数字化语音存储与回放系统

合集下载

基于单片机的语音存储与回放系统毕业设计

基于单片机的语音存储与回放系统毕业设计

基于单片机的语音存储与回放系统毕业设计1. 引言随着科技的不断发展,语音技术也得到了广泛应用。

如今,在很多领域,我们可以看到语音交互的身影。

语音存储与回放系统是语音技术的一个重要应用方向。

本文旨在讨论基于单片机的语音存储与回放系统的设计与实现。

2. 设计目标在开始设计语音存储与回放系统之前,我们首先明确系统的设计目标。

在该系统中,我们希望能够实现以下功能: 1. 采集语音信号并进行存储; 2. 实现语音信号的回放; 3. 提供用户友好的交互界面。

3. 系统设计3.1 硬件设计语音存储与回放系统的硬件设计是实现系统功能的基础。

这里我们选用单片机作为系统的核心控制器,其主要功能包括语音信号的采集、存储与回放。

1. 单片机选择:首先,我们需要选择适合语音处理的单片机。

常用的单片机型号有STM32、Arduino等。

选择单片机时要考虑其性能、成本和易用性等因素。

2. 语音输入与输出:为了实现语音信号的采集与回放,我们需要选择合适的语音输入输出设备,如麦克风和扬声器。

3. 存储器选择:在语音存储与回放系统中,我们需要选择适合存储语音信号的存储器。

可以选择外部存储器,如Flash、SD卡等。

3.2 软件设计语音存储与回放系统的软件设计包括系统的逻辑控制和交互设计。

1. 语音采集与存储:这一部分主要涉及音频采集和存储的算法。

需要设计合适的采样率、量化位数和编码方式等来满足存储与回放的需求。

2. 语音回放:回放语音的过程需要涉及音频解码和输出的算法。

需要设计合适的解码算法以及音频输出的放大电路。

3. 用户交互界面:为了方便用户操作,我们可以设计一个简单的用户交互界面,如按钮、LCD显示屏等。

用户可以通过界面进行语音的录制、回放和设置等操作。

4. 系统实现在完成系统设计后,我们可以开始系统的实现。

实现过程中需要进行硬件的连接和软件的开发。

1. 硬件连接:按照系统设计中的硬件设计要求,将单片机、麦克风、扬声器等硬件设备进行连接。

数字化语音存放系统设计

数字化语音存放系统设计

语 音 存放 系 统 都采 用 单 片机 为 控制 器 , 内 部F l a s h 为存 储器 ,这 种系统 需要 外部A / D 和 D / A 转 换器 ,体 积大 ,录音 时 间也短 ,适用 场 合极 其有 限 。本系 统采用 L P C 1 7 6 8 为控制 器 ,利用其 内置 的1 2 位A / D 和1 O 位D / A 转换器 模 块 ,能够 实 现 微体 积 、 高质 量 的录 音功 能 。此 外 , 采 用 片 外 扩 展 的 1 G B 的数 据存储 器K 9 K 8 G O 8 U O A 进行存储 采集 的数 据 ,录音 时 间大幅度增加 。 2 . 设计方案 2 . 1 系 统 设 计 要 求 本 系 统 要 求采 集 0 ~3 4 0 0 H z 的 声 音信 号,录音 时间8 0 0 分钟 , 由 “ 0 . 5 W ,8 Q ” 的
s h o w ha t t he t s y s t e m b a s e d o n L P C1 7 6 8 nd a K9 K8 G0 8 U h a s he t p e r f o r ma n c e o f l o n er g v o i c e s t o r a e g nd a h i 曲e r q u a l i t y p l a y b a c k,a n d C a n b e a p p  ̄ e d t O ma n y i f e l d s .
沈 大伟
Ni u J i a j i a ,M a Ti e h u a,S h e n Da we i ( Ke y L a b o r a t o r y o fI n s t r u me n t a t i o n & Dy na mi c Me a s u r e me n t .No r t h Un i v e r s i t y o f Ch i n a 。 Ta i Yu a n 0 3 0 0 5 1 ,Ch i n a)

毕业设计188数字录音与回放系统的实现

毕业设计188数字录音与回放系统的实现

数字录音与回放系统的实现目录1.引言 (1)2. 数字录音及回放系统组成及原理 (2)2.1 数字录音及回放系统的组成 (2)2.2 数字录音及回放系统原理 (3)3. 数字录音及回放系统各主要部分电路原理与接口 (4)3.1 数字录音系统芯片简介 (4)3.2 数字录音及回放系统接口电路设计与编程原理 (4)3.2.1 AD733111与ADSP-2181的接口电路 (5)3.2.2 AD733111编程 (6)3.2.3 录音系统编程 (8)4. 数字录音及回放系统控制软件设计 (10)5. 数字录音及回放系统调试 (11)6. 结论与展望 (12)参考文献: (12)摘要:本文主要介绍了数字录音系统及回放功能的实现,该系统以DSP数字信号处理器为核心,采用存储器作为数字语音数据存储器。

提出了一个基于数字信号处理器(DSP)和闪速存储器(FLASH)的数字录音与回放系统实现方案,在分析FLASH特性及其编程方法的基础上,设计了DSP与FLASH接口的硬件和软件。

关键字:数字录音语音数字处理回放系统实现1.引言随着社会经济和通信行业的迅速发展,通信已经给我们生活带来了很多方便,与我们的生活,工作已经密不可分了。

但这种方便快捷同时也带来了一个弊病,那就是有些事情事后说不清,容易造成不必要的麻烦,有些单位只得以电话录音机来暂时解决这个问题,此类设备自动化程度差,存储量小,查询不便,而且需要每条线路都配备一个相应设备,成本高,效率低。

特别是在电力调度,公安监听,防汛报警等较特殊的领域,使其对语音工作的发生过程都需要有个准确可靠的记录过程,随着社会技术的进步,这些领域自身对可靠的语音处理效果的追求,使得对老式录音设备的社会适应性出了有力的挑战。

随着数字化技术的迅速发展,语音信号数字处理技术的不断成熟,可编程器件和功能强大的数字信号处理器(DSP)的广泛应用,传统的模拟音像设备大量地被各种数字设备所代替。

毕业设计175数字存储与语音回放系统

毕业设计175数字存储与语音回放系统

引言语言在人类发展史中起到了至关重要的作用,它的作用并不亚于直立行走和工具的使用,怎样能把人类的语言丝毫不差地记录下来也是人们一直思考的问题。

传统的磁带语音录放系统因其体积大、使用不便,在电子与信息处理的使用中受到许多限制。

本文提出的体积小巧,功耗低的数字化语音存储与回放系统将完全可以替代它。

数字化语音存储与回放系统的基本原理是对语音的录音与放音的数字控制。

使用单片机以及外部电路的配合完全可以达到语音存储与回放的目的。

本系统采用了美国ISD公司的专利产品ISD2590(录音90秒)语音芯片,此芯片具有音质自然、使用方便、单片存储、反复录放、低功耗、抗断电等特点。

该芯片采用模拟数据直接在半导体存储器中存储的技术,不需经过A/D或D/A转换。

因此能够非常真实、自然地再现语音、音乐、音调和效果声,避免了一般固体录音电路因量化和压缩造成的量化噪声和"金属声"。

片内信息可保存100年(无需后备电源),存储单元可反复录音十万次。

语音芯片的使用大大简化了本系统的设计过程。

该芯片的一大特点就是可分段录制声音并分段播放出来,通过89C51单片机对语音芯片进行控制完成录放。

随着科学技术的飞速发展,仅仅存储和回放语音是不够的。

语音技术正朝着语音合成和语音识别的方向发展。

智能翻译机、语音拨号、语音查询、语音自动定票系统、语音工业控制等等,可以想见,凡用计算机的地方都会有语音识别。

在计算机辅助教育方面,计算机就成为专业的家庭辅导教师;在幼儿进行启蒙教育的玩具中,语音识别也将倍受欢迎。

电脑语音合成技术即CTI(Computer Telephone Integration),是用计算机技术处理电话语音。

通常是建一个信息呼叫中心,用户打来电话时计算机会自动地一层层地转给相关部门,一直到为用户解决问题为止。

可想而知,随着语音合成技术研究的突破,其对计算机发展和社会生活的重要性日益凸现出来。

其应用和经济社会效益前景非常良好。

基于单片机的语音存储与回放系统毕业设计

基于单片机的语音存储与回放系统毕业设计

基于单片机的语音存储与回放系统毕业设计基于单片机的语音存储与回放系统是一种能够实现语音录制、存储和回放功能的设备。

它可以用于各种应用场景,如语音备忘录、语音留言板、语音识别系统等。

该系统的设计需要完成以下关键功能:1. 语音录制:通过麦克风或其他输入设备采集语音信号,并将其转换为数字信号。

可以使用ADC模块将模拟信号转换为数字信号。

2. 存储功能:设计合适的存储器,如EEPROM或Flash存储器,用于存储采集到的语音信号。

存储器的容量应根据实际需求确定,并能够支持快速的读写操作。

3. 控制功能:设计合适的控制电路,通过按键或其他输入设备实现对语音录制和回放功能的控制。

可以使用GPIO口或外部中断等方式实现按键输入的响应。

4. 回放功能:设计合适的音频输出电路,将存储的语音信号转换为模拟信号,并通过扬声器或耳机输出。

可以使用DAC模块将数字信号转换为模拟信号。

5. 用户界面:设计合适的显示屏幕和操作界面,用于显示当前状态和操作指令。

可以使用LCD显示屏和按键等设备实现用户交互。

在设计过程中,需要考虑系统的实时性、容错性和稳定性。

同时,还需要进行适当的电路布局和信号处理,以减少噪音和干扰对语音信号的影响。

在编程方面,可以使用C语言或汇编语言编写程序,实现语音录制、存储和回放的功能。

需要考虑存储器的管理和控制、按键输入的处理、音频数据的处理等方面。

最后,还需要进行系统的测试和调试,确保系统的稳定性和功能完整性。

可以通过模拟语音信号进行录制和回放测试,检查系统的录制和回放效果是否符合要求。

综上所述,基于单片机的语音存储与回放系统的毕业设计需要涉及硬件电路设计、嵌入式软件编程和系统测试等多个方面的知识和技能。

需要深入理解语音信号处理、存储器管理和控制、电路设计和嵌入式系统等知识,并具备一定的创新能力和解决问题的能力。

论数字化语音存储回放系统设计

论数字化语音存储回放系统设计

论数字化语音存储回放系统设计作者:陈子毅来源:《科技资讯》2012年第33期摘要:近年来,随着科学技术水平的不断提高,各种高科技产品逐渐走进了人们的生活。

数字化语音处理技术作为高科技应用领域当中的一个热点,其从理论到相关产品现已基本趋于完善。

它与医疗卫生机构以及福利事业的生活支援系统有着十分密切的联系,并且极有可能成为下一代操作系统的用户界面。

基于此点,本文就数字化语音存储回放系统的设计进行研究。

关键词:数字化单片机语音存储回放系统设计中图分类号:TN912 文献标识码:A 文章编号:1672-3791(2012)11(c)-0028-011 数字化语音存储回放系统的基本原理1.1 语音信号采集通常情况下,人能够听到的声音频率范围为大于20 Hz、小于20000 Hz的信号,通常情况下的语音信号频率最高能达到3400 Hz。

所谓语音信号采集是指将通过麦克风和高频放大器的语音声波信息,转换为模拟量电信号,最后转变成数字量的过程。

要想确保采集信号不存在失真现象,采样频率要为模拟信号最高频率的2倍以上,即最低频率为6800 Hz,在考虑语言质量的前提下,应当将采样频率确定为8000 Hz。

1.2 语音压缩待录制信号在输入到系统中后,先被分配到各自的预放大器,直到放大到合适的电平后,转移到信号混合单元将信号进行混合,形成一路完整的信号,并交由低通滤波器将高频滤去,将处理后的语音送至A/D转换器实施模数转换,将其变为频率为8 kHz的语音信号,形成特定的串行比特流,利用串行的方式将语音信号送至语音压缩单位。

利用语言压缩单元20 ms为一帧的速率对语音信号实施40∶1的高倍压缩,最终生成2.4 kb/s的压缩语音,由此完成语音压缩流程。

1.3 语音生成原理一般情况下,由于可将语音生成过程看作是语音采集过程的反向过程,所以掌握语音生成过程能够实现回放语音信号的功能。

值得注意的是,语音生成过程并不是原原本本地将语音信息进行恢复,而是对原来语音可重组、可控制的地方进行实时恢复。

语音采集回放电路

数字化语音存储与回放系统高海春, 任开达, 孔德峰, 徐和杰, 李文瑜(华东船舶工业学院电子与信息系, 江苏镇江212003)摘要: 设计并制作了一个数字化语音存储与回放系统,由于采用了滑动平均值滤波法进行数字滤波及非失真压缩算法,该系统获得了稳定的性能。

关键词: 语音; 单片机应用; 回放系统0 引言传统的磁带语音录放系统因其体积大、使用不便,在电子与信息处理的使用中受到许多限制。

本文提出的体积小巧,功耗低的数字化语音存储与回放系统将完全可以替代它。

数字化语音存储与回放系统的基本原理是对语音的录音与放音的数字控制。

其中,关键技术在于:为了增加语音存储时间,提高存储器的利用率,采用了非失真压缩算法对语音信号进行压缩后再存储,而在回放时再进行解压缩;同时,对输入语音信号进行数字滤波以抑制杂音和干扰,从而确保了语音回放的可靠质量。

1 基本原理1) 语音采集原理人耳能听到的声音是一种频率范围为20 Hz~20 000 Hz ,而一般语音频率最高为3 400 Hz。

语音的采集是指语音声波信号经麦克风和高频放大器转换成有一定幅度的模拟量电信号,然后再转换成数字量的全过程。

根据“奈奎斯特采样定理”, 采样频率必须大于模拟信号最高频率的两倍[1 ] ,由于语音信号频率为300~3 400 Hz ,所以把语音采集的采样频率定为8 kHz。

2) 语音生成原理单片机语音生成过程,可以看成是语音采集过程的逆过程,但又不是原封不动地恢复原来的语音,而是对原来语音的可控制、可重组的实时恢复。

在放音时,只要依原先的采样值经D/ A 接口处理,便可使原音重现。

2 硬件设计2. 1 单片机系统控制电路本系统主要由8031 、ADC0808 、DAC0832 、8255及RAM62256组成,其中ADC0808 、DAC0832及8255的片选信号由8031 的高位地址经74LS138 译码所得。

在电路中利用8255 进行数字存储器的扩展,其中PB ,PC 用于扩展地址,PA 用于扩展数据。

基于ADPCM的数字语音存储与回放系统

基于ADPCM的数字语音存储与回放系统作者:李涛曾攀肖功海来源:《现代电子技术》2013年第13期摘要:系统以单片机和FPGA为控制核心,实现了语音存储与回放系统。

能够采集模拟语音信号以及耳机立体声信号,以ADPCM(自适应差分编码)的方式提高了存储器的利用率,语音存储时间可达2 min;基于短时傅里叶变换原理,实现了语音信号的频谱分析与实时显示。

同时,利用立体声音频功放播放语音,每声道音量可调并具有静噪功能。

此外,系统还采用预加重、去加重、抗混叠滤波等措施,有效地提高了信噪比。

语音回放质量良好,存储时间较长。

关键词:语音存储与回放; ADPCM;短时傅里叶变换; FPGA控制中图分类号: TN911.7⁃34 文献标识码: A 文章编号: 1004⁃373X(2013)13⁃0049⁃04 Digital voice storage and replay system based on ADPCMLI Tao1,2, ZENG Pan1,2, XIAO Gong⁃hai1(1. Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China;2. University of Chinese Academy of Sciences, Beijing 100039, China)Abstract : With singlechip and FPGA as the cybernetics core, the system realizes voice storage and reply system. It can collect and simulate voice signals and stereo signals from earphone and lift utilization rate of memory by the use of ADPCM, which means the voice can be stored for more than 2 minutes. Based on the short⁃time Fourier transform principle, it can also achieve spectral analysis of voice signals and real⁃time display. Through using the stereo audio amplifier,each sound track can be adjusted and muted. Furthermore, some measures as pre⁃emphasis,de⁃emphasis and anti⁃aliasing filtering are used in this system to increase SNR efficiently and get good quality of the recorded voice for a longer time.Keywords: voice storage and replay; ADPCM; short⁃time Fourier transform; FPGA control0 引言由单片机与FPGA共同完成语音的录制与回放,可以拥有丰富的接口资源和运算能力,鉴于PCM的存储冗余值过大和DPCM的量化噪声问题,ADPCM成为了不错的压缩算法[1⁃2]。

语音存储与回放系统研究


8 S n 一 A( - 1 ≤ 7 时 en =S n一 Sn 1 ≤ () n ) () () (一 )
我 们采用 D C 压缩编码 方案 。它是 一种 比较成 熟 的 P M 压缩编 码方法 , 实现 原 理是 对信 号抽 样 值与 信 号 预 测值 的 差值 进行量 化 编码 , 以压 缩 数 码 率 , 可 提高 存储 空 间 利 用 率, 使语音 存 储 时间 增 加一 倍 。D C 系 统 是一 个 负 反 馈 P M 系统 , 采用 这种结 构可 以避免 量化 性误差 的积 累 , 但是 由于

要 : 字化 语音存储 与 回放 系统 以单 片机 为控 制 核 心 , 数 实现 了语 音存储 与 回放 系统。 系统 由话 筒电路 、 置放 大 前
与 滤 波模 块 、 D 采 样 、 / 转 换 与 功 放 输 出模 块 组 成 。其 中 , DC的 采 样 频 率 f k , 长 为 8住 , C 的 变换 频 率 f A/ DA A =8 Hz 字 DA 一8 KHz 字长 为 8住 , 音存储 时 间 4秒 以上 , , 语 回放 质量 良好 。同时 , 在保 证语 音质 量 的前提 下 , 少 系统 噪声 电平 , 音 减 语
模块组 成 。
话筒输入语 音信 号分 别经前 级 放大 的 幅度调 理与 抗混
入 阻抗 , 能够 较好地 抑制环境 噪声 , 过一 个外 接 电 阻 即可 叠 滤 波 器 后 , AD 采 样 器 进 行 数 字 量 化 。采 样 所 得 数 据 在 通 由
实 现增益 控制 。其 精度 高 功耗 低 , 用 于 微 弱信 号 的 前级 单 片机 内部通 过 AD C 编 码后 存 人 外部 存 储器 , 样 便 适 P M 这

基于单片机的语音存储及回放系统最终

基于单片机的语音存储及回放系统最终编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(基于单片机的语音存储及回放系统最终)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为基于单片机的语音存储及回放系统最终的全部内容。

基于单片机的语音存储及回放系统摘要随着科技的不断发展,人们对语音的存储系统也有了更高的要求,从最初的磁盘(唱片),到流行一时的磁带、CD等等。

但是这些语音的存储系统都有一定的缺陷,不是存储形式过时,就是不容易将语音存入。

因此,我们需要用新的理念设计一个语音的存储及回放系统.本设计采用了MCS—51单片机,利用A/D、D/A转换将声音信号(模拟量)转成数字信号(数字量)存储起来并实现随时回放功能。

关键字:MSC—51单片机、A/D转换、D/A转换、声音信号、数字信号一、总体设计方案介绍1.1语音编码方案:人耳能听到的声音是一种频率范围为20 Hz~20000 Hz ,而一般语音频率最高为3400 Hz。

语音的采集是指语音声波信号经麦克风和高频放大器转换成有一定幅度的模拟量电信号,然后再转换成数字量的全过程。

根据“奈奎斯特采样定理”,采样频率必须大于模拟信号最高频率的两倍,由于语音信号频率为300~3 400 Hz ,所以把语音采集的采样频率定为8 kHz.从语音的存储与压缩率来考虑,模型参数表示法明显优于信号波形表示法[4]。

但要将之运用于单片机,显然信号波形表示法相对简单易实现。

基于这种思路的算法,除了传统的一些脉冲编码调制外,目前已使用的有VQ技术及一些变换编码和神经网络技术,但是算法复杂,目前的单片机速度底,难以实现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字化语音存储与回放系统摘要: 文章介绍了一种数字化语音存储与回放系统的设计方法,该系统以单片机89C52为中心,采用两片AT628128存储芯片(128KB)构成256KB 的外部存储器来存放采集的语音数据,前端语音信号采集部分采用ADC0809实现模数转换,后端语音信号回放部分采用ADC9764实现数模转换,通过键盘等接口电路实现人机交互,单片机工作在中断查询模式,能够快速响应按键要求,以控制系统的语音信号采集开始、存储和回放等。

同时,外围电路辅以带通滤波器和放大器等电路对信号进行滤波放大,实现了语音信号的高保真度存储与回放。

关键词: 单片机;语音存储;语音回放Design of Digital Voice Storage and Replaying SystemAbstract: The article introduced one kind of digital voice storage and replaying system design method, this system take monolithic integrated circuit 89C52 as center processor, uses two piece of AT628128 memory chip (128KB) to constitute the 256KB exterior memory to store the voice data, front-end of the system uses the ADC0809 to realize a/d conversion , rear-end of the system uses the ADC9764 to realize digital-analog conversion, using keyboard connected with electric circuit to realize man-machine interaction, the monolithic integrated circuit work atinterruption-inquiry pattern so that it can response to the pressed key in a short time, it controls system voice signal gathering start, store and replay. At the same time, the periphery electric circuit auxiliary by band-pass filter and amplifier to the filter and enlarge the signal, which realizes the digital voice signal high fidelity storage and replaying.Key words: SCM; voice storage; voice replay前言目前,许多应用系统中都需要语音存储和回放处理。

按照经典的信号与系统理论,语音信号为模拟信号;而计算机系统建立在二进制基础上,使用的是数字信号。

那么,利用计算机处理语音信号就必须先将其数字化,并将其储存、实现回放。

此次毕业设计的重点在于研究语音信号数字化的理论与方法,以为例,具体阐述从采集语音信号到储存,再到回放的整个流程;实现语音信号的数字化储存与回放。

若用专用的语音芯片来处理,有时会缺乏灵活性,难以满足不同场合的需要。

本文介绍的语音存储与回放系统中,没有使用专用的语音处理芯片,不需扩展接口电路,只利用一般的单片机测控系统中都有的硬件电路(如A /D、D /A、存储器等) ,就能完成语音信号的数字化处理,即能完成语音的存储与回放,实现单片机测控系统的语音提示报警及语音提示操作等。

第一章系统总体方案设计语音是一种非常有用的信息载体,人们一直在寻找可靠的记录处理语音信号的方法。

音乐盒是通过上发条的滚轮上不同位臵的突起来带动簧片发出事先设计好的乐音,这是通过机械的方法实现了语音信号的记录(有计划地在滚轮上设臵突起)、回放(簧片发出乐音)。

留声机、磁带等是靠磁头处的电位变化记录或回放语音信号的。

而随着计算机技术的发展与普及,利用计算机处理语音信号已经被广泛应用。

人耳能听到的声音频率范围为20Hz~20kHz,而一般语音频率最高为3. 4kHz。

数字化语音存储与回放系统的基本思想是将模拟语音信号通过模数转换器(A /D)转换成数字信号,再通过单片机控制存储在存储器中;回放时,由单片机控制将数据从存储器中读出,然后通过数模转换器(D /A)转换成模拟信号,经放大在扬声器(或耳机)上输出语音。

本系统以单片机89C52 为控制器。

由于89C52最大只能寻址64KB 的范围,故而系统另配了两片AT628128存储芯片(128KB)构成256KB 的外部存储器来存放采集的语音数据。

根据“奈奎斯特采样定理”, 采样频率必须大于模拟信号最高频率的两倍,由于语音信号频率为300Hz~3. 4kHz,所以选取采样频率为8kHz,理论上即可不失真地回放输入的语音信号。

具体的系统总体框图参见图1。

图1-1 系统总体方案设计整个系统分为数字和模拟两大部分。

模拟电路主要由电压放大、功率放大及滤波器组成。

数字电路以单片机89C52 为核心, 扩展256KB 的RAM存储器,外加A /D、D /A及键盘等外围电路构成。

单片机芯片简介由于本系统采集语音信号频率较低,且逻辑比较简单,从性价比的角度选用单片机比较适合,如选用FPGA、CPLD等可编程逻辑器件,虽然也能完成控制功能,但是系统设计成本将会直线上升,综合考量系统需求,采用市面上应用广泛、设计成熟的AT89C52作为控制芯片,它是一种低电压、高性能CMOS 8位单片机,片内含8KB的可反复檫写的程序存储器和12B的随机存取数据存储器(RAM),器件采用高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内配臵通用8位中央处理器(CPU)和Flash存储单元,功能强大的AT89C52单片机可灵活应用于各种控制领域。

其主要工作特性是:片内程序存储器内含8KB的Flash程序存储器,可擦写寿命为1000次;片内数据存储器内含256字节的RAM;具有32根可编程I/O口线;具有3个可编程定时器;中断系统是具有8个中断源、6个中断矢量、2个级优先权的中断结构;串行口是具有一个全双工的可编程串行通信口;具有一个数据指针DPTR;低功耗工作模式有空闲模式和掉电模式;具有可编程的3级程序锁定位;工作电源电压为5(1+0.2)V,且典型值为5V;最高工作频率为24MHz。

第二章语音信号的数字化2.1语音信号的前端处理由于经拾音器输入的语音信号比较微弱,而模数转换器ADC0809的工作电压在0~ + 5V范围内,故而在采集语音信号前,先要对其进行增益放大。

本系统采用LM353作为运算放大器1,将语音信号放大至- 2. 5V~ + 2. 5V,再通过+ 2. 5V电平位移,使信号电压在0~ + 5V范围内,满足A /D转换的要求。

考虑整流、滤波后的纹波对扬声器输出的影响,本系统采用运算放大器2 (LM386)作功率放大器。

由于运算放大器对电源电压具有很强的抑制能力,不仅可大大减小扬声器输出端的纹波电压,同时驱动扬声器放出声音。

另外,为了能实现手动音量调节,放大器2的输入端加上一个50kΩ的电位器,以便调整音量。

为了滤除不必要的干扰及杂波,系统前向通道和后向通道中各设计了一个通带为300Hz~3. 4kHz的带通滤波器。

由于人的语音频段在10kHz以下,对于滤波的均衡度要求不高,所以本系统通过LM353制作一阶滤波器进行滤波。

此一阶带通滤波器由一个低通滤波器和一个高通滤波器串联而成,其中低通滤波器能滤除3. 4kHz以上的频率信号,减少了因8kHz的采样率引起的混叠失真;高通滤波器能滤除300Hz以下的频率信号,减少了低频信号尤其是工频的影响,大大提高了系统的信噪比。

2.2采样理论信息从物理特征上分为:模拟信号与数字信号。

话筒输出的话音信号属于模拟信号;而计算机数据属于数字信号。

若输入是模拟信号(例如语音信号),则在数字系统(例如计算机系统)的编码部分需要对输入信号进行数字化,或称为“模/数”变换,将模拟信号变为数字信号,以便在数字系统中继续加以处理。

数字化过程包括三个步骤:采样,量化和编码。

2.2.1 采样模拟信号首先被采样。

通常抽样是按照等时间间隔进行的,虽然在理论上并不是必须如此的。

模拟信号被抽样后,成为抽样信号,它在时间上是离散的,但是在其数值仍然是连续的,所以是离散模拟信号。

根据奈奎斯特采样定理,采样频率必须超过信号最高频率的2倍才能无失真的恢复出原模拟信号,假设对一个音频信号(20Hz~20kHz)进行采样,那么用40KHz的时钟就可以了,比如PC的声卡采样频率就是44.1kHz。

t T 2T 3T -T -2T -3T图2-1 抽样信号2.2.2 量化数据采集系统的主要功能之一是把模拟信号转换成数字信号,这个过程就是量化。

量化,就是用一基本量对和基本量具有同一量纲的模拟量进行比较的过程,其输入是连续的模拟信号,输出是一系列离散的数字信号。

在量化过程中所使用的基本量称为量化电平(Quantized Level),它是满量程电压(V FSR )与2N 的比值,其中N 为数字信号的二进制位数,也是ADC 的分辨率。

量化电平一般用Q 来表示,即Q=V FSR /2N从上式可以看出,Q 由V FSR 和2N 所决定,是能够量化的最小单位,也是经过ADC 后输出的数字信号的分辨率。

t图2-2 量化信号2.2.3 编码量化得到的数字信号的幅度对应于采样点的模拟信号的幅度,但每一个数字信号必须进行编码以变成计算机可识别的二进制数。

采用的编码方式不同,得到的二进制数显然不同。

常用的编码方式有单极性二进制编码和BCD 编码等。

实际上,现有的ADC 芯片输出的数字信号一般是己经过编码以后的二进制数,用户不必再考虑编码的问题。

t 011100011100101101图2-3 编码信号2.3 A/D 转换器的设计A/D 转换器是将语音信号转化为数字信号的关键部件,其主要参数有采样频率、采样位数和抗干扰性能等。

随着超大规模集成电路技术的飞速发展和计算机技术在工业领域的广泛应用,A/D 转换器的新设计思想和制造技术层出不穷。

为满足各种不同的检测和控制任务的需要,大量结构不同、性能各异的A/D 转换电路应运而生。

相关文档
最新文档