高中数学专题讲义-数学归纳法

合集下载

高三数学精品课件: 数学归纳法

高三数学精品课件: 数学归纳法

[主干知识·自主梳理] [考点分类·深度剖析] 课时作业
首页 上页 下页 尾页
考点三 归纳猜想证明 (核心考点——合作探究)
解析:(1)当 n=1 时,由已知得 a1=a21+a11-1,a12+2a1-2= 0.∴a1= 3-1(a1>0). 当 n=2 时,由已知得 a1+a2=a22+a12-1, 将 a1= 3-1 代入并整理得 a22+2 3a2-2=0. ∴a2= 5- 3(a2>0).同理可得 a3= 7- 5. 猜想 an= 2n+1- 2n-1(n∈N*).
法的原理.
素养
2.能用数学归纳

形成
法证明一些简单
的数学命题.
考查 主要通过数学归纳法证明问题,考查
角度 逻辑推理能力.
[主干知识·自主梳理] 重温教材 自查自纠
1.数学归纳法 证明一个与正整数 n 有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当 n 取 第一个值 n0(n0∈N*)时命题成立. (2)(归纳递推)假设 n=k(k≥n0,k∈N*)时命题成立,证明当 n=k+1 时命题也成立.
[主干知识·自主梳理] [考点分类·深度剖析] 课时作业
首页 上页 下页 尾页
考点二 证明不等式 (核心考点——合作探究)
当 n=k+1 时,左边=k+1 2+k+1 3+…+3k1+3=(k+1 1+k+1 2 +k+1 3+…+31k)+3k1+1+3k1+2+3k1+3-k+1 1>56+3k1+3×3 -k+1 1=56, 所以当 n=k+1 时,命题也成立. 综合①②可知原命题成立.
[主干知识·自主梳理] [考点分类·深度剖析] 课时作业
首页 上页 下页 尾页
考点一 证明等式 (核心考点——合作探究)

高三数学总复习《数学归纳法》课件

高三数学总复习《数学归纳法》课件

k(2k+1),则当n=k+1时,
12-22+32-42+…+(2k-1)2-(2k)2+(2k+1)2 2 k 1
2
=-k(2k+1)+(2k+1) =-2k2-5k-3=-(k+1)(2k+3)
=-(k+1)
. 2 k 1
2
即当n=k+1时,等式也成立.
k 1 当n k 1时, 2 k 1 7 3 9
(2k 7) 3k 1 2 3k 1 9
k k 1 2 k 7 3 9 3 18 ( 3 1). 由于3k 1 1是2的倍数, 故18(3k 1 1)能被36整除,
下列命题总成立的是(
)
A.若f(3)≥9成立,则当k≥1时,均有f(k)≥k2成立 B.若f(5)≥25成立,则当k≤5时,均有f(k)≥k2成立 C.若f(7)<49成立,则当k≥8时,均有f(k)<k2成立 D.若f(4)=25成立,则当k≥4时,均有f(k)≥k2成立 答案:D
解析:若f(3)≥9,只能推出,当k≥3时f(k)>k2,所以A不正确;若
典例某数列的第一项为1,并且对所有的自然数n≥2,数列的前
n项积为n2. (1)写出这个数列的前五项; (2)写出这个数列的通项公式,并加以证明.
分析:根据数列前五项写出这个数列的通项公式,要注意观察
数列中各项与其序号变化的关系,归纳出构成数列的规律,同 时还要特别注意第一项与其他各项的差异,必要时可分段表 示,证明这个数列的通项公式可用数学归纳法.本题中要特别 注意第一个步骤的处理.

数学归纳法优质课件高中数学优质课件下载

数学归纳法优质课件高中数学优质课件下载

数学归纳法优质课件高中数学优质课件一、教学内容本节课,我们将在高中数学教材第四章“数列与数学归纳法”中,深入学习数学归纳法。

具体内容涉及教材第2节,详细探讨数学归纳法基本原理、步骤及其在数列中应用。

二、教学目标1. 理解数学归纳法概念、原理和应用;2. 掌握数学归纳法证明步骤,并能运用其解决数列相关问题;3. 培养学生逻辑思维能力和推理能力。

三、教学难点与重点1. 教学难点:数学归纳法证明过程中,如何引导学生从特殊到一般,再由一般到特殊逻辑推理;2. 教学重点:数学归纳法证明步骤及其在数列中应用。

四、教具与学具准备1. 教具:PPT课件、黑板、粉笔;2. 学具:练习本、笔。

五、教学过程1. 实践情景引入:通过生活中实例,如“登楼梯问题”,引导学生思考如何用数学方法解决此类问题,从而引出数学归纳法;2. 例题讲解:讲解数学归纳法基本原理和步骤,结合具体例题,让学生直观地解数学归纳法在实际问题中应用;3. 随堂练习:让学生独立完成数列相关数学归纳法证明题,并及时给予指导和反馈;5. 课堂小结:让学生回顾本节课所学内容,巩固知识点。

六、板书设计1. 数学归纳法基本原理和步骤;2. 数列相关例题及解题过程;3. 课堂小结和课后作业。

七、作业设计1. 作业题目:(1)证明:1+3+5++(2n1)=n^2;(2)证明:1^2+2^2+3^2++n^2=n(n+1)(2n+1)/6。

答案:(1)略;(2)略。

2. 拓展延伸:让学生思考数学归纳法在其他数学领域(如不等式、函数等)应用。

八、课后反思及拓展延伸1. 反思:本节课学生对数学归纳法掌握情况,分析学生在证明过程中可能遇到问题,调整教学方法;2. 拓展延伸:引导学生探索数学归纳法在其他领域应用,培养学生创新思维和探究能力。

重点和难点解析在教学过程中,有几个细节是需要我重点关注。

实践情景引入方式对于激发学生学习兴趣至关重要。

例题讲解深度和广度直接影响到学生对数学归纳法理解程度。

高中数学讲义(人教A版选择性必修二):第06讲 数学归纳法(教师版)

高中数学讲义(人教A版选择性必修二):第06讲 数学归纳法(教师版)
解题方略:
数学归纳法的三个关键点 (1)验证是基础:找准起点,奠基要稳,有些问题中验证的初始值不一定是 1. (2)递推是关键:数学归纳法的实质在于递推,要正确分析式子中项数的变化,弄清式子两边的构成规律. (3)利用假设是核心:在第二步证明 n=k+1 时,一定要利用归纳假设.
(一)数学归纳法的理解
【解析】当 n=1 时,左边的最高次数为 1,
即最后一项为 a,左边是 1+a,
故选:B.
【即学即练
2】(2022·全国·高二专题练习)用数学归纳法证明1
1
时,第
一步应验证不等式( )
A.1 1 2 2
B.1
1 2
1 3
2
C.1 1 1 3 23
A. k2 1 2
B. k2 1
C. k 12 k 2
D. k 12 2k 2
【解析】根据等式左边的特点,各数是先递增再递减,
由于 n k ,左边 12 22 ( k 1)2 k2 ( k 1)2 22 12 ,
n k 1时,左边 12 22 ( k 1)2 k2 ( k 1)2 k2 ( k 1)2 22 12 ,
4.4 数学归纳法
课程标准
课标解读
1.了解数学归纳法的原理. 2.能用数学归纳法证明一些简单的数学命 题.
通过本节课的学习,要求掌握数学归纳法的方法与步 骤,并能用此方法证明一些等式及不等式成立.学会用数 推理的思想及方式有步骤严谨地证明数学中相关的等 式及不等式的成立.
知识点 1 数学归纳法
(1)数学归纳法的定义 一般地,证明一个与正整数 n 有关的命题,可按下列步骤进行:
比较两式,从而等式左边应添加的式子是 (k 1)2 k 2 ,
故选: C .

高中数学精品课件23数学归纳法1

高中数学精品课件23数学归纳法1

高中数学精品课件2 3数学归纳法1一、教学内容本节课选自高中数学教材第二册第三章“数学归纳法”的第一课时。

详细内容包括数学归纳法的概念、原理和基本步骤,以及数学归纳法在实际问题中的应用。

二、教学目标1. 理解数学归纳法的概念,掌握数学归纳法的原理和基本步骤。

2. 能够运用数学归纳法解决一些简单的数学问题。

3. 培养学生的逻辑思维能力和归纳推理能力。

三、教学难点与重点教学难点:数学归纳法的证明过程,尤其是第二步的证明。

教学重点:数学归纳法的概念、原理和基本步骤。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:教材、练习本、笔。

五、教学过程1. 导入:通过一个实践情景引入数学归纳法,如“如何计算一个台阶上到第n级台阶有多少种走法?”。

2. 基本概念:讲解数学归纳法的概念、原理和基本步骤。

3. 例题讲解:讲解一个典型的数学归纳法例题,如“证明1+2+3++n=n(n+1)/2”。

4. 随堂练习:让学生尝试解决一个类似的数学归纳法问题。

6. 应用拓展:讨论数学归纳法在实际问题中的应用,如数列求和、不等式证明等。

六、板书设计1. 数学归纳法(1)2. 内容:数学归纳法的概念、原理数学归纳法的基本步骤例题及解答随堂练习及答案七、作业设计1. 作业题目:(1)用数学归纳法证明:1^2+2^2+3^2++n^2=n(n+1)(2n+1)/6。

(2)已知数列{a_n}满足a_1=1,a_{n+1}=2a_n+1,用数学归纳法证明:a_n=2^n1。

2. 答案:见教材课后习题。

八、课后反思及拓展延伸1. 反思:本节课学生对数学归纳法的概念和证明步骤掌握情况,以及对例题和随堂练习的解决情况。

2. 拓展延伸:引导学生探索数学归纳法在更广泛领域中的应用,如组合数学、数论等。

重点和难点解析1. 教学难点:数学归纳法的证明过程,尤其是第二步的证明。

2. 例题讲解:讲解一个典型的数学归纳法例题。

3. 随堂练习:设计合适的随堂练习题,巩固学生对数学归纳法的理解。

2024年【新教材】高中数学课件之数学归纳法

2024年【新教材】高中数学课件之数学归纳法

2024年【新教材】高中数学课件之数学归纳法一、教学内容本节课选自2024年新教材高中数学必修二,主要围绕第六章第2节“数学归纳法”展开。

详细内容包括数学归纳法的定义、原理以及应用。

具体章节内容为:1. 数学归纳法的引入及基本概念2. 数学归纳法证明步骤与原理3. 数学归纳法在实际问题中的应用二、教学目标1. 理解数学归纳法的概念,掌握数学归纳法的基本步骤。

2. 能够运用数学归纳法证明简单的数学命题。

3. 了解数学归纳法在实际问题中的应用,提高解决问题的能力。

三、教学难点与重点教学难点:数学归纳法证明过程中步骤的严谨性。

教学重点:数学归纳法的基本概念、证明步骤及实际问题中的应用。

四、教具与学具准备1. 教具:PPT课件、黑板、粉笔。

2. 学具:练习本、笔。

五、教学过程1. 导入:通过一个实践情景(如:楼梯问题)引入数学归纳法的概念。

2. 新课讲解:a. 介绍数学归纳法的定义及基本原理。

b. 通过例题讲解数学归纳法证明步骤。

c. 分析数学归纳法在实际问题中的应用。

3. 随堂练习:让学生完成几道数学归纳法证明的题目,巩固所学知识。

4. 知识拓展:介绍数学归纳法在其他领域的应用,如计算机科学、经济学等。

六、板书设计1. 数学归纳法2. 定义:数学归纳法的概念3. 证明步骤:数学归纳法证明的基本步骤4. 应用示例:数学归纳法在实际问题中的应用七、作业设计1. 作业题目:a. 证明:1+3+5++(2n1)=n^2b. 证明:1^3+2^3+3^3++n^3=(1+2++n)^22. 答案:见课后附录。

八、课后反思及拓展延伸2. 拓展延伸:a. 让学生探讨数学归纳法在生活中的应用,提高学生运用数学知识解决问题的能力。

b. 引导学生了解数学归纳法在其他学科领域的应用,拓展知识视野。

重点和难点解析一、教学难点与重点1. 数学归纳法证明过程中步骤的严谨性。

2. 数学归纳法的基本概念、证明步骤及实际问题中的应用。

高中数学《数学归纳法》课件

高中数学《数学归纳法》课件
12 22 32 n2 n(n 1)(2n 1) 6
证明:
1
(1)当n=1时,左边=12=1,右边=
2
3
1
6
等式成立。
(2)假设当n=k时,等式成立,即
12 22 32 k 2 k(k 1)(2k 1) 6
那么: 左边=12+22+……+k2+(k+1)2
k(k 1)(2k 1) (k 1)2 6
❖ 设{pn}是一个与自然数相关的命题集合,如果 (1)证明起始命题p1(或p0)成立; (2)在假设pk成立的前提下,推出pk+1也成 立,那么可以断定。{pn}对一切正整数(或自 然数)成立,这种方法叫做数学归纳法。
引例1:已知数列{an}中, a1=1,an+1=an/(an+1),试求出a2,a3,a4并猜 想{an}的通项公式
k(k 1)(2k 1) 6(k 1)2
6 (k 1)(2k 2 7k 6)
6 (k 1)(k 2)(2k 3)
6
(k 1)(k 1) 12(k 1) 1 右边
6
即当n=k+1时等式也成立。 根据(1)和(2),可知命题
对任何n∈N*都成立。
重点:两个步骤、一个结论; 注意:递推基础不可少,
故 n=k+1 时猜想也成立. 由①②可知,对 n≥2,n∈N*,有 an=5×2n-2. 所以数列{an}的通项公式为 an=55, ×n2= n-21,,n≥2.
Hale Waihona Puke 1 1 1 1 n .24 46 68
2n(2n 2) 4(n 1)
证明 (1)当n=1时,等式左边 1 1 , 24 8
等式右边 1 1, 所以等式成立. 4(11) 8

新教材高中数学第4章4.4数学归纳法课件苏教版选择性必修第一册

新教材高中数学第4章4.4数学归纳法课件苏教版选择性必修第一册

【解析】①当 n=1 时,左边=1,右边=1×22 2=1,等式成立.
②假设当 n=kk∈N*,k≥1
时等式成立,即 13+23+33+…+k3=[ k(k 1)]2 . 2
那么当 n=k+1 时,13+23+33+…+k3+(k+1)3=[ k(k 1)]2 +(k+1)3 2
=(k+1)2·k42+k+1
=11× 11k+1+122k-1 +133×122k-1. 由归纳假设可知 11× 11k+1+122k-1 +133×122k-1 能被 133 整除,即11k+2 +
122k+1 能被 133 整除.所以 n=k+1 时结论也成立, 综上,由①②得,11n+1 +122n-1能被 133 整除.
C.3k1+1
D.3k1+3
【解析】选 B.当 n=k(k∈N*)时,所假设的不等式为 1 k+1
+1 k+2
+…+31k
5 ≥6

当 n=k+1 时,要证明的不等式为 1 k+2
+1 k+3
+……+31k
+1 3k+1
+1 3k+2

1 3k+3
5 ≥6

故需添加的项为 1 3k+1
+1 3k+2
(n∈N*) .
【解析】①当 n=1 时,11n+1 +122n-1=112+12=133 能被 133 整除,所以 n=1 时结 论成立,
②假设当 n=k(k∈N*) 时,11k+1 +122k-1 能被 133 整除,
那么当 n=k+1 时,
11k+2 +122k+1 =11k+1 ×11+122k-1 ×122 =11k+1 ×11+122k-1 ×11-122k-1 ×11+122k-1 ×122
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题型一:数学归纳法基础【例1】已知n 为正偶数,用数学归纳法证明111111112()2341242n n n n-+-++=+++-++时,若已假设2(≥=k k n 为偶数)时命题为真,则还需要用归纳假设再证 ( )A .1+=k n 时等式成立B .2+=k n 时等式成立C .22+=k n 时等式成立D .)2(2+=k n 时等式成立【例2】已知n 是正偶数,用数学归纳法证明时,若已假设n=k (2≥k 且为偶数)时命题为真,,则还需证明( )A.n=k+1时命题成立B. n=k+2时命题成立C. n=2k+2时命题成立D. n=2(k+2)时命题成立【例3】某个命题与正整数n 有关,如果当)(+∈=N k k n 时命题成立,那么可推得当1+=k n 时命题也成立. 现已知当7=n 时该命题不成立,那么可推得( )A .当n=6时该命题不成立B .当n=6时该命题成立C .当n=8时该命题不成立D .当n=8时该命题成立【例4】利用数学归纳法证明“*),12(312)()2)(1(N n n n n n n n ∈-⨯⋅⋅⋅⨯⨯⨯=+⋅⋅⋅++ ”时,从“k n =”变到“1+=k n ”时,左边应增乘的因式是 ( ) A 12+k B112++k k C 1)22)(12(+++k k k D 132++k k【例5】用数学归纳法证明),1(11122*+∈≠--=++++N n a aa a a a n n,在验证n=1时,典例分析板块三.数学归纳法左边计算所得的式子是( )A. 1B.a +1C.21a a ++D. 421a a a +++【例6】用数学归纳法证明n n n n n 2)()2)(1(=+++ ))(12(31*∈+⋅⋅⋅⋅N n n ,从“k到k+1”左端需乘的代数式是( ) A.2k+1 B.)12(2+k C.112++k k D.132++k k【例7】用数学归纳法证明:1+21+31+)1,(,121>∈<-+*n N n n n 时,在第二步证明从n=k 到n=k+1成立时,左边增加的项数是( ) A.k 2 B.12-k C.12-k D.12+k【例8】设)1()2()1()(-++++=n f f f n n f ,用数学归纳法证明“)()1()2()1(n nf n f f f n =-++++ ”时,第一步要证的等式是【例9】用数学归纳法证明“)12(212)()2)(1(-⋅⋅⋅⋅=+++n n n n n n ”(+∈N n )时,从 “n k =到1n k =+”时,左边应增添的式子是__ __。

【例10】用数学归纳法证明不等式241312111>++++++n n n n 的过程中,由k 推导到k+1时,不等式左边增加的式子是【例11】是否存在常数c b a ,,是等式22222421(1)2(2)()n n n n n an bn c ⋅-+⋅-+⋅⋅⋅+⋅-=++对一切)*N n ∈成立?证明你的结论。

题型二:证明整除问题【例12】若存在正整数m ,使得)(93)72()(*∈+-=N n n n f n 能被m 整除,则m =【例13】证明:)(,)3(1*∈+-N n x n 能被2+x 整除【例14】已知数列{}n a 满足1201a a ==,,当*n ∈N 时,21n n n a a a ++=+.求证:数列{}n a 的第41(*)m m +∈N 项能被3整除.【例15】 用数学归纳法证明:731(*)n n n +-∈N 能被9整除.【例16】设n 是任意正整数,求证:35n n +能被6整除.【例17】用数学归纳法证明:对于一切正整数n ,227433n n --能被264整除.【例18】2n (n ≥4且n ∈N *)个正数排成一个n 行n 列的数阵:第1列第2列第3列 …… 第n 列第1行 11a 12a 13a …… 1n a 第2行 21a 22a 23a…… 2n a…… …… …… …… …… …… 第n 行 1n a 2n a 3n a …… nn a 其中ik a (1≤i ≤n ,1≤k ≤n ,且i ,k ∈N )表示该数阵中位于第i 行第k 列的数.已知该数阵每一行的数成等差数列,每一列的数成公比为2的等比数列,且23a =8,34a =20. (Ⅰ)求11a 和ik a ;(Ⅱ)设12(1)3(2)1n n n n n A a a a a --=++++,证明:当n 为3的倍数时,(n A n +)能被21整除.题型三:证明恒等式与不等式【例19】证明不等式111123212n n++++>-……(n N *∈)【例20】用数学归纳法证明:*n N ∈,22211131 (2321)nn n ++++≥+.【例21】证明:*n ∈N ,111111111......234212122n n n n n-+-++-=+++-++.【例22】用数学归纳法证明:221111tan tan tan cot cot (*)22222222n n n n m m n αααααα+++=-≠∈∈Z N π,,.【例23】是否存在常数a 、b 、c ,使等式)(12)1()1(32212222c bn an n n n n +++=+++⋅+⋅ 对一切正整数n 都成立?证明你的结论【例24】在数列}{n a 中,nnn a a a x a -+==+11,tan 11, (1)写出,,21a a 3a ;(2)求数列}{n a 的通项公式【例25】用数学归纳法证明:222111arctanarctan arctanarctan (*)212221nn n n +++=∈⋅⋅⋅+N【例26】用数学归纳法证明:(Ⅰ))12(2)1()12)(12(532311222++=+-++⋅+⋅n n n n n n ; (Ⅱ) n n ≤-+++++1214131211 ;【例27】对于2n ≥的自然数,证明:21n >+【例28】已知01a <<,求证:对任意大于1的自然数n ,21()1nna a n a a->-.题型四:数列中的数学归纳法【例29】设12,,...n a a a 均为正数,且12...1n a a a +++=,求证:当n ≥2的时候,22212...n a a a +++≥1n【例30】已知数列{}n a 中,11,02n n n na S a a =+->,求数列{}n a 的通项公式.【例31】在数列{}(*)n a n ∈N 中,11a =,n S 是它的前n 项和,当2n ≥时,12n n n a S S -,,成等比数列,求数列的通项公式.【例32】设整数数列{}n a 满足11a =,212a =,320a =,且32122n n n n a a a a +++=+-.证明:任意正整数n , 114n n a a ++是一个整数的平方.【例33】由正实数组成的数列{}n a 满足:2112n n n a a a n +-=≤,,,.证明:对任意*n ∈N ,都有1n a n<.【例34】实数数列{}n a 定义如下114(1)12n n n a t a a a n t +==-=∈R ,,,,,已知20090a = ⑴证明:对任意*n ∈N ,01n a ≤≤;⑵问有多少个不同的t ,使得20090a =.【例35】两个实数数列{}n x 、{}n y 满足:11tan 3x y π==,1112n n n x y y n ++==+=,,证明:1n >时,23n n x y <<.【例36】在数列{}n a 中,若它的前n 项和1(*)n n S na n =-∈N . ⑴计算1234a a a a ,,,的值;⑵猜想n a 的表达式,并用数学归纳法证明你的结论.【例37】已知函数3()(1)1x f x x x +=≠-+,设数列{}n a 满足11a =,1()n n a f a +=,数列{}n b 满足n n b a =-,n *∈N.用数学归纳法证明n b【例38】设数列1a ,2a ,…n a …中的每一项都不为0.证明:{}n a 为等差数列的充分必要条件是:对任何n ∈N ,都有1223111111n n n na a a a a a a a +++++=.题型五:其他类型题【例39】已知函数))((*N n n f ∈,满足条件:①2)2(=f ;② )()()(y f x f y x f ⋅=⋅;③ *)(N n f ∈;④当y x >时,有)()(y f x f >. (1) 求)1(f ,)3(f 的值;(2) 由)1(f ,)2(f ,)3(f 的值,猜想)(n f 的解析式; (3) 证明你猜想的)(n f 的解析式的正确性.【例40】数列{}n a ,2111,23()n n a a a n n n N *+==-+∈(Ⅰ)是否存在常数λ,μ使得数列{}2n a n n λμ++是等比数列,若存在求μλ、 的值,若不存在,说明理由。

(Ⅱ)设 112n n n b a n -=+-,123n n S b b b b =++++求证:2n ≥时,65(1)(21)3n n S n n <<++【例41】已知数列{}n a 满足:10a =,21221,12,2n n n n a n n a a -+⎧⎪⎪=⎨++⎪⎪⎩为偶数为奇数,2,3,4,n =.(Ⅰ)求567,,a a a 的值; (Ⅱ)设212n n na b -=,试求数列{}n b 的通项公式;(Ⅲ)对于任意的正整数n ,试讨论n a 与1n a +的大小关系.。

相关文档
最新文档