控制系统的传递函数定义

合集下载

传递函数的定义

传递函数的定义

传递函数的定义
传递函数是一种概念,主要应用于数学上,用来表示复杂系统的性质和行为,
这种函数定义基于一组间接变量,并且依赖于输入和输出之间的关系。

传递函数具有许多用途,使得它成为控制理论和计算机科学方面的重要工具,
例如可用于系统建模和数据可视化。

此外,它还可用于确定某种复杂行为发生的条件以及允许制定更加精确的协议、模型和策略。

传递函数中包含了一些特征,比如转移函數。

它能够用来描述一个系统在各种
输入条件下的输出情况。

这一功能可以帮助研究人员评估某个系统中观察到的行为,从而更好地了解它。

此外,传递函数还应用于控制系统。

它可以用来识别系统中的重要参数,从而
帮助研究人员了解控制体系的结构和特征,使其能够有效地控制系统的行为。

历史上,传递函数一直被认为是系统分析和模型化的重要工具,也是一类启发
式技术,用于计算待解决问题的解决过程。

总之,传递函数是一种重要的数学模型,具有重要的实用价值。

它被广泛地应
用于控制理论和计算机科学方面,可以帮助我们更加精准地了解系统的复杂行为,从而针对特定系统采取有效的控制措施。

第二章 控制系统的传递函数

第二章    控制系统的传递函数

第二章
控制系统的传递函数
2.1 微分方程模型(时间域模型)
一、控制系统微分方程的分类
线性系统:可由线性微分方程描述的系统。线性微分方程是指微分方程 是定常和线性的。线性系统可应用叠加原理,将多输入及多输出的 系统转化为单输入和单输出的系统进行处理分析,最后进行叠加。 另外线性系统还有一个重要的性质,就是齐次性,即当输入量的数 值成比例增加时,输出量的数值也成比例增加,而且输出量的变化 规律只与系统的结构、参数及输入量的变化规律有关,与输入量数 值的大小是无关的。 非线性系统:研究非线性系统的运动规律和分析方法的一个分支学科。 非线性系统最重要的问题之一就是确定模型的结构,如果对系统的 运动有足够的知识,则可以按照系统运动规律给出它的数据模型。 一般来说,这样的模型是由非线性微分方程和非线性差分方程给出 的,对这类模型的辨别可以采用线性化,展开成特殊函数等方法。 非线性系统理论的研究对象是非线性现象,它反映出非线性系统运 动本质的一类现象,不能采用线性系统的理论来解释,主要原因是 非线性现象有频率对振幅的依赖性、多值响应和跳跃谐振、分谐波 振荡、自激振荡、频率插足、异步抑制、分岔和混沌等。
控制系统的传递函数
例 2:RLC 电路(L-R-C 无源四端网络)如图,建立输入输出间的微分方程关
由基尔霍夫定律,回路的压降为 0,即输入电压由电感、电阻、电容上的电压 平衡。 Ur=UL+UR+UC 电流 与 有 即 的关系
第二章
控制系统的传递函数
与 在数值上具有一 ~
注意:该系统也是一个二阶系统 与例 1 相比,它们具有相同的模型形式。当
线性系统满足叠加原理,而非线性系统不满足叠加原理。
第二章
控制系统的传递函数
二、微分方程模型的建立 根据系统物理机理建立系统微分方程模型的基本步骤: (1)确定系统中各元件的输入、输出物理量; (2)根据物理定律或化学定律(机理),列出元件的原始方程,在条 件允许的情况下忽略次要因素,适当简化; (3)列出原始方程中中间变量与其他因素的关系; (4)消去中间变量,按模型要求整理出最后形式。

传递函数和频率响应函数的概念

传递函数和频率响应函数的概念

传递函数和频率响应函数的概念1. 传递函数与频率响应函数的定义传递函数和频率响应函数是在控制系统分析中经常被使用的两个重要概念。

传递函数表示了系统的输入和输出之间的关系,通常用于描述线性时不变系统的动态特性。

而频率响应函数则是描述系统对不同频率信号的响应特性,帮助我们分析系统对于输入信号频率的衰减或放大情况。

2. 传递函数的深入理解传递函数通常用 H(s) 或 G(s) 表示,其中 s 是复数变量。

传递函数可以表示为系统的输出与输入的比值,其实际上是系统的冲激响应与冲激输入的拉普拉斯变换。

通过传递函数,我们可以分析系统对于各种输入信号的时域和频域响应,从而更好地理解系统的动态特性。

3. 频率响应函数的广度分析频率响应函数通常可以表示为H(jω),其中ω 是频率变量。

它可以描述系统对于不同频率输入信号的幅度和相位特性,通过频率响应函数,我们可以清晰地了解系统在不同频率下的放大或者衰减情况,从而更好地设计控制系统并进行频域分析。

4. 传递函数和频率响应函数间的关系传递函数和频率响应函数之间存在着密切的关系。

事实上,频率响应函数可以通过传递函数来得到,通过传递函数的极点和零点,我们可以清晰地了解系统对于不同频率信号的响应情况,从而利用频率响应函数来优化系统的控制性能。

5. 个人观点和理解对于传递函数和频率响应函数的理解,我认为它们是控制系统分析和设计中非常重要的概念。

通过对传递函数和频率响应函数的深入理解,我们可以更好地了解系统的动态特性,在控制系统设计中更加灵活地选择合适的控制策略。

频率响应函数还可以帮助我们进行系统的稳定性分析和频域设计,对于系统的性能指标如稳定裕度、相位裕度等有着重要的指导意义。

总结回顾传递函数和频率响应函数作为控制系统分析中的重要概念,对于系统的动态特性和频域特性有着深刻的影响。

通过对传递函数和频率响应函数的分析,我们可以更好地理解系统的动态响应和频率特性,从而更好地设计和优化控制系统。

第四章控制系统的传递函数

第四章控制系统的传递函数

其中,
n
1 T
——环节的 固有频率
To 2
1 T
——环节的 阻尼比
如果0≤ξ<1,二阶环节称为振荡环节
例7 图示是由质量m、阻尼c、弹簧k组成的动力系统. 求G(s)
依动力平衡原理有 Xi(t) k m c
Xo(t)
d 2 xo dxo m 2 c kxo kxi dt dt
因此,系统的传递函数就是系统单位脉冲响应 的拉氏变换。
一般地,传递函数的表达式为
X o ( s) ao s n a1s n1 a2 s n2 an G( s ) X i ( s) bo s m b1s m1 b2 s m2 bm
2. 传递函数的性质
k
k为比例环节的增益或称为放大系数
例1

ni(t)
z1
求一对齿轮传动的传递函数 no z1 k ∴G(s)=k ni z2
最基本的运算放大器
no(t)
z2
例2
i 1= i 2
ei ea ea eo R1 R2
ei eo R1 R2
ei
R2 R1 e i2 a Ko a i3 i1 +
ZL=Ls
3.电容元件
dUC iC C dt
ZC(s) = 1/sC
例5
下图是一个由运算放大器组成的积分器, 求G(s)。 C R i + uc 取拉氏变换 uo Ui(s) R
Zc
i
+ Uo(s)
ui
解:
1 uc idt c
I ( s) U c ( s) cs
K s
1 Zc cs
ms2 X o ( s) csX o (s) kXo ( s) kXi (sG( s) 2 ms cs k

自动控制原理部分简答题

自动控制原理部分简答题

一.名词解释1、传递函数:传递函数是指在零初始条件下,系统输出量的拉式变换与系统输入量的拉式变换之比。

2、系统校正:为了使系统达到我们的要求,给系统加入特定的环节,使系统达到我们的要求,这个过程叫系统校正。

3、主导极点:如果系统闭环极点中有一个极点或一对复数极点据虚轴最近且附近没有其他闭环零点,则它在响应中起主导作用称为主导极点。

4、香农定理:要求离散频谱各分量不出现重叠,即要求采样角频率满足如下关系: ωs ≥2ωmax 。

5、状态转移矩阵:()At t e φ=,描述系统从某一初始时刻向任一时刻的转移。

6、峰值时间:系统输出超过稳态值达到第一个峰值所需的时间为峰值时间。

7、动态结构图:把系统中所有环节或元件的传递函数填在系统原理方块图的方块中,并把相应的输入、输出信号分别以拉氏变换来表示,从而得到的传递函数方块图就称为动态结构图。

8、根轨迹的渐近线:当开环极点数 n 大于开环零点数 m 时,系统有n-m 条根轨迹终止于 S 平面的无穷远处,且它们交于实轴上的一点,这 n-m 条根轨迹变化趋向的直线叫做根轨迹的渐近线。

9、脉冲传递函数:零初始条件下,输出离散时间信号的z 变换()C z 与输入离散信号的z 变换()R z 之比,即()()()C z G z R z =。

10、Nyquist 判据(或奈氏判据):当ω由-∞变化到+∞时, Nyquist 曲线(极坐标图)逆时针包围(-1,j0)点的圈数N ,等于系统G(s)H(s)位于s 右半平面的极点数P ,即N=P ,则闭环系统稳定;否则(N ≠P )闭环系统不稳定,且闭环系统位于s 右半平面的极点数Z 为:Z=∣P-N ∣11、程序控制系统: 输入信号是一个已知的函数,系统的控制过程按预定的程序进行,要求被控量能迅速准确地复现输入,这样的自动控制系统称为程序控制系统12、稳态误差:对单位负反馈系统,当时间t 趋于无穷大时,系统对输入信号响应的实际值与期望值(即输入量)之差的极限值,称为稳态误差,它反映系统复现输入信号的(稳态)精度。

控制系统的传递函数

控制系统的传递函数

表示成零点、极点形式:
m
G(s)
Y (s) X (s)
bm an
Q(s) P(s)
Kg
(s zi )
i 1 n
(s pj )
z 式中: 称为传递函数的零点, i
j 1
称为传递函p数j 的极点。
Kg
bm an
Tuesday, June 16, 2020
—传递系数(零极点形式传递函数增益)
9
传递函数的表现形式
零初始条件下输出量的拉氏变换与输入量拉氏变换之比。也可写成:Y(s)=G(s) X(s)。
通过拉氏反变换可求出时域表达式y(t)。
Tuesday, June 16, 2020
2
传递函数的基本概念
[总结]: 传递函数是由线性微分方程(线性系统)当初始值为零时进行拉氏变化得到
的。
已知传递函数G(s)和输入函数X(s),可得出输出Y(s)。通过反变换可求出 时域表达式y(t)。
Gm (s)M k f (t), G f
c (s) Gu (s) (s) U f (s)
(s)
Gm kf
(s)
U g (s) Mc (s)
5
传递函数的基本概念||例2-8a8'
求下图系统的传递函数。
R
L
方法1:见例2-1
求L上C式uo的'' (拉t)氏变R换C,uo得' (:t) uo (t) ui (t)
Tuesday, June 16, 2020
4
传递函数的基本概念||例2-8
上式有两个输入量,而传递函数只能处理单输入-单输出系统。对于线性系统, 可以将多个输入分别独立处理,然后叠加起来。下面分别讨论两个输入单独作用时 的传递函数。

第二章 (2.1,2.2)控制系统的微分方程、传递函数

第二章 (2.1,2.2)控制系统的微分方程、传递函数

拉氏变换的重要应用——解线性定常微分方程

求微分方程的拉氏变换,注意初值!!
求出 C ( s ) 的表达式 拉氏反变换,求得 c (t )
例1 已知系统的微分方程式,求系统的输出响应。
d 2c(t ) dc(t ) 2 2c(t ) r(t ) 2 dt dt d2 解: 在零初态下应用微分定理: 2 s 2
+
i (t )
R

u (t )
+
i (t )
u (t ) i (t ) R
du ( t ) 1 i (t ) dt C
di (t ) u (t ) L dt
电容
C

u (t )
+
ቤተ መጻሕፍቲ ባይዱi (t )
电感
u (t )

L
机械系统三要素的微分方程
设系统输入量为外力,输出量为位移
d 2 x (t) m f (t) 2 dt
d uc (t ) duc (t ) LC RC uc (t ) ur (t ) 2 dt dt
2
3.机械位移系统
输入量为外力: F (t ) 输出量为位移: y (t )
dy 2 (t ) 依据牛顿定律: F m dt 2
dy (t ) d y (t ) F (t ) ky (t ) f m 2 dt dt
d 2 y (t ) dy (t ) m f ky (t ) F (t ) 2 dt dt
微分方程结构一致 二阶线性定常微分方程
不同形式的物理环节和系统可以建立相同形式的数学模型。
系统微分方程由输出量各阶导数和输 入量各阶导数以及系统的一些参数构成。 n阶线性定常系统的微分方程可描述为:

控制工程基础第三章系统的传递函数

控制工程基础第三章系统的传递函数

如图所示为机械转动系统,由惯性负载和粘性摩擦阻 尼器构成,以转矩Ti为输入量,以角速度w为输出量
机械转动系统
dw ( t) 其运动方程式为:J + Bw ( t )= Ti ( t) dt W (s ) 1 K 其传递函数为:G ( s)= = = Ti (s ) Js + B Ts + 1 J 1 式中 T= , K = 。 B B
B
i(t)
C
uo (t)
x
机械平移系统
d 2x dx m 2 B k x f t dt dt
RLC电路
X s 1 1 2n Gs = 2 F s ms Bs k k s 2 2n s 2 n
n
k m

B 2 km
C
uo (t )
其微分方程为:Ri( t)+ u0 () t = ui () t du0 () t i( t)= C dt 消去中间变量后,得 du0 () t RC + u0 () t = ui () t dt 通过拉氏变换求得电路的传递函数为: U0 (s) 1 G( s)= = Ui (s) Ts+1 式中 T=RC
4. 微分环节
输出量与输入量的微分成比例的环节,称为微分环节 dxi ( t) 其运动方程式为:x0 ( t )= TD dt 其传递函数为: G ( s)= TD s
式中 TD ─ 微分环节的时 间常数 。
当输入量为单位阶跃信号时,输出量就是脉冲函数,这 在实际中是不可能的。因此,理想的微分环节不能实现,在 实际中用来执行微分作用的都是近似的,称为实际微分环节, 其传递函数具有如下形式:
一阶微分环节和二阶微分环节的微分方程分别为:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

控制系统的传递函数定义
控制系统传递函数是描述控制系统输入与输出关系的数学模型,通常用于分析和设计控制系统。

它表示了输入信号经过控制系统后的输出信号,可以用数学公式表示为输出信号Y(s)与输入信号U(s)的关系:Y(s)=G(s)U(s)。

其中,G(s)为系统的传递函数,它是一个复数函数,描述了控制系统的动态特性和稳态特性。

传递函数的分母描述了系统的阻尼和自然频率,分子描述了系统的增益和相位,通过对传递函数进行分析可以得到系统的稳态误差、稳定性、响应速度等性能指标。

因此,传递函数是控制系统分析和设计的重要工具,对于掌握控制系统的动态特性和优化系统性能具有重要意义。

- 1 -。

相关文档
最新文档