数的整除特征基础篇
整除的性质和特征

整除的性质和特征整除是数论中的一个重要概念,它描述了一个整数能够被另一个整数整除,也就是除法运算的结果是整数。
整除有着许多重要的性质和特征,下面将详细介绍。
1.定义:整数a能够被整数b整除,即b是a的因数,记作b,a,当且仅当存在一个整数c,使得a=b·c。
其中,c称为a除以b的商,b称为a的约数,a称为b的倍数。
2.可加性:如果c是a的一个约数,那么c也是a的倍数。
换句话说,如果一个整数能够整除a,那么它也能够整除a的倍数。
3.可乘性:如果b,a且c,a,那么b·c也,a。
换句话说,如果一个整数能够整除a和b,那么它也能够整除a与b的乘积。
4.整除的传递性:如果b,a且c,b,那么c,a。
换句话说,如果一个整数能够整除a和b,那么它也能够整除a。
5.算术基本定理:任意一个大于1的整数,都可以表达为多个质数的积。
这意味着,如果一个整数可以整除另一个整数,那么它必然可以整除这个整数的所有质因数。
6. 两个非零整数的最大公约数和最小公倍数:两个非零整数a和b的最大公约数(记作gcd(a,b))是能够同时整除a和b的最大正整数。
两个非零整数a和b的最小公倍数(记作lcm(a,b))是能够同时被a和b整除的最小正整数。
于是有gcd(a,b)·lcm(a,b)=a·b。
7.唯一分解定理:任何一个整数都能够唯一地分解为几个质数的乘积。
这个定理也说明了一个数的因数有限,不会无限增多。
8. 整除与除法的关系:一个整数a能够被b整除,相当于a除以b 的余数为0。
对于任意的整数a和b,总能够找到唯一的两个整数商q和余数r,使得a=bq+r,其中r满足0≤r<,b。
9. 整除与模运算的关系:一个整数a能够被b整除,等价于a除以b的余数为0,即a mod b = 0。
在模运算中,a mod b表示a除以b的余数。
10. 除法的消去律:如果一个整数a能够被b整除,那么对于任意的整数c,ac也能够被bc整除。
关于数的整除特征的汇总

关于数的整除特征的汇总一、被4或25整除的数的特征如果一个数的末两位数能被4或25整除,那么,这个数就一定能被4或25整除.例如:4675=46×100+75由于100能被25整除,100的倍数也一定能被25整除,4600与75均能被25整除,它们的和也必然能被25整除.因此,一个数只要末两位数能被25整除,这个数就一定能被25整除.又如: 832=8×100+32由于100能被4整除,100的倍数也一定能被4整除,800与32均能被4整除,它们的和也必然能被4整除.因此,因此,一个数只要末两位数字能被4整除,这个数就一定能被4整除.二、被7整除的数的特征方法1、(适用于数字位数少时)一个数割去末位数字,再从留下来的数中减去所割去数字的2倍,这样,一次次减下去,如果最后的结果是7的倍数(包括0),那么,原来的这个数就一定能被7整除.例如:判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。
方法2、(适用于数字位数在三位以上)一个多位数的末三位数与末三位以前的数字所组成的数之差,如果能被7整除,那么,这个多位数就一定能被7整除.如判断数280679末三位数字是679,末三位以前数字所组成的数是280,679-280=399,399能被7整除,因此280679也能被7整除。
此法也适用于判断能否被11或13整除的问题。
如:283679的末三位数字是679,末三位以前数字所组成的数是283,679-283=396,396能被11整除,因此,283679就一定能被11整除.如:判断383357能不能被13整除.这个数的未三位数字是357,末三位以前的数字所组成的数是383,这两个数的差是:383-357=26,26能被13整除,因此,383357也一定能被13整除.方法3、首位缩小法,在首位或前几位,减于7的倍数。
第八讲 整除特征初步

1. 学会尾数判断法;2. 学会数字和判断法。
1. 尾数判断法(1)能被2, 5整除的数的特征:看个位。
如果一个数的个位能被2或5整除,则这个数就能被2或5整除。
(2)能被4, 25整除的数的特征:看末两位。
如果一个数的末两位能被4或25整除,则这个数就能被4或25整除。
(3)能被8, 125整除的数的特征:看末三位。
如果一个数的末三位能被8或125整除,则这个数就能被8或125整除。
2. 求和判断法能被4, 25整除的数的特征:如果一个数的各位数字之和能被3(或9)整除,则这个数就能被3(或9)整除。
3. 同时满足多个数方法:逐一满足【例 1】 下面6个自然数:152,650,434,4375,9064,24125中, (1)哪些能被2整除?哪些能被5整除?(2)哪些能被4整除?哪些能被25整除?(3)哪些能被8整除?哪些能被125整除?(4)这些数除以4的余数分别是多少?【例 2】(1)修改5679中的一个数字,使这个四位数能被5整除,修改后的四位数是多少?(2)修改675479中的一个数字,使这个六位数能被25整除,修改后的六位数是多少?第八讲 整除特征初步例题精讲知识点拨教学目标()【巩固】(1)修改34575中的一个数字,使这个五位数能被4整除,修改后的五位数是多少?(2)修改675447中的一个数字,使这个六位数能被8整除,修改后的六位数是多少?【例 3】有六个自然数:5762;3105;9631;7953;2945;3281(1)哪些能被3整除?不能被3整除的余数分别是多少?(2)哪些能被9整除?不能被9整除的余数分别是多少?【例 4】AA能被3整除,求A。
(1)四位数31AA能被9整除,求A。
(2)五位数232【巩固】下面每个数中的字母分别是多少时,这个数能被3整除?都有哪些填法呢?B563C618D162A541【例 5】在下面每个数的□里填上一个数字,使它符合所提要求。
(1)能被2整除,又能被3整除。
整除规则(原理,性质)

整除规则(原理,性质)各种被整除的数的特征(放在这里以备以后查阅方便)(1)被2整除的数的特征:一个整数的末位是偶数(0、2、4、6、8)的数能被2整除。
(2)被3整除的数的特征:一个整数的数字和能被3整除,则这个数能被3整除。
(3)被4整除的数的特征:一个整数的末尾两位数能被4整除则这个数能被4整除。
可以这样快速判断:最后两位数,要是十位是单数,个位就是2或6,要是十位是双数,个位就是0、4、8。
(4)被5整除的数的特征:一个整数的末位是0或者5的数能被5整除。
(5)被6整除的数的特征:一个整数能被2和3整除,则这个数能被6整除。
(6)被7整除的数的特征:“割减法”。
若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,这样,一次次下去,直到能清楚判断为止,如果差是7的倍数(包括0),则这个数能被7整除。
过程为:截尾、倍大、相减、验差。
例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。
(7)被8整除的数的特征:一个整数的未尾三位数能被8整除,则这个数能被8整除。
(8)被9整除的数的特征:一个整数的数字和能被9整除,则这个数能被9整除。
(9)被10整除的数的特征:一个整数的末位是0,则这个数能被10整除。
(10)被11整除的数的特征:“奇偶位差法”。
一个整数的奇位数字之和与偶位数字之和的差是11的倍数(包括0),则这个数能被11整除。
(隔位和相减)例如,判断491678能不能被11整除的过程如下:奇位数字的和9+6+8=23,偶位数位的和4+1+7=12。
23-12=11。
因此491678能被11整除。
(11)被12整除的数的特征:一个整数能被3和4整除,则这个数能被12整除。
(12)被13整除的数的特征:若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,这样,一次次下去,直到能清楚判断为止,如果是13的倍数(包括0),则这个数能被13整除。
数的整除特征

如:22,33
22÷11=2(整除)
33÷11=3(整除)
如:23,34
23÷11=2.090909(不能整除)
34÷11=3.090909(不能整除)
13的整除特征
若一个整数的个位数字截去,再从余下 的数中,加上个位数的4倍,如果差是13 的倍数,则原数能被13整除。
如:665 665÷13=15(整除) 如:14 14÷13=1.07692308(不能整除)
除)
7的整除特征
被7整除若一个整数的个位数字截去,再从余下的数中, 减去个位数的2倍,如果差是7的倍数,则原数能被7 整除。如果差太大或心算不易看出是否7的倍数,就需 要继续上述「截尾、倍大、相减、验差」的过程,直 到能清楚判断为止。
如:133 13-3×2=7 , 7÷7=1(整除) 如:12 12÷7=1.741857(不能整除)
数的整除特征
研究内容: 2、3、5、7、9、11、13等数的整除特征 同学们,你们有没有在做题时遇到除数是2、
3、5、7、9、11、13的情况呢?如果有, 是不是很难算呢?那么今天就让我们来 揭开他们的秘密吧!
2的整除特征
被2整除的数是偶数。 如:2,4,6,8 2÷2=1(整除) 4÷2=2(整除) 6÷2=3(整除) 8÷2=4(整除) 如:3,5 3÷2=1.5(不能整除) 5÷2=2.5(不能整
小测试
200÷2 21÷3 55÷5 147÷7 46÷9 67÷11 123÷13
答案是前四个可以,后三个不行。
你都算对了吗?
除)
3的整除特征
被3整除的数必须各个位数上的数加起来 为3的倍数。
如:147=1+4+7=12 147÷3=49(整除) 如:136=1+3+6=10 136÷3=45.33333333.......(不能整除)
奥数知识点:数的整除

奥数知识点:数的整除奥数知识点:数的整除如果整除a除以不为零数b,所得的商为整数而余数为0,我们就说a能被b整除,或叫b能整除a。
如果a能被b整除,那么,b叫做a的约数,a叫做b的倍数。
下面小编给大家精心搜集整理的奥数知识点:数的整除,欢迎阅读!奥数知识点:数的整除数的整除的特征:(1)能被2整除的数的特征:如果一个整数的个位数字是2、4、6、8、0,那么这个整数一定能被2整除。
(2)能被3(或9)整除的数的特征:如果一个整数的各个数字之和能被3(或9)整除,那么这个整数一定能被3(或9)整除。
(3)能被4(或25)整除的数的特征:如果一个整数的末两位数能被4(或25)整除,那么这个数就一定能被4(或25)整除。
(4)能被5整除的数的特征:如果一个整数的个位数字是0或5,那么这个整数一定能被5整除。
(5)能被6整除的数的特征:如果一个整数能被2整除,又能被3整除,那么这个数就一定能被6整除。
(6)能被7(或11或13)整除的.数的特征:一个整数分成两个数,末三位为一个数,其余各位为另一个数,如果这两个数之差是0或是7(或11或13)的倍数,这个数就能被7(或11或13)整除。
(7)能被8(或125)整除的数的特征:如果一个整数的末三位数能被8(或125)整除,那么这个数就一定能被8(或125)整除。
(8)能被11整除的数的特征:如果一个整数的奇数位数字之和与偶数位数字之和的差(大减小)能被11整除,那么它必能被11整除。
一、例题与方法指导例1.一个六位数23□56□是88的倍数,这个数除以88所得的商是_____或_____.思路导航:一个数如果是88的倍数,这个数必然既是8的倍数,又是11的倍数.根据8的倍数,它的末三位数肯定也是8的倍数,从而可知这个六位数个位上的数是0或8.而11的倍数奇偶位上数字和的差应是0或11的倍数,从已知的四个数看,这个六位数奇偶位上数字的和是相等的,要使奇偶位上数字和差为0,两个方框内填入的数字是相同的,因此这个六位数有两种可能。
数的整除的特征

一、数的整除的特征1.前面我们已学过奇数与偶数,我们正是以能否被2整除来区分偶数与奇数的。
因此,有下面的结论:末位数字为0、2、4、6、8的整数都能被2整除。
偶数总可表为2k,奇数总可表为2k+1(其中k为整数)。
2.末位数字为零的整数必被10整除。
这种数总可表为10k (其中k为整数)。
3.末位数字为0或5的整数必被5整除,可表为5k(k为整数)。
4.末两位数字组成的两位数能被4(25)整除的整数必被4(25)整除。
如1996=1900+96,因为100是4和25的倍数,所以1900是4和25的倍数,只要考察96是否4或25的倍数即可。
由于4|96能被25整除的整数,末两位数只可能是00、25、50、75。
能被4整除的整数,末两位数只可能是00,04,08,12,16,20,2 4,28,32,36,40,44,48,52,56,60,64,68,72,76,80,84,88,92,96,不可能是其它的数。
5.末三位数字组成的三位数能被8(125)整除的整数必能被8(125)整除。
由于1000=8×125,因此,1000的倍数当然也是8和125的倍数。
如判断765432是否能被8整除。
因为765432=765000+432显然8|765000,故只要考察8是否整除432即可。
由于432=8×54,即8|432,所以8|765432。
能被8整除的整数,末三位只能是000,008,016,024, (9)84,992。
由于125×1=125,125×2=250,125×3=375;125×4=500,125×5=625;125×6=750;125×7=875;125×8=10000故能被125整除的整数,末三位数只能是000,125,250,3 75,500,625,750,875。
6.各个数位上数字之和能被3(9)整除的整数必能被3(9)整除。
数的整除特征

数的整除特征知识概要数的整除特征具有较强的实际意义,常用的数的整除特征如下:1、能被2整除数的特征:个位数字是0、2、4、6、8的数能被2整除。
2、能被5整除的数的特征:个位数字是0和5的数能被5整除。
3、能被3(或9)整除的数的特征:各位数字和能被3(或9)整除。
这个数能被3(或9)整除。
4、能被4(或25)整除的数的特征:末两位数能被4(或25)整除。
5、能被8(或125)整除的数的特征:末三位数能被8(或125)整除。
6、能被7(或11或13)整除的数的特征:末三位数与末三位以前的数字所组成的数之差(大减小)能被7(或11或13)整除。
、7、能被11整除的数的特征:奇数位数字和与偶数位数字和的差(大减小)能被11整除。
例题解评例1、如果六位数12x40y 能被72整除,试求此六位数。
思路点拨:因为六位数12x40y 是72的倍数,且72=9×8 ,所以12x40y既是8的倍数又是9的倍数。
据能被8整除的数的特征,知40y是8的倍数。
(1)当y=0时,根据1+2+x+4是9的倍数,且0≤x≤9可得x=2(2)当y=8时,根据1+2+x+4+8是9的倍数,且0≤x≤9可得x=3所以所求的六位数是122400或123408。
例2 、一个四位数,减去它的各位数字之和,其差还是一个四位数603A ,试求出A。
思路点拨:设这个四位数为abcd , 则abcd=1000×a+100×b+10×c+d,它的各位数字之和为a+b+c+d。
于是有:abcd-(a+b+c+d)=1000×a+100×b+10×c×d-(a+b+c+d)=999×a+99×b+9×c=9×(111×a+11×b+c).这表明“一个自然数减去它的各位数字之和后,所得之差一定是9的倍数,”由已知这个差等于603A ,由此就可求出A来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数的整除特征(上)
什么是整除?
若整数a 除以大于0的整数b,商为整数,且余数为零。
我们就说a能被b整除(或说b能整除a),记作b|a,读作b整除a或a能被b整除。
常见数的整除特征:
末位系:2,5:看末一位
4,25:看末两位
8,125:看末三位
数字和系:3,9:看数字和
数字差系:11:看奇位和与偶位和的差
7,11,13系列:
⑴看多位数的末三位和前面部分之差能否被7,11,13整除;
⑵把数从末三位开始,三位为一段断开,只需看奇数段的和与偶数段的和的差是否为7,11,13的倍数。
常见整除性质:
⑴如果甲数能被乙数整除,乙数能被丙数整除,那么甲数能被丙数整除.
⑵如果两个数都能被一个自然数整除,那么这两个数的和与差都能被这个自然数整除。
⑶如果一个数能分别被几个两两互质的自然数整除,那么这个数能被这几个两两互质的自然数的乘积整除。
ﻩ
(★★★)
两个四位数275A 和275B 相乘,要使它们的乘积能被72整除,求A 和B 。
(★★)
在□里填上适当的数字,使得七位数□7358□□能分别被9,25和8整除。
例1
例2
例3
(★★★)
四位偶数64能被11整除,求出所有满足要求的四位数。
例4
ﻩ
(★★★)
在所有五位数中,各位数字之和等于43且能够被11整除的数有哪些?
ﻩ
【先睹为快】
将三位数3ab 连续重复地写下去,共写2005个3ab ,所得的数20053333ab
ab ab ab 个正好是
91的倍数,试求ab =___________。
(★★★)
能不能将从1到10的各数排成一行,使得任意相邻的两个数之和都能被3整除?
(★★★★)
请用1,2,5,7,8,9这六个数字(每个数字至多用一次)来组成一个五位数,使得它能被75整除,并求出这样的五位数有几个?
例5
例6。