核相方法
10kV线路工程施工送电核相方法探讨

10kV线路工程施工送电核相方法探讨摘要:结合多年来10kV线路工程施工送电核相工作的实践经验,阐述10kV线路新建、改造工程施工前后送电核相的重要性,介绍各种安全高效的核相方法,保证相序正确从而提高供电可靠性。
对推广普及10kV线路核相工作的发展有所积极意义。
关键词:10kV线路;施工;送电;核相一、10kV线路施工送电核相的重要性对于10kV配电网系统而言,常结合地形环境因素采用敷设电缆、架空导线相互转换的混合线路供电,电缆线路因地下埋藏敷设无法直观判断相序,架空导线因距离远架线相序形式在垂直—三角—水平间不断转变以及遇到分段开关的跳线连接也无法目测相序,面对网络结构如此不断变化的配电网,施工过程中就有可能产生施工前后相序不一致的问题。
因供电后相序不一致会产生较大的相间短路电流,造成短路事故、线路跳闸或者设备损坏。
且若相序不一致后而需紧急恢复正确送电的,需停电或带电作业配合改线,这样因未充分核相而反复停送电的施工,工作量大,风险辨析不到位,居民用电满意度低,不利于保障供电可靠性。
因此,凡是遇到可相互联络转供电线路的电缆导线更换、新建线路终端设备投运、双电源设备进线改接以及其他无法直接判断相序的施工检修都必须确认相序后才能供电投运。
二、10kV线路施工送电核相的方法近年来,10kV配电网运行维护水平不断提高,但仍存在少数线路相色标识缺失,甚至标识不规范的错误现象,因此,作为施工企业,在进行上文提及的施工检修时就更加有必要对线路进行核相,保证线路改造前后相序一致或新建线路与电源接入点相序一致。
核相是指在电力系统中用仪表仪器或其他手段核对同一线路两端、两电源或环路两条线路相位相序是否相同。
目前核相工作主要分为施工阶段物理核相、待改造线路运行状态及改造完工送电后电气核相。
施工阶段新敷设电缆时,为了确保电缆两端的相位一致,可用绝缘摇表对每相电缆进行定相,并在单支电缆上做好相色标记。
导线架设在开始牵引时就需要在每相导线做好相色标记,在接入或新出支线前还需沿线检查核对换相点或使用绝缘摇表进行确认,不能习惯性地按照导线安装排列顺序进行定相,以上使用绝缘摇表、万用表等都属于物理核相的范畴。
核相的原理和方法

核相的原理和方法
核相 (phase detection) 是一种测量材料相位的方法,其原理基于量子力学。
核相技术被广泛应用于核磁共振成像(MRI)、原子力显微镜 (AFM)、扫描隧道显微镜 (STM) 等领域。
在核相中,一个量子系统的能量被表示为一系列波函数,这些波函数描述了系统在不同能量状态之间的分布。
相位是这些波函数中的一个属性,它描述了波函数之间的相对位置。
在量子力学中,相位是很重要的属性,可以用来描述系统的性质和行为。
核相方法通常包括两个步骤:测量和计算。
测量步骤涉及使用适当的探测器来收集有关系统的信息。
例如,在 MRI 中,使用磁场和无线电波来探测原子的振动和转动信息。
计算步骤涉及使用所收集的信息来计算系统的相位。
在核相中,常用的相位测量方法包括自旋回波法、梯度回波法、相位对比法等。
自旋回波法是一种常用的相位测量方法,它通过测量回波信号的振幅和相位来确定系统的相位。
梯度回波法是一种在梯度磁场下使用的相位测量方法,它通过测量梯度回波信号的振幅和相位来确定系统的相位。
相位对比法是一种在两个不同磁场下使用的相位测量方法,它通过比较两个相位差来测量系统的相位。
核相是一种非常重要和有用的量子力学技术,它被广泛应用于许多领域,如核磁共振成像、原子力显微镜、扫描隧道显微镜等。
图文解说10kV线路核相方法

图文解说10kV线路核相方法
图文解说10kV线路核相方法
10kV线路通常分为架空线路和电缆线路,下面就这两种线路的核相方法进行仔细的介绍
架空线路我们是采用直接接触核相,属于高压核相,而电缆线路,目前大部分都只能在带电显示器部位核相,属于低压核相
在此我们首先要选用一台合适的无线高压核相仪,来完成此项工作,需要注意核相仪器的选择核相电压在100V以下也可以核相的,因为带电显示器电压很多都是100V,推荐是采用我司生产的TAG-8000无线高压核相仪完成。
10kV架空线路核相
10kV架空线路核相属于高压核相,核相方法如图所示。
将X、Y发射器通过绝缘杆分别挂在所需核相的线路上,接收器就会语音播报核相结果,并显示相位差和矢量图。
10kV电缆线路核相
由于10kV线路多为三相电缆线路,而三相电缆只有在电缆两端的开关柜处才能进行核相,常用核相地点有两处,一处是电缆进线T型接头,另一处是开关柜上的带电显示器。
T型接头处核相属于高压核相,核相方法如图所示,核相时需注意发射器在接触一相的同时,尽量远离其他相,避免距离过近信号干扰。
这种核相方法需打开开关柜的电缆室门,有些五防严格的开关柜是不允许在带电情况下打开电缆室门的,这时就需要在带电显示器上核相。
带电显示器核相属于低压核相,带电显示器黄、绿、红三个端子与开关柜母排和电缆的黄、绿、红三相是一一对应的,核相方法如图所示,将发射器的弯钩端子换成预配的尖头端子,直接插入带电孔,同时将发射器尾部接地端(也是充电孔)通过接地线接地,即可核相。
万用表核相的方法

万用表核相的方法
万用表核相是一种用来测试电路中相位关系的方法。
它的原理是通过在电路中放置测量电压的两个探针,然后比较它们的电压值和相位差,以判断电路中各部分的相对相位关系。
具体步骤如下:
1. 首先将万用表选择到交流电压测量档位,根据电路的类型选择合适的测量范围。
2. 打开电路,在其两个电源两端分别插上测量电压的探针。
3. 观察万用表的读数,如果两个探针测得的电压值相等且为正值,则表示这两个点处于同一电位,相位相同;如果电压值相等但为负值,则表示相位相反;如果电压值不相等,则表示它们之间存在电势差,无法判断相位关系。
4. 根据电路的结构,可以将电路按照不同的部分进行划分和测量。
比如,在串联电路中,可以通过测量每个电阻器两端的电压来判断相位关系;在并联电路中,可以选择测量电路的不同分支处的电压来确定相位关系。
5. 测量完成后,记得将万用表选择到关闭状态,并将探针从电路中拔出。
三相电源核相方法

三相电源核相方法
嘿,你知道三相电源核相是啥不?这可是个超重要的事儿呢!就好比给电路找对小伙伴,要是核相不对,那可就乱套啦!那三相电源核相咋弄呢?首先,准备好核相仪,这就像战士上战场得有好武器一样。
把核相仪分别接到三相电源的不同相线上,仔细观察核相仪的显示。
要是显示相位一致,那就妥啦!要是不一致,那可就得赶紧找问题。
核相的时候一定要小心哦,可不能马虎大意。
这就像走钢丝,得小心翼翼的。
要是不小心弄错了,那后果可不堪设想。
三相电源核相过程中安全性那是杠杠的。
只要你严格按照步骤来,就不会有啥大问题。
就像开车遵守交通规则一样,安全得很。
稳定性也不用说,核相正确了,电路才能稳定运行。
不然一会儿这出问题,一会儿那出问题,多闹心啊!
那三相电源核相都啥应用场景呢?工厂里、建筑工地上,到处都能用得上。
它的优势可多啦!能保证设备正常运行,提高工作效率。
这就像给机器吃了颗定心丸,让它们能好好干活。
我给你说个实际案例哈。
有个工厂,一开始设备老是出问题,找了半天原因,最后发现是三相电源核相不对。
调整之后,嘿,设备立马正
常运行了,生产效率也提高了不少。
三相电源核相真的很重要,一定要认真对待,可不能掉以轻心。
只有核相正确了,才能让电路稳定运行,让设备好好工作。
电容器的二次回路核相及接线

电容器的二次回路核相及接线
一、核相的定义和作用
核相是指电容器二次回路中,通过改变接线方式使电容器的二次侧电压、电流和相序与主回路中的电压、电流和相序相一致的一种操作。
核相的目的是为了保证电容器与主回路之间的相位关系一致,从而确保电容器能够正常工作。
二、核相的方法
核相的方法主要有两种:交换相序和改变接线。
1.交换相序:通过交换主回路中的两根电源线的位置,可以改变主回路的相序,从而达到与电容器二次回路相位一致的效果。
2.改变接线:通过改变电容器二次回路中的接线方式,可以使电容器与主回路中的相位一致。
三、核相的实施步骤
核相的实施步骤如下:
1.首先确保主回路中的电源已经断开,并采取相应的安全措施。
2.根据实际情况选择合适的核相方法:交换相序或改变接线。
3.对于交换相序的方法,将主回路中的两根电源线交换位置。
4.对于改变接线的方法,根据需要重新连接电容器二次回路中
的接线。
5.核相完成后,根据需要重新接通主回路电源,并进行必要的
检测和调试。
四、注意事项
在进行核相操作时,需要注意以下事项:
1.在核相前,一定要确保主回路的电源已经断开,并采取相关的安全措施,以防止电流的危险。
2.核相操作应由专业人员进行,避免操作错误导致电路故障。
3.核相后需要进行必要的检测和调试,以确保电容器能够正常工作。
4.核相过程中,应根据电容器和主回路的具体情况选择适当的核相方法。
以上是关于电容器的二次回路核相及接线的说明。
通过核相操作,可以保证电容器与主回路的相位一致,从而确保电容器的正常工作。
配电网核相方法及核相异常原因分析

配电网核相方法及核相异常原因分析摘要:为保证配电网安全稳定运行,满足三相负载用户用电需求,在配电网新建或改造工程竣工送电前,及在线路检修完成向用户送电前,都必须进行三相线路核相试验,相序和相位核对无误后,方可进行送电操作。
本文从理论分析和生产实例入手,总结介绍正确的配电网核相方法,并分析配电网核相异常原因。
关键词:配电网;核相;原因分析1 引言随着社会经济快速发展,全社会对电力需求量日益增长,对电网安全性和可靠性要求日益提高。
核相是指通过仪表或其他检测方法确定两路电源的相位和相序是否相同。
为保证设备和线路安全稳定运行,防止在不同电源合环或并列时,因为相位相序不同导致非同相合闸,引起相间短路故障,造成严重的设备和人身事故。
因此,在新建或改造的配电网设备和线路竣工投运前和线路检修完成向用户送电前,必须进行核相,相序相位核对无误后,方可进行送电操作。
此外,在两路电源分列运行,转供电之前必须进行核相工作,避免因相序不同导致用户三相电机反转,造成用户设备和产品损坏。
在进行核相试验时,不仅要保证一次设备相位和相序相同,而且还要保证二次设备相位和相序相同,否则可能导致非同期并列问题。
2 核相方法根据电压等级分类,核相方法可分为低压核相、高压一次核相和高压电压互感器(PT)二次核相。
根据核相时是否直接接触被核定电源导体,核相方法可分为直接核相法和间接核相法。
直接核相法是指核相工具直接接触电源导体,以此来核对两电源的相序相位是否一致。
直接核相法一般适用于110kV及以下电压等级的核相工作,核相时直接将核相装置接触待核相的线路两端。
在使用直接核相法进行核相时,由于核相装置与高压线路直接接触,具有一定的危险性,对核相工作人员的数量和技能水平要求较高。
间接核相法是指核相工具通过测定电压互感器二次回路的相位相序,间接判断一次侧相位相序是否一致。
使用间接核相法进行核相作业时,需要工作人员熟悉二次回路接线,若电压互感器接线错误,将会得到错误的核相结果。
核相的原理和方法

核相的原理和方法
核相是一种用于测量材料中结构性缺陷或晶格畸变的方法。
它通过对材料的电子、中子或X射线进行散射实现。
核相提供了关于材料中原子排列、晶格参数、位错、晶界和畸变等信息。
核相的原理基于布拉格方程,该方程描述了入射波和散射波之间的干涉条件。
根据布拉格方程,当入射波的波长、散射角和晶格间距满足特定的关系时,会产生强烈的散射信号。
通过测量散射信号的强度、角度和能量,可以推断出材料的结构参数。
核相的方法可以分为电子核相、中子核相和X射线核相。
电子核相是利用电子束的散射来研究材料的结构。
电子束的波长非常短,因此能够提供高分辨率的结构信息。
中子核相是使用热中子或冷中子的散射来研究材料的结构。
中子束的散射幅度与原子核的散射长度有关,因此中子核相适用于研究原子核较重的材料。
X射线核相是利用X射线的散射来研究材料的结构。
X射线的波长适中,可以用于研究大多数材料的晶体结构。
在核相实验中,需要确定材料的晶体结构和散射信号的参数。
通常会使用旋转样品的方法,通过旋转样品来改变散射角度,并测量散射信号的强度。
通过对不同角度下的散射信号进行分析,可以推导出材料的晶体结构和缺陷信息。
核相在材料科学和固体物理领域有着广泛的应用。
它可以用于研究材料的微观结构、晶格缺陷和畸变,以及材料的相变和晶体生长过程。
核相还可以用于研究材料的磁性、电性和热性质等。
通过核相的研究,可以深入理解材料的结构与性能之间的关系,并为材料设计和制备提供基础数据和指导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力系统核相方法
新发电站并网,新变电站投产前,经常要做核相试验,现场所说的核相,包括核对相序和核对相位。
??? 核对相序,主要是为了发电机、电动机的正常工作。
在电力生产实践中,发电机并网前必须做核对相序的试验,相序不对,发电机是无法并网的,强行并网会造成设备损坏。
在电网的改造中,也应该注意保持电网原有的相序,以免给用户带来麻烦。
1? 核对相序的方法
PT
PT上,
PT上,2?
100V 左右,证明两个电源具有相同的相位。
否则,要分析情况,改正后重核。
??? (2) 站内具有不同电压等级但具相同相位两组PT间核相
??? 如:某一三线圈变压器,组别为Y/Y/△,可以通过倒换方式,在主变高中压母线PT间进行核相。
2.2? 使用单相试验PT核相的方法
?? ?(1) 使用单相PT或核相器在待核两电源点一次核相。
??? 使用器材主要有:绝缘棒两根、绝缘鞋两双、绝缘手套两双、试验导线适量、电压表一块。
接线如图1所示:
??? 高压核相工作需要四人进行。
一人担任指挥,两人穿绝缘鞋、戴绝缘手套担任核相员,一人读表记录。
核相工作根据指挥人员的命令进行,高压操作员将高压引线固定在绝缘棒上,长短适宜,用绝缘棒引高压线接触高压电源点时,动作协调,两人相互照应。
核相时以现有的相色为依据,当高压电源点同相时,PT二次电压应近似为零;当高压电源点异相时,PT二次电压应近似为100V,这说明核相结果正确。
??? (2) 使用单相试验PT进行二次核相法。
??? 可在现场利用站内一组PT与单相试验PT配合,这样安全性将有所提高。
试验方法大致如上,只是将另一个高压操作员变为低压操作员,其接线如图2所示。
?? 先在同一电源上核对二次相位。
高压接A′、B′、C′各一次,低压对应按A630、B630、C630
A、B、C
PT、
120°,
输变电工程扩建、改造或主设备大修后,竣工投运现场常常要进行核相试验,即所谓的定相。
实际核相是通过测量(直接或间接)待并系统(变压器和电压互感器也可以看作电源)同名相电压差值和非同名相电压差值的方法来进行的。
两个待并系统相序、相位一致的判据则因输变电工程的现场特点,如变电站的主结线形式、变压器的接线组别、电压互感器二次结线方式以及具体的核相试验方法而有所区别。
现结合实际工作介绍几种典型核相试验方法,相信会有借鉴作用。
0 |9 P6 n! |) g8 }2 I
? ? 1 输变电工程必须进行核相试验的情况
' Z9 ?% E- C8 O' i" j1 u
? ? (1)变电站扩建后新安装或大修后投运的变压器(或电压互感器、站用变);
? ? (2)易地安装、变动过内外接线或接线组别的变压器;6 v! D3 G* [" F3 {% ?
? ? (3)新架设的高压电源线路接入变电站;. Y$ }2 ]& E+ {, a$ l
? ? (4)接线更动或走向发生变化的高压电源线路(或电缆)。
? ? 2 核相试验的方法和步骤. O" V# V- c, X/ {0 o% {
? ? 2.1 核相试验的方法7 k; J- J4 e! p& H$ g
? ? 核相试验分直接核相和间接核相两种。
? ? 直接核相又因核相所用的测量器具不同分为如下几种:; R* F4 K- f$ Y& e??L
? ? (1)电压表(万用表)直接核相。
适用于低压侧为380/220V中性点直接接地的变压器核相,
? ? (2
? ? (3型电
? ? (4
? ? 2.
? ?
? ? (1
? ???
量TV
? ? (2
? ???
? ? 3 投运现场几种常见的典型核相试验% H8 [; R" s/ K7 f8 E
? ? 3.1 具备双母线、两组独立TV的核相试验
? ? 如果新架设的高压电源线路接入变电站,该站在接入线路侧具备双母线、两个独立TV(见图1),则可通过下述方法进行核相试验:
? ?? ???图1 双母线、两组独立TV接线图
: U5 |5 K( E5 T: F, |3 G( K
? ???第一步,进行自核相试验。
合上QF、QF,切开QF,TV、TV接入同一电源系统,在TV、TV的二次侧测量同名端子、同名端子和非同名端子的电压差值,如果TV、TV的接线方式一致且正确,
其相别测量关系应符合表1的关系。
0 o. _# D: ^+ I5 z' V( U
? ? 见表
? ? 表1 相位测量关系表(Ⅰ)单位:V
? ???第二步,进行互核相试验。
切开QF,合上QF、QF,TV、TV分别接入电源1、电源2送电的母线,再次测量TV、TV的二次侧同名端子、同名端子和非同名端子的电压差值,其相别测量关系仍符合表1的关系,则证明两个待并电源系统符合合环(并列)的条件。
变电站扩建后,具备双母线、双TV时,新安装的变压器同样采用这种方法核相。
? ? 3.
? ? ),这时
p
? ? 图
? ???。
? ?
? ? 表
? ???
? ? 应特别注意的是,第一步、第二步的TV始终接入同一电源系统。
否则即使符合表2的关系仍将不能作为可以并列的判据。
很明显,该种方法影响了用户的连续供电。
5 m5 F, s4 Q# C# ]% D9 O2 E
? ???在变电站中,电压互感器二次侧一般采用中性点接地。
在发电厂中,电压互感器二次侧一般采用b相接地。
当采用中性点接地与采用b相接地的电压互感器(即 Y/Y/△或Y/Y/△与V-V型接线)自核相时,测量TV、TV二次侧同名端子、同名端子和非同名端子的电压差值,应满足表3的关系。
4 W??F2 ?5 D2 T7 m9 Z
* h3 I; V0 N/ l: g. n
? ? 见表
* B! a8 [+ M! L/ J/ \" u& V
? ? 表3 相位测量关系表(Ⅲ)单位:V
? ? 3.3 利用线路本身摇测绝缘电阻进行核实相位
) r& M8 S* p$ q- G$ h
? ???当线路走向发生变化(如迁移杆塔、解口T接、多处换相作业),在线路作业完毕后,可利用架空线路本身进行直接定相。
方法是线路的两个终端(变电站),各令一同名相接地,另两相不接地,两侧均对接地相和非接地相摇测对地绝缘电阻,以确认接入变电站母线的相序相位是否保持一致。
采用这一核相方法直观,但要求两侧变电站密切配合。
最终仍需通过3.1的核相试验才
? ? 3.
? ???
? ? 4
? ? 4.
? ? (1
? ? (2)对定相用的TV要首先进行自核相,并检查有关同期回路同期表,以保证接线正确。
对新安装的同期回路、同期表则同样要进行自核相。
? ? (3)用于互核相用的TV,其二次接线方式应尽可能一致(b相接地或都是中性点接地),否则,即使变压器接线组别相同,也会因定相用的TV二次接线方式不一致,同名端子之间因参考点电位不同而出现电压差。
8 _! N. m" d6 y1 ]' }; @; A
" X+ B. l" I2 V. J$ P' _9 Z
? ? (4)用单相TV在一次回路定相时,为避免组别万一不同可能出现的电压差烧坏TV,定相用的TV额定电压不得小于电源电压的两倍。
# U; Q' o6 `! K8 C: g
? ? (5)定相变压器电压分接头应一致,以免二次电压差别引起误判断。
4 |. K# R. u, K& x ' _6 i4 e2 e: `* N- H* W
? ? 4.2 核相试验的注意事项
/ g% q??B9 }, T$ s1 `
? ? (1)母线处于大接地系统中,主变压器的中性点必须接地。
8 g' i$ ~. ~+ C# I
4 s. h3 g4 j- p# A( ]3 r% x??m1 ~
? ? (2)变压器定相最好选在降压侧进行,在中性点不接地的系统中应注意防止并联电磁谐振。
: [# z4 i/ w" h9 Y: c
? ? (3
? ? (4
? ? (5
? ? 5。