2018届二轮复习 不等式、推理与证明:直接证明与间接证明 学案(全国通用)

合集下载

专题6.6 直接证明、间接证明、数学归纳法(原卷版)

专题6.6 直接证明、间接证明、数学归纳法(原卷版)

第六篇不等式、推理与证明专题6.6直接证明、间接证明、数学归纳法【考纲要求】1.了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程和特点.2.了解间接证明的一种基本方法——反证法;了解反证法的思考过程和特点3.了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题【命题趋势】1.直接证明与间接证明一般考查以不等式、数列、解析几何、立体几何、函数、三角函数为背景的证明问题.2.数学归纳法一般以数列、集合为背景,用“归纳—猜想—证明”的模式考查.【核心素养】本讲内容主要考查逻辑推理和数学运算的核心素养.【素养清单•基础知识】1.直接证明(1)综合法①定义:利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法.②框图表示:P⇒Q1―→Q1⇒Q2―→Q2⇒Q3―→…―→Q n⇒Q(其中P表示已知条件、已有的定义、定理、公理等,Q表示所要证明的结论).(2)分析法①定义:从要证明的__结论__出发,逐步寻求使它成立的充分条件,直至最后把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法.②框图表示:Q⇐P1―→P1⇐P2―→P2⇐P3―→…―→得到一个明显成立的条件.2.间接证明间接证明是不同于直接证明的又一类证明方法,反证法是一种常用的间接证明方法.(1)反证法的定义一般地,假设原命题的结论不成立,经过正确的推理,最后得出矛盾,由此说明假设错误,从而证明了原命题的成立,这样的证明方法叫作反证法.(2)用反证法证明的一般步骤①反设——假设原命题的结论不成立;②归谬——根据假设进行推理,直到推理中出现矛盾为止;③结论——断言假设不成立,从而肯定原命题的结论成立.用反证法证明命题“若p ,则q ”的过程可以用框图表示为 肯定条件p ,否定结论q ―→推出逻辑矛盾―→“若p ,则非q ”为假―→“若p ,则q ”为真【真题体验】1.用分析法证明:欲使①A >B ,只需②C <D ,这里①是②的( )A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件2.用反证法证明命题“三角形三个内角至少有一个不大于60°”时,应假设( )A .三个内角都不大于60°B .三个内角都大于60°C .三个内角至多有一个大于60°D .三个内角至多有两个大于60°3.在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,且A ,B ,C 成等差数列,a ,b ,c 成等比数列,则△ABC 的形状为__________.4.下列条件:①ab >0;②ab <0;③a >0,b >0;④a <0,b <0,其中能使b a +a b ≥2成立的条件的个数是__________.5.(2019·湖北天门中学月考)设f (n )=1n +1+1n +2+…+12n (n ∈N *),那么f (n +1)-f (n )等于( )A.12n +1B.12n +2C.12n +1+12n +2D.12n +1-12n +26.(2019·黑龙江大庆一模)设f (x )是定义在正整数集上的函数,且f (x )满足:“当f (k )≥k +1成立时,总可推出f (k +1)≥k +2成立”.那么,下列命题总成立的是( )A .若f (1)<2成立,则f (10)<11成立B .若f (3)≥4成立,则当k ≥1时,均有f (k )≥k +1C .若f (2)<3成立,则f (1)≥2成立D .若f (4)≥5成立,则当k ≥4时,均有f (k )≥k +1成立7.用数学归纳法证明“当n 为正奇数时,x n +y n 能被x +y 整除”,当第二步假设n =2k -1(k ∈N *)时命题为真,进而需证n =__________时,命题亦真.【考法解码•题型拓展】考法一:分析法解题技巧:分析法证题的思路(1)先从结论入手,由此逐步推出保证此结论成立的充分条件,而当这些判断恰恰都是已证的命题(定义、公理、定理、法则、公式等)或要证命题的已知条件时,命题得证.(2)证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证.【例1】 已知a >0,求证:a 2+1a 2-2≥a +1a -2.考法二:综合法归纳总结 :综合法证题的思路(1)分析条件选择方向:分析题目的已知条件及已知与结论之间的联系,选择相关的定理、公式等,确定恰当的解题方法.(2)转化条件组织过程:把已知条件转化成解题所需要的语言,主要是文字、符号、图形三种语言之间的转化.(3)适当调整回顾反思:回顾解题过程,可对部分步骤进行调整,并对一些语言进行适当的修饰,反思总结解题方法的选取.【例2】 (1)设a ,b ,c ,d 均为正数,且a +b =c +d ,若ab >cd ,证明:①a +b >c +d ;②|a -b |<|c -d |.(2)(2019·长沙调考)已知函数f (x )=log 2(x +2),a ,b ,c 是两两不相等的正数,且a ,b ,c 成等比数列,试判断f (a )+f (c )与2f (b )的大小关系,并证明你的结论.考法三:反证法归纳总结(1)适用范围:①“结论”的反面比“结论”本身更简单、更具体、更明确的题目;②否定性命题、唯一性命题、存在性命题、“至多”“至少”型命题;③有的肯定形式命题,由于已知或结论涉及无限个元素,用直接证明法比较困难,往往用反证法.(2)推理关键:在正确的推理下得出矛盾,矛盾可以是与已知条件矛盾,与假设矛盾,与定义、公理、定理矛盾,与事实矛盾等,推导出的矛盾必须是明显的.【例3】 等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2.(1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S n n (n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.考法四:数学归纳法证明等式归纳总结:数学归纳法证明等式的思路和注意点(1)思路:用数学归纳法证明等式问题,要“先看项”,弄清等式两边的构成规律,等式两边各有多少项,初始值n 0是多少.(2)注意点:由n=k时等式成立,推出n=k+1时等式成立,一要找出等式两边的变化(差异),明确变形目标;二要充分利用归纳假设,进行合理变形,正确地写出证明过程,不利用归纳假设的证明,就不是数学归纳法.【例1】求证:12-22+32-42+…+(2n-1)2-(2n)2=-n(2n+1)(n∈N*).考法五:数学归纳法证明不等式归纳总结(1)当遇到与正整数n有关的不等式证明时,应用其他办法不容易证明,则可考虑应用数学归纳法.(2)数学归纳法证明不等式的关键是由n=k成立,推证n=k+1时也成立,证明时用上归纳假设后,可采用分析法、综合法、作差(作商)比较法、放缩法等方法证明.【例2】已知数列{a n},a n≥0,a1=0,a2n+1+a n+1-1=a2n,求证:当n∈N*时,a n<a n+1.考法六:归纳—猜想—证明归纳总结:“归纳—猜想—证明”的模式,是不完全归纳法与数学归纳法综合应用的解题模式.其一般思路是:通过观察有限个特例,猜想出一般性的结论,然后用数学归纳法证明.这种方法在解决与正整数n有关的探索性问题、存在性问题中有着广泛的应用,其关键是归纳、猜想出公式.【例3】(2019·湖北孝感检测)数列{a n}满足S n=2n-a n(n∈N*).(1)计算a1,a2,a3,并猜想a n的通项公式;(2)用数学归纳法证明(1)中的猜想.【易错警示】易错点一:反证法中未用到反设的结论【典例】设{a n}是公比为q的等比数列.设q≠1,证明:数列{a n+1}不是等比数列.【错解】:假设{a n+1}是等比数列.则{a n+1}的前三项为a1+1,a2+1,a3+1,即a1+1,a1q+1,a1q2+1.(a1+1)(a1q2+1)-(a1q+1)2=a21q2+a1+a1q2+1-a21q2-2a1q-1=a1(q2-2q+1)=a1(q-1)2≠0,所以(a1+1)(a1q2+1)≠(a1q+1)2,所以数列{a n+1}不是等比数列.(推理中未用到结论的反设)【错因分析】:错解在解题的过程中并没有用到假设的结论,故不是反证法.利用反证法进行证明时,首先对所要证明的结论进行否定性假设,并以此为条件进行归谬,得到矛盾,则原命题成立.【正解】:假设{a n+1}是等比数列.则对任意的k∈N*,(a k+1+1)2=(a k+1)(a k+2+1),a2k+1+2a k+1+1=a k a k +2+a k+a k+2+1,a21q2k+2a1q k=a1q k-1·a1q k+1+a1q k-1+a1q k+1,因为a1≠0,所以2q k=q k-1+q k+1.又q≠0,所以q2-2q+1=0,所以q=1,这与已知q≠1矛盾.所以假设不成立,故数列{a n+1}不是等比数列.【误区防范】利用反证法证明数学问题时,要假设结论错误,并用假设的命题进行推理,如果没有用假设命题推理而推出矛盾结果,其推理过程是错误的.【跟踪训练】设a>0,b>0,且a2+b2=1a2+1b2.证明:a2+a<2与b2+b<2不可能同时成立.【答案】见解析【解析】证明 假设a 2+a <2与b 2+b <2同时成立,则有a 2+a +b 2+b <4.而由a 2+b 2=1a 2+1b 2得a 2b 2=1,因为a >0,b >0,所以ab =1.因为a 2+b 2≥2ab =2(当且仅当a =b =1时,等号成立),a +b ≥2ab =2(当且仅当a=b =1时,等号成立),所以a 2+a +b 2+b ≥2ab +2ab =4(当且仅当a =b =1时,等号成立),这与假设矛盾,故假设错误.所以a 2+a <2与b 2+b <2不可能同时成立.易错点二:证明过程未用到归纳假设【典例】用数学归纳法证明:12+122+123+…+12n -1+12n =1-12n (n ∈N *).【错解】:证明:(1)当n =1时,左边=12,右边=1-12=12,等式成立.(2)假设当n =k (k ∈N *,且k ≥1)时,等式成立,即12+122+123+…+12k -1+12k =1-12k .那么当n =k +1时,左边=12+122+123+…+12k -1+12k +12k +1=12×⎣⎡⎦⎤1-⎝⎛⎭⎫12k +11-12=1-12k +1.这就是说,当n =k +1时,等式也成立.根据(1)和(2),可知等式对任意n ∈N *都成立.【错因分析】:错误的原因在第二步,它是直接利用了等比数列的求和公式求出了当n =k +1时,式子12+122+…+12k -1+12k +12k +1的和,而没有利用“归纳假设”,不符合数学归纳法证明的步骤. 【正解】:证明:(1)当n =1时,左边=12,右边=1-12=12,等式成立.(2)假设当n =k (k ∈N *,且k ≥1)时,等式成立,即12+122+123+…+12k -1+12k =1-12k ,那么当n =k +1时,左边=12+122+123+…+12k -1+12k +12k +1=1-12k +12k +1=1-12k +1=右边.这就是说,当n =k +1时,等式也成立.根据(1)和(2),可知等式对任意n ∈N *都成立.【误区防范】(1)用数学归纳法证明命题时常出现两种错误:一是n 0的值找错.二是证明命题n =k +1也成立时,没有用到n =k 时的归纳假设.(2)确定由n =k 变化到n =k +1的过程中项的变化情况时,要把握好项的变化规律以及首末项.【跟踪训练】 设a 1=1,a n +1=a 2n -2a n +2+1(n ∈N *),求a 2,a 3,a n ,并用数学归纳法证明你的结论.【答案】见解析【解析】a 2=2,a 3=2+1,可写为a 1=1-1+1,a 2=2-1+1,a 3=3-1+1.因此猜想a n =n -1+1.下面用数学归纳法证明上式:当n =1时结论成立.假设n =k 时结论成立,即a k =k -1+1,则a k +1+11 1.这就是说,当n =k +1时结论也成立.综上可知,a n =n -1+1(n ∈N *).【递进题组】1.欲证a 2+b 2-1-a 2b 2≤0,只需证明( )A .2ab -1-a 2b 2≤0B .a 2+b 2-1-a 4+b 42≤0 C.a +b22-1-a 2b 2≤0 D .(a 2-1)(b 2-1)≥02.若0<a 1<a 2,0<b 1<b 2,且a 1+a 2=b 1+b 2=1,则下列代数式中值最大的是( )A .a 1b 1+a 2b 2B .a 1a 2+b 1b 2C .a 1b 2+a 2b 1 D.123.设a ,b ,c 均为正数,且a +b +c =1,证明:(1)ab +bc +ac ≤13;(2)a 2b +b 2c +c 2a ≥1.4.已知a ≠0,证明:关于x 的方程ax =b 有且只有一个根.5.设f (n )=1+12+13+…+1n (n ∈N *),求证:f (1)+f (2)+…+f (n -1)=n [f (n )-1](n ≥2,n ∈N *).6.用数学归纳法证明:1+n2≤1+12+13+…+12n≤12+n(n∈N*).7.(2019·湖北部分重点中学联考)已知数列{x n}满足x1=12,且x n+1=x n2-x n(n∈N*).(1)用数学归纳法证明:0<x n<1;(2)设a n=1x n,求数列{a n}的通项公式.8.(2019·武穴中学月考)试证:n 为正整数时,f (n )=32n +2-8n -9能被64整除.【考卷送检】一、选择题1.用反证法证明命题“若a +b +c 为偶数,则自然数a ,b ,c 恰有一个偶数”时,正确的反设为( ) A .自然数a ,b ,c 都是奇数B .自然数a ,b ,c 都是偶数C .自然数a ,b ,c 中至少有两个偶数D .自然数a ,b ,c 都是奇数或至少有两个偶数2.分析法又称执果索因法,若用分析法证明“设 a >b >c ,且a +b +c =0,求证b 2-ac <3a ”,索的因应是( )A .a -b >0B .a -c >0C .(a -b )(a -c )>0D .(a -b )(a -c )<03.(2019·焦作一中月考)若a ,b ∈R ,则下面四个式子中恒成立的是( )A .lg(1+a 2)>0B .a 2+b 2≥2(a -b -1)C .a 2+3ab >2b 2D.a b <a +1b +1 4.设f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,若x 1+x 2>0,则f (x 1)+f (x 2)的值( ) A .恒为负值 B .恒等于零C .恒为正值D .无法确定正负5.已知a >b >0,且 ab =1,若 0<c <1,p =log c a 2+b 22,q =log c ⎝ ⎛⎭⎪⎫1a +b 2,则p ,q 的大小关系是( )A .p >qB .p <qC .p =qD .p ≥q6.设x ,y ,z >0,则三个数y x +y z ,z x +z y ,x z +x y ( )A .都大于2B .至少有一个大于2C .至少有一个不小于2D .至少有一个不大于2二、填空题7.设a =3+22,b =2+7,则a ,b 的大小关系为________.8.用反证法证明命题“若实数a ,b ,c ,d 满足a +b =c +d =1,ac +bd >1,则a ,b ,c ,d 中至少有一个是非负数”时,第一步要假设结论的否定成立,那么结论的否定是________________.9.(2019·郑州一模)某题字迹有污损,大致内容是“已知|x |≤1,,用分析法证明|x +y |≤|1+xy |”.估计污损部分的文字内容为________.三、解答题10.(2019·永州一中月考)已知a ≥b >0,求证:2a 3-b 3≥2ab 2-a 2b .证明 欲要证2a 3-b 3≥2ab 2-a 2b 成立,只需证2a 3-b 3-2ab 2+a 2b ≥0,即证2a (a 2-b 2)+b (a 2-b 2)≥0,即证(a +b )(a -b )(2a +b )≥0.因为a ≥b >0,所以a -b ≥0,a +b >0,2a +b >0,从而(a +b )(a -b )(2a +b )≥0成立,所以2a 3-b 3≥2ab 2-a 2b .11.(2019·黄石二中期中)已知四棱锥S -ABCD 中,底面是边长为1的正方形,又SB =SD =2,SA =1.(1)求证:SA ⊥平面ABCD ;(2)在棱SC 上是否存在异于S ,C 的点F ,使得BF ∥平面SAD ?若存在,确定点F 的位置;若不存在,请说明理由.12.已知数列{a n }满足a 1=12,且a n +1=a n 3a n +1(n ∈N *).(1)证明:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,并求数列{a n }的通项公式;(2)设b n =a n a n +1(n ∈N *),数列{b n }的前n 项和记为T n ,证明:T n <16.13.设a ,b 是两个实数,给出下列条件:①a +b >1;②a +b =2;③a +b >2;④a 2 +b 2>2;⑤ab >1.其中能推出“a ,b 中至少有一个大于1”的条件是________(填序号).14.求证:1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n (n ∈N *).15.用数学归纳法证明1+122+132+…+1n 2<2-1n (n ∈N *,n ≥2).16.(2019·衡水高中调研)首项为正数的数列{a n }满足a n +1=14(a 2n +3),n ∈N *.证明:若a 1为奇数,则对一切n ≥2,a n 都是奇数.17.已知函数f (x )=13x 3-x ,数列{a n }满足条件:a 1≥1,a n +1≥f ′(a n +1),试比较11+a 1+11+a 2+11+a 3+…+11+a n 与1的大小,并说明理由.。

2018年高考数学一轮复习第六章不等式推理与证明第37讲直接证明与间接证明课件理

2018年高考数学一轮复习第六章不等式推理与证明第37讲直接证明与间接证明课件理
• (2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条
件.( × )
• (3)用反证法证明时,推出的矛盾不能与假设矛盾.(× )
• (4)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展
现解决问题的过程.( √ )
• 解析:(1)正确.
• (2)错误.分析法是从要证明的结论出发,逐 步寻找使结论成立的充分条件,不是充要条 件.
(2)分析法 ①定义:从要证明的__结__论____出发,逐步寻求使它成立的__充___分___条__件_,直至最 后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理 等)为止,这种证明方法叫做分析法.
②框图表示: Q⇐P1 ―→ P1⇐P2 ―→ P2⇐P3 ―→…―→ 得到一个明显成立的条件 .
• (2)关键:在正确的推理下得出矛盾,矛盾可 以是与已知条件矛盾,与假设矛盾,与定义、 公理、定理矛盾,与事实矛盾等,推导出的 矛盾必须是明显的.
【例3】 等差数列an的前n项和为Sn,a1=1+ 2,S3=9+3 2. (1)求数列an的通项an与前n项和Sn; (2)设bn=Snn(n∈N*),求证:数列bn中任意不同的三项都不可能成为比数列.
• (3)错误.用反证法证明时,推出的矛盾可以 与已知、公理、定理、事实或者假设等相矛 盾.
• (4)正确.
• 2.用分析法证明:欲使①A>B,只需②C<
D,这里①是②的( B )
• A.充分条件
B.必要条件
• C.充要条件 要条件
D.既不充分也不必
• 解析:由题意可知,应有②⇒①,故①是② 的必要条件.
【例1】 已知a>0,求证: a2+a12- 2≥a+1a-2.
证明:要证 a2+a12- 2≥a+1a-2,

高考数学一轮复习 第6章 不等式、推理与证明 第5节 直接证明与间接证明、数学归纳法教学案 理(含解

高考数学一轮复习 第6章 不等式、推理与证明 第5节 直接证明与间接证明、数学归纳法教学案 理(含解

第五节直接证明与间接证明、数学归纳法[考纲传真] 1.了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程和特点.2.了解间接证明的一种基本方法——反证法;了解反证法的思考过程和特点.3.了解数学归纳法的原理.4.能用数学归纳法证明一些简单的数学命题.1.直接证明(1)综合法定义:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立的证明方法.(2)分析法定义:从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止的证明方法.2.间接证明——反证法一般地,假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.3.数学归纳法一般地,证明一个与正整数n有关的命题,可按下列步骤进行:(1)归纳奠基:证明当n取第一个值n0(n0∈N*)时命题成立;(2)归纳递推:假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立.只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.上述证明方法叫做数学归纳法.[常用结论] 利用归纳假设的技巧在推证n=k+1时,可以通过凑、拆、配项等方法用上归纳假设.此时既要看准目标,又要掌握n=k与n=k+1之间的关系.在推证时,分析法、综合法、反证法等方法都可以应用.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)用数学归纳法证明问题时,第一步是验证当n=1时结论成立.( )(2)综合法是直接证明,分析法是间接证明.( )(3)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.( )(4)用反证法证明结论“a >b ”时,应假设“a <b ”.( ) [答案](1)× (2)× (3)× (4)× 2.利用数学归纳法证明“1+a +a 2+…+a n +1=1-a n +21-a(a ≠1,n ∈N *)”时,在验证n =1成立时,左边应该是( ) A .1 B .1+a C .1+a +a 2D .1+a +a 2+a 3C [n =1时,左边=1+a +a 2,故选C.]3.命题“对于任意角θ,cos 4θ-sin 4θ=cos 2θ”的证明:“cos 4θ-sin 4θ=(cos 2θ-sin 2θ)(cos 2θ+sin 2θ)=cos 2θ-sin 2θ=cos 2θ”过程应用了 ( ) A .分析法 B .综合法C .综合法、分析法结合使用D .间接证法B [由证明过程看是用了综合法的证明,故选B.]4.设a ,b ,c 都是正数,则a +1b ,b +1c ,c +1a三个数( )A .都大于2B .都小于2C .至少有一个不大于2D .至少有一个不小于2D [∵⎝⎛⎭⎪⎫a +1b +⎝⎛⎭⎪⎫b +1c +⎝⎛⎭⎪⎫c +1a=⎝⎛⎭⎪⎫a +1a +⎝⎛⎭⎪⎫b +1b +⎝⎛⎭⎪⎫c +1c ≥6, 当且仅当a =b =c 时取等号, ∴三个数中至少有一个不小于2.]5.用数学归纳法证明12+22+…+(n -1)2+n 2+(n -1)2+…+22+12=n 2n 2+13时,由n=k 的假设到证明n =k +1时,等式左边应添加的式子是( ) A .(k +1)2+2k 2B .(k +1)2+k 2C .(k +1)2D.13(k +1)[2(k +1)2+1]B [若n =k 时成立,即12+22+…+(k -1)2+k 2+(k -1)2+…+22+12=k 2k 2+12成立,那么n =k +1时,左边=12+22+…+k 2+(k +1)2+k 2+…+22+12,对比n =k 时的式子可知,当n =k +1时,等式左边应添加的式子是(k +1)2+k 2,故选B.]分析法的应用1.若a ,b ∈(1,+∞),证明a +b <1+ab . [证明] 要证a +b <1+ab , 只需证(a +b )2<(1+ab )2, 只需证a +b -1-ab <0, 即证(a -1)(1-b )<0.因为a >1,b >1,所以a -1>0,1-b <0, 即(a -1)(1-b )<0成立, 所以原不等式成立.2.已知△ABC 的三个内角A ,B ,C 成等差数列,A ,B ,C 的对边分别为a ,b ,c . 求证:1a +b +1b +c =3a +b +c. [证明] 要证1a +b +1b +c =3a +b +c, 即证a +b +c a +b +a +b +c b +c =3,也就是c a +b +ab +c=1, 只需证c (b +c )+a (a +b )=(a +b )(b +c ), 需证c 2+a 2=ac +b 2,又△ABC 三内角A ,B ,C 成等差数列,故B =60°, 由余弦定理,得b 2=c 2+a 2-2ac cos 60°, 即b 2=c 2+a 2-ac ,故c 2+a 2=ac +b 2成立. 于是原等式成立. [规律方法]1逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件.正确把握转化方向是使问题顺利解决的关键.2证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价或充分的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证.综合法的应用【例1】 设数列{a n }的前n 项和为S n ,已知3a n -2S n =2. (1)证明{a n }是等比数列并求出通项公式a n ; (2)求证:S 2n +1-S n S n +2=4×3n.[证明](1)因为3a n -2S n =2,所以3a n +1-2S n +1=2, 所以3a n +1-3a n -2(S n +1-S n )=0. 因为S n +1-S n =a n +1,所以a n +1a n=3,所以{a n }是等比数列. 当n =1时,3a 1-2S 1=2,又S 1=a 1,所以a 1=2.所以{a n }是以2为首项,以3为公比的等比数列,其通项公式为a n =2×3n -1.(2)由(1)可得S n =3n -1,S n +1=3n +1-1,S n +2=3n +2-1,故S 2n +1-S n S n +2=(3n +1-1)2-(3n-1)(3n +2-1)=4×3n,即S 2n +1-S n S n +2=4×3n. [规律方法] 1综合法是“由因导果”的证明方法,它是一种从已知到未知从题设到结论的逻辑推理方法,即从题设中的已知条件或已证的真实判断命题出发,经过一系列中间推理,最后导出所要求证结论的真实性. 2综合法的逻辑依据是三段论式的演绎推理.证明:(1)ab +bc +ac ≤13;(2)a 2b +b 2c +c 2a≥1.[证明](1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac , 得a 2+b 2+c 2≥ab +bc +ca , 由题设得(a +b +c )2=1, 即a 2+b 2+c 2+2ab +2bc +2ca =1. 所以3(ab +bc +ca )≤1, 即ab +bc +ca ≤13.(2)因为a ,b ,c 均为正数,a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c ,故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2a ≥a +b +c , 所以a 2b +b 2c +c 2a≥1.反证法的应用【例2】 设a >0,b >0,且a +b =1a +1b.证明:(1)a +b ≥2;(2)a 2+a <2与b 2+b <2不可能同时成立.[证明] 由a +b =1a +1b =a +bab,a >0,b >0,得ab =1.(1)由基本不等式及ab =1, 有a +b ≥2ab =2,即a +b ≥2.(2)假设a 2+a <2与b 2+b <2同时成立,则由a 2+a <2及a >0,得0<a <1; 同理,0<b <1,从而ab <1,这与ab =1矛盾. 故a 2+a <2与b 2+b <2不可能同时成立. [规律方法] 用反证法证明问题的步骤1反设:假定所要证的结论不成立,而设结论的反面成立否定结论2归谬:将“反设”作为条件,由此出发经过正确的推理,导出矛盾,矛盾可以是与已知条件、定义、公理、定理及明显的事实矛盾或自相矛盾.推导矛盾 3立论:因为推理正确,所以产生矛盾的原因在于“反设”的谬误.既然原命题结论的反面不成立,从而肯定了原命题成立.命题成立n n (1)求证:数列{S n }不是等比数列; (2)数列{S n }是等差数列吗?为什么?[解](1)证明:假设数列{S n }是等比数列,则S 22=S 1S 3, 即a 21(1+q )2=a 1·a 1·(1+q +q 2),因为a 1≠0,所以(1+q )2=1+q +q 2, 即q =0,这与公比q ≠0矛盾, 所以数列{S n }不是等比数列.(2)当q =1时,S n =na 1,故{S n }是等差数列;当q ≠1时,{S n }不是等差数列.假设{S n }是等差数列, 则2S 2=S 1+S 3,即2a 1(1+q )=a 1+a 1(1+q +q 2), 得q =0,这与公比q ≠0矛盾.综上,当q =1时,数列{S n }是等差数列; 当q ≠1时,数列{S n }不是等差数列.数学归纳法的应用【例3】 已知f (n )=1+123+133+143+…+1n 3,g (n )=32-12n 2,n ∈N *.(1)当n =1,2,3时,试比较f (n )与g (n )的大小关系; (2)猜想f (n )与g (n )的大小关系,并给出证明. [解](1)当n =1时,f (1)=1,g (1)=1, 所以f (1)=g (1);当n =2时,f (2)=98,g (2)=118,所以f (2)<g (2);当n =3时,f (3)=251216,g (3)=312216,所以f (3)<g (3).(2)由(1)猜想,f (n )≤g (n ),用数学归纳法证明. ①当n =1,2,3时,不等式显然成立. ②假设当n =k (k >3,k ∈N *)时不等式成立, 即1+123+133+143+…+1k 3<32-12k 2,则当n =k +1时,f (k +1)=f (k )+1k +13<32-12k2+1k +13.因为12k +12-⎣⎢⎡⎦⎥⎤12k2-1k +13=k +32k +13-12k2 =-3k -12k +13k2<0,所以f (k +1)<32-12k +12=g (k +1).由①②可知,对一切n ∈N *,都有f (n )≤g (n )成立. [规律方法] 1.应用数学归纳法证明不等式应注意的问题(1)当遇到与正整数n 有关的不等式证明时,应用其他办法不容易证,则可考虑应用数学归纳法.(2)用数学归纳法证明不等式的关键是由n =k 成立,推证n =k +1时也成立,证明时用上归纳假设后,可采用分析法、综合法、求差(求商)比较法、放缩法、构造函数法等证明方法. 2.利用数学归纳法可以探索与正整数n 有关的未知问题、存在性问题,其基本模式是“归纳—猜想—证明”,即先由合情推理发现结论,然后经逻辑推理论证结论的正确性.n n n n +13(1)求a 1,a 2,a 3的值; (2)求数列{a n }的通项公式. [解](1)由S n =2na n +1-3n 2-4n ,得S 2=4a 3-20,S 3=S 2+a 3=5a 3-20.又S 3=15,∴a 3=7,S 2=4a 3-20=8.∵S 2=S 1+a 2=(2a 2-7)+a 2=3a 2-7, ∴a 2=5,a 1=S 1=2a 2-7=3. 综上知a 1=3,a 2=5,a 3=7.(2)由(1)猜想a n =2n +1(n ∈N *),以下用数学归纳法证明: ①当n =1时,猜想显然成立;②假设当n =k (k ∈N *,且k ≥2)时,有a k =2k +1成立, 则S k =3+5+7+…+(2k +1) =3+2k +12·k =k (k +2).又S k =2ka k +1-3k 2-4k , ∴k (k +2)=2ka k +1-3k 2-4k ,解得a k+1=2k+3=2(k+1)+1,即当n=k+1时,猜想成立.由①②知,数列{a n}的通项公式为a n=2n+1(n∈N*).。

2018版高考数学一轮总复习第6章不等式推理与证明6.6直接证明与间接证明课件理2017052202

2018版高考数学一轮总复习第6章不等式推理与证明6.6直接证明与间接证明课件理2017052202

∴当 n∈ N 且 n≥2 时, 3 3 2bn- 1 1 1 bn= f(bn- 1)= · ⇒bnbn- 1+ 3bn= 3bn- 1⇒ - 2 2 bn- 1+3 bn bn- 1 1 = . 3
1 ∴ 是首项为 b n
1 1,公差为 的等差数列. 3
触类旁通 综合法证明的思路 (1)综合法是 “由因导果 ”的证明方法,它是一种从已知 到未知 (从题设到结论 )的逻辑推理方法,即从题设中的已知 条件或已证的真实判断 (命题 )出发,经过一系列中间推理, 最后导出所要求证结论的真实性. (2)综合法的逻辑依据是三段论式的演绎推理.
[双基夯实] 一、疑难辨析 判断下列结论的正误. ( 正确的打“√”,错误的打 “×”) 1.综合法是直接证明,分析法是间接证明.( × ) 2.分析法是从要证明的结论出发,逐步寻找使结论成 立的充要条件.( × )
3 . 用 反 证 法 证 明 结 论 “a > b” 时 , 应 假 设 “a < b”.( × ) 4.证明不等式 2+ 7< 3+ 6最适合的方法是分析 法.( √ )
解析
b- a 1 1 < 成立,即 <0 成立,逐个验证可得,①② a b ab
④满足题意.
4.[2017· 福建模拟] 设 a>b>0,m= a- b,n=
a-b,
m<n 则 m,n 的大小关系是________ .
解析 解法一: (取特殊值法 )取 a=2, b= 1,得 m<n. b2- 2 ab <0 ,∴ m2<n2 ,∴ 解法二:(作差法 )由已知得 m>0,n>0,则 m2- n2= a+ b - 2 ab - a + b = 2b - 2 ab = 2 m <n .

第七章 不等式

第七章 不等式

第七章 不等式、推理与证明第一节不等关系与一元二次不等式1.两个实数比较大小的依据 (1)a -b >0⇔a >b . (2)a -b =0⇔a =b . (3)a -b <0⇔a <b . 2.不等式的性质 (1)对称性:a >b ⇔b <a ; (2)传递性:a >b ,b >c ⇒a >c ;(3)可加性:a >b ⇔a +c >b +c ;a >b ,c >d ⇒a +c >b +d ; (4)可乘性:a >b ,c >0⇒ac >bc ; a >b >0,c >d >0⇒ac >bd ;(5)可乘方性:a >b >0⇒a n >b n (n ∈N ,n ≥1); (6)可开方性:a >b >0⇒n a > nb (n ∈N ,n ≥2).3.一元二次不等式与相应的二次函数及一元二次方程的关系由二次函数的图象与一元二次不等式的关系判断不等式恒成立问题的方法,(1)一元二次不等式ax 2+bx +c >0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a >0,b 2-4ac <0.(2)一元二次不等式ax 2+bx +c <0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a <0,b 2-4ac <0.[熟记常用结论]1.倒数性质的几个必备结论 (1)a >b ,ab >0⇒1a <1b .(2)a <0<b ⇒1a <1b .(3)a >b >0,0<c <d ⇒a c >bd.(4)0<a <x <b 或a <x <b <0⇒1b <1x <1a .2.两个重要不等式 若a >b >0,m >0,则(1)b a <b +m a +m ;b a >b -m a -m (b -m >0). (2)a b >a +m b +m ;a b <a -m b -m(b -m >0). [小题查验基础]一、判断题(对的打“√”,错的打“×”)(1)两个实数a ,b 之间,有且只有a >b ,a =b ,a <b 三种关系中的一种.( ) (2)一个不等式的两边同时加上或乘同一个数,不等号方向不变.( ) (3)一个非零实数越大,则其倒数就越小.( )(4)若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0.( )(5)若方程ax 2+bx +c =0(a ≠0)没有实数根,则不等式ax 2+bx +c >0的解集为R.( )二、选填题1.设A =(x -3)2,B =(x -2)(x -4),则A 与B 的大小关系为( ) A .A ≥B B .A >B C .A ≤BD .A <B2.若a <b <0,则下列不等式不能成立的是( ) A.1a -b >1a B.1a >1b C .|a |>|b |D .a 2>b 23.函数f (x )=3x -x 2的定义域为( ) A .[0,3]B .(0,3)C .(-∞,0]∪[3,+∞)D .(-∞,0)∪(3,+∞)4.若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的取值范围是________. 5.若1<α<3,-4<β<2,则α-|β|的取值范围是________.[题组练透]1.若a >b >0,c <d <0,则一定有( ) A.a d >bc B.ad <b c C.a c >b dD.a c <b d2.设a ,b ∈R ,则“(a -b )·a 2<0”是“a <b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.若a =ln 22,b =ln 33,则a ____b (填“>”或“<”).4.已知等比数列{a n }中,a 1>0,q >0,前n 项和为S n ,则S 3a 3与S 5a 5的大小关系为________.5.已知-1<x <4,2<y <3,则x -y 的取值范围是________,3x +2y 的取值范围是________.[名师微点]比较大小的方法(1)作差法,其步骤:作差⇒变形⇒判断差与0的大小⇒得出结论. (2)作商法,其步骤:作商⇒变形⇒判断商与1的大小⇒得出结论. (3)构造函数法:构造函数,利用函数单调性比较大小.(4)赋值法和排除法:可以多次取特殊值,根据特殊值比较大小,从而得出结论.考点二一元二次不等式的解法[师生共研过关][典例精析](1)解不等式:-x 2-2x +3≥0;(2)已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≥0,-x 2+2x ,x <0,解不等式f (x )>3;(3)解关于x 的不等式ax 2-2≥2x -ax (a ≤0).[解题技法]1.解一元二次不等式的一般步骤2.解含参数的一元二次不等式时分类讨论的依据 (1)对于ax 2+bx +c >0(<0)的形式: 当a =0时,转化为一次不等式.当a <0时,转化为二次项系数为正的形式. 当a >0时,直接求解.(2)当不等式对应方程的根的个数不确定时,讨论判别式Δ与0的关系.(3)确定无根或一个根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集形式.[过关训练]1.不等式0<x 2-x -2≤4的解集为________. 2.求不等式12x 2-ax >a 2(a ∈R)的解集.考点三一元二次不等式的恒成立问题[全析考法过关][考法全析]考法(一)在R上的恒成立问题[例1]若不等式(a-2)x2+2(a-2)x-4<0对一切x∈R恒成立,则实数a的取值范围是()A.(-∞,2]B.[-2,2]C.(-2,2] D.(-∞,-2)考法(二)在给定区间上的恒成立问题[例2]设函数f(x)=mx2-mx-1.若对于x∈[1,3],f(x)<-m+5恒成立,求实数m的取值范围.考法(三)给定参数范围求x的范围的恒成立问题[例3]若对任意m∈[-1,1],函数f(x)=x2+(m-4)x+4-2m的值恒大于零,求x的取值范围.[解]令g(m)=(x-2)m+x2-4x+4.[规律探求][过关训练]1.若不等式x2+mx-1<0对于任意x∈[m,m+1]都成立,则实数m的取值范围是________.2.函数f(x)=x2+ax+3.(1)当x∈R时,f(x)≥a恒成立,求实数a的取值范围;(2)当x∈[-2,2]时,f(x)≥a恒成立,求实数a的取值范围;(3)当a∈[4,6]时,f(x)≥0恒成立,求实数x的取值范围.[课时跟踪检测]一、题点全面练1.已知a1∈(0,1),a2∈(0,1),记M=a1a2,N=a1+a2-1,则M与N的大小关系是() A.M<N B.M>NC.M=N D.不确定2.若m<0,n>0且m+n<0,则下列不等式中成立的是()A.-n<m<n<-m B.-n<m<-m<nC.m<-n<-m<n D.m<-n<n<-m3.若1a <1b <0,给出下列不等式:①1a +b <1ab ;②|a |+b >0;③a -1a >b -1b ;④ln a 2>ln b 2.其中正确的不等式的序号是( )A .①④B .②③C .①③D .②④4.已知函数f (x )=-x 2+ax +b 2-b +1(a ∈R ,b ∈R),对任意实数x 都有f (1-x )=f (1+x )成立,若当x ∈[-1,1]时,f (x )>0恒成立,则b 的取值范围是( )A .(-1,0)B .(2,+∞)C .(-∞,-1)∪(2,+∞)D .不能确定5.已知a ∈Z ,关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则所有符合条件的a 的值之和是( )A .13B .18C .21D .266.若不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为________.7.若不等式x 2+ax -2>0在区间[1,5]上有解,则a 的取值范围是________.8.对于实数x ,当且仅当n ≤x <n +1(n ∈N *)时,[x ]=n ,则关于x 的不等式4[x ]2-36[x ]+45<0的解集为________.解析:由4[x ]2-36[x ]+45<0,得32<[x ]<152,又当且仅当n ≤x <n +1(n ∈N *)时,[x ]=n ,所以[x ]=2,3,4,5,6,7,所以所求不等式的解集为[2,8).答案:[2,8)9.若不等式ax 2+5x -2>0的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪12<x <2. (1)求实数a 的值;(2)求不等式ax 2-5x +a 2-1>0的解集.10.已知函数f (x )=x 2-2ax -1+a ,a ∈R. (1)若a =2,试求函数y =f (x )x(x >0)的最小值;(2)对于任意的x ∈[0,2],不等式f (x )≤a 成立,试求实数a 的取值范围.二、专项培优练易错专练——不丢怨枉分 1.不等式x2x -1>1的解集为( )A.⎝⎛⎭⎫12,1B .(-∞,1) C.⎝⎛⎭⎫-∞,12∪(1,+∞) D.⎝⎛⎭⎫12,22.若1a <1b <0,则下列结论不正确的是( )A .a 2<b 2B .ab <b 2C .a +b <0D .|a |+|b |>|a +b |3.已知x >y >z ,且x +y +z =0,下列不等式中成立的是( ) A .xy >yz B .xz >yz C .xy >xz D .x |y |>z |y |4.若α,β满足⎩⎪⎨⎪⎧-1≤α+β≤1,1≤α+2β≤3,则α+3β的取值范围是________.5.求使不等式x 2+(a -6)x +9-3a >0,|a |≤1恒成立的x 的取值范围.令f (a )=(x -3)a +x 2-6x +9,则-1≤a ≤1.第二节二元一次不等式(组)及简单的线性规划问题❶画二元一次不等式(组)表示的平面区域时,一般步骤为:直线定界,虚实分明;特殊点定域,优选原点;阴影表示.注意不等式中有无等号,无等号时直线画成虚线,有等号时直线画成实线.特殊点一般选一个,当直线不过原点时,优先选原点.❷如果目标函数存在一个最优解,那么最优解通常在可行域的顶点处取得;如果目标函数存在多个最优解,那么最优解一般在可行域的边界上取得.1.二元一次不等式(组)表示的平面区域(1)把直线ax+by=0向上平移时,直线ax+by=z在y轴上的截距zb逐渐增大,且b>0时z的值逐渐增大,b<0时z的值逐渐减小.(2)把直线ax+by=0向下平移时,直线ax+by=z在y轴上的截距zb逐渐减小,且b>0时z的值逐渐减小,b<0时z的值逐渐增大.以上规律可简记为:当b>0时,直线向上平移z变大,向下平移z变小;当b<0时,直线向上平移z 变小,向下平移z 变大.[小题查验基础]一、判断题(对的打“√”,错的打“×”)(1)不等式Ax +By +C >0表示的平面区域一定在直线Ax +By +C =0的上方.( ) (2)线性目标函数的最优解可能是不唯一的.( )(3)在目标函数z =ax +by (b ≠0)中,z 的几何意义是直线ax +by -z =0在y 轴上的截距.( )二、选填题1.不等式组⎩⎪⎨⎪⎧x -3y +6<0,x -y +2≥0表示的平面区域是()2.不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域的面积等于( )A.32B.23 C.43 D.343.(2018·天津高考)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤5,2x -y ≤4,-x +y ≤1,y ≥0,则目标函数z =3x +5y的最大值为( )A .6B .19C .21D .454.若点(m,1)在不等式2x +3y -5>0所表示的平面区域内,则m 的取值范围是________.5.已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为________.考点一 二元一次不等式(组)表示的平面区域[师生共研过关][典例精析](1)不等式组⎩⎪⎨⎪⎧2x +y -6≤0,x +y -3≥0,y ≤2表示的平面区域的面积为( )A .4B .1C .5D .无穷大(2)若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a 表示的平面区域是一个三角形,则实数a 的取值范围是( )A.⎣⎡⎭⎫43,+∞ B .(0,1]C.⎣⎡⎦⎤1,43 D .(0,1]∪⎣⎡⎭⎫43,+∞[过关训练]1.(2019·漳州调研)若不等式组⎩⎪⎨⎪⎧x +y ≥0,x -y +2≥0,2x -y -2≤0所表示的平面区域被直线l :mx -y +m+1=0分为面积相等的两部分,则m =( )A.12 B .2 C .-12D .-22.若不等式组⎩⎪⎨⎪⎧x +y -2≤0,x +2y -2≥0,x -y +2m ≥0表示的平面区域为三角形,且其面积等于43,则m 的值为________.考点二 目标函数的最值问题[全析考法过关][考法全析]考法(一) 求线性目标函数的最值[例1] (2018·郑州第一次质量预测)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,x -3y +4≤0,则目标函数z =2x -y 的最小值为________.考法(二) 求非线性目标函数的最值 [例2] 若实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≤0,x ≥0,y ≤2.则yx的取值范围为________.[变式发散]1.(变设问)本例条件不变,则目标函数z =x 2+y 2的取值范围为________.2.(变设问)本例条件不变,则目标函数z =y -1x -1的取值范围为________.考法(三) 求参数值或取值范围[例3] (2019·黄冈模拟)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +4≥0,x ≤2,x +y +k ≥0,且z =x +3y 的最小值为2,则常数k =________.[规律探求]1.(2018·全国卷Ⅰ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -2y -2≤0,x -y +1≥0,y ≤0,则z =3x +2y 的最大值为________.2.(2019·陕西教学质量检测)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥2,x +y ≤4,2x -y -m ≤0.若目标函数z =3x+y 的最大值为10,则z 的最小值为________.考点三 线性规划的实际应用[师生共研过关][典例精析](2018·福州模拟)某工厂制作仿古的桌子和椅子,需要木工和漆工两道工序.已知生产一把椅子需要木工4个工作时,漆工2个工作时;生产一张桌子需要木工8个工作时,漆工1个工作时.生产一把椅子的利润为1 500元,生产一张桌子的利润为2 000元.该厂每个月木工最多完成8 000个工作时、漆工最多完成1 300个工作时.根据以上条件,该厂安排生产每个月所能获得的最大利润是________元.[过关训练]1.(2018·河北“五个一名校联盟”模拟)某企业生产甲、乙两种产品均需要A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的限量如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得的最大利润为( )A .16万元 C .18万元 D .19万元2.某高新技术公司要生产一批新研发的A 款产品和B 款产品,生产一台A 款产品需要甲材料3 kg ,乙材料1 kg ,并且需要花费1天时间,生产一台B 款产品需要甲材料1 kg ,乙材料3 kg ,也需要1天时间,已知生产一台A 款产品的利润是1 000元,生产一台B 款产品的利润是2 000元,公司目前有甲、乙材料各300 kg ,则在不超过120天的情况下,公司生产两款产品的最大利润是________元.[课时跟踪检测]一、题点全面练1.由直线x -y +1=0,x +y -5=0和x -1=0所围成的三角形区域(包括边界)用不等式组可表示为( )A.⎩⎪⎨⎪⎧ x -y +1≤0,x +y -5≤0,x ≥1 B.⎩⎪⎨⎪⎧x -y +1≥0,x +y -5≤0,x ≥1C.⎩⎪⎨⎪⎧x -y +1≥0,x +y -5≥0,x ≤1D.⎩⎪⎨⎪⎧x -y +1≤0,x +y -5≤0,x ≤12.(2018·南昌调研)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0,2x -y -2≤0,则z =3x -2y 的最大值为( )A .-2B .2C .3D .43.(2019·黄冈模拟)若A 为不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x ≤2表示的平面区域,则a 从-2连续变化到1时,动直线x +y =a 扫过A 中的那部分区域的面积为( )A .913B .313 C.72 D.744.(2019·淄博模拟)已知点Q (2,0),点P (x ,y )的坐标满足条件⎩⎪⎨⎪⎧x +y -1≤0,x -y +1≥0,y +1≥0,则|PQ |的最小值是( )A.12 B.22C .1 D. 25.已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3),若z =2x +y 的最小值为1,则a =( )A.12 B.13 C .1 D .26.(2019·开封模拟)已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,x +2y +2≥0,x ≤1,则z =⎝⎛⎭⎫12x -2y的最大值是________.7.已知x ,y 满足以下约束条件⎩⎪⎨⎪⎧x +y ≥5,x -y +5≤0,x ≤3,使z =x +ay (a >0)取得最小值的最优解有无数个,则a 的值为________.8.(2019·山西五校联考)不等式组⎩⎪⎨⎪⎧y -1≥0,x -y +2≥0,x +4y -8≤0表示的平面区域为Ω,直线x =a (a >1)将平面区域Ω分成面积之比为1∶4的两部分,则目标函数z =ax +y 的最大值为________.9.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2.(1)求目标函数z =12x -y +12的最值;(2)若目标函数z =ax +2y 仅在点(1,0)处取得最小值,求a 的取值范围.10.电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x ,y 表示每周计划播出的甲、乙两套连续剧的次数.(1)用x ,y 列出满足题目条件的数学关系式,并画出相应的平面区域; (2)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多?二、专项培优练(一)易错专练——不丢怨枉分1.设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m <0,y -m >0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,则m 的取值范围是( )A.⎝⎛⎭⎫-∞,43 B.⎝⎛⎭⎫-∞,13 C.⎝⎛⎭⎫-∞,-23 D.⎝⎛⎭⎫-∞,-53 解析2.(2019·金华模拟)设z =kx +y ,其中实数x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,x -2y +4≥0,2x -y -4≤0,若z 的最大值为12,则实数k =________.解析3.若存在实数x ,y ,m 使不等式组⎩⎪⎨⎪⎧x -y ≥0,x -3y +2≤0,x +y -6≤0与不等式x -2y +m ≤0都成立,则实数m 的取值范围是( )A .[0,+∞)B .(-∞,3]C .[1,+∞)D .[3,+∞)(二)交汇专练——融会巧迁移4.[与向量交汇]已知P (x ,y )为不等式组⎩⎪⎨⎪⎧x -2y +2≥0,x -y -1≤0,x +y -1≥0所确定的平面区域上的动点,若点M (2,1),O (0,0),则z =OP ―→·OM ―→的最大值为( )A .1B .2C .10D .115.[与概率交汇]关于实数x ,y 的不等式组⎩⎪⎨⎪⎧x ≤4,y ≥2,x -y +2≥0所表示的平面区域记为M ,不等式(x -4)2+(y -3)2≤1所表示的平面区域记为N ,若在M 内随机取一点,则该点取自N 的概率为( )A.π16 B.π8 C.14 D.126.[与圆交汇]记不等式组⎩⎪⎨⎪⎧4x +3y ≥10,x ≤3,y ≤4表示的平面区域为D ,过区域D 中任意一点P 作圆x 2+y 2=1的两条切线,切点分别为A ,B ,则当∠APB 的值最大时,cos ∠APB =( )A.32B.23C.13D.12第三节基本不等式1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 2.几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R);(2)b a +ab ≥2(a ,b 同号);(3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R);(4)⎝⎛⎭⎫a +b 22≤a 2+b22(a ,b ∈R); (5)2ab a +b≤ab ≤a +b 2≤a 2+b 22(a >0,b >0). 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.4.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 24(简记:和定积最大). 注:(1)此结论应用的前提是“一正”“二定”“三相等”.“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指等号成立.(2)连续使用基本不等式时,牢记等号要同时成立.[小题查验基础]一、判断题(对的打“√”,错的打“×”) (1)当a ≥0,b ≥0时,a +b2≥ab .( )(2)两个不等式a 2+b 2≥2ab 与a +b2≥ab 成立的条件是相同的.( )(3)x >0且y >0是x y +yx ≥2的充要条件.( )(4)函数f (x )=cos x +4cos x,x ∈⎝⎛⎭⎫0,π2的最小值等于4.( )二、选填题1.设x >0,y >0,且x +y =18,则xy 的最大值为( ) A .80 B .77 C .81 D .822.设0<a <b ,则下列不等式中正确的是( ) A .a <b <ab <a +b2B .a <ab <a +b2<b C .a <ab <b <a +b2D.ab <a <a +b2<b3.函数f (x )=x +1x 的值域为( )A .[-2,2]B .[2,+∞)C .(-∞,-2]∪[2,+∞)D .R4.若实数x ,y 满足xy =1,则x 2+2y 2的最小值为________.5.若x >1,则x +4x -1的最小值为________.考点一 利用基本不等式求最值[全析考法过关] (一) 拼凑法——利用基本不等式求最值[例1] (1)已知0<x <1,则x (4-3x )取得最大值时x 的值为________. (2)已知x <54,则f (x )=4x -2+14x -5的最大值为________.(3)函数y =x 2+2x -1(x >1)的最小值为________.(二) 常数代换法——利用基本不等式求最值[例2] 已知a >0,b >0,a +b =1,则1a +1b 的最小值为________.[变式发散]1.(变条件)将条件“a +b =1”改为“a +2b =3”,则1a +1b 的最小值为________.2.(变设问)保持本例条件不变,则⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b 的最小值为________.[解题技法]通过常数代换法利用基本不等式求解最值的基本步骤 (1)根据已知条件或其变形确定定值(常数); (2)把确定的定值(常数)变形为1;(3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积为定值的形式; (4)利用基本不等式求解最值. (三) 消元法——利用基本不等式求最值[例3] 已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________.(四) 利用两次基本不等式求最值[例4] 已知a >b >0,那么a 2+1b (a -b )的最小值为________.[过关训练]1.(2019·常州调研)若实数x 满足x >-4,则函数f (x )=x +9x +4的最小值为________.2.若正数x ,y 满足x 2+6xy -1=0,则x +2y 的最小值是________.考点二 利用基本不等式解决实际问题[师生共研过关][典例精析]某厂家拟定在2019年举行促销活动,经调查测算,该产品的年销量(即该厂的年产量)x 万件与年促销费用m (m ≥0)万元满足x =3-km +1(k 为常数).如果不搞促销活动,那么该产品的年销量只能是1万件.已知2019年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2019年该产品的利润y 万元表示为年促销费用m 万元的函数; (2)该厂家2019年的促销费用投入多少万元时,厂家利润最大?[解题技法]利用基本不等式解决实际问题的3个注意点(1)设变量时一般要把求最大值或最小值的变量定义为函数.(2)根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值. (3)在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.[过关训练]1.若把总长为20 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________m 2.2.(2019·孝感模拟)经测算,某型号汽车在匀速行驶的过程中每小时耗油量y (L)与速度x (km/h)(50≤x ≤120)的关系可近似表示为y =⎩⎨⎧175(x 2-130x +4 900),x ∈[50,80),12-x60,x ∈[80,120].(1)该型号汽车的速度为多少时,可使得每小时耗油量最低?(2)已知A ,B 两地相距120 km ,假定该型号汽车匀速从A 地驶向B 地,则汽车速度为多少时总耗油量最少?考点三 基本不等式的综合应用[师生共研过关][典例精析](1)已知直线ax +by +c -1=0(b >0,c >0)经过圆C :x 2+y 2-2y -5=0的圆心,则4b +1c 的最小值是( )A .9B .8C .4D .2(2)设等差数列{a n }的公差是d ,其前n 项和是S n ,若a 1=d =1,则S n +8a n的最小值是________.[过关训练]1.已知函数f (x )=x +ax +2的值域为(-∞,0]∪[4,+∞),则a 的值是( )A.12 B.32 C .1 D .2解析:2.已知向量a =(m,1),b =(4-n,2),m >0,n >0,若a ∥b ,则1m +8n 的最小值为________.[课时跟踪检测]一、题点全面练1.已知f (x )=x 2-2x +1x ,则f (x )在⎣⎡⎦⎤12,3上的最小值为( ) A.12 B.43 C .-1 D .02.(2018·哈尔滨二模)若2x +2y =1,则x +y 的取值范围是( ) A .[0,2] B .[-2,0] C .[-2,+∞) D .(-∞,-2]3.若实数a ,b 满足1a +2b =ab ,则ab 的最小值为( )A. 2 B .2 C .2 2 D .44.已知a >0,b >0,若不等式3a +1b ≥ma +3b 恒成立,则m 的最大值为( )A .9B .12C .18D .245.正数a ,b 满足1a +9b =1,若不等式a +b ≥-x 2+4x +18-m 对任意实数x 恒成立,则实数m 的取值范围是( )A .[3,+∞)B .(-∞,3]C .(-∞,6]D .[6,+∞)6.(2019·青岛模拟)已知x >0,y >0,(lg 2)x +(lg 8)y =lg 2,则1x +13y 的最小值是________.7.若正数x ,y 满足4x 2+9y 2+3xy =30,则xy 的最大值为________.8.规定:“⊗”表示一种运算,即a ⊗b =ab +a +b (a ,b 为正实数).若1⊗k =3,则k 的值为________,此时函数f (x )=k ⊗xx的最小值为________.9.已知x >0,y >0,且2x +8y -xy =0,求: (1)xy 的最小值; (2)x +y 的最小值.10.(1)当x <32时,求函数y =x +82x -3的最大值;(2)设0<x <2,求函数y =x (4-2x )的最大值.二、专项培优练(一)易错专练——不丢怨枉分1.已知a >b >1,且2log a b +3log b a =7,则a +1b 2-1的最小值为( )A .3 B. 3 C .2 D. 22.若正数a ,b 满足:1a +2b =1,则2a -1+1b -2的最小值为( )A .2 B.322 C.52 D .1+324解3.函数y =1-2x -3x (x <0)的值域为________.(二)交汇专练——融会巧迁移4.[与函数交汇]已知函数f (x )=log a (x +4)-1(a >0且a ≠1)的图象恒过定点A ,若直线xm +yn=-2(m >0,n >0)也经过点A ,则3m +n 的最小值为( ) A .16 B .8 C .12 D .145.[与数列交汇]已知首项与公比相等的等比数列{a n }中,若m ,n ∈N *,满足a m a 2n =a 24,则2m +1n的最小值为( ) A .1 B.32 C .2 D.926.[与解析几何交汇]若直线mx +ny +2=0(m >0,n >0)被圆(x +3)2+(y +1)2=1所截得的弦长为2,则1m +3n的最小值为( )A .4B .6C .12D .167.[与线性规划交汇]已知x ,y 满足⎩⎪⎨⎪⎧x +2y -3≤0,x +3y -3≥0,y ≤1,z =2x +y 的最大值为m ,若正数a ,b 满足a +b =m ,则1a +4b的最小值为__________.。

2018高考数学一轮复习第6章不等式及其证明第5节直接证明与间接证明教师用书

2018高考数学一轮复习第6章不等式及其证明第5节直接证明与间接证明教师用书

第五节 直接证明与间接证明1.直接证明反证法:一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)综合法的思维过程是由因导果,逐步寻找已知的必要条件.( ) (2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.( ) (3)用反证法证明时,推出的矛盾不能与假设矛盾.( )(4)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.( )[答案] (1)√ (2)× (3)× (4)√2.要证明3+7<25,可选择的方法有以下几种,其中最合理的是( ) A .综合法 B .分析法 C .反证法D .归纳法B [要证明3+7<25成立,可采用分析法对不等式两边平方后再证明.]3.用反证法证明命题:“已知a ,b 为实数,则方程x 2+ax +b =0至少有一个实根”时,要做的假设是( )A .方程x 2+ax +b =0没有实根 B .方程x 2+ax +b =0至多有一个实根 C .方程x 2+ax +b =0至多有两个实根 D .方程x 2+ax +b =0恰好有两个实根A [“方程x 2+ax +b =0至少有一个实根”的反面是“方程x 2+ax +b =0没有实根”,故选A.]4.已知a ,b ,x 均为正数,且a >b ,则b a 与b +xa +x的大小关系是__________.b +x a +x >b a [∵b +x a +x -b a =x a -ba +x a>0, ∴b +x a +x >ba.] 5.(教材改编)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,且A ,B ,C 成等差数列,a ,b ,c 成等比数列,则△ABC 的形状为__________三角形.等边 [由题意2B =A +C ,又A +B +C =π,∴B =π3,又b 2=ac ,由余弦定理得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac , ∴a 2+c 2-2ac =0,即(a -c )2=0,∴a =c , ∴A =C ,∴A =B =C =π3,∴△ABC 为等边三角形.]已知正方体11111111AC ∩BD =P ,A 1C 1∩EF=Q .求证:(1)D ,B ,F ,E 四点共面;(2)若A 1C 交平面DBFE 于R 点,则P ,Q ,R 三点共线. [证明] (1)如图所示,因为EF 是△D 1B 1C 1的中位线,所以EF ∥B 1D 1.2分在正方体ABCD ­A 1B 1C 1D 1中,B 1D 1∥BD ,所以EF ∥BD ,4分 所以EF ,BD 确定一个平面, 即D ,B ,F ,E 四点共面.6分(2)在正方体ABCD ­A 1B 1C 1D 1中,设平面A 1ACC 1确定的平面为α, 又设平面BDEF 为β. 因为Q ∈A 1C 1,所以Q ∈α. 又Q ∈EF ,所以Q ∈β, 则Q 是α与β的公共点.10分 同理,P 点也是α与β的公共点.13分 所以α∩β=PQ . 又A 1C ∩β=R ,所以R ∈A 1C ,则R ∈α且R ∈β, 则R ∈PQ ,故P ,Q ,R 三点共线.15分[规律方法] 综合法是“由因导果”的证明方法,其逻辑依据是三段论式的演绎推理方法,常与分析法结合使用,用分析法探路,综合法书写,但要注意有关定理、性质、结论题设条件的正确运用.[变式训练1] 已知函数f (x )=ln(1+x ),g (x )=a +bx -12x 2+13x 3,函数y =f (x )与函数y =g (x )的图象在交点(0,0)处有公共切线.(1)求a ,b 的值;(2)证明:f (x )≤g (x ). 【导学号:51062204】 [解] (1)f ′(x )=11+x,g ′(x )=b -x +x 2,2分由题意得⎩⎪⎨⎪⎧g=f ,f=g,解得a =0,b =1.7分(2)证明:令h (x )=f (x )-g (x ) =ln(x +1)-13x 3+12x 2-x (x >-1).h ′(x )=1x +1-x 2+x -1=-x 3x +1.12分所以h (x )在(-1,0)上为增函数,在(0,+∞)上为减函数.h (x )max =h (0)=0,h (x )≤h (0)=0,即f (x )≤g (x ).15分已知a >0[证明] 要证a 2+1a 2-2≥a +1a-2,只需要证a 2+1a 2+2≥a +1a+ 2.4分 因为a >0,故只需要证⎝ ⎛⎭⎪⎫a 2+1a 2+22≥⎝⎛⎭⎪⎫a +1a +22,即a 2+1a2+4a 2+1a 2+4≥a 2+2+1a 2+22⎝ ⎛⎭⎪⎫a +1a +2,10分从而只需要证2a 2+1a 2≥2⎝ ⎛⎭⎪⎫a +1a , 只需要证4⎝ ⎛⎭⎪⎫a 2+1a 2≥2⎝ ⎛⎭⎪⎫a 2+2+1a2,即a 2+1a2≥2,而上述不等式显然成立,故原不等式成立.15分[规律方法] 1.当已知条件与结论之间的联系不够明显、直接,或证明过程中所需用的知识不太明确、具体时,往往采用分析法,特别是含有根号、绝对值的等式或不等式,常考虑用分析法.2.分析法的特点和思路是“执果索因”,逐步寻找结论成立的充分条件,即从“未知”看“需知”,逐步靠拢“已知”或本身已经成立的定理、性质或已经证明成立的结论等,通常采用“欲证—只需证—已知”的格式,在表达中要注意叙述形式的规范性.[变式训练2] 已知△ABC 的三个内角A ,B ,C 成等差数列,A ,B ,C 的对边分别为a ,b ,c .求证:1a +b +1b +c =3a +b +c. [证明] 要证1a +b +1b +c =3a +b +c, 即证a +b +c a +b +a +b +c b +c =3,也就是c a +b +ab +c=1,3分 只需证c (b +c )+a (a +b )=(a +b )(b +c ), 需证c 2+a 2=ac +b 2,8分又△ABC 三内角A ,B ,C 成等差数列,故B =60°, 由余弦定理,得b 2=c 2+a 2-2ac cos 60°,13分即b 2=c 2+a 2-ac ,故c 2+a 2=ac +b 2成立. 于是原等式成立.15分设{a n }(1)推导{a n }的前n 项和公式;(2)设q ≠1,证明数列{a n +1}不是等比数列. [解] (1)设{a n }的前n 项和为S n , 当q =1时,S n =a 1+a 1+…+a 1=na 1; 当q ≠1时,S n =a 1+a 1q +a 1q 2+…+a 1qn -1,①qS n =a 1q +a 1q 2+…+a 1q n ,②①-②得,(1-q )S n =a 1-a 1q n,∴S n =a 1-q n1-q,∴S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-q n1-q,q ≠1.7分(2)证明:假设{a n +1}是等比数列,则对任意的k ∈N *, (a k +1+1)2=(a k +1)(a k +2+1),a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1,a 21q 2k +2a 1q k =a 1qk -1·a 1q k +1+a 1q k -1+a 1q k +1.12分 ∵a 1≠0,∴2q k =qk -1+qk +1.∵q ≠0,∴q 2-2q +1=0,∴q =1,这与已知矛盾.∴假设不成立,故{a n +1}不是等比数列.15分 [规律方法] 用反证法证明问题的步骤:(1)反设:假定所要证的结论不成立,而设结论的反面成立;(否定结论)(2)归谬:将“反设”作为条件,由此出发经过正确的推理,导出矛盾,矛盾可以是与已知条件、定义、公理、定理及明显的事实矛盾或自相矛盾;(推导矛盾)(3)立论:因为推理正确,所以产生矛盾的原因在于“反设”的谬误.既然原命题结论的反面不成立,从而肯定了原命题成立.(命题成立)[变式训练3] 已知a ≥-1,求证三个方程:x 2+4ax -4a +3=0,x 2+(a -1)x +a 2=0,x 2+2ax -2a =0中至少有一个方程有实根. 【导学号:51062205】[证明] 假设三个方程都没有实数根,则。

2018高中数学第2章推理与证明第2节直接证明与间接证明学案理苏教版选修22

2018高中数学第2章推理与证明第2节直接证明与间接证明学案理苏教版选修22

第2节直接证明与间接证明一、学习目标:1. 了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。

2. 了解间接证明的一种基本方法──反证法;了解反证法的思考过程、特点。

二、重点、难点重点:了解分析法和综合法的思考过程、特点。

难点:运用分析法、综合法提高分析问题和解决问题的能力。

三、考点分析:对两种直接证明方法的考查在选择题、填空题和解答题中都有出现,单纯的考查并不常见,作为解决问题的工具,与其他知识综合运用的特点比较突出。

它可以和很多知识,如函数、数列、三角函数、导数等相联系,证明时不仅要用到不等式的相关知识,还要用到其他数学知识、技能和技巧,而且还考查了运算能力,分析问题和解决问题的能力。

对于反证法很少单独命题,但是运用反证法分析问题、进行证题思路的判断则经常用到,有独到之处。

三种证明方法的定义与步骤:1. 综合法是由原因推导到结果的证明方法,它是利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立的证明方法。

2. 分析法是从要证明的结论出发,逐步寻求推证过程中,使每一步结论成立的充分条件,直到最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定义、公理、定理等)为止的证明方法。

3. 假设原命题的结论不成立,经过正确的推理,最后得出矛盾,由此说明假设错误,从而证明了原命题成立,这样的方法叫反证法;它是一种间接的证明方法。

用这种方法证明一个命题的一般步骤:(1)假设命题的结论不成立;(2)根据假设进行推理,直到推理中导出矛盾为止;(3)断言假设不成立;(4)肯定原命题的结论成立。

知识点一:综合法例1 对于定义域为[]0,1的函数()f x ,如果同时满足以下三个条件:①对任意的[]0,1x ∈,总有()0f x ≥;②(1)1f =;③若12120,0,1x x x x ≥≥+≤,都有1212()()()f x x f x f x +≥+成立,则称函数()f x 为理想函数。

2018年高考数学总复习 第七章 不等式、推理与证明 7.4 直接证明与间接证明

2018年高考数学总复习 第七章 不等式、推理与证明 7.4 直接证明与间接证明

B.综合法
C.综合法、分析法综合使用 D.间接证明法
关闭
因为证明过程是“从左往右”,即由条件推出结论.故选B.
关闭
B
解析 答案
-6-
知识梳理 考点自测
12345
3.若实数a,b满足a+b<0,则( )
A.a,b都小于0
B.a,b都大于0
C.a,b中至少有一个大于0 D.a,b中至少有一个小于0
关闭
≥1.
关闭
答案
-20-
考点1 考点2 考点3
考点 2
分析法的应用
例4已知△ABC的三个内角A,B,C成等差数列,且a,b,c分别为角
要A,证B,C1的+对边1 ,求=证:3������+1���,���即+证������+1���������+��� =������+������������++3���������+���+���������.���+������=3,
b1=a1,bn=32f(bn-1)(n
(2)∵b1=a1=1,q=f(m)=���2������+���3,
∴当
n∈N*,且
n≥2
时,bn=32
������(������������-1)=32
· 2������������ -1 ⇒
������������ -1+3
bnbn-1+3bn=3bn-1⇒������1������
.
关闭
要证√������ + √������ + 4<2√������ + 2,即证 2n+4+2√������2 + 4������<4(n+2),即证 √������2 + 4������<n+2,即证 n2+4n<(n+2)2,即证 0<4.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直接证明与间接证明
【考点梳理】
1.直接证明
反证法:一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.
【考点突破】
考点一、综合法
【例1】已知正方体ABCD-A1B1C1D1中,E,F分别为D1C1,C1B1的中点,AC∩BD=P,A1C1∩EF=Q.求证:
(1)D,B,F,E四点共面;
(2)若A1C交平面DBFE于R点,则P,Q,R三点共线.
[解析]证明:(1)如图所示,因为EF是△D1B1C1的中位线,
所以EF ∥B 1D 1.
在正方体ABCD -A 1B 1C 1D 1中,B 1D 1∥BD ,所以EF ∥BD ,
所以EF ,BD 确定一个平面,
即D ,B ,F ,E 四点共面.
(2)在正方体ABCD -A 1B 1C 1D 1中,设平面A 1ACC 1确定的平面为α,
又设平面BDEF 为β.
因为Q ∈A 1C 1,所以Q ∈α.
又Q ∈EF ,所以Q ∈β,
则Q 是α与β的公共点.
同理,P 点也是α与β的公共点.
所以α∩β=PQ .
又A 1C ∩β=R ,
所以R ∈A 1C ,则R ∈α且R ∈β,
则R ∈PQ ,故P ,Q ,R 三点共线.
【类题通法】
综合法是“由因导果”的证明方法,其逻辑依据是三段论式的演绎推理方法,常与分析法结合使用,用分析法探路,综合法书写,但要注意有关定理、性质、结论题设条件的正确运用.
【对点训练】
已知函数f (x )=ln(1+x ),g (x )=a +bx -12x 2+13x 3,函数y =f (x )与函数y =g (x )
的图象在交点(0,0)处有公共切线.
(1)求a ,b 的值;
(2)证明:f (x )≤g (x ).
[解析] (1)f ′(x )=11+x
,g ′(x )=b -x +x 2, 由题意得⎩⎨⎧
g (0)=f (0),f ′(0)=g ′(0),
解得a =0,b =1.
(2)证明:令h (x )=f (x )-g (x )
=ln(x +1)-13x 3+12x 2-x (x >-1).
h ′(x )=1x +1-x 2+x -1=-x 3x +1
. 所以h (x )在(-1,0)上为增函数,在(0,+∞)上为减函数.
h (x )max =h (0)=0,h (x )≤h (0)=0,即f (x )≤g (x ).
考点二、分析法
【例2】已知a >0,求证:
a 2+1a 2-2≥a +1a -2. [解析]证明:要证
a 2+1a 2-2≥a +1a -2, 只需要证a 2+1a 2+2≥a +1a + 2.
因为a >0,故只需要证⎝
⎛⎭⎪⎫a 2+1a 2+22≥⎝ ⎛⎭⎪⎫a +1a +22, 即a 2+1a 2+4
a 2+1a 2+4≥a 2+2+1a 2+22⎝ ⎛⎭⎪⎫a +1a +2, 从而只需要证2a 2
+1a 2≥2⎝ ⎛⎭⎪⎫a +1a , 只需要证4⎝ ⎛⎭⎪⎫a 2+1a 2≥2⎝ ⎛⎭
⎪⎫a 2+2+1a 2, 即a 2+1a 2≥2,而上述不等式显然成立,故原不等式成立.
【类题通法】
1.当已知条件与结论之间的联系不够明显、直接,或证明过程中所需用的知识不太明确、具体时,往往采用分析法,特别是含有根号、绝对值的等式或不等式,常考虑用分析法.
2.分析法的特点和思路是“执果索因”,逐步寻找结论成立的充分条件,即从“未知”看“需知”,逐步靠拢“已知”或本身已经成立的定理、性质或已经证明成立的结论等,通常采用“欲证—只需证—已知”的格式,在表达中要注意叙述形式的规范性.
【对点训练】
已知△ABC 的三个内角A ,B ,C 成等差数列,A ,B ,C 的对边分别为a ,
b ,
c .求证:1a +b +1b +c =3a +b +c
. [解析]证明:要证1a +b +1b +c =3a +b +c
, 即证a +b +c a +b +a +b +c b +c =3,也就是c a +b +a b +c
=1, 只需证c (b +c )+a (a +b )=(a +b )(b +c ),
需证c 2+a 2=ac +b 2,
又△ABC 三内角A ,B ,C 成等差数列,故B =60°,
由余弦定理,得
b 2=
c 2+a 2-2ac cos 60°,
即b 2=c 2+a 2-ac ,故c 2+a 2=ac +b 2成立.
于是原等式成立.
考点三、反证法
【例3】设{a n }是公比为q 的等比数列.
(1)推导{a n }的前n 项和公式;
(2)设q ≠1,证明数列{a n +1}不是等比数列.
[解析] (1)设{a n }的前n 项和为S n ,
当q =1时,S n =a 1+a 1+…+a 1=na 1;
当q ≠1时,S n =a 1+a 1q +a 1q 2+…+a 1q n -1,①
qS n =a 1q +a 1q 2+…+a 1q n ,②
①-②得,(1-q )S n =a 1-a 1q n ,
∴S n =a 1(1-q n )1-q ,∴S n =⎩⎨⎧ na 1,q =1,a 1(1-q n )1-q ,q ≠1.
(2)证明:假设{a n +1}是等比数列,则对任意的k ∈N *,
(a k +1+1)2=(a k +1)(a k +2+1),
a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1,
a 21q 2k +2a 1q k =a 1q
k -1·a 1q k +1+a 1q k -1+a 1q k +1. ∵a 1≠0,∴2q k =q k -1+q k +1.∵q ≠0,∴q 2-2q +1=0,
∴q =1,这与已知矛盾.
∴假设不成立,故{a n +1}不是等比数列.
【类题通法】
用反证法证明问题的步骤:
(1)反设:假定所要证的结论不成立,而设结论的反面成立;(否定结论)
(2)归谬:将“反设”作为条件,由此出发经过正确的推理,导出矛盾,矛盾可以是与已知条件、定义、公理、定理及明显的事实矛盾或自相矛盾;(推导矛盾)
(3)立论:因为推理正确,所以产生矛盾的原因在于“反设”的谬误.既然原命题结论的反面不成立,从而肯定了原命题成立.(命题成立)
【对点训练】
已知a ≥-1,求证三个方程:x 2+4ax -4a +3=0,x 2+(a -1)x +a 2=0,x 2+2ax -2a =0中至少有一个方程有实根.
[解析]证明:假设三个方程都没有实数根,则
⎩⎨⎧ (4a )2-
4(-4a +3)<0,(a -1)2-4a 2<0,
(2a )2-4×(-2a )<0
⇒⎩⎪⎨⎪⎧ -32<a <12,a >13或a <-1,-2<a <0,
∴-32<a <-1.
这与已知a ≥-1矛盾,所以假设不成立,故原结论成立.。

相关文档
最新文档