己的姓名、准考证号和座位号后两位.2. 答第I卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号.3. 答第II卷时,必须使用0.5毫米的黑色墨水签字笔在等题卷上书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卷规定的位置绘出再用0.5亳米的黑色墨水签字笔描清楚.必须在题号所指示的答题区域作答,4. 考试结束,务必将答题卡和答题卷一并上交.参考数据和公式:①独立性检验临界值表②K方值计算公式:第I卷(满分50分)一,选择题(本大題共10个小題,每小题5分,共5O分,在每小题给出的四个选项中,只有一项是符合題目要求的)1. 设集合A=,B=,则=( )A. B.C. D.2. 双曲线的一个焦点到它的渐近线的距离为()A.1B.C.D.23. a<1是不等式|x-|+|x|>a ()恒成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4ΔABC中,角A,B,C所对的边分别为a,b,c若<cosA,则A B C为()A.钝角三角形B.直角三角形C.锐角三角形D.等边三角形5. 设复数,其中i为虚数单位,,则|z|的取值范围是()A. B. C. D.6. 下列各坐标系中是一个函数与其导函数的图象,其中一定错误的是()7. 一个四棱锥的三视图如右图所示,其侧视图是等边三角形.该四棱锥的体积等于()A. B.C.D8. 在直角坐标系中,以坐标原点为极点x轴的正半轴为极轴建立极坐标系.直线I的参数方程是.(r为参数),曲线C的极坐标方程是=2,直线l与曲线C交于A、B,则|AB| =( )A. B. C. 4 D.9. 已知,则Sin2a的值为()A. B. C. D.10. 一个盒子内部有如图所示的六个小格子,现有桔子,苹果和香蕉各两个,将这六个水果随机地放人这六个格子里,每个格子放一个,放好之后每行、每列的水果种类各不相同的概率是()A. B. C. D.第II卷(满分100分)二.填空题(本大题共5小题,每小题5分,共25分.把答案填在答题卷的相应位置)11. 随机变量服从正态分布"(0,1),若P(<1) =0.8413 则P(-1<<0)=_____.12. 小王每月除去所有日常开支,大约结余a元.小王决定采用零存整取的方式把余钱积蓄起来,每月初存人银行a元.存期1年(存12次),到期取出本和息.假设一年期零存整取的月利率为r,每期存款按单利计息.那么,小王存款到期利息为__________元.13. 点M(x,y)是不等式组表示的平面区域内的一动点,使y的值取得最小的点为,则为坐标原点)的取值范围是__________14. 程序框图如图,运行此程序,输出结果b=__________15. 下列说法中,正确的有__________ (把所有正确的序号都填上).①“,使”的否定是“,使”;②函数的最小正周期是;③命题“函数在处有极值,则=0”的否命题是真命题;④已知函数是函数.在R上的导函数,若是偶函数,则是奇函数;⑤等于.三.解答题(本大题共6题,共75分.解答应写出文字说明、证明过程或演算步骤.)16. (本小题满分12分)将函数的图像上各点的横坐标缩短为原来的(纵坐标不变),再向左平移个单位后,得到的图像与函数g(x)=sin 2x的图像重合.(1) 写出函数y=f(x)的图像的一条对称轴方程;(2) 若A为三角形的内角,且•,求的值17. (本小题满分12分)如图,四边形ABCD为正方形,四边形BDEF为矩形,AB=2BF i DE丄平面ABCD,G为EF中点.(1)求证:CF//平面(2) 求证:平面ASG丄平面CDG;(3)求二面角C—FG—B的余弦值.18 (本小题满分12分)已知椭圆C:的左、右焦点分别为F1 ,F2,若椭圆上总存在点P,使得点P在以F1,F2为直径的圆上.(1) 求椭圆离心率的取值范围;(2) 若AB是椭圆C的任意一条不垂直x轴的弦,M为弦的中点,且满足(其中分别表示直线AB、OM的斜率,0为坐标原点),求满足题意的椭圆C的方程.19. (本小題满分12分)已知函数的图象过点P( 1,2),且在点P处的切线与直线x-3y=0垂直.(2) 若,试求函数f(x)的单调区间;(3) 若a>0,b>0且(,m),(n,)是f(x)的单调递增区间,试求n-m-2c的范围20. (本小题满分13分)高三年级在综合素质评价的某个维度的测评中,依据评分细则,学生之间相互打分,最终将所有的数据合成一个分数,满分100分.按照大于等于80分为优秀,小于80分为合格.为了解学生在该维度的测评结果,从毕业班中随机抽出一个班的数据.该班共有60名学生,得到如下的列联表.(2) 能否在犯错误的概率不超过0.10的前提下认为性别与测评结果有关系?(3) 如果想了解全年级学生该维度的表现情况,采取简单随机抽样的方式在全校学生中抽取少数一部分人来分析,请你选择一个合适的抽样方法,并解释理由;(4) 学生代表、教师代表、家长代表、教务员四人,分别对测评结果是优秀的20名学生进行检查,检查他们是否躲优秀的相4名检查人员各自纖立的舰20学生中随机抽取一名,设其中男生的人数为随机变量x,求随机变量x的分布列期望.21. (本小题满分14分)已知数列的前n项和满足.(2) 求的通项公式,并求数列的前n项和;(3) 设,证明:。
2011年深圳二模理科数学答案(word版)
2011年深圳市高三年级第二次调研考试 数学(理科)试题参考答案及评分标准说明:1、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2、对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3、解答右端所注分数,表示考生正确做到这一步应得的累加分数.4、只给整数分数,选择题和填空题不给中间分数.一、选择题:本大题共8个小题;每小题5分,共40分.二、填空题:本大题共7小题,每小题5分,满分30分.第9~13题为必做题,第14、15题为选做题,两题全答的,只计算前一题的得分.9. 10 10.⎪⎭⎫⎝⎛-21,21 11. 4 12.⎪⎭⎫⎢⎣⎡∞+,41 13. 55 14.θρsin 2= 15.︒30三、解答题:本大题共6小题,满分80分.16.(本小题满分12分)设函数⎪⎭⎫⎝⎛π-+=2sin sin )(x x x f ωω,R ∈x . (1)若21=ω,求)(x f 的最大值及相应的x 的集合;(2)若8π=x 是)(x f 的一个零点,且100<<ω,求ω的值和)(x f 的最小正周期.解 (1)x x x x x f ωωωωcos sin 2sin sin )(-=⎪⎭⎫ ⎝⎛π-+=, ……………………1分当21=ω时,⎪⎭⎫⎝⎛-=42sin 22cos 2sin )(πx x x x f =-, ……………………2分而142sin 1≤⎪⎭⎫⎝⎛π-≤-x ,所以)(x f 的最大值为2, ……………………4分此时,π+π=π-k x 2242,∈k Z ,即π+π=k x 423,Z ∈k , 相应的x 的集合为},423|{Z ∈π+π=k k x x . …………………6分 (2)(法一)因为⎪⎭⎫ ⎝⎛-=4sin 2)(πωx x f ,所以,8π=x 是)(x f 的一个零点⇔048sin 8=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛πππωf ,……………8分 即π=π-πk 48ω,Z ∈k ,整理,得28+=k ω,又100<<ω,所以10280<+<k ,141<<-k ,而Z ∈k ,所以0=k ,2=ω,…10分⎪⎭⎫ ⎝⎛π-=42sin 2)(x x f ,)(x f 的最小正周期为π. ……………………12分(法二)8π=x 是)(x f 的一个零点⇔08cos 8sin 8=π-π=⎪⎭⎫⎝⎛πωωf ,即18tan =πω. ……………………8分 所以48π+π=πk ω,Z ∈k ,整理,得28+=k ω, 又100<<ω,所以10280<+<k ,141<<-k ,而Z ∈k ,所以0=k ,2=ω, …10分⎪⎭⎫ ⎝⎛π-=42sin 2)(x x f ,)(x f 的最小正周期为π. ……………………12分17.(本小题满分12分)为了评估天气对大运会的影响,制定相应预案,深圳市气象局通过对最近50多年的气象数据资料的统计分析,发现8月份是我市雷电天气高峰期,在31天中平均发生雷电14.57天(如图7).如果用频率作为概率的估计值,并假定每一天发生雷电的概率均相等,且相互独立.(1)求在大运会开幕(8月12日)后的前3天比赛中,恰好有2天发生雷电天气的概率(精确到0.01);(2)设大运会期间(8月12日至23日,共12天),发生雷电天气的天数为X ,求X 的数学期望和方差.解 (1)设8月份一天中发生雷电天气的概率为p ,由已知47.03157.14==p . ……………2分 因为每一天发生雷电的概率均相等,且相互独立, 所以,在大运会开幕后的前3天比赛中,恰好有2天 发生雷电天气的概率)47.01(47.0223-⨯⨯=C P351231.0=35.0≈. ……………6分(2)由已知X ~)47.0,12(B . …………………8分所以,X 的数学期望64.547.012)(=⨯=X E . ………………………………10分X 的方差9892.247.0147.012)()=-(⨯⨯=X D .…………………………12分2468图718.(本小题满分14分)如图8,在直角梯形ABCD 中,CD AB //,AD AB ⊥,且121===CD AD AB .现以AD 为一边向形外作正方形ADEF ,然后沿边AD 将正方形ADEF 翻折,使平面ADEF 与平面ABCD 互相垂直,如图9.(1)求证:平面⊥BDE 平面BEC ;(2)求平面ABCD 与平面EFB 所成锐二面角的大小. 证明(1)(法一)因为平面⊥ADEF 平面ABCD , 且平面 ADEF 平面AD ABCD =, 又在正方形ADEF 中,AD ED ⊥,所以,⊥ED 平面ABCD .………………2分 而⊂BC 平面ABCD ,所以,BC ED ⊥. ………………3分 在直角梯形ABCD 中,2=CD ,22+=AD AB BD 2)(22=+-=AD AB CD BC ,所以,222CD BC BD =+,所以,BD BC ⊥. ………………4分 又ED ,⊂BD 平面BDE ,D BD ED = , 所以,⊥BC 平面BDE . ………………6分 而⊂BC 平面BEC ,所以,平面⊥BDE 平面BEC . ……………7分(法二)同法一,得⊥ED 平面ABCD . …………………………………2分 以D 为原点,DA ,DC ,DE 分别为x ,y z 轴,建立空间直角坐标系. 则)0,0,0(D ,)0,1,1(B ,)0,2,0(C ,)1,0,0(E .…………………………3分所以,)0,1,1(-=, )0,1,1(=,)1,0,0(=,000111)1(=⨯+⨯+⨯-=⋅,010010)1(=⨯+⨯+⨯-=⋅,所以,⊥,⊥. ………………………………5分 又DB ,DE 不共线,DB ,⊂DE 平面BDE ,所以,⊥BC 平面BDE . ………………………6分 而⊂BC 平面BEC ,所以,平面⊥BDE 平面BEC . …………………………7分 解 (2)(法一)因为AD EF //,⊄EF 平面ABCD ,⊂AD 平面ABCD ,所以,//EF 平面ABCD . …………………………………9分 因为平面EFB 与平面ABCD 有公共点B ,FE D CBA图8所以可设平面 EFB 平面BG ABCD =,CD G ∈.因为//EF 平面ABCD ,⊂EF 平面EFB ,平面 EFB 平面BG ABCD =, 所以BG EF //. ……………………………10分 从而,AD BG //,又DG AB //,且1=AB ,2=CD ,所以G 为CD 中点,ABGD 也为正方形……12分 易知⊥BG 平面ECD ,所以EG BG ⊥,DG BG ⊥.所以,EGD ∠是平面ABCD 与平面EFB 所成锐二面角的平面角, 而︒=∠45EGD ,所以平面ABCD 与平面EFB 所成锐二面角为︒45. …………………………14分 (法二)由(1)知,平面ABCD 的一个法向量是)1,0,0(=m .………………9分 设平面EFB 的一个法向量为),,(z y x =n ,因为)0,0,1(==,)1,1,1()1,0,0()0,1,1(-=-=-=所以,⎪⎩⎪⎨⎧=-+=⋅==⋅.0,0z y x EB x n n 取1=y ,得1=z ,所以)1,1,0(=n ……………11分设平面ABCD 与平面EFB 所成锐二面角为θ, 则2221||||cos ==⋅=n m n m θ. …………………………13分 所以平面ABCD 与平面EFB 所成锐二面角为︒45. ……………………14分 19.(本小题满分14分)平面直角坐标系中,已知直线l :4=x ,定点)0,1(F ,动点),(y x P 到直线l 的距离是到定点F 的距离的2倍. (1)求动点P 的轨迹C 的方程;(2)若M 为轨迹C 上的点,以M 为圆心,MF 长为半径作圆M ,若过点)0,1(-E 可作圆M 的两条切线EA ,EB (A ,B 为切点),求四边形EAMB 面积的最大值. 解(1)设点P 到l 的距离为d ,依题意得||2PF d =,即:()2212|4y x x +-=-|, ……………………………………2分整理得,轨迹C 的方程为13422=+y x . ……………………………………4分 (2)(法一)设()00,y x M ,圆M :()()22020r y y x x =-+-,其中2020)1(||y x MF r +-==由两切线存在可知,点E 在圆M 外, 所以,()()()20202020101y x y x +->-+--,即00>x ,又()00,y x M 为轨迹C 上的点,所以200≤<x .而|4|212||0-==x d MF ,所以,2||1<≤MF ,即21<≤r .…………………6分 由(1)知,()0,1-E 为椭圆的左焦点,根据椭圆定义知,4||||=+MF ME , 所以r ME -=4||,而r MF MB ==||||,所以,在直角三角形MEB 中,r r r EB 242)4(||22-=--=,r r MB EB S MEB 24||||21Δ-=⋅=, 由圆的性质知,四边形EAMB 面积S S MEB 22Δ==即23422r r S +-=(21<≤r ).令2342r r y +-=(21<≤r ),则)43(2862--=+-='r r r r y , 当341<<r 时,0>'y ,2342r r y +-=单调递增; 当234<<r 时,0<'y ,2342r r y +-=单调递减. 所以,在34=r 时,y 取极大值,也是最大值,此时3916244342223max=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-=S . ……………………………14分(法二)同法一,四边形EAMB 面积r r S S MEB 2422Δ-==,其中21<≤r ……10分所以39163242)24(23=⎪⎭⎫⎝⎛-++≤-⋅⋅=n n n r r r S . 由r r 24-=,解得)2,1[34∈=r ,所以3916max =S . …………………14分 20.(本小题满分14分)执行下面框图所描述的算法程序,记输出的一列数依次为1a ,2a ,…,n a ,*N ∈n ,2011≤n .(注:框图中的赋值符号“=”也可以写成“←”或“:=”) (1)若输入2=λ,写出输出结果;(2)若输入2=λ,求数列}{n a 的通项公式; (3)若输入2>λ,令1--=n n n pa pa c ,求常数p (1±≠p ),使得}{n c 是等比数列.解 (1)输出结果是:0,22,2.……3分 (2)(法一)由程序框图可知,01=a ,nn a a -λ=+11,*N ∈n ,2010≤n .所以,当2=λ时,nn a a -=+211, …………………5分nnn n a a a a --=--=-+2112111, 而}{n a 中的任意一项均不为1,(否则的话,由11=+n a 可以得到1=n a ,…,与101≠=a 矛盾), 所以,11112111--=--=-+n n n n a a a a , 111111-=---+n n a a (常数),*N ∈n ,2010≤n . 故⎭⎬⎫⎩⎨⎧-11n a 是首项为1-,公差为1-的等差数列,………………………7分所以,n a n -=-11,数列}{n a 的通项公式为na n 11-=,*N ∈n ,2011≤n …8分(法二)当2=λ时,由程序框图可知,01=a ,212=a ,323=a ,434=a ,…猜想nn a n 1-=,*N ∈n ,2011≤n . ……………………………………5分 以下用数学归纳法证明:①当1=n 时,101111a n n ==-=-,猜想正确; ②假设k n =(*N ∈n ,2010≤n )时,猜想正确.即kk a k 1-=……………7分 那么,当1+=k n 时,由程序框图可知,11)1(12111+-+=--λ=+k k kk a a k k -=.即1+=k n 时,猜想也正确. 由①②,根据数学归纳法原理,猜想nn a n 1-=正确,*N ∈n ,2011≤n .……8分(3)(法一)当2>λ时,)(11111222111p p pa p p p a p p a p pa a p p a pa p a c n n n n nn n n n -λ-⎪⎪⎭⎫ ⎝⎛-λ-⋅=+λ-+λ-=--λ--λ=--=+++, 令112=-λp p ,则p p 1+=λ,012=+λ-p p ,242-λ±λ=p .…………10分图10此时,1122=-⎪⎪⎭⎫⎝⎛+=-λp p p p p p , …………………………………12分 所以n n c p c 21=+,*N ∈n ,2011≤n ,又01≠=p c ,故存在常数242-λ±λ=p (2>λ),使得}{n c 是以p 为首项,2p 为公比的等比数列. ………………………………14分(法二)当2>λ时,令x p p -=1,即012=+λ-p p ,解得242-λ±λ=p …10分因为nn a a -λ=+11,*N ∈n ,2010≤n .所以n nn n n n n n a p a p a p pa a p pa p a p a -λ-⋅=-λ-=-λ+λ-=--λ=+2111-, ① nn n n n n n n a pa p a p p pa p a p a a ppa -λ-⋅=-λ+λ-⋅=-λ+λ-=--λ=-+1111121,② …12分 ①÷②,得11211--⋅=--++n nn n pa pa p pa p a , 即n n c p c 21=+,*N ∈n ,2011≤n ,又01≠=p c ,故存在常数242-λ±λ=p (2>λ)使得}{n c 是以p 为首项,2p 为公比的等比数列. …………………………………14分21.(本小题满分14分)已知函数)(x f 满足如下条件:当]1,1(-∈x 时,)1ln()(+=x x f ,且对任意R ∈x ,都有1)(2)2(+=+x f x f .(1)求函数)(x f 的图象在点))0(,0(f 处的切线方程;(2)求当]12,12(+-∈k k x ,*N ∈k 时,函数)(x f 的解析式;(3)是否存在]12,12(+-∈k k x k ,2011210,,,,=k ,使得等式 201724019)](2[201220110+⨯=-∑=kk k k x f x 成立?若存在就求出k x (2011210,,,, =k ),若不存在,说明理由.解 (1)]1,1(-∈x 时,)1ln()(+=x x f ,11)(+='x x f , …………………………2分 所以,函数)(x f 的图象在点))0(,0(f 处的切线方程为)0)(0()0(-'=-x f f y , 即x y =.………………3分(2)因为1)(2)2(+=+x f x f ,所以,当]12,12(+-∈k k x ,*N ∈k 时,]1,1(2-∈-k x ,………………………4分1)2(2)(+-=x f x f 12)4(22++-=x f 122)6(223+++-=x f=1222)2(221+++++-=-- k k k k x f 12)12ln(2-++-=k k k x 。
2011年全国高考数学试题压轴题
2011年全国高考数学试题压轴题(1)、(2011年全国卷)已知O 为坐标原点,F 为椭圆22:12y C x +=在y 轴正半轴上的焦点,过F且斜率为的直线l 与C 交与A 、B 两点,点P 满足0.OA OB OP ++=(Ⅰ)证明:点P 在C 上;(Ⅱ)设点P 关于点O 的对称点为Q ,证明:A 、P 、B 、Q 四点在同一圆上.(2)、(2011年全国卷)(Ⅰ)设函数2()ln(1)2xf x x x =+-+,证明:当0x >时,()0f x >;(Ⅱ)从编号1到100的100张卡片中每次随即抽取一张,然后放回,用这种方式连续抽取20次,设抽得的20个号码互不相同的概率为p .证明:19291()10p e <<(3)、(2011年新课标卷)在平面直角坐标系xOy 中,已知点A(0,-1),B 点在直线y = -3上,M 点满足MB//OA , MA •AB = MB •BA ,M 点的轨迹为曲线C 。
(Ⅰ)求C 的方程;(Ⅱ)P 为C 上的动点,l 为C 在P 点处得切线,求O 点到l 距离的最小值。
(4)、(2011年新课标卷)已知函数ln ()1a x bf x x x =++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。
(Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x >+-,求k 的取值范围。
(5)、(2011年北京卷)已知函数2()()xkf x x k e =-。
(Ⅰ)求()f x 的单调区间;(Ⅱ)若对于任意的(0,)x ∈+∞,都有()f x ≤1e ,求k 的取值范围。
(6)、(2011年北京卷)已知椭圆22:14x G y +=.过点(m,0)作圆221x y +=的切线交椭圆G 于A ,B 两点.(I )求椭圆G 的焦点坐标和离心率; (II )将AB表示为m 的函数,并求AB的最大值.(7)、(2011年北京卷)若数列12,,...,(2)n n A a a a n =≥满足111(1,2, (1)n a a k n +-==-,数列n A 为E 数列,记()n S A =12...n a a a +++.(Ⅰ)写出一个满足10s a a ==,且()s S A 〉0的E 数列n A ;(Ⅱ)若112a =,n=2000,证明:E 数列n A 是递增数列的充要条件是n a =2011;(Ⅲ)对任意给定的整数n (n≥2),是否存在首项为0的E 数列n A ,使得()n S A =0?如果存在,写出一个满足条件的E 数列n A ;如果不存在,说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
M
A B C D
H (图11) (黄浦区)25.(本题14分)如图11,在△ABC 中,∠ACB =︒90,AC =BC =2,M 是边AC 的中点,CH ⊥BM 于H .
(1)试求sin ∠MCH 的值; (2)求证:∠ABM =∠CAH ; (3)若D 是边AB 上的点,且使△AHD 为等腰三角形,请直接写出AD 的长为________.
(浦东新区) 25.(本题满分14分,其中第(1)小题3分,第(2)小题5分,第(3)小题6分)
如图,已知在△ABC 中,AB =4,BC =2,以点B 为圆心,线段BC 长为半径的弧交边AC 于点D ,且∠DBC =∠BAC ,P 是边BC 延长线上一点,过点P 作PQ ⊥BP ,交线段BD 的延长线于点Q .设CP =x ,DQ =y .
(1)求CD 的长;
(2)求y 关于x 的函数解析式,并写出它的定义域; (3)当∠DAQ =2∠BAC 时,求CP 的值.
(青浦区)
25.如图,在直角坐标平面内,O 为原点,抛物线bx ax y +=2
经过点A (6,0),且顶
点
B (m ,6)在直线x y 2=上.
(1)求m 的值和抛物线bx ax
y +=2
的解析式;
(2)如在线段OB 上有一点C ,满足CB OC 2=,在x 轴上有一点D (10,0),联结DC ,
A B C D (第25题图) Q P
且直线DC 与y 轴交于点E . ①求直线DC 的解析式;
②如点M 是直线DC 上的一个动点,在x 轴上方的平面内有另一点N ,且以O 、E 、M 、N 为顶点的四边形是菱形,请求出点N 的坐标.(直接写出结果,不需要过程.)
(松江区)
25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)
如图,在Rt △ABC 中,∠C =90°,AC =4,BC =5,D 是BC 边上一点,CD =3,点P 在边AC 上(点P 与A 、C 不重合),过点P 作PE // BC ,交AD 于点E .
(1)设AP =x ,DE =y ,求y 关于x 的函数解析式,并写出x 的取值范围;
(2)当以PE 为半径的⊙E 与DB 为半径的⊙D 外切时,求DPE 的正切值;
(3)将△ABD 沿直线AD 翻折,得到△AB /D ,联结B /C .如果∠ACE =∠BCB /,求AP 的值.
(奉贤区)25.(本题满分14分,第(1)、(2)小题每小题满分5分,第(3)小题满分4分)
已知,在边长为6的正方形ABCD 的两侧如图作正方形BEFG 、正方形DMNK ,恰好使得N 、A 、F 三点在一直线上,联结MF 交线段AD 于点P ,联结NP ,设正方形BEFG 的
A
B
E
C (第25题图)
D
O
x
y
A
B
E
C
(第25题备用图)
D
O x
y
备用图 D C B A
E P D C B A (第25题图)
边长为x ,正方形DMNK 的边长为y ,
(1)求y 关于x 的函数关系式及自变量x 的取值范围; (2)当△NPF 的面积为32时,求x 的值;
(3)以P 为圆心,AP 为半径的圆能否与以G 为圆心,GF 为半径的圆相切,若能请求x 的值,若不能,请说明理由。
(杨浦区) 25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)
已知△ABC 中,AB =4,BC =6,AC >AB ,点D 为AC 边上一点,且DC =AB ,E 为BC 边的中点,联结DE ,设AD =x 。
(1) 当DE ⊥BC 时(如图1),求x 的值; (2) 设
A B E D
C D E
S y S ∆=四边形,求y 关于x 的函数关系式,并写出定义域;
(3) 取AD 的中点M ,联结EM 并延长交BA 的延长线于点P ,以A 为圆心AM 为半径作
⊙A ,试问:当AD 的长改变时,点P 与⊙A 的位置关系变化吗?若不变化,请说明具体的位置关系,并证明你的结论;若变化,请说明理由。
(宝山,嘉定)
25.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)
如图11,已知⊙O 的半径长为1,PQ 是⊙O 的直径,点M 是PQ 延长线上一点,以点
A B C D E F
G M
N K P
第25题图 D
C E B A (图1)
A B C D E (备用图)
M 为圆心作圆,与⊙O 交于A 、B 两点,联结P A 并延长,交⊙M 于另外一点C .
(1) 若AB 恰好是⊙O 的直径,设OM=x ,AC=y ,试在图12中画出符合要求的大致图形,并求y 关于x 的函数解析式;
(2) 联结OA 、MA 、MC ,若OA ⊥MA ,且△OMA 与△PMC 相似,求OM 的长度和⊙M 的半径长;
(3) 是否存在⊙M ,使得AB 、AC 恰好是一个正五边形的两条边?若存在,试求OM 的长度和⊙M 的半径长;若不存在,试说明理由.
(虹口区) 25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)
如图,在Rt △ABC 中,∠BAC = 90°,AB =3,AC =4,AD 是BC 边上的高,点E 、F 分别是AB 边和AC 边上的动点,且∠EDF = 90°.
(1)求DE ︰DF 的值;
(2)联结EF ,设点B 与点E 间的距离为x ,△DEF 的面积为y ,求y 关于x 的函数解析式,并写出x 的取值范围;
(3)设直线DF 与直线AB 相交于点G ,△EFG 能否成为等腰三角形?若能,请直接写出线段BE 的长;若不能,请说明理由.
(金山区) 25.(本题满分14分)如图,正方形ABCD 的边长是4,M 是AD 的中点.动点E 在线
段AB 上运动.连接EM 并延长交射线CD 于点F ,过M 作EF 的垂线交射线
BC 于点G ,连接EG
、FG . (1)求证:GEF 是等腰三角形;
图12
Q P O M 备用图 Q P O A B
图11 C
Q P O M 第25题图 B C D E F A
备用图1 B C D 备用图2 B C D A A
(2)设x AE =时,EGF ∆的面积为y .求y 关于x 的函数关系式,并写出自变量x 的取值范围;
(3)在点E 运动过程中GEF ∆是否可以成为等边三角形?请说明理由.
错误!未指定书签。
(闵行区) 25.(本题共3小题,第(1)小题4分,第(2)、(3)小题每小题5分,满分14分)
如图,在矩形ABCD 中,点E 在边AD 上,联结BE ,∠ABE = 30°,BE = DE ,联结BD .点M 为线段DE 上的任意一点,过点M 作MN // BD ,与BE 相交于点N . (1)如果2
3
A B
=,求边AD 的长;
(2)如图1,在(1)的条件下,如果点M 为线段DE 的中点,联结CN .过点M 作MF ⊥CN ,垂足为点F ,求线段MF 的长;
(3)试判断BE 、MN 、MD 这三条线段的长度之间有怎样的数量关系?请证明你的结论.
(卢湾区)25.(本题满分14分)
已知:如图,在直角梯形ABCD 中,BC ∥AD
()A D
B C
>,BC ⊥AB ,AB =8,BC=6.动点E 、F 分
别在边BC 和AD 上,且AF =2EC .线段EF 与AC 相交于点G ,过点G 作GH ∥AD ,交CD 于点H ,射线
G M F E D C B
A A
B
C D E M
N
(第25题图)
A
B
C
D
E M
N
(图1)
F
(第25题图)
A
B
C
D E F
G
H M
O
EH 交AD 的延长线于点M ,交A C 于点O ,设EC =x . (1)求证:AF D M =;
(2)当E M A C ⊥时,用含x 的代数式表达A D 的长; (3)在(2)题条件下,若以M O 为半径的M
与以F D 为半径的F
相切,求x 的值.
(徐汇区)25.(本题满分14分,第(1)题4分,第(2)题4分,第(2)题6分)
在梯形ABCD 中,AD//BC ,AB ⊥AD ,AB=4,AD=5,CD=5.E 为底边BC 上一点,以点E 为圆心,BE 为半径画⊙E 交直线DE 于点F . (1) 如图,当点F 在线段DE 上时,设BE x =,DF y =,试建立y 关于x 的函数关系式, 并写出自变量x 的取值范围;
(2) 当以CD 直径的⊙O 与⊙E 与相切时,求x 的值;
(3) 联接AF 、BF ,当△ABF 是以AF 为腰的等腰三角形时,求x 的值。
F
A D C
B
E。