能被整除的数的特征

合集下载

能被2、3、4、5、6、7、8、9等数整除的数的特征

能被2、3、4、5、6、7、8、9等数整除的数的特征

能被2、3、4、5、6、7、8、9等数整除的数的特征性质1:如果数a、b都能被c整除,那么它们的和(a+b)或差(a-b)也能被c 整除。

性质2:几个数相乘,如果其中有一个因数能被某一个数整除,那么它们的积也能被这个数整除。

能被2整除的数,个位上的数能被2整除(偶数都能被2整除),那么这个数能被2整除能被3整除的数,各个数位上的数字和能被3整除,那么这个数能被3整除能被4整除的数,个位和十位所组成的两位数能被4整除,那么这个数能被4整除能被5整除的数,个位上的数都能被5整除(即个位为0或5)那么这个数能被5整除能被6整除的数,如果一个数既能被2整除又能被3整除,那么这个数能被6整除能被7整除的数,若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595,59-5×2=49,所以6139是7的倍数,余类推。

能被8整除的数,百位、十位和个位所组成的三位数能被8整除,那么这个数能被8整除能被9整除的数,各个数位上的数字和能被9整除,那么这个数能被9整除能被10整除的数,如果一个数既能被2整除又能被5整除,那么这个数能被10整除(即个位数为零)能被11整除的数,奇数位(从左往右数)上的数字和与偶数位上的数字和之差(大数减小数)能被11整除,则该数就能被11整除。

11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1!能被12整除的数,若一个整数能被3和4整除,则这个数能被12整除能被13整除的数,若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。

能被整除的数的特征

能被整除的数的特征

能被整除的数的特征整除是数学中常见的概念,指的是某个数能够被另一个数整除,不留下余数。

在计算机编程和数据分析等领域中,也经常需要判断一个数是否能被另一个数整除。

本文将探讨能被整除的数的特征和相关的数论知识。

整数的定义在数学中,整数是没有小数部分的数,可以是正数、负数和零。

整数分为自然数、负整数和零三种情况。

自然数是从1开始的正整数,负整数是正整数的相反数,零是一个特殊的整数,不属于自然数和负整数。

整除的定义在数学中,整除指的是一个整数能够被另一个整数整除,不留下余数。

例如,4能够被2整除,因为4÷2=2,没有余数;而5不能被2整除,因为5÷2=2余1。

可以用符号“|”表示整除的关系,例如,a|b表示a能够被b整除。

能被整除的数的特征在数论中,有许多关于能被整除的数的特征的研究。

下面列举了一些比较常见的特征。

奇偶性整数可以分为奇数和偶数两类。

其中,奇数是不被2整除的整数,偶数是能被2整除的整数。

有一个是,如果一个整数是偶数,那么它一定能被2整除;反之,如果一个整数能被2整除,那么它一定是偶数。

因此,判断一个整数是否是偶数,就相当于判断它是否能被2整除。

能被哪些数整除一个整数能否被另一个整数整除,往往取决于这两个数的约数关系。

所谓约数,就是能够整除另一个数的数。

例如,6的约数是1、2、3和6。

一个数能够被整除,当且仅当它是另一个数的倍数,即除以那个数所得到的商是一个整数。

例如,9能够被3整除,因为9÷3=3;而8不能被3整除,因为8÷3=2余2。

质数和合数质数是只能被1和自身整除的正整数,例如2、3、5、7、11、13等。

合数是不是质数的正整数,例如4、6、8、9、10等。

有一个是,一个正整数大于1且不是质数,则它一定可以分解成几个质数的乘积。

例如,12可以分解成2x2x3的形式,其中2和3都是质数。

因此,判断一个数是否是质数,就相当于判断它能否被分解成质数的乘积。

数的整除特征

数的整除特征

数的整除特征1)被2、5整除:末位上的数字能被2、5整除。

2)被4、25整除:末两位的数字所组成的数能被4、25整除。

3)被8、125整除:末三位的数字所组成的数能被8、125整除。

4)被3、9整除:各个数位上数字的和能被3、9整除。

5)被7整除第一种方法:末三位上数字所组成的数与末三位以前的数字所组成数之差能被7整除。

第二种方法:逐次去掉最后一位数字并减去末位数字的2倍后能被7整除。

6)被11整除第一种方法:末三位上数字所组成的数与末三位以前的数字所组成的数之差能被11整除。

第二种方法:奇数位上的数字和与偶数位数的数字和的差能被11整除。

第三种方法:逐次去掉最后一位数字并减去末位数字后能被11整除。

7)被13整除第一种方法:末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除。

第二种方法:逐次去掉最后一位数字并减去末位数字的9倍后能被13整除。

8)被10整除:如果一个数既能被2整除又能被5整除,那么这个数能被10整除(即个位数为零)。

9)被12整除:若一个整数能被3和4整除,则这个数能被12整除。

10)被17整除第一种方法:若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。

如果差太大或心算不易看出是否17的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

第二种方法:若一个整数的末三位与3倍的前面的隔出数的差能被17整除,则这个数能被17整除。

11)被19整除第一种方法:若一个整数的个位数字截去,再从余下的数中,加上个位数的2倍,如果差是19的倍数,则原数能被19整除。

如果差太大或心算不易看出是否19的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

第二种方法:若一个整数的末三位与3倍的前面的隔出数的差能被17整除,则这个数能被17整除。

12)被23整除:若一个整数的末四位与前面5倍的隔出数的差能被23(或29)整除,则这个数能被23整除。

能被234567等数整除的数的特征

能被234567等数整除的数的特征

能被234567等数整除的数的特征一个数能否被2、3、4、5、6、7等数整除,取决于这个数的特征和性质。

在本文中,我们将探讨以下几个关键因素来确定一个数能否被这些数整除的特征。

1.末位数字:一个数能否被2整除取决于它的末位数字。

如果一个数的末位数字是0、2、4、6或8,那么它可以被2整除。

如果一个数的末位数字是0或5,那么它可以被5整除。

因此,如果一个数能被2和5同时整除,它也能被10整除。

3.末位数字和:如果一个数的末位数字和倒数第二位数字组成的两位数能被4整除,那么这个数也能被4整除。

例如,数字152的倒数第二位数字是5,末位数字是2,它们组成的两位数52能被4整除,所以152也能被4整除。

4.末位数字:一个数能否被5整除取决于它的末位数字。

如果一个数的末位数字是0或5,那么它可以被5整除。

5.可被2整除的数中,末位数字是0或5的数,再判断这个数能否被3整除。

如果能被3整除,则说明这个数也能被6整除。

例如,数字30能被2整除,末位数字是0,它也能被3整除,所以30能被6整除。

6.数字和:一个数能否被6整除取决于它各个位数上数字之和。

如果一个数各个位数上的数字之和能被3整除,并且末位数字是0、2、4、6或8,那么它也能被6整除。

7.数字重复:一个数能否被7整除取决于它的数字组成是否存在循环数字。

如果一个数的数字组成中存在循环数字,那么这个数可以被7整除。

例如,数字17的数字组成是1和7,它们是重复的,所以17能被7整除。

综上所述,一个数能否被2、3、4、5、6、7等数整除的特征是:它的末位数字必须是0、2、4、5、6、8中的一个;它的数字和必须能被3整除;如果末位数字和倒数第二位数字组成的两位数能被4整除,那么该数也能被4整除;它的数字组成中存在循环数字。

数的整除特征(1--11)

数的整除特征(1--11)

数的整除特征
1.能被2整除的数的特征:
个位是:0、2、4、6、8.
2.能被3整除的数的特征:
各位数字之和是3的倍数。

3.能被4整除的数的特征:
一个数的末尾2位数能被4整除。

4.能被5整除的数的特征:
个位是0或5.
5.能被6整除的数的特征:
个位数字是:0、2、4、6、8.且各位数字之和是3的倍数。

6.能被7整除的数的特征:
若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍数,余类推。

7.能被8整除的数的特征:
若一个整数的末尾三位数能被8整除,则这个数能被8整除。

8.能被9整除的数的特征:
若一个整数的数字和能被9整除,则这个整数能被9整除。

9.能被10整除的数的特征:
个位是0。

10 . 能被11整除的数的特征:
若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。

数的整除特征特点

数的整除特征特点

WORD格式
数的整除特征特点
一、尾数判断法:
(1)能被2、5整除的数的特征:个位数字能被2或5整除。

(2)能被4、25整除的数的特征:末两位能被4或25整除。

(3)能被8、125整除的数的特征:末三位能被8或125整除。

二、数字求和法
(1)能被3、9整除的数的特征:各位数字之和能被3或9整除。

三、奇偶位求差法
(1)能被11整除的数的特征:“奇位和”与“偶位和”的差能被11整除。

四、三位截断法
(1)能被7、11、13整除的数的特征:“末三位数字组成的数”与“末三位以前的数字组成的数”之差能被7或11或13整除。

整除特征:
7:个位数字去掉,再从余下的数中,减去个位数的2倍,如果差是7的倍数,
则原数能被7整除。

(如果数字太大仍然不能直接观察出来,就重复此过程。

)13:个位数字去掉,再从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除。

17:个位数字去掉,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。

19:个位数字去掉,再从余下的数中,加上个位数的2倍,如果和是19的倍数,则原数能被19整除。

专业资料整理。

能被整除的数的特征

能被整除的数的特征

能被整除的数的特征 Revised by BLUE on the afternoon of December 12,2020.能被2、3、5、7、9、11、13、17、19整除的数的特征能被2整除的数的特征是个位上是偶数,能被3整除的数的特征是所有位数的和是3的倍数(例如:315能被3整除,因为3+1+5=9是3的倍数)能被4(或25)整除的数的特征:末两位数能被4(或25)整除。

能被8(或125)整除的数的特征:末三位数能被8(或125)整除。

能被5整除的数个位上的数为0或5,能被7整除的数的特征若一个整数的个位数字去掉,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果数字仍然太大不能直接观察出来,就重复此过程。

能被9整除的数的特征是所有位数的和是9的倍数能被11整除的数的特征把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除。

例如:判断491678能不能被11整除。

奇位数字的和9+6+8=23偶位数位的和4+1+7=1223-12=11因此,491678能被11整除。

这种方法叫“奇偶位差法”。

能被13整除的数的特征把一个整数的个位数字去掉,再从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除。

如果数字仍然太大不能直接观察出来,就重复此过程。

如:判断1284322能不能被13整除。

128432+2×4=12844012844+0×4=128441284+4×4=13001300÷13=100所以,1284322能被13整除。

【其它方法:能被7(11或13)整除的数的特征:一个整数的末三位数与末三位以前的数字所组成的数之差(以大减小)能被7(11或13)整除。

】例1:判断1059282是否是7的倍数例2:判断3546725能否被13整除能被17整除的数的特征把一个整数的个位数字去掉,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。

能被23456789等数整除的数的特征讲解学习

能被23456789等数整除的数的特征讲解学习

能被23456789等数整除的数的特征讲解学习被2、3、4、5、6、7、8、9等数整除的数具有以下特征:1.能被2整除:一个数能被2整除,意味着它是偶数。

偶数的特点是个位数字可以是0、2、4、6或82.能被3整除:一个数能被3整除,意味着它的各位数字之和能被3整除。

例如,27是3的倍数,因为2+7=9,而9能被3整除。

3.能被4整除:一个数能被4整除,意味着它的末两位能被4整除。

例如,236可以被4整除,因为36能够整除44.能被5整除:一个数能被5整除,意味着它的个位数字是0或5、例如,75能够被5整除。

5.能被6整除:一个数能被6整除,意味着它能被2和3同时整除。

因此,它必须是一个偶数且各位数字之和能被3整除。

6.能被7整除:一个数能被7整除的特征比较复杂,但是以下特征可以帮助判断:将这个数的个位数字翻倍,然后从原数中减去翻倍后的个位数字。

如果所得的差能被7整除,则原数能被7整除。

例如,196是7的倍数,因为19-2×6=19-12=77.能被8整除:一个数能被8整除,意味着它的末三位能被8整除。

例如,520可以被8整除,因为520是8的65倍。

8.能被9整除:一个数能被9整除,意味着它的各位数字之和能被9整除。

例如,81是9的倍数,因为8+1=9综上所述,一个数能被2、3、4、5、6、7、8、9整除的特征可以通过前述规则判断。

这些规则不仅在数学学科中有应用,还在解决实际问题、判断数字的性质和特征等方面起着重要的作用。

为了提高对这些规则的熟悉程度,可以进行练习和应用这些规则解决具体问题的实践。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1:判断1059282是否是7的倍数?
例2:判断3546725能否被13整除?
能被17整除的数的特征
把一个整数的个位数字去掉,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。如果数字仍然太大不能直接观察出来,就重复此过程。
例如:判断1675282能不能被17整除。
167528-2×5=167518
16751-8×5=16711
1671-1×5=1666
166-6×5=136
到这里如果你仍然观察不出来,就继续……
6×5=30,现在个位×5=30>剩下的13,就用大数减去小数,30-13=17,17÷17=1;所以1675282能被17整除。
能被19整除的数的特征
把一个整数的个位数字去掉,再从余下的数中,加上个位数的2倍,如果和是19的倍数,则原数能被19整除。如果数字仍然太大不能直接观察出来,就重复此过程。
例如:判断499+6+8=23
偶位数位的和4+1+7=12
23-12=11
因此,491678能被11整除。这种方法叫“奇偶位差法”。
能被13整除的数的特征
把一个整数的个位数字去掉,再从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除。如果数字仍然太大不能直接观察出来,就重复此过程。
如:381957
能被5整除的数个位上的数为0或5,
能被7整除的数的特征
若一个整数的个位数字去掉,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果数字仍然太大不能直接观察出来,就重复此过程。
能被9整除的数的特征是所有位数的和是9的倍数
能被11整除的数的特征
把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除。
如:判断1284322能不能被13整除。
128432+2×4=128440
12844+0×4=12844
1284+4×4=1300
1300÷13=100
所以,1284322能被13整除。
【其它方法:能被7(11或13)整除的数的特征:一个整数的末三位数与末三位以前的数字所组成的数之差(以大减小)能被7(11或13)整除。】
能被2、3、5、7、9、11、13、17、19整除的数的特征
能被2整除的数的特征是个位上是偶数,
能被3整除的数的特征是所有位数的和是3的倍数(例如:315能被3整除,因为3+1+5=9是3的倍数)
能被4(或25)整除的数的特征:末两位数能被4(或25)整除。
能被8(或125)整除的数的特征:末三位数能被8(或125)整除。
相关文档
最新文档