《电力拖动自动控制系统》课程设计报告
电力拖动自动控制系统课程设计

电气与电子信息工程学院《控制系统课程设计》课程设计报告名称:直流调速系统设计及仿真和串级调速系统建模及仿真专业名称:电气工程及其自动化班级:学号:姓名:指导教师:设计地点:课程设计任务书学生姓名: 专业班级: 指导教师: 工作部门:一、课程设计题目:直流调速系统设计及仿真和串级调速系统建模及仿真二、设计目的:《控制系统课程设计》是继“自动控制系统”课之后开设的实践性环节课程。
由于它是一门理论深、综合性强的专业课,单是学习理论而不进行实践将不利于知识的接受及综合应用。
本课程设计将起到从理论过渡到实践的桥梁作用,通过该环节训练达到下述教学目的:1、通过课程设计,使学生进一步巩固、深化和扩充在交直流调速及相关课方面的基本知识、基本理论和基本技能,达到培养学生独立思考、分析和解决问题的能力。
2、通过课程设计,让学生独立完成一项直流或交流调速系统课题的基本设计工作,使学生熟悉设计过程,了解设计步骤,达到培养学生综合应用所学知识能力、培养学生实际查阅相关设计资料能力的目的、培养学生工程绘画和编写设计说明书的能力。
3、通过课程设计,提高学生理论联系实际,综合分析和解决实际工程问题的能力。
通过它使学生理论联系实际,以实际系统作为实例,对系统进行分析设计,掌握控制系统设计必须遵循的原则、基本内容、设计程序、设计规范、设计步骤方法及系统调试步骤。
通过设计培养学生严肃认真、一丝不苟和实事求是的工作作风。
培养学生的创新意识和创新精神,为今后走向工作岗位从事技术打下良好基础。
三、课程设计内容(含技术指标)1.直流调速系统设计及仿真题目和设计要求:(2)技术数据1.电枢回路总电阻取R=2Ra ;总飞轮力矩:225.2a GD GD =。
2.其他参数可参阅教材中“双闭环调速系统调节器的工程设计举例”的有关数据。
3.要求:调速范围D=10,静差率S≤5%:稳态无静差,电流超调量%5%≤i σ;启动到额定转速时的转速退饱和超调量%10≤n σ。
电力拖动自动控制系统实验报告

电⼒拖动⾃动控制系统实验报告电⼒拖动⾃动控制系统实验实验⼀转速反馈控制直流调速系统的仿真⼀、实验⽬的1、了解MATLAB下SIMULINK软件的操作环境和使⽤⽅法。
2、对转速反馈控制直流调速系统进⾏仿真和参数的调整。
⼆、转速反馈控制直流调速系统仿真根据课本的操作步骤可得到如下的仿真框图:图 1 仿真框图1、运⾏仿真模型结果如下:图2 电枢电流随时间变化的规律图3 电机转速随时间变化的规律2、调节参数Kp=0.25 1/τ=3 系统转速的响应⽆超调但调节时间长3、调节参数Kp=0.8 1/τ=15 系统转速的响应的超调较⼤,但快速性较好实验⼩结通过本次实验初步了解了MATLAB下SIMULINK的基本功能,对仿真图的建⽴了解了相关模块的作⽤和参数设置。
并可将其⽅法推⼴到其他类型控制系统的仿真中。
实验⼆转速、电流反馈控制直流调速系统仿真⼀、实验⽬的及内容了解使⽤调节器的⼯程设计⽅法,是设计⽅法规范化,⼤⼤减少⼯作计算量,但⼯程设计是在⼀定近似条件下得到的,⽤MATLAB仿真可根据仿真结果对设计参数进⾏必要的修正和调整。
转速、电流反馈控制的直流调速系统是静、动态性能优良、应⽤最⼴泛的直流调速系统,对于需要快速正、反转运⾏的调速系统,缩短起动、制动过程的时间成为提⾼⽣产效率的关键。
为了使转速和电流两种负反馈分别起作⽤,可在系统⾥设置两个调节器,组成串级控制。
⼀、双闭环直流调速系统两个调节器的作⽤1)转速调节器的作⽤(1)使转速n跟随给定电压*mU变化,当偏差电压为零时,实现稳态⽆静差。
(2)对负载变化起抗扰作⽤。
(3)其输出限幅值决定允许的最⼤电流。
2)电流调节器的作⽤(1)在转速调节过程中,使电流跟随其给定电压*iU变化。
(2)对电⽹电压波动起及时抗扰作⽤。
(3)起动时保证获得允许的最⼤电流,使系统获得最⼤加速度起动。
(4)当电机过载甚⾄于堵转时,限制电枢电流的最⼤值,从⽽起⼤快速的安全保护作⽤。
当故障消失时,系统能够⾃动恢复正常。
电力拖动控制系统课程设计任务书

安徽工程大学课程设计说明书课程设计名称:课程设计题目:指导教师:专业班级:学生姓名:学号:起止日期:总评成绩:某金属加工机床主轴运动控制系统,采用Z2—71型直流电动机拖动,参数如下:额定功率P nom = 10 Kw额定电压U nom = 220 V额定电流I nom = 55 A额定转速n nom=1000 r.p.m飞轮矩GD2 = 1.0 Kg-m2(考虑系统总飞轮矩扩大一倍)励磁方式采用他励(220V)根据生产工艺的要求,调速系统的性能指标为:调速范围 D = 20静差率S≤5 %电动机空载起动到额定转速的时间t s≤2秒负载基本为恒转矩性质,车间交流电源为三相五线制,试设计一个满足要求的机床主轴运动不可逆调速系统。
设计内容:(1)系统方案分析、比较、选择;(2)系统主电路设计及功率元件计算、选择;(3)控制电路设计及系统动、静态参数计算;(4)绘制系统原理图设计成品:设计说明书一份,系统原理图一张(A3号图纸)某金属加工机床主轴运动控制系统,采用Z2—52型直流电动机拖动,参数如下:额定功率P nom = 7.5 Kw额定电压U nom = 440 V额定电流I nom = 20 A额定转速n nom = 1500 r.p.m电枢电阻Ra=0.3飞轮矩GD2 = 0.5 Kg-m2(考虑系统总飞轮矩扩大一倍)励磁方式采用他励(220V)根据生产工艺的要求,调速系统的性能指标为:调速范围D = 30静差率S≤10 %电动机空载起动到额定转速的时间t s≤2秒负载基本为恒转矩性质,车间交流电源为三相五线制,试设计一个满足要求的机床主轴运动不可逆调速系统。
设计内容:(1)系统方案分析、比较、选择;(2)系统主电路设计及功率元件计算、选择;(3)控制电路设计及系统动、静态参数计算;(4)绘制系统原理图设计成品:设计说明书一份,系统原理图一张(A3号图纸)某金属加工机床主轴运动控制系统,采用Z2—42型直流电动机拖动,参数如下:额定功率P nom = 2.2 Kw额定电压U nom = 180 V额定电流I nom = 15.6 A额定转速n nom= 1000 r.p.m飞轮矩GD2 = 0.4 Kg-m2(考虑系统总飞轮矩扩大一倍)励磁方式采用他励(220V)根据生产工艺的要求,调速系统的性能指标为:调速范围 D = 25静差率S≤5 %电动机空载起动到额定转速的时间t s≤2秒负载基本为恒转矩性质,车间交流电源为三相五线制,试设计一个满足要求的机床主轴运动不可逆调速系统。
电力拖动自动控制系统课程设计

电力拖动自动控制系统课程设计设计目的本课程设计旨在让学生掌握电力拖动自动控制系统的基本原理和设计方法,通过实际操作和仿真,深化对电力拖动自动控制系统的理解和应用。
设计背景电力拖动自动控制系统被广泛应用于各种工业设备和交通工具中,通过自动电控技术实现设备的高效、安全和稳定运行。
本课程设计旨在让学生通过实际操作和仿真,深化对电力拖动自动控制系统的理解和应用。
设计内容本课程设计包括以下三个部分:1. 电力拖动自动控制系统的原理本部分主要介绍电力拖动自动控制系统的基本原理,包括:•电力拖动系统的结构和组成•电力拖动系统的各种传感器和执行器的工作原理•电力拖动系统的信号处理和控制方法2. 电力拖动自动控制系统的实际操作本部分主要介绍电力拖动自动控制系统的实际运行和操作方法,包括:•电力拖动系统的系统参数和性能测试•电力拖动系统的PID控制器的参数设置和校准•电力拖动系统的自动控制模式的设置和调试3. 电力拖动自动控制系统的仿真本部分主要介绍电力拖动自动控制系统的仿真和模拟方法,包括:•电力拖动系统的MATLAB/Simulink仿真模型的建立和调试•电力拖动系统的虚拟仿真平台的使用和应用案例分析设计流程本课程设计的流程如下:1.学习电力拖动自动控制系统的基本原理和相关知识。
2.利用实际设备进行电力拖动自动控制系统的实际操作和调试。
3.利用MATLAB/Simulink软件进行电力拖动自动控制系统的仿真模拟。
4.根据仿真结果进行电力拖动自动控制系统的优化和改进。
设计要求本课程设计的要求如下:1.学生需要按要求完成每个部分的实验和作业。
2.学生需要完成一份课程设计报告,内容应涵盖各个部分,报告格式为Markdown文本格式。
3.学生需要在规定时间内提交课程设计报告,否则视为未完成课程设计。
设计评价本课程设计的评价主要考核以下方面:1.学生是否达到了课程设计目的和要求。
2.学生对电力拖动自动控制系统的掌握程度和应用能力。
电力拖动自动控制系统课程设计

二○一一~二○一二学年第二学期信息科学与工程学院课程设计报告书课程名称:电力拖动自动控制系统程设计班级:自动化2009级 2 班学号:200904134064姓名:指导教师:二○一二年六月一、题目、任务及要求题目:在一个由晶闸管整流装置供电的转速、电流双闭环调速系统中,已知电动机的额定数据为:P N=60 KW,U N=220 V,I N=308 A,n N=1000 r/min,电动势系数Ce=0.196 V∙min/t,主回路电阻R=0.18 Ω,触发整流环节的放大倍数K s=35,等效惯性时间常数T s=0.00333 s。
电磁时间常数T l=0.012 s,机电时间常数T m=0.12 s,电流反馈滤波时间常数T oi=0.0025 s,转速反馈滤波时间常数T on=0.015 s。
额定转速时的给定电压(U n∗)N=10 V,调节器ASR,ACR 饱和输出电压U im∗=10 V,U cm=6.5 V。
系统的静、动态指标为:稳态无静差,调速范围D=10,电流超调量δi≤5%,空载启动到额定转速时的转速超调量δn≤10%。
任务:1)用工程设计方法,设计双闭环调速系统的电流和转速调节器,相应的调节器放大电路,并进行频率校验。
2)用simulink进行双闭环系统性能验证。
二、设计步骤规范化要求按如下步骤,双闭环调速系统的电流和转速调节器的设计。
1. 确定电流反馈系数β(假设启动电流在339 A以内)和转速反馈系数α;2. 设计电流调节器ACR,计算其参数R i、C i和C oi,已知调节器的输入回路电阻R0=40 KΩ;3. 设计转速调节器ASR,计算其参数R n、C n和C on,已知调节器的输入回路电阻R0=40 KΩ;4. 进行频率校验;5. 计算电动机带40%额定负载启动到最低转速时的转速超调量。
6. 计算空载启动到额定转速的时间。
7. 用simulink对所设计闭环系统进行仿真验证;8. 总结本次课程设计的收获体会。
电力拖动自动控制系统课程设计(DOC)

HENAN INSTITUTE OF ENGINEERING实训报告题目十机架连轧机分部传动直流调速系统的设计学生姓名李东盼专业班级电气工程1222 学号************系部电气信息工程学院指导教师程辉完成时间 2014年 1 月 3 日实训报告评语一、实训期间个人表现□1.尊敬师长,团结他人,能吃苦耐劳。
□2.在现场能坚持不迟到,不早退,勤奋学习。
□3.出现少于3次迟到和早退现象,表现一般。
□4.能主动向指导老师提问,能积极做好各项设计任务。
□5.在实训中能灵活运用相关专业知识,有较强的创新意识。
二、实训报告内容完成质量□1.能按时完成报告内容等实训成果资料,无任务遗漏。
□2.能按时完成报告内容等实训成果资料,有少许任务遗漏。
□3.不能按时完成报告内容等实训成果资料,有多处任务遗漏。
□4.条理清晰,书写规范工整,图文并茂,报告内容全面,主要内容阐述详细,能体现实训过程中做了大量工作,与专业相关知识能紧密联系,认识体会深刻,起到了实训的作用。
□5.条理清晰,书写规范工整,图文并茂,报告内容全面,主要内容阐述详细,能体现实训过程中做了大量工作,与专业相关知识能较紧密联系,认识体会较深刻,起到了实训的作用。
□6.条理清晰,书写较规范工整,报告内容全面,主要内容阐述较详细,能体现实训工作过程,能与专业相关知识联系起来,认识体会较深刻,起到了实训的作用。
□7.条理较清晰,书写较规范工整,报告内容较全面,主要内容阐述较详细,能体现实训过程中的相关工作,与专业相关知识不能紧密联系,认识体会不太深刻,基本起到了实训的作用。
□8.内容有雷同现象。
三、成绩不合格原因□1.实训期间旷课超过3次。
□2.报告有严重抄袭现象。
□3.未同时上交实训报告。
四、需要改进之处□1.进一步端正实训态度。
□2.加强报告书写的规范化训练,对主要内容要加强理解。
□3.加强相关专业知识的学习,深刻理解各设计步骤具体的要求。
五、其他说明等级:评阅人:职称:讲师年月日交直流调速系统的设计摘要直流调速系统具有调速范围广精度高动态性能好和易于控制等优点,因此本设计运用《电力拖动控制系统》的理论知识设计出可行的直流调速系统,并详细分析系统的原理及其静态和动态性能,且利用SIMULINK对系统进行各种参数的给定下的仿真。
电力拖动控制系统课程设计

图3-4 双闭环直流调速系统的静特性
• 在负载电流小于Idm时表现为转速无静差,转速 负反馈起主要调节作用。 • 当负载电流达到Idm时,转速调节器为饱和输出 U*im,电流调节器起主要调节作用,系统表现为 电流无静差。 • 采用两个PI调节器形成了内、外两个闭环的效果。 • 当ASR处于饱和状态时,Id=Idm,若负载电流减 小,Id<Idm,使转速上升,n>n0,Δn<0,ASR反 向积分,使ASR调节器退出饱和。
1.起动过程分析
• 电流Id从零增长到Idm,然后在一段时间内维 持其值等于Idm不变,以后又下降并经调节 后到达稳态值IdL。 • 转速波形先是缓慢升速,然后以恒加速上 升,产生超调后,到达给定值n*。 • 起动过程分为电流上升、恒流升速和转速 调节三个阶段, • 转速调节器在此三个阶段中经历了不饱 和、饱和以及退饱和三种情况。
2.2 调节器的工程设计方法
3.3.1 控制系统的动态性能指标 • 在控制系统中设置调节器是为了改善系统 的静、动态性能。 • 控制系统的动态性能指标包括对给定输入 信号的跟随性能指标和对扰动输入信号的 抗扰性能指标。
1、跟随性能指标
• 以输出量的初始值为零,给定信号阶跃 变化下的过渡过程作为典型的跟随过程, • 此跟随过程的输出量动态响应称作阶跃 响应。 • 常用的阶跃响应跟随性能指标有上升时 间、超调量和调节时间。
稳态结构图与参数计算
图3-2
转速、电流反馈控制直流调速系统原理图
ASR——转速调节器 ACR——电流调节器 TG——测速发电机
1. 稳态结构图和静特性
• 转速调节器ASR的输出限幅电压决定了电流给定 的最大值,电流调节器ACR的输出限幅电压限制 了电力电子变换器的最大输出电压, • 当调节器饱和时,输出达到限幅值,输入量的变 化不再影响输出,除非有反向的输入信号使调节 器退出饱和; • 当调节器不饱和时,PI调节器工作在线性调节状 态,其作用是使输入偏差电压在稳态时为零。 • 对于静特性来说,只有转速调节器饱和与不饱和 两种情况,电流调节器不进入饱和状态 。
电力拖动自动控制系统实验报告

电力拖动自动控制系统仿真实验报告课程名称:电力拖动自动控制系统课程编号:年级/专业/班:姓名:学号:任课老师:实验总成绩:电力拖动自动控制系统仿真实验报告实验项目名称:转速反馈控制直流调速系统实验指导老师:一、实验目的:1、进一步学习利用MA TLAB下的SIMULINK来对控制系统进行仿真。
2、掌握转速、电流反馈控制直流调速系统的原理。
3、学会利用工程的方法设计ACR、ASR调节器的方法。
二、仿真实验电路模型:比例积分控制的无静差直流调速系统的仿真模型三、实验设备及使用仪器:安装windows系统和MATLAB软件的计算机一台四、仿真实验步骤(按照实际建模操作过程填写):1、打开模型相关编辑窗口:通过单击SIMULINK工具栏中新模型的图标或选择File —New—Model菜单项实现。
复制相关原器件:双击所需要子模块图标,以鼠标左键选中所需的子模块,拖入模型编辑窗口。
2、模块连接:以鼠标左键单击起点模块输出端,拖动鼠标至终点模块输入端处,则在两模块间产生—>线。
修改相关参数:双击模型图案,则出现关于该图案的对话框,通过修改对话框内容来设定模块的参数。
3、仿真过程的启动:单击启动仿真工具的按钮或选择Simulation—Strat菜单栏,则可启动仿真过程,再双击Scope模块就可以显示仿真结果。
4、仿真参数的设置:为了清晰地观测仿真结果,需要对示波器显示格式作一个修改,对示波器的默认值注意改动,这里把Strat time和Stop time栏分别填写仿真的起始时间和结束时间,把默认时间从10.0s修改为0.6s。
重新启动仿真。
5、调节其参数的调整:根据工程的要求,选择一个合适的PI参数。
Kp=0.25,1/t=3,系统转速的相应无超调,但调节时间很长;当Kp=0.8,1/t=15,系统转速的相应的超调较大,但快速性较好。
五、实验数据、图表或计算等:修改控制参数后的仿真结果Kp=0.25,1/t=3,系统转速的相应无超调,但调节Kp=0.8,1/t=15,系统转速的相应的超调较大,但快速性较好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《电力拖动自动控制系统》课程设计报告(1)┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊目录一﹑前言 (2)1. 1设计目的 (2)1. 2设计内容 (2)二﹑伺服系统的基本组成原理及电路设 (2)1.伺服系统基本原理及系统框图 (2)三﹑调试后的图 (8)四﹑设计心得与体会 (13)五﹑参考文献 (14)┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊《电力拖动自动控制系统》课程设计报告一、前言1.1设计目的和要求1.使学生进一步掌握电力拖动自动控制系统的理论知识,培养学生工程设计能力和综合分析问题、解决问题的能力;2.使学生基本掌握常用电子电路的一般设计方法,提高电子电路的设计和实验能力;3.熟悉并学会选用电子元器件,为以后从事生产和科研工作打下一定的基础。
1.2设计内容1、分析和设计具有三环结构的伺服系统,用绘图软件(matlab)画原理图还有波形图;2、分析并理解具有三环结构的伺服系统原理。
二﹑伺服系统的基本组成原理及电路设计2.1伺服系统基本原理及系统框图伺服系统三环的PID控制原理以转台伺服系统为例,其控制结构如图2-1所示,其中r为框架参考角位置输入信号, 为输出角位置信号.┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊图2-1 转台伺服系统框图伺服系统执行机构为典型的直流电动驱动机构,电机输出轴直接与负载-转动轴相连,为使系统具有较好的速度和加速度性能,引入测速机信号作为系统的速度反馈,直接构成模拟式速度回路.由高精度圆感应同步器与数字变换装置构成数字式角位置伺服回路.转台伺服系统单框的位置环,速度环和电流环框图如图2-2,图2-3和图2-4所示.图2-2 伺服系统位置环框图┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊图2-3 伺服系统速度环框图图2-4 伺服系统电流框图图中符号含义如下:r为位置指令;θ为转台转角;u K为PWM功率放大倍数;d K为速度环放大倍数;v K为速度环反馈系数;i K为电流反馈系数;L为电枢电感;R为电枢电阻;m K为电机力矩系数;e C为电机反电动势系数;J为等效到转轴上的转动惯量;b为粘性阻尼系数,其中J=m J+L J,b=m b+L b,m J和L J分别为电机和负载的转动惯量,m b和L b分别为电机和负载的粘性阻尼系数;f T为扰动力矩,包括摩擦力矩和耦合力矩。
┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊假设在速度环中的外加干扰为粘性摩擦模型:()sgn()f c cF t F bθθ•=*+*控制器采用PID控制+前馈控制的形式,加入前馈摩擦补偿控制表示为:()sgn()f cl clu t F bθθ•=*+*式中,cl F和cl b为粘性摩擦模型等效到位置环的估计系数,该系数可以根据经验确定,或根据计算得出。
被控对象为一个具有三环结构的伺服系统,伺服系统系数和控制参数在程序中给出描述,系统采样时间为1ms。
取M=2,此时输入指令为正弦叠加信号:()sin(2)0.5sin(0.5)tr t A Ft A Ft=+,其中A=0.5,F=0.5.考虑到iK,L和e C的值很小,前馈补偿系数cl F和cl b等效到摩擦力矩端得系数可近似写为:1u d m gGain K K K KR=⨯⨯⨯⨯式中,g K为经验系数,摩擦模型估计系数cl F和cl b为:cclFF Gain=┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊cclbb Gain=系统总的控制输出为:()()()p fu t u t u t=+式中,()p u t为PID控制的输出,其三项系数为pp k=15,ii k=0.1,dd k=1.5.程序如chap01控制系统的simulink程序:chap01,如图2-5和图2-6所示。
图2-5 三环控制的simulink仿真程序┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊图2-6 电机模型的simulink仿真程序(1)带摩擦无前馈补偿时的仿真。
正弦叠加信号跟踪如图3-1和图3-2所示,由于静摩擦的作用,在低速跟踪存在“平顶”现象,速度跟踪存在“死区”现象。
(2)带摩擦有前馈补偿时的仿真。
正弦叠加信号跟踪如图3-3和图3-4所示,采用PID控制加前馈控制可很大程度地克服摩擦的影响,基本消除了位置跟踪的“平顶”和速度跟踪的:死区,实现了较高的位置跟踪和速度跟踪精度。
伺服系统的模拟PD+数字前馈控制伺服系统的模拟PD+数字前馈控制原理针对三环伺服系统,设电流环为开环,忽略电机反电动系数,将电阻R等效到速度环放大系数Kd上。
简化后的三环伺服系统结构框图如图2-7所示,其中u为控制输入。
┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊图2-7 简化后的三环伺服系统结构框图采用PD加前馈控制方式,设计的控制规律如下:121212 [()]d p vr r r ru k k r k f f k e k e f fθθ•••••••=--++=-++式中,1d pk k k=,2d vk k k=,e rθ=-。
21Js bs uθ=+即J b uθθ•••+=将控制律带入上式,得:2112()0r rf f J k b k eθθ••••••+--++=取:12f k b=+,2f J=得到系统的误差状态方程如下:┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊21()0J k b e k eθ•••+++=由于J>0,20k b+>,10k>则根据代数稳定性判据,针对二阶系统而言,当系统闭环特征方程式的系数都大于零时,系统稳定,系统的跟踪误差e(t)收敛于零。
被控对象为一个具有三环结构的伺服系统。
伺服系统参数和控制参数在程序中给出描述,系统输入信号的采样时间为1ms,输入指令为正弦叠加信号:()sin(2)r t A Ft=,其中A=1.0,F=1.0.u(t)为控制器的输出,伺服系统参数为:22.0J kg m=•,b=0.50, 2.0vk=, 15pk=, 6dk=.则12f k b=+,2f J=。
程序如chap02如图2-8.曲线图3-5,曲线图3-6,曲线图3-7.图2-8三﹑调试后的波形图┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊图3-1 正弦叠加信号跟踪图3-2正弦叠加信号跟踪┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊图3-3 正弦叠加信号跟踪图3-4 正弦叠加信号跟踪┊┊┊┊┊┊┊┊┊┊┊┊图3-5 装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊图3-6与图3-7四﹑设计心得与体会两周的课程设计结束了,在这次的课程设计中不仅检验了我所学的知识,也培养了我如何把握一件事情,如何去做一件事情,又如何较好地完成一件事情。
在设计过程中,与同学分工设计,与同学相互探讨,相互学习,相互监督。
学会了合作,学会了运筹帷幄,学会了宽容,学会了理解,学会了做人与处世。
课程设计是我们专业课程知识综合应用的实践训练,是我们迈向社会,从事职业工作前一个必不可少的一个过程。
“千里之行始于足下”,通过这次设计,我深深体会这句千古名言的真正含义。
我用两周的时间认真的进行课程设计,学会脚踏实地地迈开这一步,就是为明天能稳健地在社会大潮中奔跑打下坚实的基础。
通过这次电机拖动自动控制系统课程设计,本人学到了伺服系统三环的PID控制原理。
伺服系统执行机构为典型的直流电动驱动机构,电机输出轴直接与负载转动轴相连,为使系统具有较好的速度和加速度性能,引入测速机信号作为系统的速度反馈,直接构成模拟式速度回路。
由高精度圆感应同步器与数字变换装置构成数字式角位置伺服回路。
在这次设计过程中,体现自己能力以及综合运用知识的能力,体会了学以致用,突出自己劳动成果的喜悦心情,从中发现自己平时学习的不足和薄弱环节,从而加以弥补。
在此感谢我们的杨阳老师,老师严谨细致、一丝不苟的作风一直是我工作、学习中的榜样;老师循循善诱的教导和不拘一格的思维给予我无尽的启迪;这次的每个实验细节和每个数据都离不开老师的信心指导,帮助我能够很顺利的完成课程设计。
五﹑参考文献1.先进PID控制及其MATLAB仿真电子工业出版社20022.电力拖动自动控制系统机械工业出版社2003┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊毕业论文(设计)成绩评定表┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊。