2010年湖北省黄冈市中考数学试题及答案

合集下载

2010湖北武汉市中考数学试卷及答案 全word

2010湖北武汉市中考数学试卷及答案 全word

2010湖北武汉市中考数学试卷亲爱的同学,在你答题前,请认真阅读下面以及“答卷”上的注意事项:1. 本试卷由第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分组成。

全卷共6页,三大题,满分120 分。

考试用时120分钟。

2. 答题前,请将你的姓名、准考证号填写在“答卷”相应位置,并在“答卷”背面左上角填写姓 名和准考证号后两位。

3. 答第Ⅰ卷(选择题)时,选出每小题答案后,用2B 铅笔把“答卷”上对应题目的答案标号涂 黑。

如需改动,用橡皮擦干净后。

再选涂其它答案,不得答在“试卷”上。

4. 第Ⅱ卷(非选择题)用0.5毫米黑色笔迹签字笔书写在“答卷”上。

答在“试卷”上无效。

预祝你取得优异成绩! 第Ⅰ卷 (选择题,共36分)一、选择题 (共12小题,每小题3分,共36分) 下列各题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的代号涂黑。

1. 有理数-2的相反数是 (A) 2 (B) -2 (C)21 (D) -21。

2. 函数y =1-x 中自变量x 的取值范围是 (A) x ≥1 (B) x ≥ -1 (C) x ≤1 (D) x ≤ -1 。

3. 如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是(A) x > -1,x >2 (B) x > -1,x <2 (C) x < -1,x <2 (D) x <-1,x >2 。

4. 下列说法: “掷一枚质地均匀的硬币一定是正面朝上”; “从一副普通扑克牌中任意抽取 一张,点数一定是6”;(A) 都正确 (B) 只有 正确 (C) 只有 正确 (D) 都错误 。

5. 2010年上海世博会开园第一个月共售出门票664万张,664万用科学计数法表示为(A) 664⨯104 (B) 66.4⨯105 (C) 6.64⨯106 (D) 0.664⨯107 。

6. 如图,△ABC 内有一点D ,且DA =DB =DC ,若∠DAB =20︒,∠DAC =30︒,则∠BDC 的大小是 (A) 100︒ (B) 80︒ (C) 70︒ (D) 50︒ 。

湖北省黄冈市2010年九年级调研考试数学试题

湖北省黄冈市2010年九年级调研考试数学试题

湖北省黄冈市2010年九年级调研考试数学试题一、填空题(每小题3分,共30分)1、若规定向东走8米记作+8米,那么-6米表示____________.2、计算:-(-2)=____________.3、函数22中,自变量x的取值范围是____________. 4、分解因式ab-2ab+a=____________.5、“太阳能”是一种既无污染又节省地下能源的能量,据相关资料介绍,平均每平方千米的地面一年从太阳中获得的能量,相当于燃烧130000000千克的煤所产生的能量,用科学记数法表示这个数是____________千克.6、如图,AB是⊙O的直径,弦CD⊥AB于E,如果AB=10,CD=8,那么AE 的长为____________.7、化简的结果是____________.8、有如图所示的两种广告牌,其中图1是由两个等腰直角三角形构成的,图2是一个矩形,从图形中确定这两个广告牌面积的大小关系,并将这种大小关系用含字母a,b的不等式表示为____________.9、把一个半径为8cm的圆片,剪掉一个圆心角为90°的扇形后,用剩下的部分做成一个圆锥的侧面,则这个圆锥的高为____________cm.10、如图是长方形时钟钟面示意图,长方形的宽为40厘米,时钟的中心在长方形对角线的交点上,数字2在长方形的顶点上,数字3,6,9,12标在所在边的中点上,则长方形的长应为____________厘米.二、选择题(每小题3分,满分18分)11、9的算术平方根是()A.±3 B.±9 C.3 D.912、下列运算正确的是()A.m3²m3=m9 B.m5+m5=m10 C.m2n-n=m2 D.(a2b)3=a6b313、由6个大小相同的正方体搭成的几何体如图所示,则关于它的视图说法正确的是()A.正视图的面积最大 B.左视图的面积最大C.俯视图的面积最大 D.三个视图的面积一样大14、如图,点A是反比例函数图象上的一点,自点A向y轴作垂线,垂足为T,已知S△AOT=4,则此函数的表达式为()A. B. C. D.15、如图,房间地面的图案是用大小相同的黑、白正方形镶嵌而成.图中,第1个黑色L形由3个正方形组成,第2个黑色L形由7个正方形组成,……那么组成第6个黑色L形的正方形个数是()A.22 B.23 C.24 D.2516、药品研究所开发一种抗菌新药,经过多年的动物实验之后,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药后时间x(时)之间的函数关系如图所示,则当1≤x≤6时,y的取值范围是()A.三、解答题 B. C. D.8≤y≤1617、(6分)解不等式组:18、(6分)如图,△ABC中,AD是高,CE是中线,DC=BE,DG⊥CE,G是垂足.连结DE.求证:G是CE的中点.19、(6分)希望实验中学庆祝新教学楼落成,决定从九年级全部的300名女生中选出60人,组成一个鲜花礼仪队(要求参加的同学的身高尽可能接近),现在抽测了10名女生身高,结果如下(单位:cm)166 154 151 167 162 158 158 160 162 162(1)依据样本数据估计,初三全体女生的平均身高约是多少厘米?(2)这10名女生的身高的中位数、众数分别是多少?(3)请你依据样本数据,设计一个挑选参加鲜花礼仪队的女生的方案(请简要说明) 20、(6分)已知,如图:AB是⊙O的直径,AC的中点D在⊙O上,DE切⊙O于点D,DE交BC于点E.求证:DE⊥BC.21、(7分)同学们都知道五月的第二个星期天是“母亲节”,小聪和妈妈一起去商场购物,她们发现商场现在举行了打折促销活动:(信息如下图)小聪和妈妈给奶奶买了标价300元的营养品,妈妈给了300元钱,让小聪去结账.小聪在收银台旁发现有妈妈最喜欢的百合花,价格是2.5元钱一支,于是买了一些送给妈妈.刚好用完300元钱,请你算一算小聪买了多少支百合花?22、(6分)小明为九年级一班、二班的毕业晚会设计了一个转盘游戏,使晚会气氛热烈有趣,其操作方式是:每个节目开始时,两班各派一名学生先进行转盘游戏,胜者获得一件奖品,负者表演一个节目,规定两人同时转动转盘一次,将转到的数字相加,和为偶数时,一班代表胜,否则二班代表胜.你认为该方案对双方是否公平?为什么?23、(本题满分9分)如图,在一个长40m、宽30m的长方形小操场上,王刚从A 点出发,沿着A→B→C以3m/s的速度跑向C地.当他出发4s后,张华有东西需要交给他,就从A地出发沿王刚走的路线追赶.当张华跑到距B地的D处时,他和王刚在阳光下的影子恰好重叠在同一条直线上,此时,A处一根电线杆在阳光下的影子也恰好落在对角线AC上. (1)求他们的影子重叠时,两人相距多少米(DE的长)?(2)求张华追赶王刚的速度是多少?(精确到0.1m/s)24、(本题满分11分)某产品每件的成本是120元,为了解市场规律,试销阶段按两种方案进行销售,结果如下:方案甲:保持每件150元的售价不变,此时日销售量为50件;方案乙:不断地调整售价,此时发现日销售量y(件)是售价x(元)的一次函数,且前三(1)如果方案乙中的第四天、第五天售价均为180元,那么前五天中,哪种方案的销售总利润大?(2)分析两种方案,为获得最大日销售利润,每件产品的售价应定为多少元?此时,最大日销售利润S是多少?(注:销售利润=销售额-成本额,销售额=售价³销售量)25、(本题满分15分)已知,在平面直角坐标系xOy中,矩形OABC的边OA在y 轴的正半轴上,OC在x轴的正半轴上,OA=2,OC=3,AD=2,连接DC,过点D作DE⊥DC,交OA于点E.(1)直接写出点E的坐标是(____________);(2)求过点E,D,C的抛物线的解析式;(3)将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G.设四边形OABC与四边形FDGO重叠部分的面积为S,EF的长为x,试求出S与x的函数解析式(写出自变量x的取值范围).(4)在∠EDC的旋转过程中,OG=1时,直线DF与(1)中的抛物线是否存在另一交点?若存在,请求出此时的另一交点坐标;若不存在,请说明理由.。

往年湖北省黄冈市中考数学真题及答案

往年湖北省黄冈市中考数学真题及答案

往年年湖北省黄冈市中考数学真题及答案一、选择题(下列个题四个选项中,有且仅有一个是正确的.每小题3分,共24分)1.(3分)﹣8的立方根是()A.﹣2 B.±2 C.2 D.﹣2.(3分)如果α与β互为余角,则()A.α+β=180°B.α﹣β=180° C.α﹣β=90°D.α+β=90°3.(3分)下列运算正确的是()A.x2•x3=x6B.x6÷x5=x C.(﹣x2)4=x6D.x2+x3=x54.(3分)如图所示的几何体的主视图是()A.B.C.D.5.(3分)函数y=中,自变量x的取值范围是()A.x≠0 B.x≥2 C.x>2且x≠0 D.x≥2且x≠06.(3分)若α、β是一元二次方程x2+2x﹣6=0的两根,则α2+β2=()A.﹣8 B.32 C.16 D.407.(3分)如图,圆锥体的高h=2cm,底面半径r=2cm,则圆锥体的全面积为()cm2.A.4πB.8πC.12π D.(4+4)π8.(3分)已知:在△ABC中,BC=10,BC边上的高h=5,点E在边AB上,过点E作EF∥BC,交AC边于点F.点D为BC上一点,连接DE、DF.设点E到BC的距离为x,则△DEF的面积S关于x的函数图象大致为()A.B.C.D.二、填空题(共7小题,每小题3分,共21分)9.(3分)计算:|﹣|= .10.(3分)分解因式:(2a+1)2﹣a2= .11.(3分)计算:﹣= .12.(3分)如图,若AD∥BE,且∠ACB=90°,∠CBE=30°,则∠CAD= 度.13.(3分)当x=﹣1时,代数式÷+x的值是.14.(3分)如图,在⊙O中,弦CD垂直于直径AB于点E,若∠BAD=30°,且BE=2,则CD= .15.(3分)如图,在一张长为8cm,宽为6cm的矩形纸片上,现要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上).则剪下的等腰三角形的面积为cm2.三、解答题(本大题共10小题,满分共75分)16.(5分)解不等式组:,并在数轴上表示出不等式组的解集.17.(6分)浠州县为了改善全县中、小学办学条件,计划集中采购一批电子白板和投影机.已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元.问购买一块电子白板和一台投影机各需要多少元?18.(6分)已知,如图所示,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.19.(6分)红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.20.(7分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.(1)求证:EB=EC;(2)若以点O、D、E、C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.21.(7分)某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?22.(9分)如图,已知双曲线y=﹣与两直线y=﹣x,y=﹣kx(k>0,且k≠)分别相交于A、B、C、D四点.(1)当点C的坐标为(﹣1,1)时,A、B、D三点坐标分别是A(, ),B(, ),D(, ).(2)证明:以点A、D、B、C为顶点的四边形是平行四边形.(3)当k为何值时,▱ADBC是矩形.23.(7分)如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船C的求救信号.已知A、B两船相距100(+1)海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN上有一观测点D,测得船C正好在观测点D的南偏东75°方向上.(1)分别求出A与C,A与D之间的距离AC和AD(如果运算结果有根号,请保留根号).(2)已知距观测点D处100海里范围内有暗礁.若巡逻船A沿直线AC去营救船C,在去营救的途中有无触暗礁危险?(参考数据:≈1.41,≈1.73)24.(9分)某地实行医疗保险(以下简称“医保”)制度.医保机构规定:一:每位居民年初缴纳医保基金70元;二:居民每个人当年治病所花的医疗费(以定点医院的治疗发票为准),年底按下列方式(见表一)报销所治病的医疗费用:居民个人当年治病所花费的医疗费医疗费的报销方法不超过n元的部分全部由医保基金承担(即全部报销)超过n元但不超过6000元的部分个人承担k%,其余部分由医保基金承担超过6000元的部分个人承担20%,其余部分由医保基金承担如果设一位居民当年治病花费的医疗费为x元,他个人实际承担的医疗费用(包括医疗费中个人承担部分和年初缴纳的医保基金)记为y元.(1)当0≤x≤n时,y=70;当n<x≤6000时,y= (用含n、k、x的式子表示).(2)表二是该地A、B、C三位居民2013年治病所花费的医疗费和个人实际承担的医疗费用,根据表中的数据,求出n、k的值.表二:居民 A B C某次治病所花费的治疗费用x(元)400 800 1500个人实际承担的医疗费用y(元)70 190 470(3)该地居民周大爷2013年治病所花费的医疗费共32000元,那么这一年他个人实际承担的医疗费用是多少元?25.(13分)已知:如图,在四边形OABC中,AB∥OC,BC⊥x轴于点C,A(1,﹣1),B(3,﹣1),动点P从点O 出发,沿着x轴正方向以每秒2个单位长度的速度移动.过点P作PQ垂直于直线OA,垂足为点Q,设点P移动的时间t秒(0<t<2),△OPQ与四边形OABC重叠部分的面积为S.(1)求经过O、A、B三点的抛物线的解析式,并确定顶点M的坐标;(2)用含t的代数式表示点P、点Q的坐标;(3)如果将△OPQ绕着点P按逆时针方向旋转90°,是否存在t,使得△OPQ的顶点O或顶点Q在抛物线上?若存在,请求出t的值;若不存在,请说明理由;(4)求出S与t的函数关系式.往年年湖北省黄冈市中考数学试卷参考答案与试题解析一、选择题(下列个题四个选项中,有且仅有一个是正确的.每小题3分,共24分)1.(3分)(往年•黄冈)﹣8的立方根是()A.﹣2 B.±2 C.2 D.﹣【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵﹣2的立方等于﹣8,∴﹣8的立方根等于﹣2.故选:A.【点评】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.2.(3分)(往年•黄冈)如果α与β互为余角,则()A.α+β=180°B.α﹣β=180° C.α﹣β=90°D.α+β=90°【分析】根据互为余角的定义,可以得到答案.【解答】解:如果α与β互为余角,则α+β=900.故选:D.【点评】此题主要考查了互为余角的性质,正确记忆互为余角的定义是解决问题的关键.3.(3分)(往年•黄冈)下列运算正确的是()A.x2•x3=x6B.x6÷x5=x C.(﹣x2)4=x6D.x2+x3=x5【分析】根据同底数幂的乘法和除法法则可以解答本题.【解答】解:A.x2•x3=x5,故A错误;B.x6÷x5=x,故B正确;C.(﹣x2)4=x8,故C错误;D.x2+x3不能合并,故D错误.故选:B.【点评】主要考查同底数幂相除底数不变指数相减,同底数幂相乘底数不变指数相加,熟记定义是解题的关键.4.(3分)(往年•黄冈)如图所示的几何体的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看,象一个大梯形减去一个小梯形,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.5.(3分)(往年•黄冈)函数y=中,自变量x的取值范围是()A.x≠0 B.x≥2 C.x>2且x≠0 D.x≥2且x≠0【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣2≥0且x≠0,∴x≥2.故选:B.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6.(3分)(往年•黄冈)若α、β是一元二次方程x2+2x﹣6=0的两根,则α2+β2=()A.﹣8 B.32 C.16 D.40【分析】根据根与系数的关系得到α+β=﹣2,αβ=﹣6,再利用完全平方公式得到α2+β2=(α+β)2﹣2αβ,然后利用整体代入的方法计算.【解答】解:根据题意得α+β=﹣2,αβ=﹣6,所以α2+β2=(α+β)2﹣2αβ=(﹣2)2﹣2×(﹣6)=16.故选:C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.7.(3分)(往年•黄冈)如图,圆锥体的高h=2cm,底面半径r=2cm,则圆锥体的全面积为()cm2.A.4πB.8πC.12π D.(4+4)π【分析】表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【解答】解:底面圆的半径为2,则底面周长=4π,∵底面半径为2cm、高为2cm,∴圆锥的母线长为4cm,∴侧面面积=×4π×4=8π;底面积为=4π,全面积为:8π+4π=12πcm2.故选:C.【点评】本题利用了圆的周长公式和扇形面积公式求解,牢记公式是解答本题的关键.8.(3分)(往年•黄冈)已知:在△ABC中,BC=10,BC边上的高h=5,点E在边AB上,过点E作EF∥BC,交AC 边于点F.点D为BC上一点,连接DE、DF.设点E到BC的距离为x,则△DEF的面积S关于x的函数图象大致为()A.B.C.D.【分析】判断出△AEF和△ABC相似,根据相似三角形对应边成比例列式求出EF,再根据三角形的面积列式表示出S与x的关系式,然后得到大致图象选择即可.【解答】解:∵EF∥BC,∴△AEF∽△ABC,∴=,∴EF=•10=10﹣2x,∴S=(10﹣2x)•x=﹣x2+5x=﹣(x﹣)2+,∴S与x的关系式为S=﹣(x﹣)2+(0<x<5),纵观各选项,只有D选项图象符合.故选:D.【点评】本题考查了动点问题函数图象,主要利用了相似三角形的性质,求出S与x的函数关系式是解题的关键,也是本题的难点.二、填空题(共7小题,每小题3分,共21分)9.(3分)(往年•黄冈)计算:|﹣|= .【分析】根据负数的绝对值等于它的相反数,可得答案案.【解答】解:|﹣|=,故答案为:.【点评】本题考查了绝对值,负数的绝对值是它的相反数.10.(3分)(往年•黄冈)分解因式:(2a+1)2﹣a2= (3a+1)(a+1).【分析】直接利用平方差公式进行分解即可.【解答】解:原式=(2a+1+a)(2a+1﹣a)=(3a+1)(a+1),故答案为:(3a+1)(a+1).【点评】此题主要考查了公式法分解因式,关键是掌握平方差公式:a2﹣b2=(a+b)(a﹣b).11.(3分)(往年•黄冈)计算:﹣= .【分析】先进行二次根式的化简,然后合并同类二次根式求解.【解答】解:原式=2﹣=.故答案为:.【点评】本题考查了二次根式的加减法,关键是掌握二次根式的化简以及同类二次根式的合并.12.(3分)(往年•黄冈)如图,若AD∥BE,且∠ACB=90°,∠CBE=30°,则∠CAD= 60 度.【分析】延长AC交BE于F,根据直角三角形两锐角互余求出∠1,再根据两直线平行,内错角相等可得∠CAD=∠1.【解答】解:如图,延长AC交BE于F,∵∠ACB=90°,∠CBE=30°,∴∠1=90°﹣30°=60°,∵AD∥BE,∴∠CAD=∠1=60°.故答案为:60.【点评】本题考查了平行线的性质,直角三角形两锐角互余的性质,熟记性质是解题的关键.13.(3分)(往年•黄冈)当x=﹣1时,代数式÷+x的值是3﹣2.【分析】将除法转化为乘法,因式分解后约分,然后通分相加即可.【解答】解:原式=•+x=x(x﹣1)+x=x2﹣x+x=x2,当x=﹣1时,原式=(﹣1)2=2+1﹣2=3﹣2.故答案为:3﹣2.【点评】本题考查了分式的化简求值,熟悉除法法则和因式分解是解题的关键.14.(3分)(往年•黄冈)如图,在⊙O中,弦CD垂直于直径AB于点E,若∠BAD=30°,且BE=2,则CD= 4.【分析】连结OD,设⊙O的半径为R,先根据圆周角定理得到∠BOD=2∠BAD=60°,再根据垂径定理由CD⊥AB 得到DE=CE,在Rt△ODE中,OE=OB﹣BE=R﹣2,利用余弦的定义得cos∠EOD=cos60°=,即=,解得R=4,则OE=2,DE=OE=2,所以CD=2DE=4.【解答】解:连结OD,如图,设⊙O的半径为R,∵∠BAD=30°,∴∠BOD=2∠BAD=60°,∵CD⊥AB,∴DE=CE,在Rt△ODE中,OE=OB﹣BE=R﹣2,OD=R,∵cos∠EOD=cos60°=,∴=,解得R=4,∴OE=4﹣2=2,∴DE=OE=2,∴CD=2DE=4故答案为:4.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理和解直角三角形.15.(3分)(往年•黄冈)如图,在一张长为8cm,宽为6cm的矩形纸片上,现要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上).则剪下的等腰三角形的面积为或5或10 cm2.【分析】因为等腰三角形腰的位置不明确,所以分(1)腰长在矩形相邻的两边上,(2)一腰在矩形的宽上,(3)一腰在矩形的长上,三种情况讨论.(1)△AEF为等腰直角三角形,直接利用面积公式求解即可;(2)先利用勾股定理求出AE边上的高BF,再代入面积公式求解;(3)先求出AE边上的高DF,再代入面积公式求解.【解答】解:分三种情况计算:(1)当AE=AF=5厘米时,∴S△AEF=AE•AF=×5×5=厘米2,(2)当AE=EF=5厘米时,如图BF===2厘米,∴S△AEF=•AE•BF=×5×2=5厘米2,(3)当AE=EF=5厘米时,如图DF===4厘米,∴S△AEF=AE•DF=×5×4=10厘米2.故答案为:,5,10.【点评】本题主要考查矩形的角是直角的性质和勾股定理的运用,要根据三角形的腰长的不确定分情况讨论.三、解答题(本大题共10小题,满分共75分)16.(5分)(往年•黄冈)解不等式组:,并在数轴上表示出不等式组的解集.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【解答】解:解①得:x>3,解②得:x≥1.,则不等式组的解集是:x>3.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.17.(6分)(往年•黄冈)浠州县为了改善全县中、小学办学条件,计划集中采购一批电子白板和投影机.已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元.问购买一块电子白板和一台投影机各需要多少元?【分析】设购买1块电子白板需要x元,一台投影机需要y元,根据①买2块电子白板的钱﹣买3台投影机的钱=4000元,②购买4块电子白板的费用+3台投影机的费用=44000元,列出方程组,求解即可.【解答】解:设购买1块电子白板需要x元,一台投影机需要y元,由题意得:,解得:.答:购买一块电子白板需要8000元,一台投影机需要4000元.【点评】此题主要考查了二元一次方程组的应用,解题关键是弄清题意,找出合适的等量关系,列出方程组.18.(6分)(往年•黄冈)已知,如图所示,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.【分析】连接AD,利用SSS得到三角形ABD与三角形ACD全等,利用全等三角形对应角相等得到∠EAD=∠FAD,即AD为角平分线,再由DE⊥AB,DF⊥AC,利用角平分线定理即可得证.【解答】证明:连接AD,在△ACD和△ABD中,,∴△ACD≌△ABD(SSS),∴∠EAD=∠FAD,即AD平分∠EAF,∵DE⊥AE,DF⊥AF,∴DE=DF.【点评】此题考查了全等三角形的判定与性质,以及角平分线定理,熟练掌握全等三角形的判定与性质是解本题的关键.19.(6分)(往年•黄冈)红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得恰好选派一男一女两位同学参赛的有8种情况,然后利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:则共有12种等可能的结果;(2)∵恰好选派一男一女两位同学参赛的有8种情况,∴恰好选派一男一女两位同学参赛的概率为:=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.(7分)(往年•黄冈)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.(1)求证:EB=EC;(2)若以点O、D、E、C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.【分析】(1)连接OD,由BC是⊙O的切线得出∠BCA=90°,由DE是⊙O的切线,得出ED=EC,∠ODE=90°,故可得出∠EDB=∠EBD,由此可得出结论.(2)当以点O、D、E、C为顶点的四边形是正方形时,则△DEB是等腰直角三角形,据此即可判断.【解答】(1)证明:连接OD,∵AC是直径,∠ACB=90°,∴BC是⊙O的切线,∠BCA=90°.又∵DE是⊙O的切线,∴ED=EC,∠ODE=90°,∴∠ODA+∠EDB=90°,∵OA=OD,∴∠OAD=∠ODA,又∵∠OAD+∠DBE=90°,∴∠EDB=∠EBD,∴ED=EB,∴EB=EC.(2)解:当以点O、D、E、C为顶点的四边形是正方形时,则∠DEB=90°,又∵ED=EB,∴△DEB是等腰直角三角形,则∠B=45°,∴△ABC是等腰直角三角形.【点评】本题考查了切线的性质以及切线长定理、圆周角定理,解题的关键是连接OD得垂直,构造出等腰三角形,利用“等角的余角相等解答.21.(7分)(往年•黄冈)某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有200 名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?【分析】(1)喜好“核桃味”牛奶的学生人数除以它所占的百分比即可得本次被调查的学生人数;(2)用本次被调查的学生的总人数减去喜好原味、草莓味、菠萝味、核桃味的人数得出喜好香橙味的人数,补全条形统计图即可,用喜好“菠萝味”牛奶的学生人数除以总人数再乘以360°,即可得喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数;(3)用喜好草莓味的人数占的百分比减去喜好原味的人数占的百分比,再乘以该校的总人数即可.【解答】解:(1)10÷5%=200(名)答:本次被调查的学生有200名,故答案为:200;(2)200﹣38﹣62﹣50﹣10=40(名),条形统计图如下:=90°,答:喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数为90°;(3)1200×()=144(盒),答:草莓味要比原味多送144盒.【点评】本题考查的是条形统计图和扇形统计图的综合运用;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(9分)(往年•黄冈)如图,已知双曲线y=﹣与两直线y=﹣x,y=﹣kx(k>0,且k≠)分别相交于A、B、C、D四点.(1)当点C的坐标为(﹣1,1)时,A、B、D三点坐标分别是A(﹣2 , ),B( 2 , ﹣),D ( 1 , ﹣1 ).(2)证明:以点A、D、B、C为顶点的四边形是平行四边形.(3)当k为何值时,▱ADBC是矩形.【分析】(1)由C坐标,利用反比例函数的中心对称性确定出D坐标,联立双曲线y=﹣与直线y=﹣x,求出A与B坐标即可;(2)由反比例函数为中心对称图形,利用中心对称性质得到OA=OB,OC=OD,利用对角线互相平分的四边形为平行四边形即可得证;(3)由A与B坐标,利用两点间的距离公式求出AB的长,联立双曲线y=﹣与直线y=﹣kx,表示出CD的长,根据对角线相等的平行四边形为矩形,得到AB=CD,即可求出此时k的值.【解答】解:(1)∵C(﹣1,1),C,D为双曲线y=﹣与直线y=﹣kx的两个交点,且双曲线y=﹣为中心对称图形,∴D(1,﹣1),联立得:,消去y得:﹣x=﹣,即x2=4,解得:x=2或x=﹣2,当x=2时,y=﹣;当x=﹣2时,y=,∴A(﹣2,),B(2,﹣);故答案为:﹣2,,2,﹣,1,﹣1;(2)∵双曲线y=﹣为中心对称图形,且双曲线y=﹣与两直线y=﹣x,y=﹣kx(k>0,且k≠)分别相交于A、B、C、D四点,∴OA=OB,OC=OD,则以点A、D、B、C为顶点的四边形是平行四边形;(3)若▱ADBC是矩形,可得AB=CD,联立得:,消去y得:﹣=﹣kx,即x2=,解得:x=或x=﹣,当x=时,y=﹣;当x=﹣时,y=,∴C(﹣,),D(,﹣),∴CD==AB==,整理得:(4k﹣1)(k﹣4)=0,k1=,k2=4,又∵k≠,∴k=4,则当k=4时,▱ADBC是矩形.【点评】此题属于反比例函数综合题,涉及的知识有:坐标与图形性质,一次函数与反比例函数的交点,平行四边形,矩形的判定,两点间的距离公式,以及中心图形性质,熟练掌握性质是解本题的关键.23.(7分)(往年•黄冈)如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船C的求救信号.已知A、B两船相距100(+1)海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN 上有一观测点D,测得船C正好在观测点D的南偏东75°方向上.(1)分别求出A与C,A与D之间的距离AC和AD(如果运算结果有根号,请保留根号).(2)已知距观测点D处100海里范围内有暗礁.若巡逻船A沿直线AC去营救船C,在去营救的途中有无触暗礁危险?(参考数据:≈1.41,≈1.73)【分析】(1)作CE⊥AB,设AE=x海里,则BE=CE=x海里.根据AB=AE+BE=x+x=100(+1),求得x 的值后即可求得AC的长;过点D作DF⊥AC于点F,同理求出AD的长;(2)作DF⊥AC于点F,根据AD的长和∠DAF的度数求线段DF的长后与100比较即可得到答案.【解答】解:(1)如图,作CE⊥AB,由题意得:∠ABC=45°,∠BAC=60°,设AE=x海里,在Rt△AEC中,CE=AE•tan60°=x;在Rt△BCE中,BE=CE=x.∴AE+BE=x+x=100(+1),解得:x=100.AC=2x=200.在△ACD中,∠DAC=60°,∠ADC=75°,则∠ACD=45°.过点D作DF⊥AC于点F,设AF=y,则DF=CF=y,∴AC=y+y=200,解得:y=100(﹣1),∴AD=2y=200(﹣1).答:A与C之间的距离AC为200海里,A与D之间的距离AD为200(﹣1)海里.(2)由(1)可知,DF=AF=×100(﹣1)≈126.3海里,∵126.3>100,所以巡逻船A沿直线AC航线,在去营救的途中没有触暗礁危险.【点评】本题考查了解直角三角形的应用,解题的关键是从实际问题中整理出直角三角形并选择合适的边角关系解答.24.(9分)(往年•黄冈)某地实行医疗保险(以下简称“医保”)制度.医保机构规定:一:每位居民年初缴纳医保基金70元;二:居民每个人当年治病所花的医疗费(以定点医院的治疗发票为准),年底按下列方式(见表一)报销所治病的医疗费用:居民个人当年治病所花费的医疗费医疗费的报销方法不超过n元的部分全部由医保基金承担(即全部报销)超过n元但不超过6000元的部分个人承担k%,其余部分由医保基金承担超过6000元的部分个人承担20%,其余部分由医保基金承担如果设一位居民当年治病花费的医疗费为x元,他个人实际承担的医疗费用(包括医疗费中个人承担部分和年初缴纳的医保基金)记为y元.(1)当0≤x≤n时,y=70;当n<x≤6000时,y= 0.01k(x﹣n)+70(n<x≤6000)(用含n、k、x的式子表示).(2)表二是该地A、B、C三位居民2013年治病所花费的医疗费和个人实际承担的医疗费用,根据表中的数据,求出n、k的值.表二:居民 A B C某次治病所花费的治疗费用x(元)400 800 1500个人实际承担的医疗费用y(元)70 190 470(3)该地居民周大爷2013年治病所花费的医疗费共32000元,那么这一年他个人实际承担的医疗费用是多少元?【分析】(1)根据医疗报销的比例,可得答案;(2)根据医疗费用的报销费用,可得方程组,再解方程组,可得答案;(3)根据个人承担部分的费用,可得代数式,可得答案.【解答】解:(1)由题意得当0≤x≤n时,y=70;当n<x≤6000时,y=0.01k(x﹣n)+70(n<x≤6000);(2)由A、B、C三人的花销得,解得;(3)由题意得70+(6000﹣500)×40%+(32000﹣6000)×20%=70+2200+5200=7470(元).答:这一年他个人实际承担的医疗费用是7470元.【点评】本题考查了一次函数的应用,根据题意列函数解析式是解题关键.25.(13分)(往年•黄冈)已知:如图,在四边形OABC中,AB∥OC,BC⊥x轴于点C,A(1,﹣1),B(3,﹣1),动点P从点O出发,沿着x轴正方向以每秒2个单位长度的速度移动.过点P作PQ垂直于直线OA,垂足为点Q,设点P移动的时间t秒(0<t<2),△OPQ与四边形OABC重叠部分的面积为S.(1)求经过O、A、B三点的抛物线的解析式,并确定顶点M的坐标;(2)用含t的代数式表示点P、点Q的坐标;(3)如果将△OPQ绕着点P按逆时针方向旋转90°,是否存在t,使得△OPQ的顶点O或顶点Q在抛物线上?若存在,请求出t的值;若不存在,请说明理由;(4)求出S与t的函数关系式.【分析】(1)设抛物线解析式为y=ax2+bx(a≠0),然后把点A、B的坐标代入求出a、b的值,即可得解,再把函数解析式整理成顶点式形式,然后写出顶点M的坐标;(2)根据点P的速度求出OP,即可得到点P的坐标,再根据点A的坐标求出∠AOC=45°,然后判断出△POQ 是等腰直角三角形,根据等腰直角三角形的性质求出点Q的坐标即可;(3)根据旋转的性质求出点O、Q的坐标,然后分别代入抛物线解析式,求解即可;(4)求出点Q与点A重合时的t=1,点P与点C重合时的t=1.5,t=2时PQ经过点B,然后分①0<t≤1时,重叠部分的面积等于△POQ的面积,②1<t≤1.5时,重叠部分的面积等于两个等腰直角三角形的面积的差,③1.5<t<2时,重叠部分的面积等于梯形的面积减去一个等腰直角三角形的面积分别列式整理即可得解.【解答】解:(1)设抛物线解析式为y=ax2+bx(a≠0),把点A(1,﹣1),B(3,﹣1)代入得,,解得,∴抛物线解析式为y=x2﹣x,∵y=x2﹣x=(x﹣2)2﹣,∴顶点M的坐标为(2,﹣);(2)∵点P从点O出发速度是每秒2个单位长度,∴OP=2t,∴点P的坐标为(2t,0),∵A(1,﹣1),∴∠AOC=45°,∴点Q到x轴、y轴的距离都是OP=×2t=t,∴点Q的坐标为(t,﹣t);(3)∵△OPQ绕着点P按逆时针方向旋转90°,∴旋转后点O、Q的对应点的坐标分别为(2t,﹣2t),(3t,﹣t),若顶点O在抛物线上,则×(2t)2﹣×(2t)=﹣2t,解得t=(t=0舍去),∴t=时,点O(1,﹣1)在抛物线y=x2﹣x上,若顶点Q在抛物线上,则×(3t)2﹣×(3t)=﹣t,解得t=1(t=0舍去),∴t=1时,点Q(3,﹣1)在抛物线y=x2﹣x上.(4)点Q与点A重合时,OP=1×2=2,t=2÷2=1,点P与点C重合时,OP=3,t=3÷2=1.5,t=2时,OP=2×2=4,PC=4﹣3=1,此时PQ经过点B,所以,分三种情况讨论:①0<t≤1时,S=S△OPQ=×(2t)×=t2,②1<t≤1.5时,S=S△OP′Q′﹣S△AEQ′=×(2t)×﹣×(t﹣)2=2t﹣1;③1.5<t<2时,S=S梯形OABC﹣S△BGF=×(2+3)×1﹣×[1﹣(2t﹣3)]2=﹣2(t﹣2)2+=﹣2t2+8t﹣;所以,S与t的关系式为S=.。

分式的化简求值经典练习题(带答案)

分式的化简求值经典练习题(带答案)

精心整理精心整理分式的化简乘方:()n n n nn a a aa a aa ab b bb b bb b ⋅=⋅=⋅个个n 个=(n 为正整数)整数指数幂运算性质: ⑴m n m n a a a +⋅=(m 、n 为整数) ⑵()m n mn a a =(m 、n 为整数) ⑶()n n n ab a b =(n 为整数)⑷m n m n a a a -÷=(0a ≠,m 、n 为整数)中考要求精心整理精心整理负整指数幂:一般地,当n 是正整数时,1n na a -=(0a ≠),即n a -(0a ≠)是n a 的倒数分式的加减法法则:同分母分式相加减,分母不变,把分子相加减,a b a b ccc+±=异分母分式相加减,先通分,变为同分母的分式再加减,a c ad bc ad bc bdbdbdbd±±=±=分式的混合运算的运算顺序:先算乘方,再算乘除,后算加减,如有括号,括号内先算.【例1【例2【题型】解答 【关键词】【解析】222221(1)()4111(1)a a a a a a a a a ---+÷⋅=-=--++-【答案】4-【例3】 先化简,再求值:22144(1)1a a a a a-+-÷--,其中1a =-..【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,安徽省中考【解析】()()2221144211122a a a a a a a a a a a a --+-⎛⎫-÷=⋅= ⎪----⎝⎭-当1a =-时,原式112123a a -===---【答案】13【例4】 先化简,再求值:2291333x x x x x⎛⎫-⋅ ⎪--+⎝⎭其中13x =.【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,湖南省长沙市中考试题 【解析】原式()()()33133x x x x x +-=⋅-+ 当13x =时,原式3=【答案】3【例5】 先化简,再求值:211(1)(2)11x x x -÷+-+-,其中x =. 【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,湖北省十堰市中考试题 【解析】原式()()()111121x x x x x +-=⋅+-+-+当x时,原式224=-=.【答案】4精心整理精心整理【例6】 先化简,后求值:22121(1)24x x x x -++÷--,其中5x =-. 【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,广东省肇庆市中考试题【解析】22121(1)24x x x x -++÷--=221(1)2(2)(2)x x x x x -+-÷-+-【例7。

黄冈市2010年中考模拟试题2

黄冈市2010年中考模拟试题2
24.(本题满分12分)红星公司生产的某种时令商品每件成本为20 元,经过市场调研发现,这种商品在未来40天内的日销售量m(件)与
时间t(天)的关系如下表:
时间(天) 1
3
5
10 36 …
日销售量 m(件)
94
90
84
76
24

未来40天内,前20天每天的价格(元/件)与时间(天)的函数关系式 为(且为整数),后20天每天的价格(元/件)与时间(天)的函数关 系式为(且为整数).下面我们就来研究销售这种商品的有关问题: (1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比 例函数的知识确定一个满足这些数据的m(件)与(天)之间的关系 式; (2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是 多少? (3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠元利 润()给希望工程.公司通过销售记录发现,前20天中,每天扣除捐赠 后的日销售利润随时间(天)的增大而增大,求的取值范围.
26(本题满分14分)如图所示,已知在直角梯形中,轴于点.动点从点 出发,沿轴正方向以每秒1个单位长度的速度移动.过点作垂直于直 线,垂足为.设点移动的时间为秒(),与直角梯形重叠部分的面积 为. (1)求经过三点的抛物线解析式; (2)求与的函数关系式; (3)将绕着点顺时针旋转,是否存在,使得的顶点或在抛物线上?若 存在,直接写出的值;若不存在,请说明理由.
22.解:(1)不同意小明的说法. 因为摸出白球的概率是,摸出红球的概率是, 因此摸出白球和摸出红球不是等可能的. (2)树状图如图(列表略)
白2 红 白1 白1 红 白2 白1
白2 红
(两个球都是白球) (3)(法一)设应添加个红球, 由题意得 解得(经检验是原方程的解) 答:应添加3个红球. (法二)添加后(摸出红球) 添加后(摸出白球) 添加后球的总个数. 应添加个红球.

2010年湖北省黄冈市中考数学试卷

2010年湖北省黄冈市中考数学试卷

2010年湖北省黄冈市中考数学试卷© 2011 菁优网一、填空题(共10小题,每小题3分,满分30分)1、(2010•随州)2的平方根是.考点:平方根。

分析:直接根据平方根的定义求解即可(需注意一个正数有两个平方根).解答:解:2的平方根是±.故答案为:±.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.22、(2011•温州)分解因式:a﹣1= (a+1)(a﹣1).考点:因式分解-运用公式法。

22分析:符合平方差公式的特征,直接运用平方差公式分解因式.平方差公式:a﹣b=(a+b)(a﹣b).2解答:解:a﹣1=(a+1)(a﹣1).点评:本题主要考查平方差公式分解因式,熟记公式是解题的关键.3、(2010•随州)函数的自变量x的取值范围是.考点:函数自变量的取值范围。

分析:根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,可以求出x的范围.解答:解:根据题意得:x﹣3≥0且x+1≠0,解得:x≥3.故函数的自变量x的取值范围是x≥3.点评:函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4、(2010•随州)如图,⊙O中,的度数为320°,则圆周角∠MAN=©2010 箐优网考点:圆周角定理;圆心角、弧、弦的关系。

分析:根据圆周角定理先求出=40°,再可求∠MAN=20°.解答:解:∵的度数为320°,∴=40°,∴∠MAN=20°.点评:此题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5、(2010•随州)如图,在等腰梯形ABCD中,AC⊥BD,AC=6cm,则等腰梯形ABCD的面积2为 18 cm.考点:等腰梯形的性质。

2010年湖北各地中考数学试卷及答案集锦(12套)(WORD版)

ABCF EAB C GFEDO鄂州市2010年初中毕业及高中阶段招生考试数学试卷一、选择题(每小题3分,共30分)1.为了加强农村教育,2009年中央下拨了农村义务教育经费665亿元.665亿元用科学记数法表示正确的是( )A .6.65×109元B .66.5×1010元C .6.65×1011元D .6.65×1012元 2.下列数据:23,22,22,21,18,16,22的众数和中位数分别是( ) A .21,22 B .22,23 C .22,22 D .23,21 3.下面图中几何体的主视图是( )4.如图,AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 交AB 于点E ,DF ⊥AC 交AC 于点F .若S △ABC =7,DE =2, AB =4,则AC =( )A .4B .3C .6D .55.正比例函数y =x 与反比例函数y = kx (k ≠0)的图象在第一象限交于点A ,且OA =2,则k 的值为( )A .22 B .1 C . 2 D .2 6.庆“五一”,市工会组织篮球比赛,赛制为单循环形式(每两队之 间都赛一场),共进行了45场比赛.这次参赛队数目为( ) A .12 B .11 C .9 D .107.如图,平面直角坐标系中,∠ABO =90º,将△AOB 绕点O 顺时 针旋转,使点B 落在点B 1处,点A 落在点A 1处.若B 点的坐标 为( 16 5, 125),则点A 1的坐标为( ) A .(3,-4) B .(4,-3) C .(5,-3) D .(3,-5) 8.如图,AB 为⊙O 的直径,C 是⊙O 上一点,连接AC ,过点 C 作直线CD ⊥AB 交AB 于点D ,E 是OB 上一点,直线CE 与⊙O 交于点F ,连接AF 交直线CD 于点G .若AC =22, 则AG ·AF =( )A .10B .12C .8D .169.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论: ①a 、b 异号;②当x =1和x =3时,函数值相等; ③4a +b =0;④当y =4时,x 的取值只能为0. 其中正确的结论有( )A .1个B .2个C .3个D .4个 10.如图,正方形OABC 的边长为6,点A 、C 分别在x 轴、y轴的正半轴上,点D (2,0)在OA 上,P 是OB 上一动点,则A .B .C .D .A BCDDA .210B .10C .4D .6二、填空题(每小题3分,共18分)11.5的算术平方根是 .12.圆锥的底面直径是2m ,母线长4m ,则圆锥的侧面积是 m 2.13.已知α、β是方程x 2―4x ―3=0的两个实数根,则(α―3)(β―3)= .14.在一个黑色的袋子中装有除颜色外其他均相同的3个红球和6个白球,从中任意摸出1个球,摸出的球是白球的概率是 . 15.已知⊙O 的半径为10,弦AB =103,⊙O 上的点C 到弦AB 所在直线的距离为5,则以O 、A 、B 、C为顶点的四边形的面积是 .16.如图,四边形ABCD 中,AB =AC =AD ,E 是BC 的中点,AE =CE ,∠BAC =3∠CBD ,BD =62+66,则AB = .三、解答题(共72分)17.(8分)解不等式组⎪⎩⎪⎨⎧-<--≥--,,13524)2(3x x x x 并写出该不等式组的整数解.18.(8分)先化简2211112-÷⎪⎭⎫ ⎝⎛+--x x x x ,然后从-1、1、2中选取一个数作为x 的值代入求值.19.(8分)我市第四高级中学与第六高级中学之间进行一场足球比赛,邀请某校两位体育老师及两位九年级足球迷当裁判,九年级的一位足球迷设计了开球方式.(1)两位体育老师各抛掷一枚硬币,两枚硬币落地后正面朝上,则第四高级中学开球;否则,第六高级中学开球.请用树状图或列表的方法,求第四高级中学开球的概率.(2)九年级的另一位足球迷发现前面设计的开球方式不合理,他修改规则:如果两枚硬币都朝上时,第四高级中学得8分;否则,第六高级中学得4分.根据概率计算,谁的得分高,谁开球.你认为修改后的规则公平吗?若公平,请说明理由;若不公平,请你设计对双方公平的开球方式.20.(8分)春节期间,某客运站旅客流量不断增大,旅客往往需要长时间排队等候购票.经过调查发现,每天开始售票时,约有400人排队购票,同时又有新的旅客不断进入售票厅排队等候购票.售票时售A B C D EG H M A B C D E 60º30º与售票时间x (分钟)的关系如图所示,已知售票的前a 分钟只开放了两个售票窗口(规定每人只能购票一张).(1)求a 的值.(2)求售票到第60分钟时,售票厅排队等候购票的旅客人数.(3)若要在开始售票后半小时内让所有的排队旅客都能够购到票,以便后来到站的旅客随到随购,至少需要同时开放几个售票窗口?21.(8分)如图,一艘潜艇在海面下500m A 点处测得俯角为30º前下方的海底C 处有黑匣子信号发出,继续在同一深度直线航行4000m 后再次在B 点处测得俯角为60º前下方的海底C 处有黑匣子信号发出,求海底黑匣子C 点距离海面的深度(结果保留根号).22.(10分)工程师有一块长AD =12分米,宽AB =8分米的铁板,截去长AE =2分米、AF =4分米的直角三角形,在余下的五边形中,截得矩形MGCH ,其中点M 在线段EF 上. (1)若截得矩形MGCH 的面积为70平方分米,求矩形MGCH 的长与宽. (2)当EM 为多少时,矩形MGCH 的面积最大?并求此时矩形的周长.23.(10分)如图,一面利用墙,用篱笆围成的矩形花圃ABCD 的面积为S m 2,平行于墙的BC 边长为x m .(1)若墙可利用的最大长度为10m ,篱笆长为24m ,花圃中间用一道篱笆隔成两个小矩形,求S 与x 之间的函数关系式.(2)在(1)的条件下,围成的花圃的面积为45m 2时,求AB 的长.能否围成面积比45m 2更大的花圃?如果能,应该怎样围?如果不能,请说明理由.(3)若墙可利用最大长度为40m ,篱笆长77m ,中间用n 道篱笆隔成小矩形,且当这些小矩形为正方形和x 为正整数时,请直接写出一组满足条件的x 、n 的值.24.(12分)如图,在直角坐标系中,已知点A (-1,0)、B (0,2),动点P 沿过B 点且垂直于AB 的射线BM 运动,其运动的速度为每秒1个单位长度,射线BM 与x 轴交于点C . (1)求点C 的坐标.(2)求过A 、B 、C 三点的抛物线的解析式. (3)若点P 开始运动时,点Q 也同时从C 点出发,以点P 相同的速度沿x 轴负方向向点A 运动,t 秒后,以P 、Q 、C 为顶点的三角形为等腰三角形(点P 到点C 时停止运动,点Q 也同时停止运动),求t 的值.(4)在(2)(3)的条件下,当CQ =CP 时,求直线OP 与抛物线的交点坐标.A D BCA BD C…图1图22010年恩施自治州初中毕业及高中招生考试数 学 试 题注意事项:1.本试卷分试题卷和答题卡两部分,考试时间为120分钟,满分为120分.2.考生在答题前请阅读答题卡中的“注意事项”,然后按要求答题. 3.所有答案均须做在答题卡相应区域,做在其它区域无效.一、填空题:(本大题共8个小题,每小题3分,共24分) 1.9的相反数是 .2.据有关部门预测,恩施州煤炭总储量为2.91亿吨,用科学记数法表示这个数是 吨(保留两个有效数字). 3. 分解因式:=+-b ab b a 22 .4.在一个不透明的盒子里装有5个黑球,3个红球和2个白球,它们除颜色外其余都相同,从中随机摸出一个球,摸到红球的概率是 . 5.在同一直角坐标系中,正比例函数x k y 1=的图象与反比例函数xk y 2=的图象有公共点,则21k k 0(填“>”、“=”或“<”).6.如图1,在ABCD 中,已知AB=9㎝,AD=6㎝,BE 平分∠ABC 交DC 边于点E ,则DE 等 于 ㎝.7.如图2,在矩形ABCD 中,AD =4,DC =3,将△ADC 按逆时针方向绕点A 旋转到△AEF (点A 、B 、E 在同一直线上),连结CF ,则CF = .8.如图3,有一个形如六边形的点阵,它的中心是一个点,作为第一层,第二层每边有两个点,第三层每边有三个点,依次类推,如果n 层六边形点阵的总点数为331, 则n 等于 .二、选择题:(下列各小题都给出四个选项,其中只有一项是符合题目要求的.本大题共8个小题,每小题3分,共24分) 9.()24-的算术平方根是:A. 4B. 4±C. 2D. 2± 10.下列计算正确的是:()223()3图3图2图111.用4个棱长为1的正方体搭成一个几何体模型,其主视图与左视图如图4所示,则该立方体的俯视图不可..能.是:12.不等式组⎩⎨⎧≤-<+5148x x x 的解集是:A. 5≤xB. 53≤<-xC.53≤<xD. 3-<x13.某品牌商品,按标价九折出售,仍可获得20%的利润.若该商品标价为28元,则商品的进价为:A. 21元B. 19.8元C. 22.4元D. 25.2元 14.如图5,EF 是△ABC 的中位线,将△AEF 沿中线AD 方向平移到△A 1E 1F 1的位置,使E 1F 1与BC 边重合,已知△AEF 的面积为7,则图中阴影部分的面积为: A. 7 B. 14 C. 21 D. 2815.某班随机抽取6名同学的一次地生测试成绩如下:82,95,82,76,76,82.数据中的众数和中位数分别是:A. 82,76B. 76,82C. 82,79D. 82,82 16.如图6, 已知圆锥的高为8,底面圆的直径为12,则此圆锥的侧面积是A .24πB .30πC .48πD .60π 三、解答题(本大题共8个小题,满分72分) 17.(6分) 计算:2+()()()121212010-++--313⨯-18.(8分)解方程:14143=-+--xx x19.(8分)如图7,已知,在ABCD 中,AE=CF ,M 、N 分别是DE 、BF 的中点.求证:四边形MFNE 是平行四边形 .20.(8分)2010年4月14日青海玉树发生7.1级地震,地震灾情牵动全国人民的心.某社区响应恩施州政府的号召,积极组织社区居民为灾区人民献爱心活动.为了解该社区居民捐款情况,对社区部分捐款户数进行分组统计(统计表如下),数据整理成如图8所示的不完整统计图.已知A、B两组捐款户数直图7 图4图6图5⑴ A 组的频数是多少?本次调查样本的容量是多少? ⑵ 求出C 组的频数并补全直方图.⑶ 若该社区有500户住户,请估计捐款不少于300元的户数是多少?21.(10分) 如图9,已知,在△ABC 中,∠ABC=090,BC 为⊙O 的直径, AC 与⊙O 交于点D,点E 为AB 的中点,PF ⊥BC 交BC 于点G,交AC 于点F. (1)求证:ED 是⊙O 的切线. (2)如果CF =1,CP =2,sinA =54,求⊙O 的直径BC.22.(10分) 恩施州绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在我州收购了2000千克香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.(1)若存放x 天后,将这批香菇一次性出售,设这批香菇的销售总金额为y 元,试写出y 与x 之间的函数关系式.(2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?(利润=销售总金额-收购成本-各种费用)(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少? 图8 图923.(10分)(1)计算:如图10①,直径为a 的三等圆⊙O 1、⊙O 2、⊙O 3两两外切,切点分别为A 、B 、C ,求O 1A 的长(用含a 的代数式表示).(2)探索:若干个直径为a 的圆圈分别按如图10②所示的方案一和如图10③所示的方案二的方式排放,探索并求出这两种方案中n 层圆圈的高度n h和(用含n 、a 的代数式表示). (3)应用:现有长方体集装箱,其内空长为5米,宽为3.1米,高为3.1米.用这样的集装箱装运长为5米,底面直径(横截面的外圆直径)为0.1米的圆柱形钢管,你认为采用(2)中的哪种方案在该集装箱中装运钢管数最多?并求出一个这样的集装箱最多能装运多少根钢管?(3≈1.73)24.(12分) 如图11,在平面直角坐标系中,二次函数c bx x y ++=2的图象与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0),与y 轴交于C (0,-3)点,点P 是直线BC 下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连结PO 、PC ,并把△POC 沿CO 翻折,得到四边形POP /C , 那么是否存在点P ,使四边形POP /C 为菱形?若存在,请求出此时点P 的坐标;若不存在,请说明理由.(3)当点P 运动到什么位置时,四边形 ABPC 的面积最大并求出此时P 点的坐标和四边形ABPC 的最大面积.②③①图11图10数学试题卷注意事项:1. 本试卷分为试题卷和答题卷两部分。

(免费)2010年部分省市中考数学试题分类汇编 解直角三角形(含答案)

解:∵∠C=90°,∠ADC=60°
∴CD=ACtan30°=1,
∴AD= .
∴BD=2AD=4.
∴AB= ,
∴△ABC的周长=AB +AC+ BC=5+ + .
15.(2010江苏泰州)庞亮和李强相约周六去登山,庞亮从北坡山脚C处出发,以24米/分钟的速度攀登,同时,李强从南坡山脚B处出发.如图,已知小山北坡的坡度 ,山坡长为240米,南坡的坡角是45°.问李强以什么速度攀登才能和庞亮同时到达山顶A?(将山路AB、AC看成线段,结果保留根号)
(2010年福建省德化县).(本题满分10分)小明在某风景区的观景台O处观测到北偏东 的P处有一艘货船,该船正向南匀速航行,30分钟后再观察时,该船已航行到O的南偏东40 ,且与O相距2km的Q处.如图所示.
求: (1)∠OPQ和∠OQP的度数;
(2)货船的航行速度是多少km/h?
(结果精确到0.1km/h,已知sin =cos =0.7660,
【答案】A
2.(2010江苏宿迁)小明沿着坡度为1:2的山坡向上走了1000m,则他升高了()
A. mB.500mC. mD.1000m
【关键词】坡角
【答案】A
3.(2010年日照市)如图,在等腰Rt△ABC中,∠C=90o,AC=6,D是AC上一点,若tan∠DBA= ,则AD的长为
(A)2(B) (C) (D)1
【答案】2≦AD < 3
10.(2010重庆市潼南县)如图所示,小明在家里楼顶上的点A处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A处看电梯楼顶部点B处的仰角为60°,在点A处看这栋电梯楼底部点C处的俯角为45°,两栋楼之间的距离为30m,则电梯楼的高BC为米(精确到0.1).(参考数据: )

2010年黄石市中考数学试卷及答案

黄石市2010年初中毕业生学业考试 数学试题卷 姓名 考号 注意事项: 1. 本试卷分为试题卷和答题卷两部分。

考试时间120分钟,满分120分。

2.考生在答题前请阅读答题卷中的“注意事项”,然后按要求答题。

3.所有答案均须做在答题卷相应区域,做在其它区域内无效。

一、仔细选一选(本题有10个小题,每小题3分,共30分)1.已知-2的相反数是a ,则a 是( )A.2B.-21C. 21 D. -2 2.下列运算正确的是( )A. 2a ·3a = 6aB. ()53 2a a =C. 2a +2a =22aD. 3a ÷a =3a3.已知x <1,则12x -x 2+化简的结果是( )A.x -1B. x +1C. -x -1D.1-x4. 不等式组⎩⎨⎧>-<-050x x 的正整数解的个数是( )5.下面既是轴对称又是中心对称的几何图形是( )6.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,则在该正方体中,和“崇”相对的面上写的汉字是( )7.如图,直角梯形ABCD 中,AD ∥BC ,∠ADC =∠BAC =90°,AB =2,CD =3,则AD 的长为( )A. 323 B.2 C.3 D. 32 8.如图,从一个直径为2的圆形铁皮中剪下一个圆心角为60°的扇形ABC ,将剪下来的扇形围成一个圆锥,则圆锥的底面圆半径为( )A. 13B. 63C. 33D. 43 9.同时投掷两个质地均匀的骰子,出现的点数之和为3的倍数的概率为( )A.21 B. 13 C. 92 D. 187 10.如图,反比例函数x k =y (k >0)与一次函数b x 21y +=的图象相交于两点A (1x ,1y ),B (2x ,2y ),线段AB 交y 轴与C ,当|1x -2x |=2且AC = 2BC 时,k 、b 的值分别为( ) A.k =21,b =2 B.k =94,b =1 C.k =13,b =13 D.k =94,b =13 二、认真填一填(本题有6个小题,每小题3分,共18分)11.分解因式:4x 2-9= .12.盒子中装有7个红球,2个黄球和1个蓝球,每个球除颜色外没有其它的区别,从中任意摸出一个球,这个球不是..红球的概率为 . 13. 如图,等腰三角形ABC 中,已知A B =AC ,∠A =30°,AB 的垂直平分线交AC 于D ,则∠CBD 的度数为 .14.如图,⊙O 中,OA ⊥BC ,∠AOB =60°,则sin ∠ADC = .15.将函数y =-6x 的图象1l 向上平移5个单位得直线2l ,则直线2l 与坐标轴围成的三角形面积为 .16.若自然数n 使得作竖式加法n +(n +1)+(n +2)均不产生进位现象,则称n 为“可连数”,例如32是“可连数”,因为32+33+34不产生进位现象;23不是“可连数”,因为23+24+25产生了进位现象,那么小于200的“可连数”的个数为 .三、全面答一答(本题9个小题,共72分)17.(本小题满分7分)计算:(2-3)(2+3)+()20101-()02π--121-⎪⎭⎫ ⎝⎛ 18.(本小题满分7分)先化简,再求值:⎪⎭⎫ ⎝⎛++a b 1b -a 1÷ba ab +.其中a =2+1, b =2.19.(本小题满分7分)如图,正方形ABCD 中,E 、F 分别是AB 、BC 边上的点,且AE =BF ,求证AF ⊥DE .20.(本小题满分8分)解方程组:⎩⎨⎧=--=--+04204222y x y x y x 21.(本小题满分8分)某校今年有300名初中毕业生,毕业前该校进行了一次模拟考试.学校随即抽取了50名学生的数学成绩进行了分段统计(统计图表如下),已知数学试卷满分为120分,若规定得分率:低于60%为不及格;不小于80%为优秀;不小于90%为拔尖.⑴请结合扇形图和统计表填写图表中缺失的数据;⑵根据统计数据在所给的坐标系中画出直方图;⑶根据样本统计的有关数据,估计在整个毕业生中,大约有多少人不及格?优秀率约为多少?22.(本小题满分8分)某乡镇中学教学楼对面是一座小山,去年“联通”公司在山顶上建了座通讯铁塔.甲、乙两位同学想测出铁塔的高度,他们用测角器作了如下操作:甲在教学楼顶A 处测得塔尖M 的仰角为α,塔座N 的的仰角为β;乙在一楼B 处只能望到塔尖M ,测得仰角为θ(望不到底座),他们知道楼高AB =20m ,通过查表得:tan α=0.5723,tan β=0.2191,tan θ=0.7489;请你根据这几个数据,结合图形推算出铁塔高度MN 的值.23.(本小题满分8分)甲、乙两位同学住在同一小区,在同一中学读书,一天恰好在同一时间骑自行车沿同一线路上学,小区离学校有9km ,甲以匀速行驶,花了30min 到校,乙的行程信息如图中折线O –A –B -C 所示,分别用1y ,2y 表示甲、乙在时间x(min )时的行程,请回答下列问题:⑴分别用含x 的解析式表示1y ,2y (标明x 的范围),并在图中画出函数1y 的图象;⑵甲、乙两人在途中有几次相遇?分别是出发后的多长时间相遇?24.(本小题满分9分)在△ABC 中,分别以AB 、BC 为直径⊙O 1、⊙O 2,交于另一点D.⑴证明:交点D 必在AC 上;⑵如图甲,当⊙O 1与⊙O 2半径之比为4︰3,且DO 2与⊙O 1相切时,判断△ABC 的形状,并求tan ∠O 2DB 的值;⑶如图乙,当⊙O 1经过点O 2,AB 、DO 2的延长线交于E ,且BE =BD 时,求∠A 的度数.25.(本小题满分10分)已知抛物线c bx x y ++=2与直线1+=x y 有两个交点A 、B.⑴当AB 的中点落在y 轴时,求c 的取值范围;⑵当AB =22,求c 的最小值,并写出c 取最小值时抛物线的解析式;⑶设点P (t ,T )在AB 之间的一段抛物线上运动,S (t )表示△PAB 的面积.①当AB=22,且抛物线与直线的一个交点在y轴时,求S(t )的最大值,以及此时点P的坐标;②当AB=m(正常数)时,S(t )是否仍有最大值,若存在,求出S(t )的最大值以及此时点P的坐标(t ,T )满足的关系,若不存在说明理由.湖北省阳新县太子中学程正兴供稿。

湖北省黄冈市2010年数学中考精品试题之六

M第6题图2010年黄冈市数学中考精品试题之六满分120分:时间:120分钟一、选择题(A ,B ,C ,D 四个答案中,有且只有一个是正确的,每小题3分,满分18分) 1、下列运算正确的是( )A 、235a b ab +=B 、623a a a ÷=C 、222()a b a b +=+D 、325·a a a = 2、到三角形三条边的距离都相等的点是这个三角形的( )。

A 、三条中线的交点B 、三条高的交点C 、三条边的垂直平分线的交点D 、三条角平分线的交点如图,3、下列图形中,不能..表示长方体平面展开图的是( )4鞋店经理最关心的是哪种颜色的鞋最畅销,则对鞋店经理最有意义的统计量是 ( ) A .平均数 B .众数 C .中位数 D .方差5、袋中有同样大小的4个小球,其中3个红色,1个白色。

从袋中任意地同时摸出两个球,这两个球颜色相同的概率是( )。

A 、21 B 、31 C 、32 D 、41 6、矩形ABCD 中,1AB =,2AD =,M 是CD 的中点,点P 在矩形的边上沿A B C M →→→运动,则APM △的面积y 与点P 经过的路程x 之间的函数关系用图象表示大致是下图中的( )二、填空题(每空3分,满分36分)7、3-的相反数是 ;分解因式:2x xy -= ;已知点(13)A m -,与点A . B . DC(21)B n +,关于x 轴对称,则点P (m ,n )的坐标为 .8、已知等腰梯形ABCD 的中位线EF 的长为5,腰AD 的长为4,则这个等腰梯形的周长为;函数y 中,自变量x 的取值范围是 ;圆锥的母线和底面的直径均为6,圆锥的侧面展开图的圆心角等于 度. 9、计算mnnm n m +÷-)11(=;已知反比例函数y =8x-的图象经过点P (a +1,4), 则a = ;抛物线y =7x 2+28x +30的顶点坐标为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黄冈市2010年初中毕业生升学考试
数学试题
(考试时间120分钟
满分120分)
一、填空题(共10道题,每小题3分,共30分)1.2的平方根是_________.2.分解因式:x 2-x =__________.
3.函数y =
的自变量x 的取值范围是__________________.4.如图,⊙O 中,�
MAN 的度数为320°,则圆周角∠MAN =____________.
第4题图第5题图
5.如图,在等腰梯形ABCD 中,AC ⊥BD ,AC =6cm ,则等腰梯形ABCD 的面积为_____cm 2.
6.通信市场竞争日益激烈,某通信公司的手机市话费标准按原标准每分钟降低a 元后,再次下调了20%,
现在收费标准是每分钟b 元,则原收费标准每分钟是_______元.
7.如图是由棱长为1的正方体搭成的积木三视图,则图中棱长为1的正方体的个数是______.
主视图
左视图俯视图
第7题
8.已知,1,2,_______.b a
ab a b a b
=−==+则式子
9.如图矩形纸片ABCD ,AB =5cm ,BC =10cm ,CD 上有一点E ,ED =2cm ,AD 上有一点P ,PD =3cm ,
过P 作PF ⊥AD 交BC 于F ,将纸片折叠,使P 点与E 点重合,折痕与PF 交于Q 点,则PQ 的长是____________cm.
10.将半径为4cm 的半圆围成一个圆锥,在圆锥内接一个圆柱(如图示),当圆柱的侧面的面积最大时,
圆柱的底面半径是___________cm.
第9题图第10题图
二、选择题(A ,B ,C ,D 四个答案中,有且只有一个是正确的,每小题3分,共18分)
11.下列运算正确的是(

A .1331−÷= B
a =C .3.14 3.14ππ
−=−D .32621
1()24
a b a b =
12.化简:211
(
)(3)31
x x x x +−•−−−的结果是()A .2B .21x −C .23x −D .
4
1
x x −−13.在△ABC 中,∠C =90°,sinA =4
5
,则tanB =
()
A .43
B .34
C .35
D .
45
14.若函数22(2)
2x x y x ⎧+=⎨⎩ ≤ (x>2)
,则当函数值y =8时,自变量x 的值是(

A
.±
B .4C
.±或4D .4
15.如图,过边长为1的等边△ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上一点,当PA
=CQ 时,连PQ 交AC 边于D ,则DE 的长为()
A .
13
B .
12
C .
23
D
.不能确定
第15题图
16.已知四条直线y =kx -3,y =-1,y =3和x =1所围成的四边形的面积是12,则k 的值为(

A .1或-2
B .2或-1
C .3
D .4三、解答题(共9道大题,共72分)
17.(6分)解不等式组1103
34(1)1
x x +⎧−⎪
⎨⎪−−<⎩≥18.(6分)如图,一个含45°的三角板HBE 的两条直角边与正方形ABCD 的两邻边重合,过E 点作EF
⊥AE 交∠DCE 的角平分线于F 点,试探究线段AE 与EF 的数量关系,并说明理由。

第18题图
19.(6分)如图是我市某校八年级学生为玉树灾区捐款情况抽样调查的条形图和扇形统计图.
(1)求该样本的容量;
(2)在扇形统计图中,求该样本中捐款15元的人数所占的圆心角度数;(3)若该校八年级学生有800人,据此样本求八年级捐款总数.
第19题图
20.(6分)如图,点P 为△ABC 的内心,延长AP 交△ABC 的外接圆于D ,在AC 延长线上有一点E ,
满足AD 2=AB ·AE ,求证:DE 是⊙O 的切线.
第20题图
21.(7分)黄冈某地“杜鹃节”期间,某公司70名职工组团前往参观欣赏,旅游景点规定:①门票每人
60元,无优惠;②上山游玩可坐景点观光车,观光车有四座和十一座车,四座车每辆60元,十一座车每人10元.公司职工正好坐满每辆车且总费用不超过5000元,问公司租用的四座车和十一座车各多少辆?
22.(6分)甲、乙两同学投掷一枚骰子,用字母p 、q 分别表示两人各投掷一次的点数.
(1)求满足关于x 的方程20x px q ++=有实数解的概率.
(2)求(1)中方程有两个相同实数解的概率.
23.(9分)如图,某天然气公司的主输气管道从A 市的东偏北30°方
向直线延伸,测绘员在A 处测得要安装天然气的M 小区在A 市东偏北60°方向,测绘员沿主输气管道步行2000米到达C 处,测得小区M 位于C 的北偏西60°方向,请你在主输气管道上寻找支管道连接点N ,使到该小区铺设的管道最短,并求AN 的长.
24.(11分)某同学从家里出发,骑自行车上学时,速度v (米/秒)与时间t (秒)的关系如图a ,A (10,
5),B (130,5),C (135,0).
(1)求该同学骑自行车上学途中的速度v 与时间t 的函数关系式;
(2)计算该同学从家到学校的路程(提示:在OA 和BC 段的运动过程中的平均速度分别等于它们中点时刻的速度,路程=平均速度×时间);(3)如图b ,直线x =t (0≤t ≤135),与图a 的图象相交于P 、Q ,用字母S 表示图中阴影部分面积,试求S 与t 的函数关系式;
(4)由(2)(3),直接猜出在t 时刻,该同学离开家所超过的路程与此时S 的数量关系.
图a 图b
25.(15分)已知抛物线2(0)y ax bx c a =++≠顶点为C (1,1)且过原点O.过抛物线上一点P (x ,y )向直线5
4
y =
作垂线,垂足为M ,连FM (如图).(1)求字母a ,b ,c 的值;
(2)在直线x =1上有一点3(1,)4
F ,求以PM 为底边的等腰三角形PFM 的P 点的坐标,并证明此时△PFM 为正三角形;
(3)对抛物线上任意一点P ,是否总存在一点N (1,t ),使PM =PN 恒成立,若存在请求出t 值,若不
存在请说明理由.
参考答案1.±2 2.x (x+1)(x -1) 3.x ≠-1
4.20°
5.18
6.(a+1.25b )
7.6
8.-69.
34
10.11.D 12.B 13.B 14.D 15.B 16.A
17.
3
22
x <≤18.提示:由∠H =∠FCE ,AH =CE ,∠HAE =∠FCE 可证△HAE ≌△CEF ,从而得到
AE =EF.19.(1)15÷30%=50(人)(2)30%×360°=108°
(3)400×25+240×15+160×10=15200元
20.证明:连结DC ,DO 并延长交⊙O 于F ,连结AF.∵AD 2=AB ·AE ,∠BAD =∠DAE ,∴△BAD ∽△DAE ,∴∠ADB =∠E.又∵∠ADB =∠ACB ,∴∠ACB =∠E ,BC ∥DE ,∴∠CDE =∠BCD =∠
BAD =∠DAC ,又∵∠CAF =∠CDF ,∴∠FDE =∠CDE+∠CDF =∠DAC+∠CDF =∠DAF =90°,故DE 是⊙O 的切线
21.解:设四座车租x 辆,十一座车租y 辆.
则有4117050
70606011105000
11x y x y +=⎧≥
⎨×++×≤⎩ 解得y ,又∵y ≤7011,故y =5,6,当y =5时,x =
15
4
,故舍去.∴x =1,y =6.22.解:两人投掷骰子共有36种等可能情况.(1)其中方程有实数解共有19种情况,故其概率为
1936。

(2)方程有相等实数解共有2种情况,故其概率为
118。

23.解:过M 作MN ⊥AC ,此时MN 最小,AN =1500米
24.(1)1(010)25(10130)
135(130135)v t t v t v t t ⎧=≤<⎪⎪
=≤<⎨⎪=−≤≤⎪⎩
(2)2.5×10+5×120+2×5=635(米)
(3)221(010)4525(10130)
1
(130135)2
S t t S t t S t t ⎧=≤<⎪⎪
=−≤<⎨⎪⎪=−≤≤⎩ +135t-8475 (4)相等的关系
25.(1)a =-1,b =2,c =0
(2)过P 作直线x=1的垂线,可求P 的纵坐标为14
,横坐标为1此时,MP =MF =PF =1,故△MPF 为正三角形.(3)不存在.因为当t <54,x <1时,PM 与PN 不可能相等,同理,当t >5
4
,x >1时,PM 与PN 不可能相等.。

相关文档
最新文档