实系数一元二次方程

合集下载

实系数一元二次方程

实系数一元二次方程

实系数一元二次方程
实系数一元二次方程
一元二次方程(又称“二次多项式方程”)是指一个等式的次数较高,且只包含一个未知数的方程。

在一元二次方程中,自变量有且只有一个,称为一元二次函数,即 y=ax2+bx+c(a≠ 0)。

解一元二次方程的方法主要有三种:
1、因式分解法
因式分解法是一种常用方法,只要把方程改为一种可以分解的形式,便可以得到解。

步骤:
(1)首先,将一元二次方程化为相当于 0 的形式。

(2)把一元二次方程转换为包含两个未知数的多项式形式:
ax2+bx+c=d。

(3)用因数分解的方法把 d 分解成两个实数的乘积:d=e·f。

(4)将 ae 和 bf 分别作为新的因式,并同时入方程,即:
ax2+bx+c=ae+bf,再把此多项式撤分,可得 x 的解。

2、求根公式法
求根公式法是通过特定的公式来求解方程的一种方法,只有在一元二次方程系数为实数时才适用,其求根公式为:
x1= -b+√(b2-4ac) /2a
x2= -b-√(b2-4ac) /2a
3、图解法
图解法也是一个求一元二次方程解的方法,也是利用函数图像来分析一元二次方程解的方法,即将方程图像化,通过图像中的拐点、凹点及相关函数曲线的性质来分析、计算方程的解。

12.3 △<0的实系数一元二次方程的根

12.3 △<0的实系数一元二次方程的根
(三)抽象总结:
由上面的分析,我们发现:当△<0 时,实系数一元二次方程 ax2+bx+c=0(a≠0)在复数集内有虚根,并且它的虚根共扼成对 出现. 当△<0 时,实系数一元二次方程 ax2+bx+c=0(a≠0)有一对共扼
z
_ b 4ac b 2 i b 4ac b 2 i z 2a 2a ,
(z b 2 4ac b 2 ) . 2a 4a 2
(6)
利用复数相等的定义容易看出,满足(6)式的复数 z 只有两个. 因此,当△<0 时,实系数一元二次方程 ax2+bx+c=0 有且只有一
南京市劳动局职业技术培训处编印

对共扼虚根,它们由(4)式给出. 三、例题精讲
2 例 1:解方程 x x 2 0.
z b 4ac b 2 i 2a
_
虚根
(3)
是一元二次方程 ax2+bx+c=0 的一个根. 猜想的结论是靠不住的,需要证明. 我们把(3)式代入方程来验证:
a[ z 2 b b b z ( )2 ( )2 ] c a 2a 2a
az2+bz+c=
a( z
பைடு நூலகம்
= =
b 2 4ac b 2 ) 2a 4a
10’
南京市劳动局职业技术培训处编印

z


第 5 页
_ b 4ac b 2 i b 4ac b 2 i z 2a 2a ,
3.实系数一元二次方程的根与系数的关系在判别式时仍然成立,
_ b zz , a 即: _ c zz . a
六、布置作业: P295 A 组 1、2

高二数学实系数一元二次方程1

高二数学实系数一元二次方程1
13.6(1)实系数一元二次方程
上海市新中高级中学 陶志诚
一、复习 1、一元二次方程ax2 bx c 0(a、b、c R且a 0)
的求根公式 当 b2 4ac 0时,方程有两个实数根:x b b2 4ac
2a 2a
2、-1的平方根是: i
设问①:一元二次方程 x2 1 0在复数范围内有没有解?
x2 ax 4 0(a R)
例2、已知一元二次方程x2 mx n 0(m、n R),
试确定一组m、n 的值,使该方程分别有两个
不相等的实数根、两个相等的实数根、两个虚
数根,并解方程.
例3、在复数集中分解因式:
(1)x2 x 2; (2)2x2 4x 5
.
2、实系数一元二次方程中根与系数的关系:
设问②:在复数范围内如何解一元二次方程x2 x 1 0?
二、新课
1、实系数一元二次方程在复数集C中解的情况:
设一元二次方程 ax2 bx c 0(a、b、c R且a 0)
原方程可变形为
x2
b a
x
c a

(x
b )2 2a
b2 4ac 4a2
(1)当 b2 4acBiblioteka 0时,原方程有两个不相等的实数根
实系数一元二次方程ax2 bx c 0(a、b、c R且a 0)
根与系数的关系: x1 x2
b a
,x1 x2
c a
例4、已知3i 2是关于x的方程 2x2 px q 0 的一个根,求实数p、q的值.
三、课堂练习 见课本P91练习13.6(1); P92练习13.6(2)T1.2.3.
四、课堂小结
五、课后作业 1.书面作业:练习册P55 习题13.6 A组 T1.2.3.4.5.

复数的乘法与除法第2课时复数的除法及实系数一元二次方程在复数范围内的解集课件

复数的乘法与除法第2课时复数的除法及实系数一元二次方程在复数范围内的解集课件
答] 怎样理解和应用复数代数形式的除法法则?
提示:(1)复数代数形式的除法是复数代数形式的乘法的逆 运算.
(2)复数除法的运算法则不必死记,在实际运算时,只需把 商ac++dbii看作分数,分子、分母同乘以分母的共轭复数 c-di,把 分母变为实数,化简后,就可以得到运算结果.
知识点二 实系数一元二次方程
解析:本题考查复数的乘法与除法. 31+0ii=31+0ii3-3-ii=10+1030i=1+3i. ∴复数31+0ii对应的点的坐标为(1,3).
3.复数 z 满足(z-i)(2-i)=5,则 z=( D )
A.-2-2i
B.-2+2i
C.2-2i
D.2+2i
解析:由题意可得,z-i=2-5 i=2-52i+2+i i=2+i, 所以 z=2+2i.
于是 ω-u2=2(x+1)+1+2 x-3≥2 2x+1·1+2 x-3=1. 当且仅当 2(x+1)=1+2 x,即 x=0 时等号成立. ∴ω-u2 的最小值为 1,此时 z=±i.
该题涉及复数的基本概念和四则运算以及均值不等式等知识. 只要概念清楚,运算熟练,按常规思路顺其自然不难求解.注意: 解决后面的问题时,可以使用前面已经得到的结论.
[变式训练 3] 设 z2=8+6i,求 z3-16z-10z0.
解:z3-16z-10z0=z4-16zz2-100=z2-8z2-164
=6i2-z 164=-20z0=-z2·0z0
z
200 z =- |z|2
.
∵|z|2=|z2|=|8+6i|=10,
又由 z2=8+6i,得 z=±(3+i),∴ z =±(3-i),
类型三 复数运算的综合应用
[例 3] 设 z 是虚数,ω=z+1z是实数,且-1<ω<2. (1)求|z|的值及 z 的实部的取值范围; (2)设 u=11- +zz,求证:u 为纯虚数; (3)求 ω-u2 的最小值. [分析] (1)ω 是实数可得到哪些结论?(ω 的虚部为 0 或 ω= ω )(2)u 为纯虚数可得到哪些结论?(u 的实部为 0 且虚部不为 0, 或 u=- u )

实系数一元二次方程

实系数一元二次方程

实系数一元二次方程知识点:1.实系数一元二次方程虚根求根公式;2.实系数一元二次方程虚根与系数的关系;3.12ω=-+的应用;4.实系数一元高次方程的求解;5.综合应用;教学过程:1.实系数一元二次方程求根公式:设一元二次方程20(0,,,)ax bx c a a b c R ++=≠∈2.设方程31x =的一个虚根为122ω=-+,则有:3.实系数一元n 次方程的解的规律:例1.解下列方程:(1)2230x +=;(2)23320x x -+-=;(3)210x x ++=;例2.设32i +是方程220,,x bx c b c R ++=∈的一个根,求,b c 的值;例3.设,αβ是方程2230x x -+=的两个根,则:22αβ+= ;11αβ+= ;βααβ+= ; 33αβ+= ;||αβ-= ;例4.设m R ∈,一元二次方程20x x m ++=的两个根为,αβ,且||3αβ-=。

(1)若x R ∈,求实数m 的值;(2)若x C ∈,求实数m 的值;例5.已知关于x 的实系数方程2230x kx k k ++-=有一个模为1的复数根,求实数k 的值。

例6.设2i +是方程4322250x x ax bx -+++=的一个根,求实数,a b 的值,及方程的其它根。

例7.已知,αβ是实系数一元二次方程20ax bx c ++=的两个虚根,且,求αβ的值;作业:1.在复数集中因式分解:(1)2243x x -+;(2)21x x -+-;(3)322x x -+;2.(1)设两个数的和为4,积为6,求这两个数;(2)设两个数的差为4,积为6,求这两个数;3.设m R ∈,一元二次方程2236(1)10x m x m --++=的两个根为,αβ,且。

求m 的值;4.已知关于x 的方程2(21)20,x a x a a R -+++=∈有虚数根,是否存在实数a 使得虚数根的立方是实数?若存在,求出a 的值;若不存在,说明理由。

上海高二数学下册--02—复数的方根与实系数一元二次方程

上海高二数学下册--02—复数的方根与实系数一元二次方程

高二数学春季班(教师版)一、复数的平方根与立方根 1.复数的平方根的定义若复数1z ,2z 满足212z z =,则称1z 是2z 的平方根.2.复数的平方根的求法2()(,,,)a bi c di a b c c +=+∈R即利用复数相等,把复数平方根问题转化为实数方程组来求. 3.复数的平方根的性质复数(0)z z ≠总有两个平方根1z ,2z ,且120z z +=(见图1). 4.复数的立方根的定义类似的,若复数1z ,2z 满足312z z =,则称1z 是2z 的立方根.5.1的立方根设复数12ω=-+,则21,,ωω都是1的立方根. 6.ω的性质 ①210ωω++=, ②31ω=,③212ωω==-. 可运用这些性质化简相关问题(见图2). 7.其他有用结论2(1)2i i -=-,2(1)2i i +=二、实系数一元二次方程实系数一元二次方程20(,,,0)ax bx c a b c a ++=∈≠R 中的24b ac ∆=-为根的判别式,那么(1)0∆>⇔方程有两个不相等的实根2b a-±;复数的方根与实系数一元二次方程知识梳理(2)0∆=⇔方程有两个相等的实根2b a-; (3)0∆<⇔,在(3)的情况下,方程的根与系数关系(韦达定理)仍然成立. 求解复数集上的方程的方法:(1)设(,)z x yi x y =+∈R 化归为实数方程来解决(化归思想).(2)把z 看成一个未知数(而不是实部和虚部两个未知数),用复数的性质来变形(整体思想). (3)对二次方程,直接用一元二次方程的求根公式(公式法).三、常见几何图形的复数表达式复数1z ,2z 为定值,且12z z ≠.(1)线段12Z Z 的中垂线方程:12||||z z z z -=-; (2)以1Z 为圆心,半径为r 的圆方程:1||z z r -=; (3)以1Z 、2Z 为焦点,长轴长为2(0)a a >的椭圆方程:12||||2z z z z a -+-=(其中12||2z z a -<); (4)以1Z 、2Z 为焦点,实轴长为2(0)a a >的双曲线方程:12||||||2z z z z a ---=(其中12||2z z a ->).1、复数的平方根与立方根 【例1】求4-及86i -的平方根.【难度】★【答案】4-的平方根为2i 或2i -;86i -的平方根为3i -或3i -+ 【例2】计算:(112112(1)22i i i ⎛⎫-+ ⎪⎝⎭;(2)50820028)i +-++⎝⎭. 【难度】★★【答案】(1)513;(2)247+【例3】记12ω=-,求1ωω+,221ωω+. 【难度】★★ 【答案】11ωω+=-,2211ωω+=-【例4】已知等比数列123,,,,n z z z z ,其中11z =,2z x yi =+,3z y xi =+(,,0x y x ∈>R ).(1)求,x y 的值; (2)试求使1230n z z z z ++++=的最小正整数n ;(3)对(2)中的正整数n ,求123n z z z z 的值.【难度】★★【答案】(1)12x y ⎧=⎪⎪⎨⎪=⎪⎩;(2)12n =;(3)1-.【巩固训练】1.复数34i +的平方根是 .例题解析【难度】★ 【答案】(2)i ±+2.计算:(11996= . (2)151512(1)(1)(1)i -+=-+ .【难度】★ 【答案】(1)12-;(2)03.已知ω满足等式210ωω++=.(1)计算4(1)ωω++;304050ωωω++;224(1)(1)ωωωω-+-+;(2)求证:对任意复数u ,有恒等式33233(1)()()3(1)u u u u ωω+++++=+; (3)计算:21n n ωω++,*n ∈N . 【难度】★★【答案】(1)1-;0;4;(2)略;(3)*2**33()1031()032()n n n k k n k k n k k ωω⎧=∈⎪++==-∈⎨⎪=-∈⎩N N N2、复数中的代数式和方程【例5】在复数范围内分解因式:2223x x ++ 【难度】★【答案】22232x x x x ⎛++=-⎝⎭⎝⎭11222x x ⎛⎫⎛⎫-+=+- ⎪⎪ ⎪⎪⎝⎭⎝⎭【例6】复数z 满足方程210z z ++=,求()41z z ++的值 【难度】★★【答案】由210z z ++=得,21102z w z w w w ==-+=∴++=或 所以原式()()4428211w w ww w w w w =++=-+=+=+=-【巩固训练】1.若虚数z 满足327z =,则32315z z z +++的值为 . 【难度】★★ 【答案】332.,,求的值.【难度】★★【答案】12ω=-时,原式=15-;12ω=-时,原式;3、实系数一元二次方程【例7】已知方程2350()x x m m -+=∈R ,求方程的解. 【难度】★【答案】920m ∆=- 当0∆>时,即920m <时,32x ±=;当0∆=时,即920m =时,32x =; 当0∆<时,即920m >时,32i x =.【例8】已知βα,是实系数一元二次方程02=++c bx ax 的两个虚根,且2αβ∈R ,求βα的值.【难度】★★【答案】∵2αβ∈R ,∴2222ααβαββαβ=⇒=,即330αβ-=∴12αβ=-± 1≠ω13=ω32302ωωω+++【例9】已知12,x x 是实系数方程20x x p ++=的两个根,且满足12||3x x -=,求实数p 的值. 【难度】★★ 【答案】14p ∆=-, (1)当0∆≥时,即14p ≤时,12,x x 是实根,∴12||3x x -==,即32p =⇒=-; (2)当0∆<时,即14p >时,12,x x 是共轭虚根,设1(,)x a bi a b =+∈R ,则2x a bi =-, ∴123|||2|2||32x x bi b b -===⇒=±,由1221x x a +==-,得12a =-.从而21215||2p x x x ===.综上,2p =-或52.【例10】已知,αβ是实系数一元二次方程230x mx -+=的两个根,求||||αβ+的值. 【难度】★★【答案】212m ∆=-,(1)当0∆≥时,即m ≥m ≤-30αβ=>,∴||||||||m αβαβ+=+=; (2)当0∆<时,即m -<<||||2||αβα+===.【例11】已知复数12,z z 满足1||2z =,2||1z =,12||2z z -=,求12z z . 【难度】★★【答案】212121211121222||()()4z z z z z z z z z z z z z z -=--=⋅-⋅-⋅+⋅=, ∴12121z z z z ⋅+⋅=, ∴122211211z zz z z z z z ⋅⋅+⋅⋅=, ∴122141z zz z +=. 令12z t z =,则141t t+=,∴240t t -+=,∴122t =±,即12122z i z =±.【例12】(1)方程20()x px k p -+=∈R 有一个根为12i +,求实数k 的值; (2)方程240x x k -+=有一个根为12i +,求k 的值. 【难度】★【答案】(1)由题意:另一个根为12i -,∴(12)(12)5k i i =+-=; (2)由题意2(12)4(12)074i i k k i +-++=⇒=+.【例12】关于x 的方程2(2i)i 0x a b x a b --+-=有实根,且一个根的模是2,求实数a 、b 的值. 【难度】★★【答案】设()t t ∈R 是方程的一实根,则2(2)()i 0t at a bt b -++-=.则220,0t at a bt b ⎧-+=⎨-=⎩.(1)当0b =时,此方程为220x ax a -+=. ①有实根,0∆≥即1a ≥或0a ≤.当根为2时,440a a -+=.得43a =. 当根为2-时,440a a ++=.得45a =-.②有一对共轭虚根即01a <<.模为2,即有4a =(舍).(2)当0b ≠时,则1t =,此时1a =.又因为模为2,所以b =所以4,30a b ⎧=⎪⎨⎪=⎩或4,50a b ⎧=-⎪⎨⎪=⎩或1,a b =⎧⎪⎨=⎪⎩1,a b =⎧⎪⎨=⎪⎩【巩固训练】1.下列命题在复数集中是否正确?为什么?(1)若,,a b c ∈R ,0a ≠,且240b ac -≥,则方程20ax bx c ++=有两个实数根;(2)若,,a b c ∈R ,0a ≠,且12,x x 是方程20ax bx c ++=的两个根,则12b x x a +=-,12cx x a=; (3)若,,a b c ∈R ,0a ≠,且12,x x 是方程20ax bx c ++=的两个根,则221212||()x x x x -=-;(4)若,,a b c ∈R ,0a ≠,且α是方程20ax bx c ++=的根,则α也是方程的根. 【难度】★★ 【答案】(1)、(2)、(4)正确,(3)不正确2.若12,x x 为方程270x x -+=的两个根,则212||x x -= .【难度】★★ 【答案】273.已知,0x y ≠且,求20092009()(x y x y x y+++的值. 【难度】★★【答案】14.关于x 的方程222(31)10x m x m --++=的两根为αβ、,且||||3αβ+=,求实数m 的值. 【难度】★★【答案】53m =-或2m =5.设αβ、为方程220x x t ++=,(t ∈R )的两个根,()||||f t αβ=+, (1)求()f t 的解析式;(2)证明关于t 的方程()f t m =,当2m >时恰有两个不等的根,且两根之和为定值. 【难度】★★【答案】(1)0()2,010t f t t t ⎧<⎪=<≤⎨⎪<⎩...(2)证明:函数()y f t =的图像关于直线12t =对称(证略) 当(1,)t ∈+∞时,()f t 为增函数,且()(2,)f t ∈+∞;022=++y xy x当(,0)t ∈-∞时,()f t 为减函数,且()(2,)f t ∈+∞.所以当2m >,方程()f t m =在区间(1,)+∞上有唯一解1t ,在区间(,0)-∞上也有唯一解2t , 则121212t t +=⨯=.4、复数方程综合问题【例13】关于x 的二次方程2120x z x z m +++=中,1z ,2z ,m 都是复数,且21241620z z i -=+,设这个方程的两个根α、β满足||αβ-=||m 的最大值和最小值. 【难度】★★【答案】根据韦达定理有12z z mαβαβ+=-⎧⎨=+⎩∵22212()()444z z m αβαβαβ-=+-=-- ∴2212|()||4(4)|28m z z αβ-=--=.∴2121|(4)|74m z z --=,即|(45)|7m i -+=, 这表明复数m 在以(4,5)C 为圆心,7为半径的圆周上,∴max ||7m =min ||7m =当5001,150log 22m t m t >⎧⎪<<⎨<-⎪⎩即2log 215050m t -<<.【例14】已知22016220160122016(1)x x a a x a x a x ++=++++,试求0362016a a a a ++++的值。

高中数学-学生-实系数一元二次方程

高中数学-学生-实系数一元二次方程
主课题:实系数一元二次方程
教学内容
知识精要
1.复数的平方根与立方根:
和实数一样,复数 和 ,若满足 ,则称 是 的平方根。因为 ,所以 的平方根是 两个数。
(1)求法:利用复数相等求复数的平方根
(2)1的立方根:
的常用结论: ; ;
思考:当 时, 取何值?
2.实系数一元二次方程 在复数集中恒有解.当判别式 时,方程有两个实数解 ;当判别式 时,方程有两个虚根,且互为共轭 .
(1)在复数集中,实系数一元二次方程的根的性质:实系数一元二次方程在复数集中一定有两个根,它们是两个实根或者是一对共轭虚根。此性质可推广到实系数一元n次方程在复数集中的情况也成立。
(2)实系数一元二次方程 在复数范是一元二次方程 的根,则
2.在复数范围内分解因式 ________
7.设等比数列 其中 :
(1)求 的值;
(2)试求使 的最小自然数
(3)对于(2)中的 ,求 的值。
例4.求与自身的平方共轭的复数
例5.已知复数 是 的平方根,求 的值。
例6.设方程 的两根为 ,且 ,求实数m的值。
例7.已知 为实系数一元二次方程 的两个根, 为虚数,且 ,求 的值。
例8.若关于 的方程 至少有一个模为1的根,求实数 的值。
例9. 是方程 的两个根,其中 求 的值。
备选例题
1.对任意非零复数 ,定义集合 ,设 是方程
3.已知复数 满足 且 ,则 ________
4.方程 的解集是________
5.方程 的两根为__________
6.已知 是实系数方程 的根,则 ______
7.复数 的平方根是()
8.下列命题在复数集中是否正确?为什么?

实系数一元二次方程“虚根成双”的运用问题

实系数一元二次方程“虚根成双”的运用问题

解:x1 2 3i是方程的一个虚根
方程2 x px q 0的另一虚根是 x2 2 3i p x1 x 2 2 4 p8 q x1 x 2 13 q 26 2
2
韦达定理依然成立
四、课堂练习
ex1、在复数集中解方程: 2 (1) x 2 0 2 (2) x x 1 0 2 (3) x 2ix 2 0 ex2、在复数集中分解因式 : 2 (1) x 6 ( x 6i )( x 6i ) (2) x 4 16 ( x 2i )( x 2i )( x 2)( x 2)
ax bx c一定可以因式分解为 a( x x1 )( xx ) 有根x1 ,x 2 ,则ax 2 bx c可因式分解为 a( x x1 )( x2 x 2 )
x1 ,x2为实系数一元二次方程 ax 2 bx c 0的两个根
三、例题举隅
例1、在复数集中解方程: 6 2 2 x 4 x 5 0 x 1, 2 1 i 2 变式1、在复数集中因式分解:
2
的一个根,求 a及另一个根.
解:x 2 x a 0的另一虚根是 x2 1 i
2
x1 x2 a 2
四、课堂小结
1、实系数一元二次方程在复数集中的解
0,方程有两个不相等的 实数根 0,方程有两个相等的实 数根 0,方程有一对共轭虚根
能否推广到 复数集?
6 6 2( x 1 i )( x 1 i) 2 2
有根x1、x 2 ,则ax 2 bx c可因式分解为 a( x x1 )( x x 2 )
二次项系 数a一定 在复数集内,二次三项 式 2 在复数集内, 若实系数一元二次方程 ax bx要提出! c 0 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三总复习——实系数一元二次方程(共4页)
1 实系数一元二次方程的解
【要点整理】
会在复数集内解实系数一元二次方程,会对简单的含实数字母系数的一元二次方程的解的情况进行讨论。

会利用复数相等把复数问题转化为实数问题。

【例题分析】
例1.在复数范围内解下列方程:
(1)2210x +=; (2)23650x x ++=.
例2.在复数范围内分解因式:32x x x -+=_________________________
例3.已知方程20x px q ++=的一个根是1i +,求方程的另一个根以及,p q 的值。

例4.关于x 的方程240()x x m m R ++=∈的两个复数根为,αβ
(1)若2αβ-=,求m 的值。

(2)若2αβ+=,求m 的值。

高三总复习——实系数一元二次方程(共4页)
2
例5.设关于x 的方程22230()x ax a a a R ++-=∈至少有一个模为1的根,求a 的值。

例6.已知关于x 的方程0212=+++i zx x 有实数根,求复数z 的模的最小值。

例7.在复数范围内解方程i
i i z z z
+-=++23)(2(i 为虚数单位)。

*例8.已知βα,是实系数一元二次方程02
=++c bx ax 的两根,且α为虚数,R ∈βα2
,求
β
α的值。

高三总复习——实系数一元二次方程(共4页)
3
练习 姓名____________
1.在复数范围内:方程2220()x ax a a R ++=∈的解是__________。

2.实系数方程20x ax b ++=的一个根是2i
,则a =_________,b =_________ 3.若12,x x 是一元二次方程270x x -+=的根,则()212x x -=_________
4.若,αβ是一元二次方程2250x x -+=的根,则αβ-=_________
5.关于x 的方程20(0)ax bx c a ++=≠在复数集内有两个根,αβ,则下列结论恒成立的是________
(1),αβ互为共轭复数;(2)a c a b =⋅-
=+βαβα,;(3)042≥-=∆ac b ; (4)
αβ-= 6.关于x 的方程),0(02C x t t x ∈>=+的解集是_____________________。

7.已知方程0422=+-z z 的两根1z 与2z 在坐标平面上的对应点分别是A 与B ,点O 是坐标的原点,则AOB ∆的面积是______________。

8.方程2
0z z -=在复数范围内解的个数是( )
(A )1个 (B )2个 (C )1个或2个 (D )无穷多个
*9.二次方程2250x ix --=的根的情况是( )
(A )有两个不相等的实根 ( B)有1个实根,1个虚根
(C )有1对共轭复根 (D )有2个虚根 10.设复数),0(,,)c o s 21()s i n
2(2
πθθθ∈∈++-=R a i a z 。

已知z 是方程0522=+-x x 的一个根,且z 在复平面内的对应点位于第一象限,求θ与a 的值。

高三总复习——实系数一元二次方程(共4页)
4 11.设虚数12,z z 满足2
12z z =,且12,z z 又是一个实系数一元二次方程的两个根,求12,z z 。

12.若,αβ是实系数一元二次方程20x x m ++=的两个虚根,且αβ-=3,求m 的值。

13.已知βα,是方程)(022R a a x x ∈=++的两根,求βα+的值。

14.已知关于x 的实系数方程0322=-++k k kx x 有一个模为1的虚根,求实数k 的值。

15.证明:在复数范围内,方程i i z i z i z
+-=+--+255)1()1(2(i 为虚数单位)无解。

16.已知α是实系数一元二次方程20(0)ax bx c abc ++=≠的一个虚根,且3
R α∈,求证:,,a b c 成等比数列。

相关文档
最新文档