涡轮发动机的工作原理、特点
涡轮风扇发动机的结构和工作原理

涡轮风扇发动机的结构和工作原理引言:涡轮风扇发动机是现代航空领域广泛使用的一种发动机类型。
它以其高效率、低噪音和大推力的特点而备受推崇。
本文将介绍涡轮风扇发动机的结构和工作原理,以帮助读者更好地了解这一先进的航空动力装置。
一、结构涡轮风扇发动机的结构包括压缩机、燃烧室、涡轮、喷管等部分。
1. 压缩机:压缩机是涡轮风扇发动机的关键组件之一,它负责将大量空气压缩,提高空气的密度和压力,为燃烧提供充足的氧气。
涡轮风扇发动机通常采用多级轴流式压缩机,可以实现高压缩比和高效率。
2. 燃烧室:燃烧室是将燃料和空气混合并燃烧的地方。
在燃烧过程中,燃料和空气经过点火后产生高温高压的燃烧气体。
为了保证燃烧效率和减少排放物的产生,现代涡轮风扇发动机通常采用多级燃烧室和先进的燃烧技术。
3. 涡轮:涡轮是涡轮风扇发动机的动力来源,它通过高温高压的燃烧气体驱动。
涡轮由高压涡轮和低压涡轮组成,它们通过轴连接,并共同驱动压缩机和风扇。
高压涡轮负责驱动压缩机,而低压涡轮则驱动风扇。
4. 喷管:喷管是涡轮风扇发动机的尾部部分,负责喷出高速喷流,产生推力。
喷管的形状和设计对推力和燃料效率有着重要影响。
现代喷管通常采用可变喷口设计,可以根据不同的工作状态调整喷口的形状和尺寸,以达到最佳的推力效果。
二、工作原理涡轮风扇发动机的工作原理可以简单描述为压气、燃烧和推力三个阶段。
1. 压气阶段:在压气阶段,压缩机将大量空气压缩,提高其密度和压力。
空气经过多级压缩后,进一步进入燃烧室。
2. 燃烧阶段:在燃烧室中,燃料和空气混合并点火燃烧,产生高温高压的燃烧气体。
燃烧气体的高温高压状态使其具有较大的能量,这些能量将在后续的阶段转化为推力。
3. 推力阶段:燃烧气体通过高压涡轮和低压涡轮驱动,为涡轮风扇发动机提供动力。
高压涡轮驱动压缩机,使其继续压缩空气;低压涡轮则驱动风扇,产生大量的气流。
最终,高速喷流通过喷管喷出,产生巨大的推力,推动飞机前进。
飞机涡轮发动机工作原理

飞机涡轮发动机工作原理飞机涡轮发动机是飞机的动力来源,它的工作原理是通过将空气和燃料混合后进行燃烧,产生高温高压的燃气,从而驱动飞机前进。
飞机涡轮发动机通常由压气机、燃烧室、涡轮和喷管等部分组成,下面我们将详细介绍飞机涡轮发动机的工作原理。
首先,压气机起到了将空气压缩的作用。
当飞机起飞时,大量的空气被引入压气机,压气机中的叶片将空气压缩,使其密度增加,从而提高了空气中氧气的含量,有利于燃烧过程。
压气机将压缩后的空气送入燃烧室。
其次,燃烧室是涡轮发动机中非常重要的部分。
在燃烧室中,压缩后的空气与燃料混合并点燃,产生高温高压的燃气。
这些燃气的温度和压力非常高,能够提供足够的动力来驱动飞机前进。
同时,燃烧室中的燃烧过程也需要保持稳定,以确保发动机的正常运转。
接着,涡轮是飞机涡轮发动机中的一个非常重要的部件。
涡轮是由多个叶片组成的,当燃气通过涡轮时,叶片会受到燃气的推动而转动。
涡轮的转动驱动了压气机,使得压气机能够不断地将空气压缩并送入燃烧室,形成了一个循环。
同时,涡轮也驱动了飞机的动力传输系统,将产生的动力传递给飞机的螺旋桨或喷气风扇。
最后,喷管是涡轮发动机中的最后一个部分。
在喷管中,燃气被加速并排出,产生了向后的推力,从而推动了飞机向前飞行。
喷管的设计和优化对于飞机的燃油效率和推力性能有着重要的影响。
总的来说,飞机涡轮发动机的工作原理是通过将空气和燃料混合燃烧产生高温高压的燃气,从而驱动飞机前进。
压气机、燃烧室、涡轮和喷管等部分共同协作,构成了一个高效的动力系统。
飞机涡轮发动机的工作原理不仅是航空工程中的重要基础知识,也是飞机动力系统设计和优化的关键。
涡轮是什么

涡轮是什么涡轮是一种经典的动力机械设备,在现代工程应用中起着重要的作用。
它具有高效能、高速度和高能量转换率的特点,被广泛应用于航空、能源、汽车等领域。
本文将对涡轮的定义、工作原理、类型和应用等方面进行详细的介绍。
一、涡轮的定义涡轮是一种以流体动能传递为基础的动力装置。
它通过流体的作用力转换为机械能,实现动力传递和能量转换的功能。
二、涡轮的工作原理涡轮的工作原理是基于“欧拉方程”和“质量守恒定律”。
当流体通过涡轮叶片时,流体受到叶片的作用力,产生动能和静能的变化。
涡轮将流体的动能转换为自身的动能,使涡轮旋转,并通过轴向来输出动力。
涡轮的工作原理可以分为两个过程:一是气体的冲击或加速过程,二是能量的转换和输出过程。
涡轮的叶片形状和布置方式对其性能有着重要的影响。
涡轮通常由一个或多个叶片组成,叶片通常采用弯曲或弯曲的形式,可以有效地转化流体的动能。
三、涡轮的类型涡轮根据其应用领域,可以分为多种类型。
以下是几种常见的类型:1. 航空涡轮:航空涡轮通常用于喷气发动机中,通过高速旋转的涡轮叶片将空气压缩,使燃烧效果更好。
航空涡轮具有高转速、高温度和高运行要求,是航空工业中不可或缺的部件。
2. 汽车涡轮:汽车涡轮主要用于增压发动机中,通过压缩进气空气来提高发动机的动力输出。
它可以使发动机在相同排量情况下获得更高的马力和转矩输出,提高燃烧效率。
3. 能源涡轮:能源涡轮通常用于蒸汽、气体和水力发电厂中,将热能转化为机械能,推动发电机工作。
能源涡轮具有大功率、高转速和高效率的特点,对能源行业的发展起到重要作用。
四、涡轮的应用涡轮在各种工程领域都有广泛的应用。
以下是几个常见的应用领域:1. 航空工业:涡轮在喷气发动机中的应用,实现了飞机的高速飞行和高性能。
2. 能源工业:涡轮发电机技术能够将化石燃料、核能和可再生能源转化为电力,为能源供应提供了重要的支持。
3. 汽车工业:涡轮增压技术在汽车发动机中的应用,提高了燃烧效率,使汽车获得更高的动力输出。
涡轮发动机的工作原理、特点

一.涡轮发动机的工作原理、特点答:1.燃气涡轮喷气发动机工作原理:航空燃气涡轮喷气发动机是一种热机,将燃油燃烧释放出的热能转变为流经发动机气流的动能。
由于气流的速度增加而直接产生反作用推力,因此,这种发动机既是热机也是推进器特点:与航空活塞发动机相比,燃气涡轮喷气发动机结构简单,重量轻,推力大,推进效率高,而且在很大的飞行速度范围内,发动机的推力随飞行速度的增加而增加,然而其较高的耗油率逐渐被涡扇发动机所替代。
2.涡轮风扇发动机组成:进气道、风扇、低压压气机、高压压气机、燃烧室、高压涡轮、低压涡轮和喷管工作原理:涡扇发动机内路的工作情形与涡喷发动机相同。
即流入内含的空气通过高速旋转的风扇,低压压气机和高压压气机对空气做功,压缩空气,提高空气压力。
高压空气在燃烧室内和燃气混合,燃烧,将化学能转变为热能,形成高温高压的燃气。
高温高压燃气首先在高压涡轮内膨胀,推动高压涡轮旋转,去带动高压压气机,然后再低压涡轮内膨胀,推动低压涡轮旋转,去带动低压压气机和风扇,最后燃气通过喷管排入大气产生反作用推力。
特点:与涡喷发动机相比,涡扇发动机具有推力大,推进效率高,噪音低,在一定的飞行速度范围内燃油消耗率低等优点。
但涡扇发动机结构复杂,速度特性差。
目前民航干线飞机大多装配涡扇发动机。
二.轴流式压气机的基元增压原理答:轴流式压气机主要是利用扩散增压的原理来提高空气压力的。
(根据气动知识得知亚音速气流流过扩张形通道时)速度降低,压力升高。
参数分析。
基元级组成:由工作叶栅和整流器叶栅组成,两处叶栅通道均是扩形的三.压气机转子的结构形式分析图3-40答:(图3-40为CFM56发动机风扇后增压级转子,鼓筒靠精密螺栓固定于风扇轮盘后端,其外圆上作出三道凸缘,用拉刀一次拉出三级燕尾形榫槽,因此三级叶片数目相同,虽然对性能有一定影响,但加工却大大地简化)轴流式压气机转子的基本结构型式有三种:鼓式盘式鼓盘式特点鼓式:结构简单、零件数目少、加工方便、有较高的抗弯刚度,但由于受到强度的限制,目前在实际中应用的不广泛。
涡轮喷气发动机的工作原理

涡轮喷气发动机的工作原理涡轮喷气发动机(Turbofan)工作原理:1、涡轮喷气发动机由一个压缩机和两个涡轮组成,压缩机用于将引气进行压缩,涡轮则分别负责把压缩后的空气和燃料混合后燃烧,并将热量转化成动胡。
2、进气口涡轮的叶片将空气从压缩机中导入,称为“冷空气”。
在叶片的内侧,有一个称为“燃烧室”的空间,其中混合了空气与燃料,然后点燃后进行燃烧,形成“燃烧气体”。
3、有一种技术称为“绕流技术”,它可以把冷空气中的一部分通过外部灵活风叶把引擎外壁流向推力叶片,而另一部分空气被送入燃烧室中。
使得一部分空气先进入推力体,再经过燃烧室燃烧,将两部分空气的能量结合起来,产生更大的动力。
4、推力叶片将排出的热空气推向后方。
推力壁的第二部分流向尾部的排气口,形成一个流场,从而能够将飞机向前推进。
5、排气口周围有叶片,这些叶片把热空气折射一定角度,形成一个轴流发动机,其特点是动力比特超大。
6、另外,还有一部分叶片被称为“转子”,它可以使空气推力环流,从而形成真空室,起到节流的作用,把动能变为动力来推动飞机的前进。
涡轮喷气发动机的结构:1、压缩机:它由金属叶片组成,它能够将大量的空气压缩,并把空气导进燃烧室。
2、燃烧室:燃烧室内部将空气与燃料混合,并进行燃烧。
3、推力叶片:它负责将热空气推力向後方,把动能变为动力来推进飞机。
4、转子:它负责把空气涡流节流,以形成真空室,并从而提供推力。
5、尾部排气口:它将热空气推向后方,形成一个流场,来实现飞机的前进。
涡轮喷气发动机的优点:1、燃料经济性高:涡轮喷气发动机经额外的空气绕流技术,可以使发动机的动力更大,提高飞机的燃料经济性。
2、更安静、更省油:与其他类型的发动机相比,涡轮喷气发动机排放的噪音更小,且耗油更低。
3、操作简单:发动机的抗失效性更强,可以更方便的进行操作,使用成本更低。
4、更高效:发动机的效率更高,能耗更低,可以大大降低重量,提高飞行效率。
5、更安全:涡轮喷气发动机有更强的可靠性,能够有效避免事故发生。
飞机涡轮发动机原理

飞机涡轮发动机原理飞机涡轮发动机是一种常见的航空发动机,它采用了涡轮增压和喷气推进原理,通过燃烧燃料产生气体推力,使飞机能够在空中飞行。
下面将详细介绍飞机涡轮发动机的原理和工作过程。
飞机涡轮发动机由多个关键部件组成,包括压气机、燃烧室、涡轮和喷嘴等。
其中压气机和涡轮是发动机的核心组成部分,它们通过传递和转化气体能量来形成气流,从而产生推力。
首先,空气通过进气道进入压气机。
压气机由多个转子和定子组成,它们的排列方式形成了连续的气流通道。
当空气流经压气机时,受到旋转叶片的作用,气流速度增加,同时压力也增加。
这种增压过程使得空气的密度增加,为后续的燃烧提供了条件。
下一步是燃烧过程。
在压力增加的环境下,燃油被喷射到燃烧室中与空气混合。
在燃烧过程中,燃料燃烧产生高温高压的气体。
这些气体的能量转化为压气机的动能,推动压气机继续工作。
接下来,高温高压气体通过涡轮。
涡轮上也有旋转叶片,当高温高压气体冲击旋转叶片时,涡轮会旋转起来。
其原理类似于汽车涡轮增压器,通过涡轮增压提高了发动机进气道中的气体压力。
涡轮旋转后,它与压气机共享同一轴线,通过轴将动能传递给压气机,维持其运转。
涡轮的运转还带动了喷嘴的转动。
涡轮和喷嘴是连在一起的,喷嘴的作用是将高温高压气体从发动机中排出。
排出气体的高速流动形成的反冲力就是所谓的推力,推动飞机向前行驶。
需要注意的是,涡轮发动机是一个封闭系统,其内部的压力非常高。
为了保证发动机的正常运行,需要有空气和燃料供给系统,以及冷却和润滑系统。
空气和燃料供给系统负责向发动机提供所需的空气和燃料,以维持正常的燃烧过程。
冷却系统则通过供应冷却剂来冷却发动机的各个部件。
同时,润滑系统则保证发动机内部的旋转部件能够平稳运转。
总结起来,飞机涡轮发动机主要通过压气机的压缩作用、燃烧室的燃烧过程以及涡轮和喷嘴的协同作用来产生推力。
涡轮发动机具有高效、高推力和可靠性强的特点,因此被广泛应用于航空领域。
不同型号的飞机涡轮发动机会有些许差异,但其基本原理保持一致。
涡轮螺旋桨发动机的特点

涡轮螺旋桨发动机的特点1.高推力效率:涡轮螺旋桨发动机的主要特点是其高推力效率。
螺旋桨的存在可以充分利用发动机释放的动力,将其转化为具有较大推力的空气流,从而提高发动机的推力效率。
相比于传统的喷气发动机,涡轮螺旋桨发动机的推力效率要高出很多。
2.适用性广泛:涡轮螺旋桨发动机不仅适用于大型的喷气式客机,还适用于各种尺寸和用途的飞机,如小型机、军用运输机、军用侦察机、直升机等。
这是因为该类型发动机能够提供适合各种需求的不同推力需求。
对于较小的飞机来说,涡轮螺旋桨发动机具有重量轻、节能、经济性好等优点。
3.噪音低:相比于喷气发动机,涡轮螺旋桨发动机的噪音较低。
这是因为螺旋桨的旋转可以分散和减轻发动机的噪音,从而减少对地面和乘客的噪声污染。
4.起飞性好:涡轮螺旋桨发动机在起飞阶段的性能表现出色。
由于其高推力效率,它可以提供充足的推力,从而缩短了飞机从地面到空中的加速时间。
5.高海拔性能好:涡轮螺旋桨发动机对于高海拔地区的飞机来说具有很好的高空性能。
这是因为在高海拔地区,由于空气的稀薄程度,传统的喷气式发动机面临着缺氧和低推力的问题,而涡轮螺旋桨发动机可以通过改变螺旋桨叶片的角度来适应不同的空气密度,从而提供充足的推力。
6.维护成本低:相比于喷气式发动机,涡轮螺旋桨发动机的维护成本更低。
这是因为涡轮螺旋桨发动机结构相对简单,部件数量较少,所以在维护和检修过程中需要的时间和费用较少。
7.低空速性能好:涡轮螺旋桨发动机在低空速度下的性能也比较出色。
螺旋桨的存在使得飞机在低速下仍能保持较高的升力,从而提高了飞机在起降阶段和巡航阶段的性能。
总的来说,涡轮螺旋桨发动机具有高推力效率、适用性广泛、噪音低、起飞性能好、高海拔性能好、维护成本低、低空速性能好等特点。
因此,它在航空领域中扮演着重要的角色,被广泛应用于各种类型的飞机中。
涡轮增压柴油发动机工作原理

涡轮增压柴油发动机工作原理涡轮增压柴油发动机是一种高效的内燃机,其工作原理是利用废气能量驱动涡轮增压器,将进气压力提升,进而增加燃烧室内的气体密度,实现更充分的燃烧,从而提高发动机功率和燃油利用率。
一、引言涡轮增压柴油发动机是现代汽车中广泛采用的一种动力装置,其独特的工作原理使其具有高功率输出、低油耗和环保的特点。
二、涡轮增压原理涡轮增压柴油发动机采用了双进气道系统:一个是从大气中直接吸入的低压进气,另一个是经过涡轮增压器增压后的高压进气。
涡轮增压器由一个轮叶和壳体组成,发动机废气通过壳体流过轮叶,产生的高速气流驱动轮叶旋转。
旋转的轮叶再将进气压力提升后送入燃烧室。
三、工作流程1. 进气阶段:当发动机工作时,低压进气和高压进气同时进入气缸,低压进气通过气缸排出废气,高压进气则通过废气管进入涡轮增压器。
2. 压缩阶段:高速旋转的轮叶驱动空气经过压气增压段,使其压力增加。
增压后的高压气体再通过涡轮增压器的出口进入进气歧管。
3. 燃烧阶段:高压进气经过进气歧管进入燃烧室,与喷入的柴油混合后燃烧,产生高温高压的气体。
4. 排气阶段:燃烧后的气体通过排气歧管排出,驱动涡轮增压器的轮叶旋转,形成一个循环。
四、优势与应用涡轮增压柴油发动机具有以下优势:1. 提高动力输出:通过增加进气压力,使燃烧更充分,从而提高发动机的功率和扭矩输出。
2. 提高燃油利用率:增加进气压力可以提高压缩比,使柴油的燃烧更完全,提高燃油利用效率,降低油耗。
3. 改善低转速动力输出:涡轮增压器在发动机低转速时可以迅速提供更多的进气量,提高发动机的低转速动力输出。
4. 减少排放物:充分燃烧可以减少排放物的生成,使发动机更环保。
由于其高效节能、环保低排放的特点,涡轮增压柴油发动机得到了广泛应用,特别是在商用车辆和柴油轿车中。
五、发展趋势随着技术的不断进步,涡轮增压柴油发动机的工作原理也在不断完善和创新。
未来的涡轮增压柴油发动机可能采用电动涡轮增压器等新技术,提高增压的响应速度和精确度,进一步提高发动机的性能和经济性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.涡轮发动机的工作原理、特点
答:1.燃气涡轮喷气发动机
工作原理:航空燃气涡轮喷气发动机是一种热机,将燃油燃烧释放出的热能转变为流经发动机气流的动能。
由于气流的速度增加而直接产生反作用推力,因此,这种发动机既是热机也是推进器
特点:与航空活塞发动机相比,燃气涡轮喷气发动机结构简单,重量轻,推力大,推进效率高,而且在很大的飞行速度范围内,发动机的推力随飞行速度的增加而增加,然而其较高的耗油率逐渐被涡扇发动机所替代。
2.涡轮风扇发动机
组成:进气道、风扇、低压压气机、高压压气机、燃烧室、高压涡轮、低压涡轮和喷管工作原理:涡扇发动机内路的工作情形与涡喷发动机相同。
即流入内含的空气通过高速旋转的风扇,低压压气机和高压压气机对空气做功,压缩空气,提高空气压力。
高压空气在燃烧室内和燃气混合,燃烧,将化学能转变为热能,形成高温高压的燃气。
高温高压燃气首先在高压涡轮内膨胀,推动高压涡轮旋转,去带动高压压气机,然后再低压涡轮内膨胀,推动低压涡轮旋转,去带动低压压气机和风扇,最后燃气通过喷管排入大气产生反作用推力。
特点:与涡喷发动机相比,涡扇发动机具有推力大,推进效率高,噪音低,在一定的飞行速度范围内燃油消耗率低等优点。
但涡扇发动机结构复杂,速度特性差。
目前民航干线飞机大多装配涡扇发动机。
二.轴流式压气机的基元增压原理
答:轴流式压气机主要是利用扩散增压的原理来提高空气压力的。
(根据气动知识得知亚音速气流流过扩张形通道时)速度降低,压力升高。
参数分析。
基元级组成:由工作叶栅和整流器叶栅组成,两处叶栅通道均是扩形的
三.压气机转子的结构形式分析图3-40
答:(图3-40为CFM56发动机风扇后增压级转子,鼓筒靠精密螺栓固定于风扇轮盘后端,其外圆上作出三道凸缘,用拉刀一次拉出三级燕尾形榫槽,因此三级叶片数目相同,虽然对性能有一定影响,但加工却大大地简化)
轴流式压气机转子的基本结构型式有三种:鼓式盘式鼓盘式
特点
鼓式:结构简单、零件数目少、加工方便、有较高的抗弯刚度,但由于受到强度的限制,目前在实际中应用的不广泛。
盘式:强度好,但抗弯刚性差,并容易发生振动。
目前这种简单的盘式转子只用于单盘或小流量的压气机上。
鼓盘式:这种转子兼有鼓式转子抗弯性好和盘式转子强度高的优点在发动机广泛应用。
四.燃烧室的分类工作过程优缺点
分类:管型燃烧室,环型燃烧室,管环型燃烧室。
工作过程:发动机工作时,被压气机压缩的空气,进入燃烧室,它一边向后流动,一边与喷嘴喷出的燃油混合,组成混合气。
发动机起动时,混合气由点火装置产生的火花点燃:起动后,点火装置不再产生火花,新鲜混合气全靠已燃混合气的火焰引火而燃烧。
混合气在燃烧室内燃烧时,喷嘴喷出的燃油与燃烧室中流动的空气不断混合组成新的混合气,以供连续不断的燃烧之用,这样就形成了燃边油与空气混合边燃烧的连续不断的
燃烧过程。
(特点:a 燃油是在高速气流中进行燃烧的:
b 燃烧室出口燃气的温度受到涡轮叶片的材料的限制)
优缺点
管型:便于单独实验、试验时需要的气量小、便于检查更换、火焰筒结构简单、环形面积利用率低、迎风面积大、重量大、点火性能较差、总压损失大、出口温度分布不均匀。
管环型:便于实验、试验时需要的气量较小、较便于检查更换、火焰筒结构较复杂、环形面积利用率较高、迎风面积较大、重量较大、点火性能较差、总压损失较大、出口温度分布较不均匀。
环型:不便于单独实验、试验时需要的气量大、不便于检查更换、火焰筒结构简单、环形面积利用率高、迎风面积小、重量轻、点火性能好、总压损失较小、出口温度分布均匀。
五.用短螺栓连接的可拆卸转子图3—124JT3D发动机盘轴用短螺栓连接答:如图,为JT3D发动机单级高压涡轮转子采用的短螺栓连接机构。
靠盘与轴间压紧的圆柱面保证装配时的定心,采用24个精密螺栓连接,保证工作时定心并传递负荷。
轮盘前端伸出一段较长的薄壁筒,上面开有冷却空气通气孔,可以减少盘向轴的传热量。
轴承内环内表面开有轴向槽。
滑油从此槽中引入润滑油冷却轴承。
它不仅可减少向轴承传热,还可以改善轴承的冷却效果。
涡轮轴后端壁向盘方向凹入,可以缩短盘与轴间的距离,但轴的受力状态不好,因此轴做得较厚些。
精密螺栓保证工作定心的原理是强迫盘轴连为一体而不产生相互移动。
工作状态下,盘轴变形相差很大时,螺栓及孔边有较大的附加应力,加上孔边本来应力集中严重,就有可能使孔产生塑性变形,以致影响定心精度。
因此,在图中使螺栓所在的盘轴连接面远离轮盘,安装边的变形受轮盘影响小,温度也较盘身低,这样不会造成连接处有很大的变形差,工作时也较可靠。
在有的发动机中,将精密螺栓做成锥形
六.喷管的功用
喷管安装在涡轮后面,也是燃气涡轮发动机的一个重要部件。
喷管主要功用:是将从涡轮流出的燃气膨胀加速,将燃气一部分热焓转变为动能,提高燃气速度,使燃气以很大速度排出,这样可以产生很大反作用推力;
其次是通过反推力装置改变喷气方向,使向后的喷气变为向斜前方的喷气,产生反推力,以迅速降低飞机落地的滑跑的速度,缩短飞机的滑跑距离;
第三是降低发动机的排气噪音
最后是可通过调节喷管的临界面积来改变发动机的工作状态
(喷管分为亚音速喷管和超音速喷管。
亚音速喷管是收敛形的管道,而超音速喷管是先收敛后扩张形的管道)
七.如何保证稳态下的共同工作
飞行高度升高时,由于大气密度减小,进入发动机的空气流量减少,压气机功率和涡轮功率都随之减小,这时若供油量保持不变,则由于空气流量的减小,还要引起涡轮前燃气总温的升高,使涡轮功增大,涡轮功率就会比压气机功率减少的少一些,因此涡轮功率大于压气机功率,发动机转速就会增大,为了保持发动机转速不变,随着飞行高度的升高,应该适当地减少供油量来控制涡轮前燃气总温,使涡轮功率等于压气机功率。
八.滑油系统的功用
发动机滑油系统提供滑油润滑,冷却和清洁发动机轴承和齿轮
润滑:减少摩擦力,减小摩擦损失;其原理是相互运动部件表面的有一层一定厚度的油膜所覆盖,金属与金属不接触,而是油膜与油膜相接触,这就是相互运动中减少了摩擦
冷却:降低温度,带走热量;其原理是滑油从轴承和其它温度高的部件吸引了热量,在散热器又将热量传递给燃油或空气,从而达到了冷却的目的。
清洁:滑油在流过轴承或其它部件时将磨损下来的金属微粒带走,在滑油滤中将这些金属微粒从滑油中分离出来,达到清洁的目的。
防腐:其原理在金属部件表面有一层一定厚度的油膜所覆盖,将金属与空气隔离开,使金属不直接与空气接触,从而防止氧化和腐蚀。
除此之外,滑油系统还为其它系统提供工作介质、封严、并是发动机状态的载体
九.起动过程的定义和过程
定义:使发动机转子的转速由零增加到慢车转速的过程称为起动过程
过程:第一个阶段带动发动机转子加速的驱动力来自起动机,也就是由起动机单独带动发动机转子加速。
其转速由零增加到喷油点火时的转速
第二个阶段带动发动机转子加速的驱动力来自起动机和涡轮转子,也就是起动机和涡轮转子共同带动发动机转子加速。
其转速由喷油点火时的转速增加到起动机脱开时的转速。
第三个阶段带动发动机转子加速的驱动力来自涡轮转子,也就是由涡轮转子单独带动发动机转子加速。
其转速由起动机脱开时的转速增加到慢车转速。
十.单元体结构
答:单元体设计概念是将发动机分成若干个结构上独立的能在外场甚至在飞机上拆换的单元体。
单元体结构容易分解,预装配,平衡、安装、便于维修。
这使得有单元体更换能力的车间可以进行单元体的更换而不必完全分解发动机。
单元体结构设计可是发动机被分解成一定数量的大组件,意味着不给出整台发动机的寿命,而只给出发动机某些零件的寿命,适合于视情维修。
十一.转子支承方案表达
答:发动机中,转子采用几个支承结构(支点),安排在何处,称为转子支承方案。
转子支承方案表示方法:转子支点的数目与位置,常用转子支承方案代号来表示。
两条前后排列的横线分别代表压气机转子和涡轮转子,两条横线前后及中间的数字表示支点的数目。
单转子支承方案
1.四支点支承方案
2.三支点支承方案
3.两支点支承方案
(双转子发动机相比于单转子的优点
1.双转子发动机具有相同设计增压比的单转子发动机相比,可以使压气机在更广
阔的转速相似参数范围内稳定工作,是防止压气机喘振的有效措施之一。
2.双转子发动机与单转子发动机相比,可以产生更大的推力,这是因为双转子发
动机的压气机具有更高的增压比
3.双转子发动机在低转速下具有较高的压气机效率和较低的涡轮前燃气的总温,
因此双转子发动机在低转速工作时,燃油消耗率要比单转子发动机低得多
4.双转子发动机与单转子发动机相比,由于在低转速下具有较低的涡轮前燃气总
温,而且压气机不易产生喘振,因此在加速时可以烹入更多的富裕燃料,使双
转子发动机具有良好的加速性
5.双转子发动机在启动时,起动机只需要带动一个转子,与同样参数的单转子发
动相比,可采用较小的功率的起动机)。