模块一 发车问题

合集下载

奥数七大模块重要知识点-模块体系梳理脑图

奥数七大模块重要知识点-模块体系梳理脑图

奥数七大模块重要知识点-模块体系梳理脑图导语:历年小升初考试中数学成绩占有重要地位,择校考试过程中为了更进一步的拉开分数的距离,除了基础的数学知识必须熟练掌握熟练之外,数学的拓展内容也成为考核的重点部分。

数学思维拓展,也就是大家常说的奥数。

所有的奥数知识,总的来分可以分为七大模块,各类试题都由这七大模块而来。

那么,奥数都有哪些模块呢?每个模块都有哪些重要知识呢?一起看看这些模块你掌握住了多少?奥数的七大模块包括:计算、数论、几何、行程、应用题、计数和杂题同学们,看到这七大模块你都熟悉吗?模块一:计算模块1、速算与巧算2、分数小数四则混合运算及繁分数运算3、循环小数化分数与混合运算4、等差及等比数列5、计算公式综合6、分数计算技巧之裂项、换元、通项归纳7、比较与估算8、定义新运算9、解方程模块二:数论模块1、质数与合数2、因数与倍数3、数的整除特征及整除性质4、位值原理5、余数的性质6、同余问题7、中国剩余定理(逐级满意法)8、完全平方数9、奇偶分析10、不定方程11、进制问题12、最值问题模块三:几何模块(一)直线型1、长度与角度2、格点与割补3、三角形等积变更与一半模子4、勾股定理与弦图5、五大模型(二)曲线型1、圆与扇形的周长与面积2、图形旋转扫过的面积问题(三)立体几何1、立体图形的面积与体积2、平面图形旋转成的立体图形问题3、平面展开图4、液体浸物问题模块四:行程模块1、简单相遇与追及问题2、环形跑道问题3、流水行船问题4、火车过桥问题5、电梯问题6、发车间隔问题7、接送问题8、时钟问题9、多人相遇与追及问题10、屡次相遇追及问题11、方程与比例法解行程问题模块五:应用题模块1、列方程解应用题2、分数、百分数使用题3、比例应用题4、工程问题5、浓度问题6、经济问题7、牛吃草问题模块六:计数模块1、列举法之分类列举、标数法、树形图法2、分类列举之整体法、对应法、排除法3、加乘原理4、排列组合5、容斥原理6、抽屉原理7、归纳与递推8、几何计数9、数论计数模块七:杂题1、从简单情况入手。

小学奥数的七大模块

小学奥数的七大模块

奥数的七大模块包括:计算、数论、几何、行程、应用题、计数和杂题模块一:计算模块1、速算与巧算2、分数小数四则混合运算及繁分数运算3、循环小数化分数与混合运算4、等差及等比数列5、计算公式综合6、分数计算技巧之裂项、换元、通项归纳7、比较与估算8、定义新运算9、解方程模块二:数论模块1、质数与合数2、因数与倍数3、数的整除特征及整除性质4、位值原理5、余数的性质6、同余问题7、中国剩余定理(逐级满足法)8、完全平方数9、奇偶分析10、不定方程11、进制问题12、最值问题模块三:几何模块(一)直线型1、长度与角度2、格点与割补3、三角形等积变换与一半模型4、勾股定理与弦图5、五大模型(二)曲线型1、圆与扇形的周长与面积2、图形旋转扫过的面积问题(三)立体几何1、立体图形的面积与体积2、平面图形旋转成的立体图形问题3、平面展开图4、液体浸物问题模块四:行程模块1、简单相遇与追及问题2、环形跑道问题3、流水行船问题4、火车过桥问题5、电梯问题6、发车间隔问题7、接送问题8、时钟问题9、多人相遇与追及问题10、多次相遇追及问题11、方程与比例法解行程问题模块五:应用题模块1、列方程解应用题2、分数、百分数应用题3、比例应用题4、工程问题5、浓度问题6、经济问题7、牛吃草问题模块六:计数模块1、枚举法之分类枚举、标数法、树形图法2、分类枚举之整体法、对应法、排除法3、加乘原理4、排列组合5、容斥原理6、抽屉原理7、归纳与递推8、几何计数9、数论计数模块七:杂题1、从简单情况入手2、对应与转化思想3、从反面与从特殊情况入手思想4、染色与覆盖5、游戏与对策6、体育比赛问题7、逻辑推理问题8、数字谜9、数独。

发车问题

发车问题

例题精讲:模块一发车问题【例 1】 某停车场有10辆出租汽车,第一辆出租汽车出发后,每隔4分钟,有一辆出租汽车开出.在第一辆出租汽车开出2分钟后,有一辆出租汽车进场.以后每隔6分钟有一辆出租汽车回场.回场的出租汽车,在原有的10辆出租汽车之后又依次每隔4分钟开出一辆,问:从第一辆出租汽车开出后,经过多少时间,停车场就没有出租汽车了?【解析】 这个题可以简单的找规律求解时间 车辆4分钟 9辆6分钟 10辆8分钟 9辆12分钟 9辆16分钟 8辆18分钟 9辆20分钟 8辆24分钟 8辆由此可以看出:每12分钟就减少一辆车,但该题需要注意的是:到了剩下一辆的时候是不符合这种规律的到了12*9=108分钟的时候,剩下一辆车,这时再经过4分钟车厂恰好没有车了,所以第112分钟时就没有车辆了,但题目中问从第一辆出租汽车开出后,所以应该为108分钟。

【例 2】 某人沿着电车道旁的便道以每小时4.5千米的速度步行,每7.2分钟有一辆电车迎面开过,每12分钟有一辆电车从后面追过,如果电车按相等的时间间隔以同一速度不停地往返运行.问:电车的速度是多少?电车之间的时间间隔是多少?【解析】 设电车的速度为每分钟x 米.人的速度为每小时4.5千米,相当于每分钟75米.根据题意可列方程如下:()()757.27512x x +⨯=-⨯,解得300x =,即电车的速度为每分钟300米,相当于每小时18千米.相同方向的两辆电车之间的距离为:()30075122700-⨯=(米),所以电车之间的时间间隔为:27003009÷=(分钟).【巩固】 某人以匀速行走在一条公路上,公路的前后两端每隔相同的时间发一辆公共汽车.他发现每隔15分钟有一辆公共汽车追上他;每隔10分钟有一辆公共汽车迎面驶来擦身而过.问公共汽车每隔多少分钟发车一辆?【解析】 这类问题一般要求两个基本量:相邻两电车间距离、电车的速度。

是人与电车的相遇与追及问题,他们的路程和(差)即为相邻两车间距离,设两车之间相距S ,根据公式得()10S V V =+⨯人车,50712.55x x -+=,那么6(6)3x t y x t y --=+-,解得2(3)3x t y =-,所以发车间隔T =2.5 2.53(3)x y x t y +=+-【巩固】 某人沿电车线路行走,每12分钟有一辆电车从后面追上,每4分钟有一辆电车迎面开来.假设两个起点站的发车间隔是相同的,求这个发车间隔.【解析】 设电车的速度为a ,行人的速度为b ,因为每辆电车之间的距离为定值,设为l .由电车能在12分钟追上行人l 的距离知,(21)x t y =-;由电车能在4分钟能与行人共同走过l 的距离知,112 ,所以有l =12(a -b )=4(a +b ),有a =2b ,即电车的速度是行人步行速度的2倍。

小学奥数题型归纳

小学奥数题型归纳

1、速算与巧算2、分数小数四则混合运算及繁分数运算3、循环小数化分数与混合运算4、等差及等比数列5、计算公式综合6、分数计算技巧之裂项、换元、通项归纳7、比较与估算8、定义新运算9、解方程 模块二:数论模块1、质数与合数2、因数与倍数3、数的整除特征及整除性质4、位值原理5、余数的性质6、同余问题7、中国剩余定理(逐级满足法)8、完全平方数9、奇偶分析10、不定方程11、进制问题12、最值问题模块三:几何模块(一)直线型1、长度与角度2、格点与割补3、三角形等积变换与一半模型4、勾股定理与弦图5、五大模型(二)曲线型1、圆与扇形的周长与面积2、图形旋转扫过的面积问题(三)立体几何1、立体图形的面积与体积2、平面图形旋转成立体图形3、平面展开图4、液体浸物问题模块四:行程模块1、简单相遇与追及问题2、环形跑道问题3、流水行船问题4、火车过桥问题5、电梯问题6、发车间隔问题7、接送问题8、时钟问题9、多人相遇与追及问题10、多次相遇追及问题11、方程与比例法解行程问题 模块五:应用题模块1、列方程解应用题2、分数、百分数应用题3、比例应用题4、工程问题5、浓度问题6、经济问题7、牛吃草问题模块六:计数模块1、枚举法之分类枚举、标数法、树形图法2、分类枚举之整体法、对应法、排除法3、加乘原理4、排列组合5、容斥原理6、抽屉原理7、归纳与递推8、几何计数9、数论计数模块七:杂题1、从简单情况入手2、对应与转化思想3、从反面与从特殊情况入手思想4、染色与覆盖5、游戏与对策6、体育比赛问题7、逻辑推理问题8、数字谜9、数独时。

奥数的七大模块

奥数的七大模块

奥数的七大模块分别为:计算、数论、几何、行程、应用题、计数和杂题。

下面就分别从各个模块来说一下,各模块的重点知识。

模块一:计算模块1、速算与巧算2、分数小数四则混合运算及繁分数运算3、循环小数化分数与混合运算4、等差及等比数列5、计算公式综合6、分数计算技巧之裂项、换元、通项归纳7、比较与估算8、定义新运算9、解方程模块二:数论模块1、质数与合数2、因数与倍数3、数的整除特征及整除性质4、位值原理5、余数的性质6、同余问题7、中国剩余定理(逐级满足法)8、完全平方数9、奇偶分析10、不定方程11、进制问题12、最值问题模块三:几何模块(一)直线型1、长度与角度2、格点与割补3、三角形等积变换与一半模型4、勾股定理与弦图5、五大模型(二)曲线型1、圆与扇形的周长与面积2、图形旋转扫过的面积问题(三)立体几何1、立体图形的面积与体积2、平面图形旋转成的立体图形问题3、平面展开图4、液体浸物问题模块四:行程模块1、简单相遇与追及问题2、环形跑道问题3、流水行船问题4、火车过桥问题5、电梯问题6、发车间隔问题7、接送问题8、时钟问题9、多人相遇与追及问题10、多次相遇追及问题11、方程与比例法解行程问题模块五:应用题模块1、列方程解应用题2、分数、百分数应用题3、比例应用题4、工程问题5、浓度问题6、经济问题7、牛吃草问题模块六:计数模块1、枚举法之分类枚举、标数法、树形图法2、分类枚举之整体法、对应法、排除法3、加乘原理4、排列组合5、容斥原理6、抽屉原理7、归纳与递推8、几何计数9、数论计数模块七:杂题1、从简单情况入手2、对应与转化思想3、从反面与从特殊情况入手思想4、染色与覆盖5、游戏与对策6、体育比赛问题7、逻辑推理问题8、数字谜9、数独一.计算利用公式计算,换元法计算,特殊数值的计算,定义新运算,分数列项,取整运算,估算等二、应用题鸡兔,盈亏,和差倍问题,还原问题,周期问题,牛吃草,工程问题,年龄问题,行程问题(相遇,追及,火车过桥,流水行船,接送,变速问题等),分数百分数,浓度,平均数,经济问题等三、数论整除,因数,质数合数,余数,完全平方数等四、几何平面几何(直线形,圆和扇形,几何计数)立体几何五、计数加法原理,乘法原理,排列,组合,递推等六、杂题数字迷,数阵图幻方,逻辑推理,策略,容斥原理,构造与论证,染色,抽屉原理等。

五年级奥数题及答案-发车问题

五年级奥数题及答案-发车问题

五年级奥数题及答案-发车问题
A、B是公共汽车的两个车站,从A站到B站是上坡路.每天上午8点到11点从A,B两站每隔30分同时相向发出一辆公共汽车.已知从A站到B站单程需105分,从B站到A站单程需80分.问:
⑴8:30、9:00从A站发车的司机分别能看到几辆从B站开来的汽车?
⑵ 从A站发车的司机最少能看到几辆从B站开来的汽车?
解答:方法一:⑴从A站发车的司机看到的车辆包括两类,一类是他自己发车以前,已经从B站出发但还没到达A站的所有车辆,也就是发车前80分钟内B站所发的所有车辆、第二类是他发车以后到他抵达B站这段时间内从B站发出的所有车辆,即发车后105分钟内从B站开出的所有车辆.也就是说在A站车辆出发前80分钟到出发后105分钟之间185分钟时间区间,B站发出的车,该司机都能看到.实际上这185分钟中,只有发车前60分、发车前30分、发车当时、发车后30分、发车后60分、发车后90分,有车辆从B站开出,所以8:30从A站发车的司机能看到8:00到10:00从B站发出的5辆车,而9:00从A站发车的司机能看到8:00到10:30从B站发出的6辆车.
⑵11点从A发车的司机只能看到11点前从B站开出但尚未到达A站的车,即10:00、10:30、11:00从B站开出的3辆车。

方法二:
⑴ 我们画时间路线图,通过看图发现从8:30出发的车所走路线与从B站发车路线有5个交点,所以8:30从A站发车的司机能看到8:00到10:00从B站发出的5辆车,同理9:00从A站发车的司机能看到8:00到10:30从B站发出的6辆车.
⑵11点从A发车的司机只能看到11点前从B站开出但尚未到达A站的车,即10:00、10:30、11:00从B站开出的3辆车。

小结:时间路线图是解决发车问题常用的方法,也是最直观的方法。

模块一汽车故障诊断基础知识

冷却液颜色、质量
诊断参数
初级电路电压、压降,V 初级电路电流,A 初级线圈电阻、电感,、mH 次级电路电阻、电感,、mH 各缸点火击穿电压、跳火电压波形,kV 各缸点火跳火时间波形,ms 各缸点火闭合角、时间波形,ms 各缸加速点火击穿电压波形,kV 点火线圈次级开路电压波形,kV 点火提前角,°
电容器容量、绝缘电压实验,F、220V 各缸点火波形重叠角,°
Page 39
Page 40
图1.2 常开继电器
Page 41
图1.3 继电器外观
Page 42
图1.4 继电器结构
步骤四 将万用表调整指欧姆挡,并进行 校零,如图1.5所示。 步骤五 测量继电器线圈绕组的阻值,如 图1.6所示。
Page 43
Page 44
图1.5 欧姆挡校零
Page 45
一次加载断裂指零件在一次静载荷 或动载荷作用下发生的断裂。
Page 22
疲劳断裂是在交变载荷作用下,经 历反复多次应力循环后发生的断裂。
疲劳断裂是发生在应力低于屈服强 度的情况下,断裂前一般不产生明显的 塑性变形。
Page 23
4.蚀损
蚀损是指在周围介质作用下产生表 面物质损失或损坏的现象。
按发生机理的不同可分为腐蚀、气 蚀和浸蚀。
【课题实施】 操作一 继电器性能检测 步骤一 通过继电器和保险丝标注中的提 示认识继电器在汽车上的安装位置,并认 识各继电器的名称,如图1.1所示。
Page 37
Page 38
图1.1 发动机舱继电器和保险丝
步骤二 学会看继电器的电路符号,并掌 握其工作过程,如图1.2所示。 步骤三 从汽车上拔下任一继电器,观察 它们的结构特点,并小心拆卸继电器外 壳,熟悉其工作原理,如图1.3和图1.4所 示。

奥数七大模块及内容

奥数的七大模块分别为:计算、数论、几何、行程、应用题、计数和杂题。

模块一:计算模块1、速算与巧算2、分数小数四则混合运算及繁分数运算3、循环小数化分数与混合运算4、等差及等比数列5、计算公式综合6、分数计算技巧之裂项、换元、通项归纳7、比较与估算8、定义新运算9、解方程模块二:数论模块1、质数与合数2、因数与倍数3、数的整除特征及整除性质4、位值原理5、余数的性质6、同余问题7、中国剩余定理(逐级满足法)8、完全平方数9、奇偶分析10、不定方程11、进制问题12、最值问题模块三:几何模块(一)直线型1、长度与角度2、格点与割补3、三角形等积变换与一半模型4、勾股定理与弦图5、五大模型(二)曲线型1、圆与扇形的周长与面积2、图形旋转扫过的面积问题(三)立体几何1、立体图形的面积与体积2、平面图形旋转成的立体图形问题3、平面展开图4、液体浸物问题模块四:行程模块1、简单相遇与追及问题2、环形跑道问题3、流水行船问题4、火车过桥问题5、电梯问题6、发车间隔问题7、接送问题8、时钟问题9、多人相遇与追及问题10、多次相遇追及问题11、方程与比例法解行程问题模块五:应用题模块1、列方程解应用题2、分数、百分数应用题3、比例应用题4、工程问题5、浓度问题6、经济问题7、牛吃草问题模块六:计数模块1、枚举法之分类枚举、标数法、树形图法2、分类枚举之整体法、对应法、排除法3、加乘原理4、排列组合5、容斥原理6、抽屉原理7、归纳与递推8、几何计数9、数论计数模块七:杂题1、从简单情况入手2、对应与转化思想3、从反面与从特殊情况入手思想4、染色与覆盖5、游戏与对策6、体育比赛问题7、逻辑推理问题8、数字谜9、数独。

小学奥数的七大模块

奥数的七大模块包括:计算、数论、几何、行程、应用题、计数和杂题模块一:计算模块1、速算与巧算2、分数小数四则混合运算及繁分数运算3、循环小数化分数与混合运算4、等差及等比数列5、计算公式综合6、分数计算技巧之裂项、换元、通项归纳7、比较与估算8、定义新运算9、解方程模块二:数论模块1、质数与合数2、因数与倍数3、数的整除特征及整除性质4、位值原理5、余数的性质6、同余问题7、中国剩余定理(逐级满足法)8、完全平方数9、奇偶分析10、不定方程11、进制问题12、最值问题模块三:几何模块(一)直线型1、长度与角度2、格点与割补3、三角形等积变换与一半模型4、勾股定理与弦图5、五大模型(二)曲线型1、圆与扇形的周长与面积2、图形旋转扫过的面积问题(三)立体几何1、立体图形的面积与体积2、平面图形旋转成的立体图形问题3、平面展开图4、液体浸物问题模块四:行程模块1、简单相遇与追及问题2、环形跑道问题3、流水行船问题4、火车过桥问题5、电梯问题6、发车间隔问题7、接送问题8、时钟问题9、多人相遇与追及问题10、多次相遇追及问题11、方程与比例法解行程问题模块五:应用题模块1、列方程解应用题2、分数、百分数应用题3、比例应用题4、工程问题5、浓度问题6、经济问题7、牛吃草问题模块六:计数模块1、枚举法之分类枚举、标数法、树形图法2、分类枚举之整体法、对应法、排除法3、加乘原理4、排列组合5、容斥原理6、抽屉原理7、归纳与递推8、几何计数9、数论计数模块七:杂题1、从简单情况入手2、对应与转化思想3、从反面与从特殊情况入手思想4、染色与覆盖5、游戏与对策6、体育比赛问题7、逻辑推理问题8、数字谜9、数独。

小升初奥数七大模块内容

小升初奥数七大模块内容,你知道多少?奥数的七大模块包括:计算、数论、几何、行程、应用题、计数和杂题。

同学们,看到这七大模块你都熟悉吗?模块一:计算模块1、速算与巧算2、分数小数四则混合运算及繁分数运算3、循环小数化分数与混合运算4、等差及等比数列5、计算公式综合6、分数计算技巧之裂项、换元、通项归纳7、比较与估算8、定义新运算9、解方程模块二:数论模块1、质数与合数2、因数与倍数3、数的整除特征及整除性质4、位值原理5、余数的性质6、同余问题7、中国剩余定理(逐级满足法)8、完全平方数9、奇偶分析10、不定方程11、进制问题12、最值问题(一)直线型1、长度与角度2、格点与割补3、三角形等积变换与一半模型4、勾股定理与弦图5、五大模型(二)曲线型1、圆与扇形的周长与面积2、图形旋转扫过的面积问题(三)立体几何1、立体图形的面积与体积2、平面图形旋转成的立体图形问题3、平面展开图4、液体浸物问题模块四:行程模块1、简单相遇与追及问题2、环形跑道问题3、流水行船问题4、火车过桥问题5、电梯问题6、发车间隔问题7、接送问题8、时钟问题9、多人相遇与追及问题10、多次相遇追及问题11、方程与比例法解行程问题1、列方程解应用题2、分数、百分数应用题3、比例应用题4、工程问题5、浓度问题6、经济问题7、牛吃草问题模块六:计数模块1、枚举法之分类枚举、标数法、树形图法2、分类枚举之整体法、对应法、排除法3、加乘原理4、排列组合5、容斥原理6、抽屉原理7、归纳与递推8、几何计数9、数论计数模块七:杂题1、从简单情况入手2、对应与转化思想3、从反面与从特殊情况入手思想4、染色与覆盖5、游戏与对策6、体育比赛问题7、逻辑推理问题8、数字谜9、数独同学们,虽然在这里我们介绍了奥数,但并不是说小升初只考奥数知识,随着这两年的政策的调整,并不是一味的求难就能在小升初过程中拿得好成绩哦,数学拓展之余,千万不可以忘记基础要打牢哦,小升初,拓展知识的同时,基础也一定要牢固。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模块一 发车问题
【例 1】 某停车场有10辆出租汽车,第一辆出租汽车出发后,每隔4分钟,有一辆出租
汽车开出.在第一辆出租汽车开出2分钟后,有一辆出租汽车进场.以后每隔6分钟有一辆出租汽车回场.回场的出租汽车,在原有的10辆出租汽车之后又依次每隔4分钟开出一辆,问:从第一辆出租汽车开出后,经过多少时间,停车场就没有出租汽车了?
【解析】 这个题可以简单的找规律求解
时间 车辆
4分钟 9辆
6分钟 10辆
8分钟 9辆
12分钟 9辆
16分钟 8辆
18分钟 9辆
20分钟 8辆
24分钟 8辆
由此可以看出:每12分钟就减少一辆车,但该题需要注意的是:到了剩下一辆的时候是不符合这种规律的到了12*9=108分钟的时候,剩下一辆车,这时再经过4分钟车厂恰好没有车了,所以第112分钟时就没有车辆了,但题目中问从第一辆出租汽车开出后,所以应该为108分钟。

【例 2】 某人沿着电车道旁的便道以每小时4.5千米的速度步行,每7.2分钟有一辆电车迎
面开过,每12分钟有一辆电车从后面追过,如果电车按相等的时间间隔以同一速度不停地往返运行.问:电车的速度是多少?电车之间的时间间隔是多少?
【解析】 设电车的速度为每分钟x 米.人的速度为每小时4.5千米,相当于每分钟75米.根
据题意可列方程如下:()()757.27512x x +⨯=-⨯,解得300x =,即电车的速度为每分钟300米,相当于每小时18千米.相同方向的两辆电车之间的距离为:()30075122700-⨯=(米),所以电车之间的时间间隔为:27003009÷=(分钟).
【巩固】 某人以匀速行走在一条公路上,公路的前后两端每隔相同的时间发一辆公共汽车.
他发现每隔15分钟有一辆公共汽车追上他;每隔10分钟有一辆公共汽车迎面驶来擦身而过.问公共汽车每隔多少分钟发车一辆?
【解析】 这类问题一般要求两个基本量:相邻两电车间距离、电车的速度。

是人与电车的相
遇与追及问题,他们的路程和(差)即为相邻两车间距离,设两车之间相距S ,
根据公式得()10min S V V =+⨯人车,50712.55
x x -+=,那么6(6)3x t y x t y --=+-,解得2(3)3
x t y =-,所以发车间隔T =2.5 2.53(3)x y x t y +=+-
【巩固】 某人沿电车线路行走,每12分钟有一辆电车从后面追上,每4分钟有一辆电车迎
面开来.假设两个起点站的发车间隔是相同的,求这个发车间隔.
【解析】 设电车的速度为a ,行人的速度为b ,因为每辆电车之间的距离为定值,设为l .由
电车能在12分钟追上行人l 的距离知,(21)x t y =-; 由电车能在4分钟能与行
人共同走过l 的距离知,112
,所以有l =12(a -b )=4(a +b ),有a =2b ,即电车的速度是行人步行速度的2倍。

那么l =4(a +b )=6a ,则发车间隔上:1650(1)541211
÷-=.即
发车间隔为6分钟.
【例 3】 一条公路上,有一个骑车人和一个步行人,骑车人速度是步行人速度的3倍,每
隔6分钟有一辆公共汽车超过步行人,每隔10分钟有一辆公共汽车超过骑车人,如果公共汽车始发站发车的时间间隔保持不变,那么间隔几分钟发一辆公共汽车?
【解析】 要求汽车的发车时间间隔,只要求出汽车的速度和相邻两汽车之间的距离就可以
了,但题目没有直接告诉我们这两个条件,如何求出这两个量呢?
由题可知:相邻两汽车之间的距离(以下简称间隔距离)是不变的,当一辆公共汽车超过步行人时,紧接着下一辆公共汽车与步行人之间的距离就是间隔距离,每隔6分钟就有一辆汽车超过步行人,
这就是说:当一辆汽车超过步行人时,下一辆汽车要用6分钟才能追上步行人,汽车与行人的路程差就是相邻两汽车的间隔距离。

对于骑车人可作同样的分析.
因此,如果我们把汽车的速度记作V 汽,骑车人的速度为V 自,步行人的速度为V 人(单位都是米/分钟),则:间隔距离=(V 汽-V 人)×6(米),间隔距离=(V 汽-V 自)×10(米),V 自=3V 人。

综合上面的三个式子,可得:V 汽=6V 人,即V 人=1/6V 汽,
则:间隔距离=(V 汽-1/6V 汽)×6=5V 汽(米)
所以,汽车的发车时间间隔就等于:间隔距离÷V 汽=5V 汽(米)÷V 汽(米/分钟)=5(分钟)。

【巩固】 从电车总站每隔一定时间开出一辆电车。

甲与乙两人在一条街上沿着同一方向步
行。

甲每分钟步行82米,每隔10分钟遇上一辆迎面开来的电车;乙每分钟步行60米,每隔10分15秒遇上迎面开来的一辆电车。

那么电车总站每隔多少分钟开出一辆电车?
【解析】 这类问题一般要求两个基本量:相邻两电车间距离、电车的速度。

甲与电车属于相遇问题,他们的路程和即为相邻两车间距离,根据公式得65411,类似可得65(1210)6054651111-⨯-=,那么56511,即112,解得54米/分,因此发车间隔为9020÷820=11分钟。

【例 4】 甲城的车站总是以20分钟的时间间隔向乙城发车,甲乙两城之间既有平路又有
上坡和下坡,车辆(包括自行车)上坡和下坡的速度分别是平路上的80%和120%,有一名学生从乙城骑车去甲城,已知该学生平路上的骑车速度是汽车在平路上速度的四分之一,那么这位学生骑车的学生在平路、上坡、下坡时每隔多少分钟遇到一辆汽车?
【解析】 先看平路上的情况,汽车每分钟行驶汽车平路上汽车间隔的1/20,那么每分钟自
行车在平路上行驶汽车平路上间隔的1/80,所以在平路上自行车与汽车每分钟合走汽车平路上间隔的1/20+1/80=1/16,所以该学生每隔16分钟遇到一辆汽车,对于上坡、下坡的情况同样用这种方法考虑,三种情况中该学生都是每隔16分钟遇到一辆汽车.
【例 5】 甲、乙两地是电车始发站,每隔一定时间两地同时各发出一辆电车,小张和小王
分别骑车从甲、乙两地出发,相向而行.每辆电车都隔4分钟遇到迎面开来的一辆电车;小张每隔5分钟遇到迎面开来的一辆电车;小王每隔6分钟遇到迎面开来的一辆电车.已知电车行驶全程是56分钟,那么小张与小王在途中相遇时他们已行走了 分钟.
【解析】 由题意可知,两辆电车之间的距离
10电车行8分钟的路程(每辆电车都隔4分钟遇到迎面开来的一辆电车)
10电车行5分钟的路程1小张行5分钟的路程
24电车行6分钟的路程72小王行6分钟的路程
由此可得,小张速度是电车速度的10,小王速度是电车速度的12,小张与小王的
速度和是电车速度的10,所以他们合走完全程所用的时间为电车行驶全程所用时
间的12,即53分钟,所以小张与小王在途中相遇时他们已行走了60分钟.
【例6】小峰骑自行车去小宝家聚会,一路上小峰注意到,每隔9分钟就有一辆公交车从后方超越小峰,小峰骑车到半路,车坏了,小峰只好打的去小宝家,这时小峰又
发现出租车也是每隔9分钟超越一辆公交车,已知出租车的速度是小峰骑车速度
的5倍,那么如果公交车的发车时间间隔和行驶速度固定的话,公交车的发车时
间间隔为多少分钟?
【解析】间隔距离=(公交速度-骑车速度)×9分钟;间隔距离=(出租车速度-公交速度)×9分钟所以,公交速度-骑车速度=出租车速度-公交速度;公交速度=(骑车速度
+出租车速度)/2=3×骑车速度.由此可知,间隔距离=(公交速度-骑车速度)×9
分钟=2×骑车速度×9分钟=3×骑车速度×6分钟=公交速度×6分钟. 所以公交车
站每隔6分钟发一辆公交车.
【例7】某人乘坐观光游船沿顺流方向从A港到B港。

发现每隔40分钟就有一艘货船从后面追上游船,每隔20分钟就会有一艘货船迎面开过,已知A、B两港间货船的
发船间隔时间相同,且船在净水中的速度相同,均是水速的7倍,那么货船发出
的时间间隔是__________分钟。

【解析】由于间隔时间相同,设顺水两货船之间的距离为“1”,逆水两货船之间的距离为(7-1)÷(7+1)=3/4。

所以,货船顺水速度-游船顺水速度=1/40,即货船
静水速度-游船静水速度=1/4,货船逆水速度+游船顺水速度=3/4×1/20=
3/80,即货船静水速度+游船静水速度=3/80,可以求得货船静水速度是(1/40
+3/80)÷2=1/32,货船顺水速度是1/32×(1+1/7)=1/28),所以货船的发
出间隔时间是1÷1/28=28分钟。

相关文档
最新文档