高中三角函数公式大全及经典习题测验解答
高一数学 知识点 三角函数 诱导公式 常考题 经典题 50道 含答案和解析

高一数学三角函数诱导公式50道常考题经典题一、单选题1.若角的终边上有一点(-4,a),则a的值是()A. B. C. D.【答案】A【考点】任意角的三角函数的定义,诱导公式一【解析】【解答】由三角函数的定义知:,所以,因为角的终边在第三象限,所以<0,所以的值是。
【分析】三角函数是用终边上一点的坐标来定义的,和点的位置没有关系。
属于基础题型。
================================================================================2.若,则的值是( )A. B. C. D.【答案】C【解析】【解答】即,所以,,=,故选C。
【分析】简单题,此类题解的思路是:先化简已知条件,再将所求用已知表示。
================================================================================3.若,则()A. B. C. D.【答案】C【考点】诱导公式一,同角三角函数间的基本关系【解析】【解答】,故选C.================================================================================4.函数图像的一条对称轴方程是()A. B. C. D.【答案】A【考点】诱导公式一,余弦函数的图象,余弦函数的对称性【解析】【分析】,由y=cosx的对称轴可知,所求函数图像的对称轴满足即,当k=-1时,,故选A.================================================================================5.已知,则()A. B. C. D.【答案】C【考点】诱导公式一,同角三角函数间的基本关系,弦切互化【解析】【解答】因为,所以,可得,故C符合题意.故答案为:C .【分析】利用诱导公式将已知条件化简可求出tan,将中分子分母同时除以cos.================================================================================6.函数()A. 是奇函数B. 是偶函数C. 既是奇函数,又是偶函数D. 是非奇非偶函数【答案】A【考点】奇函数,诱导公式一【解析】【解答】∵,∴,∴是奇函数.故答案为:A【分析】首先利用诱导公式整理化简f(x) 的解析式,再根据奇函数的定义即可得证出结果。
(完整版)高考三角函数经典解答题及答案

1在△ABC 中,角A 、B 、C 所对的边分别是a ,b ,c ,且.21222ac b c a =-+ (1)求B CA 2cos 2sin 2++的值; (2)若b=2,求△ABC 面积的最大值. 解:(1) 由余弦定理:conB=14sin22A B ++cos2B= -14(2)由.415sin ,41cos ==B B 得 ∵b=2, a2+c 2=12ac+4≥2ac,得ac ≤38,S △ABC =12acsinB ≤315(a=c 时取等号)故S △ABC 的最大值为3152在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且.cos cos 3cos B c B a C b -= (I )求cosB 的值;(II )若2=⋅BC BA ,且22=b ,求c a 和b 的值.解:(I )由正弦定理得C R c B R b A R a sin 2,sin 2,sin 2===,,0sin .cos sin 3sin ,cos sin 3)sin(,cos sin 3cos sin cos sin ,cos sin cos sin 3cos sin ,cos sin 2cos sin 6cos sin 2≠==+=+-=-=A B A A B A C B B A B C C B B C B A C B B C R B A R C B R 又可得即可得故则因此.31cos =B(II )解:由2cos ,2==⋅B a 可得,,,0)(,12,cos 2,6,31cos 222222c a c a c a B ac c a b ac B ==-=+-+===即所以可得由故又 所以a =c = 63已知向量m =()B B cos 1,sin -, 向量n = (2,0),且m 与n 所成角为π3,其中A 、B 、C 是ABC ∆的内角。
(1)求角B 的大小;(2)求 C A sin sin +的取值范围。
高中数学必修4三角函数公式大全附带练习题

高中数学必修4三角函数公式大全附带练习题三角函数诱导公式sin〔-α〕=-sinα,cos〔-α〕=cosα,tan〔-α〕=-tanαcot〔-α〕=-cotαsin〔π/2-α〕=cosα,cos〔π/2-α〕=sinα,tan〔π/2-α〕=cotα,cot〔π/2-α〕=tanα,sin〔π/2+α〕=cosα,cos〔π/2+α〕=-sinα,tan〔π/2+α〕=-cotα,cot〔π/2+α〕=-tanα,sin〔π-α〕=sinαcos〔π-α〕=-cosα,tan〔π-α〕=-tanα,cot〔π-α〕=-cotαsin〔π+α〕=-sinα,cos〔π+α〕=-cosα,tan〔π+α〕=tanαcot〔π+α〕=cotα,sin〔3π/2-α〕=-cosα,cos〔3π/2-α〕=-sinαtan〔3π/2-α〕=cotα,cot〔3π/2-α〕=tanα,sin〔3π/2+α〕=-cosαcos〔3π/2+α〕=sinα,tan〔3π/2+α〕=-cotα,cot〔3π/2+α〕=-tanαsin〔2π-α〕=-sinα,cos〔2π-α〕=cosα,tan〔2π-α〕=-tanαcot〔2π-α〕=-cotα,sin〔2kπ+α〕=sinα,cos〔2kπ+α〕=cosαtan〔2kπ+α〕=tanα,cot〔2kπ+α〕=cotα(其中k∈Z)习题精选一、选择题1.假设,那么的值为〔〕.A.B.C.D.2.的值等于〔〕.A.B.C.D.3.在△ 中,以下各表达式为常数的是〔〕.A. B.C.D.4.如果,且,那么可以是〔〕.A. B. C. D.5.是方程的根,那么的值等于〔〕.A.B.C.D.二、填空题6.计算.7.,,那么,.8.假设,那么.9.设,那么.10..三、解答题11.求值:12.角终边上一点的坐标为,〔1〕化简以下式子并求其值:;〔2〕求角的集合.13.,求证:.14.假设,求的值.15.、、为△ 的内角,求证:〔1〕;〔2〕.16.为锐角,并且,,求的值.参考答案:一、选择题1.B 2.D 3.C 4.D 5.A二、填空题6.2 7.,8.9.10.三、解答题11..12.〔1〕;〔2〕.13.提示:.14.18.提示:先化简,再将代入化简式即可.15.提示:注意及其变式.16..提示:化简条件,再消去得.。
三角函数诱导公式练习题-带答案

三角函数的诱导公式(1)一、选择题1.如果|cos x |=cos (x +π),则x 的取值集合是( )A .-2π+2k π≤x ≤2π+2k π B .-2π+2k π≤x ≤2π3+2k π C . 2π+2k π≤x ≤2π3+2k π D .(2k +1)π≤x ≤2(k +1)π(以上k ∈Z ) 2.sin (-6π19)的值是( ) A . 21 B .-21 C .23 D .-23 3.下列三角函数:①sin (n π+3π4);②cos (2n π+6π);③sin (2n π+3π);④cos [(2n +1)π-6π]; ⑤sin [(2n +1)π-3π](n ∈Z ). 其中函数值与sin3π的值相同的是( ) A .①② B .①③④ C .②③⑤ D .①③⑤4.若cos (π+α)=-510,且α∈(-2π,0),则tan (2π3+α)的值为( ) A .-36 B .36 C .-26 D .26 5.设A 、B 、C 是三角形的三个内角,下列关系恒成立的是( )A .cos (A +B )=cosC B .sin (A +B )=sin C C .tan (A +B )=tan CD .sin2A B +=sin 2C 6.函数f (x )=cos3πx (x ∈Z )的值域为( ) A .{-1,-21,0,21,1} B .{-1,-21,21,1} C .{-1,-23,0,23,1} D .{-1,-23,23,1} 二、填空题7.若α.8.sin 21°+sin 22°+sin 23°+…+sin 289°=_________.三、解答题9.求值:sin (-660°)cos420°-tan330°cot (-690°).11..12、求证:tan(2π)sin(2π)cos(6π)cos(π)sin(5π)q q qq q-----+=tanθ.三角函数的诱导公式(2)一、选择题:1.已知sin(4π+α)=23,则sin(43π-α)值为( ) A. 21 B. —21 C. 23 D. —23 2.cos(π+α)= —21,23π<α<π2,sin(π2-α) 值为( ) A. 23 B. 21 C. 23± D. —23 3.化简:)2cos()2sin(21-•-+ππ得( )A.sin2+cos2B.cos2-sin2C.sin2-cos2D.± (cos2-sin2)4.已知α和β的终边关于x 轴对称,则下列各式中正确的是( )A.sinα=sinβB. sin(α-π2) =sinβC.cosα=cosβD. cos(π2-α) =-cosβ5.设tanθ=-2, 2π-<θ<0,那么sin 2θ+cos(θ-π2)的值等于( ), A. 51(4+5) B. 51(4-5) C. 51(4±5) D. 51(5-4) 二、填空题:6.cos(π-x)= 23,x ∈(-π,π),则x 的值为 . 7.tanα=m ,则=+-+++)cos(-sin()cos(3sin(απα)απ)απ . 8.|sinα|=sin (-π+α),则α的取值范围是 .三、解答题:9.)cos(·3sin()cos()n(s 2sin(απα)παπα)π----+-απi .10.已知:sin (x+6π)=41,求sin ()67x +π+cos 2(65π-x )的值.11. 求下列三角函数值:(1)sin3π7;(2)cos 4π17;(3)tan (-6π23);12. 求下列三角函数值:(1)sin 3π4·cos 6π25·tan 4π5; (2)sin [(2n +1)π-3π2].13.设f (θ)=)cos()π(2cos 23)2πsin()π2(sin cos 2223θθθθθ-+++-++-+,求f (3π)的值.。
高中数学三角函数公式及练习

三角函数常用公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)=sinα cos (2kπ+α)=cosα tan (2kπ+α)=tanα cot (2kπ+α)=cotα 公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)=-sinα cos (π+α)=-cosα tan (π+α)=tanα cot (π+α)=cotα 公式三:任意角α与 -α的三角函数值之间的关系:sin (-α)=-sinα cos (-α)=cosα tan (-α)=-tanα cot (-α)=-cotα 公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)=sinα cos (π-α)=-cosα tan (π-α)=-tanα cot (π-α)=-cotα 公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)=-sinα cos (2π-α)=cosα tan (2π-α)=-tanα cot (2π-α)=-cotα 公式六:π/2±α与α的三角函数值之间的关系:sin (π/2+α)=cosα cos (π/2+α)=-sinα tan (π/2+α)=-cotα cot (π/2+α)=-tanα sin (π/2-α)=cosα cos (π/2-α)=sinα tan (π/2-α)=co tα cot (π/2-α)=tanα同角三角函数基本关系 ⒈同角三角函数的基本关系式 倒数关系:tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系:sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系:sin^2(α)+cos^2(α)=1 1+tan^2(α)=s ec^2(α) 1+cot^2(α)=csc^2(α) 1.三角和差公式①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαs i n s i n c o s c o s )c o s( =± ③βαβαβαtan tan 1tan tan )tan(⋅±=±2.诱导公式(奇变偶不变,符号看象限,注意奇、偶的判断及把α看成锐角)3.二倍角公式:(要求学生推导2,θθ之间的关系)①θθθcos sin 22sin =②θθθθθ2222sin 211cos 2sin cos 2cos -=-=-= ③θθθ2tan 1tan 22tan -=4降幂公式: ①θθ2cos 1sin 22-= ②θθ2cos 1cos 22+= 5.合一公式:①())20,tan ,0,0(sin cos sin 22πϕϕϕ<<=>>++=+a b b a x b a x b x a ②())20,tan ,0,0(sin cos sin 22πϕϕϕ<<=>>-+=-a b b a x b a x b x a6.正弦定理:A a sin =B b sin =Cc sin = 2R (R 为三角形外接圆半径)7.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cosbc a c b A 2cos 222-+=ac b c a B 2cos 222-+=abc b a C 2cos 222-+=8面积公式.S ⊿=21a a h ⋅=21ab C sin =21bc A sin =21ac B sin =Rabc 4=2R 2A sinB sinC sinsin cos tan-α-αsin +αcos -αtan π-α+αsin -αcos -αtanπ+α-αsin -αcos +αtan2π-α-αsin +αcos -αtan απ+k 2+αsin+αcos+αtansincos απ-2+αcos +αsin απ+2+αcos-αsin απ-23-αcos-αsinαπ+23-αcos+αsin练习题一.选择题:本大题共12小题,每小题5分,共60分。
高中三角函数知识点及其经典例题、[1]
![高中三角函数知识点及其经典例题、[1]](https://img.taocdn.com/s3/m/dcc496b2fd0a79563c1e7215.png)
高中三角函数公式大全2009年07月12日 星期日 19:27三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinBtan(A+B) =tanAtanB -1tanBtanA +tan(A-B) =tanAtanB 1tanBtanA +-cot(A+B) =cotA cotB 1-cotAcotB +cot(A-B) =cotAcotB 1cotAcotB -+倍角公式tan2A =Atan 12tanA2- Sin2A=2SinA•CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosAtan3a = tana ²tan(3π+a)²tan(3π-a)半角公式 sin(2A )=2cos 1A -cos(2A)=2cos 1A +tan(2A)=A A cos 1cos 1+-cot(2A )=A A cos 1cos 1-+tan(2A )=A A sin cos 1-=A A cos 1sin +和差化积sina+sinb=2sin 2b a +cos 2ba -sina-sinb=2cos2b a +sin 2ba - cosa+cosb = 2cos 2b a +cos 2ba -cosa-cosb = -2sin 2b a +sin 2ba -tana+tanb=ba b a cos cos )sin(+积化和差sinasinb = -21[cos(a+b)-cos(a-b)]cosacosb = 21[cos(a+b)+cos(a-b)]sinacosb = 21[sin(a+b)+sin(a-b)]cosasinb = 21[sin(a+b)-sin(a-b)]诱导公式 sin(-a) = -sina cos(-a) = cosasin(2π-a) = cosacos(2π-a) = sinasin(2π+a) = cosacos(2π+a) = -sinasin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosatgA=tanA =aacos sin万能公式sina=2)2(tan 12tan2aa + cosa=22)2(tan 1)2(tan 1aa+-tana=2)2(tan 12tan2aa - 其它公式a•sina+b•cosa=)b (a 22+³sin(a+c) [其中tanc=ab ] a•sin(a)-b•cos(a) = )b (a 22+³cos(a-c) [其中tan(c)=ba ] 1+sin(a) =(sin2a +cos 2a )2 1-sin(a) = (sin 2a -cos 2a)2其他非重点三角函数csc(a) =a sin 1sec(a) =acos 1双曲函数 sinh(a)=2e -e -aacosh(a)=2e e -aa +tg h(a)=)cosh()sinh(a a公式一:设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinα cos (2kπ+α)= cosα tan (2kπ+α)= tanα cot (2kπ+α)= cotα 公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinα cos (π+α)= -cosα tan (π+α)= tanα cot (π+α)= cotα 公式三:任意角α与 -α的三角函数值之间的关系: sin (-α)= -sinα cos (-α)= cosαtan (-α)= -tanα cot (-α)= -cotα 公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)= sinα cos (π-α)= -cosα tan (π-α)= -tanα cot (π-α)= -cotα 公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)= -sinα cos (2π-α)= cosα tan (2π-α)= -tanα cot (2π-α)= -cotα 公式六: 2π±α及23π±α与α的三角函数值之间的关系:sin (2π+α)= cosαcos (2π+α)= -sinαtan (2π+α)= -cotαcot (2π+α)= -tanαsin (2π-α)= cosαcos (2π-α)= sinαtan (2π-α)= cotαcot (2π-α)= tanαsin (23π+α)= -cosαcos (23π+α)= sinαtan (23π+α)= -cotαcot (23π+α)= -tanαsin (23π-α)= -cosαcos (23π-α)= -sinα tan (23π-α)= cotαcot (23π-α)= tanα(以上k ∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用A•sin(ωt+θ)+ B•sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ³sin)cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A三角函数公式证明(全部) 2009-07-08 16:13 公式表达式乘法与因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式 |a+b|≤|a|+|b| |a -b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a 根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理 判别式 b2-4a=0 注:方程有相等的两实根 b2-4ac>0 注:方程有一个实根 b2-4ac<0 注:方程有共轭复数根 三角函数公式两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角正切定理:[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h 斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h' 正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r 锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L 注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h 圆柱体V=pi*r2h-----------------------三角函数积化和差和差化积公式记不住就自己推,用两角和差的正余弦:cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB这两式相加或相减,可以得到2组积化和差:相加:cosAcosB=[cos(A+B)+cos(A-B)]/2相减:sinAsinB=-[cos(A+B)-cos(A-B)]/2sin(A+B)=sinAcosB+sinBcosAsin(A-B)=sinAcosB-sinBcosA这两式相加或相减,可以得到2组积化和差:相加:sinAcosB=[sin(A+B)+sin(A-B)]/2相减:sinBcosA=[sin(A+B)-sin(A-B)]/2这样一共4组积化和差,然后倒过来就是和差化积了不知道这样你可以记住伐,实在记不住考试的时候也可以临时推导一下正加正正在前正减正余在前余加余都是余余减余没有余还负正余正加余正正减余余余加正正余减还负.3.三角形中的一些结论:(不要求记忆)(1)anA+tanB+tanC=tanA·tanB·tanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)·sin(B/2)·sin(C/2)+1(4)sin2A+sin2B+sin2C=4sinA·sinB·sinC(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1 ...........................已知sinα=m sin(α+2β), |m|<1,求证tan(α+β)=(1+m)/(1-m)tanβ解:sinα=m sin(α+2β)sin(a+β-β)=msin(a+β+β)sin(a+β)cosβ-cos(a+β)sinβ=msin(a+β)cosβ+mcos(a+β)sinβsin(a+β)cosβ(1-m)=cos(a+β)sinβ(m+1) tan(α+β)=(1+m)/(1-m)tanβ三角函数题解1.(2003上海春,15)把曲线y cos x +2y -1=0先沿x 轴向右平移2π个单位,再沿y 轴向下平移1个单位,得到的曲线方程是( )A.(1-y )sin x +2y -3=0B.(y -1)sin x +2y -3=0C.(y +1)sin x +2y +1=0D.-(y +1)sin x +2y +1=0 1.答案:C解析:将原方程整理为:y =x cos 21+,因为要将原曲线向右、向下分别移动2π个单位和1个单位,因此可得y =)2cos(21π-+x -1为所求方程.整理得(y +1)sin x +2y +1=0.17.(1997全国,3)函数y =tan (3121-x π)在一个周期内的图象是( )17.答案:A 解析:y =tan (3121-x π)=tan 21(x -32π),显然函数周期为T =2π,且x =32π时,y =0,故选A.4.(2002京皖春文,9)函数y =2sin x 的单调增区间是( )A.[2k π-2π,2k π+2π](k ∈Z )B.[2k π+2π,2k π+23π](k ∈Z ) C.[2k π-π,2k π](k ∈Z ) D.[2k π,2k π+π](k ∈Z ) 4.答案:A解析:函数y =2x 为增函数,因此求函数y =2sin x 的单调增区间即求函数y =sin x 的单调增区间.6.(2002北京,11)已知f (x )是定义在(0,3)上的函数,f (x )的图象如图4—1所示,那么不等式f (x )cos x <0的解集是( )A.(0,1)∪(2,3)B.(1,2π)∪(2π,3)C.(0,1)∪(2π,3) D.(0,1)∪(1,3) 6.答案:C解析:解不等式f (x )cos x <0⎪⎩⎪⎨⎧<<><⎪⎩⎪⎨⎧<<<>⇒300cos 0)(300cos 0)(x x x f x x x f 或∴⎩⎨⎧<<<<⎪⎩⎪⎨⎧<<<<1010231x x x x 或ππ ∴0<x <1或2π<x <37.(2002北京理,3)下列四个函数中,以π为最小正周期,且在区间(2π,π)上为减函数的是( )A.y =cos 2xB.y =2|sin x |C.y =(31)cos xD.y =-cot x7.答案:B解析:A 项:y =cos 2x =22cos 1x +,x =π,但在区间(2π,π)上为增函数.B 项:作其图象4—8,由图象可得T =π且在区间(2π,π)上为减函数.C 项:函数y =cos x 在(2π,π)区间上为减函数,数y =(31)x 为减函数.因此y =(31)cos x 在(2π,π)区间上为增函数.D 项:函数y =-cot x 在区间(2π,π)上为增函数.8.(2002上海,15)函数y =x +sin|x |,x ∈[-π,π]的大致图象是( )8.答案:C解析:由奇偶性定义可知函数y =x +sin|x |,x ∈[-π,π]为非奇非偶函数. 选项A 、D 为奇函数,B 为偶函数,C 为非奇非偶函数. 13.(1999全国,4)函数f (x )=M sin (ωx +ϕ)(ω>0),在区间[a ,b ]上是增函数,且f (a )=-M ,f (b )=M ,则函数g (x )=M cos (ωx +ϕ)在[a ,b ]上( )A.是增函数B.是减函数C.可以取得最大值-D.可以取得最小值-m13.答案:C解法一:由已知得M >0,-2π+2k π≤ωx +ϕ≤2π+2k π(k ∈Z ),故有g (x )在[a ,b ]上不是增函数,也不是减函数,且当ωx +ϕ=2k π时g (x )可取到最大值M ,答案为C.解法二:由题意知,可令ω=1,ϕ=0,区间[a ,b ]为[-2π,2π],M =1,则g (x )为cos x ,由基本余弦函数的性质得答案为C.评述:本题主要考查函数y =A sin (ωx +ϕ)的性质,兼考分析思维能力.要求对基本函数的性质能熟练运用(正用逆用);解法二取特殊值可降低难度,简化命题.14.(1999全国,11)若sin α>tan α>cot α(-2π<α<2π),则α∈( )A.(-2π,-4π) B.(-4π,0)C.(0,4π) D.(4π,2π)14.答案:B 解法一:取α=±3π,±6π代入求出sin α、tan α、cot α之值,易知α=-6π适合,又只有-6π∈(-4π,0),故答案为B.解法二:先由sin α>tan α得:α∈(-2π,0),再由tan α>cot α得:α∈(-4π,0)20.(1995全国,3)函数y =4sin (3x +4π)+3cos (3x +4π)的最小正周期是( )A.6πB.2πC.32πD.3π20.答案:C 解析:y =4sin (3x +4π)+3cos (3x +4π)=5[54sin (3x +4π)+53cos (3x +4π)]=5sin (3x +4π+ϕ)(其中tan ϕ=43) 所以函数y =sin (3x +4π)+3cos (3x +4π)的最小正周期是T =32π. 故应选C.评述:本题考查了a sin α+b cos α=22b a +sin (α+ϕ),其中sin ϕ=22ba b +,cos ϕ=22ba a +,及正弦函数的周期性.21.(1995全国,9)已知θ是第三象限角,若sin 4θ+cos 4θ=95,那么sin2θ等于( ) A.322 B.-322 C.32D.-32 21.答案:A解法一:将原式配方得(sin 2θ+cos 2θ)2-2sin 2θcos 2θ=95 于是1-21sin 22θ=95,sin 22θ=98,由已知,θ在第三象限, 故2k π+π<θ<2k π+23π从而4k π+2π<2θ<4k π+3π 故2θ在第一、二象限,所以sin2θ=322,故应选A. 解法二:由2k π+π<θ<2k π+23π,有4k π+2π<4k π+3π(k ∈Z ),知sin2θ>0,应排除B 、D ,验证A 、C ,由sin2θ=322,得2sin 2θcos 2θ=94,并与sin 4θ+cos 4θ=95相加得(sin 2θ+cos 2θ)2=1成立,故选A. 评述:本题考查了学生应用正余弦的平方关系配方的能力及正弦函数值在各象限的符号的判别.22.(1994全国文,14)如果函数y =sin2x +a cos2x 的图象关于直线x =-8π对称,那么a等于( )A.2B.-2C.1D.-122.答案:D解析:函数y =sin2x +a cos2x 的图象关于直线x =-8π对称,表明:当x =-8π时,函数取得最大值12+a ,或取得最小值-12+a ,所以有[sin (-4π)+a ²cos (-4π)]2=a 2+1,解得a =-1.27.(1996全国,18)tan20°+tan40°+3tan20°²tan40°的值是_____.27.答案:3解析:tan60°=︒︒-︒+︒40tan 20tan 140tan 20tan ,∴tan20°+tan40°=3-3tan20°tan40°,∴tan20°+tan40°+3tan20°tan40°=3.29.(1995上海,17)函数y =sin2x +cos 2x在(-2π,2π)内的递增区间是 . 29.答案:[2,23ππ-]解析:y =sin2x +cos 2x =2sin (42π+x ),当2k π-2π≤2x +4π≤2k π+2π(k ∈Z )时,函数递增,此时4k π-23π≤x ≤4k π+2π(k ∈Z ),只有k =0时,[-23π,2π](-2π,2π).30.(1994全国,18)已知sin θ+cos θ=51,θ∈(0,π),则cot θ的值是 . 30.答案:-43 解法一:设法求出sin θ和cos θ,cot θ便可求了,为此先求出sin θ-cos θ的值.将已知等式两边平方得1+2sin θcos θ=251变形得1-2sin θcos θ=2-251, 即(sin θ-cos θ)2=2549 又sin θ+cos θ=51,θ∈(0,π) 则2π<θ<43π,如图4—14 所以sin θ-cos θ=57,于是 sin θ=54,cos θ=-53,cot θ=-43. 解法二:将已知等式平方变形得sin θ²cos θ=-2512,又θ∈(0,π),有cos θ<0<sin θ,且cos θ、sin θ是二次方程x 2-51x -2512=0的两个根,故有cos θ=-53,sin θ=54,得cot θ=-43.32.(2000全国文,17)已知函数y =3sin x +cos x ,x ∈R .(1)当函数y 取得最大值时,求自变量x 的集合;(2)该函数的图象可由y =sin x (x ∈R )的图象经过怎样的平移和伸缩变换得到? 32.解:(1)y =3sin x +cos x =2(sin x cos6π+cos x sin6π)=2sin (x +6π),x ∈Ry 取得最大值必须且只需x +6π=2π+2k π,k ∈Z即x =3π+2k π,k ∈Z .所以,当函数y 取得最大值时,自变量x 的集合为{x |x =3π+2k π,k ∈Z }(2)变换的步骤是:①把函数y =sin x 的图象向左平移6π,得到函数y =sin (x +6π)的图象;②令所得到的图象上各点横坐标不变,把纵坐标伸长到原来的2倍,得到函数 y =2sin (x +6π)的图象;经过这样的变换就得到函数y =3sin x +cos x 的图象.33.(1995全国理,22)求sin 220°+cos 250°+sin20°cos50°的值.33.解:原式=21(1-cos40°)+21(1+cos100°)+21(sin70°-sin30°) =1+21(cos100°-cos40°)+21sin70°-41 =43-sin70°sin30°+21sin70°=43-21sin70°+21sin70°=43.评述:本题考查三角恒等式和运算能力.34.(1994上海,21)已知sin α=53,α∈(2π,π),tan (π-β)=21,求tan (α-2β)的值.34.解:由题设sin α=53,α∈(2π,π), 可知cos α=-54,tan α=-43 又因tan (π-β)=21,tan β=-21,所以tan2β=34tan 1tan 22-=-ββ tan (α-2β)=2471134432tan tan 12tan tan =++-=+-βαβα37. 求函数f (x )=121log cos()34x π+的单调递增区间解:∵f (x )=121log cos()34x π+令431π+=x t ,∴y=t cos log 21,t 是x 的增函数,又∵0<21<1,∴当y=t cos log 21为单调递增时,cost 为单调递减 且cost>0,∴2k π≤t<2k π+2π(k ∈Z),∴2k π≤431π+x <2k π+2π (k ∈Z) ,6k π-43π≤x<6k π+43π (k ∈Z),∴f (x )=)431cos(log 21π+x 的单调递减区间是[6k π-43π,6k π+43π) (k ∈Z)。
(完整版)高一数学必修5解三角形,正弦,余弦知识点和练习题(含答案),推荐文档

C . a=1,b=2, / A=100C . b=c=1, / B=451 .正弦定理abc2R 或变a ・ A ・ c ain △・ain R ・ain C■ K/ ■ vzn u i L M / ・ w iii sin A sin B sinC222bc acco AUUo / v2a 2 2b c 2bccosA 92bc 92.余弦定理:b 22 2 a c 2accosB 或c a QCO l-< c b 22ac2cb 2 a2bacosC.2 22ba ccos C2ab3.( 1)两类正弦定理解三角形的问题:1、已知两角和任意一边,求其他的两边及一角 2、已知两角和其中一边的对角,求其他边角 (2)两类余弦定理解三角形的问题:1、已知三边求三角•2、已知两边和他们的夹角,求第三边和其他两角4•判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式〔、△ ABC 中,a=1,b= 3 , / A=30 °,则/ B 等于A . 60°B . 60° 或 120°2、符合下列条件的三角形有且只有一个的是A . a=1,b=2 ,c=3 ( )C . 30° 或 150°D . 120°( )B . a=1,b= .2,/A=30 °3、在锐角三角形 ABC 中,有( )A . cosA>sinB 且 cosB>sinAC . cosA>sinB 且 cosB<sinAB . cosA<sinB 且 cosB<sinA D . cosA<sinB 且 cosB>sinA4、若(a+b+c)(b+c — a)=3abc ,且 sinA=2sinBcosC,那么△ ABC 是A .直角三角形D .等腰直角三角形1、在厶ABC 中,已知内角 A —,边BC 2.3.设内角B(1)求函数y f (x)的解析式和定义域;(2)求y 的最大值.2、在VABC 中,角A,B,C 对应的边分别是a,b,c ,若si nAsi nBB .等边三角形C .等腰三角形 5、C 为三角形的三内角,且方程(sinB—si nA)x 2+(si nA — sinC)x+(si nC — sin B)=0有等根,那么角 B6、 满足A=45 B>60 ° C . B<60 D . B w 60°,c= , 6 ,a=2的厶ABC 的个数记为 m,则a m 的值为B .D .不定7、如图:D,C,B 三点在地面同一直线上,DC=a,从C,D 两点测得A 点仰角分别是B ,点离地面的高度AB等于asin sin A .sin( )B .asin sin cos( )asin cos C .sin( )a cos sin D .cos( )9、A 为 ABC 的一个内角,且 sinA+cosA = 172,肌 ABC 是三角形•11、在4 ABC 1 中,若 S ABC = (a 2+b 2 — c 2),那么角/ C=412、在4 ABC 13、在4 ABC① B=60 亠31 中,a =5,b = 4,cos(A — B)= 一,则 cosC= _____ .32中,求分别满足下列条件的三角形形状:,b 2=ac ; ② b 2ta nA=a 2ta nB ;sin A sin B ③ sin C=cos A cos Bx ,周长为—求 a:b:c2 ,3、在锐角三角形ABC中,有( )23、在 VABC 中 a, b, c 分别为 A, B, C 的对边,若 2sinA(cosB cosC) 3(sinB sinC), (1)求A 的大小;(2)若a .61,b c 9,求b 和c 的值。
高中三角函数习题解析精选答案

三角函数题解1.答案:C解析:将原方程整理为:y=,因为要将原曲线向右、向下分别移动个单位和1个单位,因此可得y=-1为所求方程.整理得(y+1)sin x+2y+1=0.评述:本题考查了曲线平移的基本方法及三角函数中的诱导公式.如果对平移有深刻理解,可直接化为:(y+1)cos(x-)+2(y+1)-1=0,即得C选项.2.答案:B图4—5解析:sin2α=2sinαcosα<0 ∴sinαcosα<0即sinα与cosα异号,∴α在二、四象限,又cosα-sinα<0∴cosα<sinα由图4—5,满足题意的角α应在第二象限3.答案:C解析:2sin A cos B=sin(A+B)+sin(A-B)又∵2sin A cos B=sin C,∴sin(A-B)=0,∴A=B4.答案:A解析:函数y=2x为增函数,因此求函数y=2sin x的单调增区间即求函数y=sin x的单调增区间.5.答案:C解法一:作出在(0,2π)区间上正弦和余弦函数的图象,解出两交点的横坐标和,由图4—6可得C答案.图4—6 图4—7解法二:在单位圆上作出一、三象限的对角线,由正弦线、余弦线知应选C.(如图4—7)6.答案:C解析:解不等式f(x)cos x<0∴∴0<x<1或<x<37.答案:B图4—8解析:A项:y=cos2x=,x=π,但在区间(,π)上为增函数.B项:作其图象4—8,由图象可得T=π且在区间(,π)上为减函数.C项:函数y=cos x在(,π)区间上为减函数,数y=()x为减函数.因此y=()cos x在(,π)区间上为增函数.D项:函数y=-cot x在区间(,π)上为增函数.8.答案:C解析:由奇偶性定义可知函数y=x+sin|x|,x∈[-π,π]为非奇非偶函数.选项A、D为奇函数,B为偶函数,C为非奇非偶函数.9.答案:B解析:∵A、B是锐角三角形的两个内角,∴A+B>90°,∴B>90°-A,∴cos B<sin A,sin B>cos A,故选B.10.答案:B解析:tan300°+cot405°=tan(360°-60°)+cot(360°+45°)=-tan60°+cot45°=1-.11.答案:D解析:因为在第一、三象限内正弦函数与余弦函数的增减性相反,所以可排除A、C,在第二象限内正弦函数与正切函数的增减性也相反,所以排除B.只有在第四象限内,正弦函数与正切函数的增减性相同.12.答案:D解析:因为函数y=-x cos x是奇函数,它的图象关于原点对称,所以排除A、C,当x∈(0,)时,y=-x cos x<0.13.答案:C解法一:由已知得M>0,-+2kπ≤ωx+≤+2kπ(k∈Z),故有g(x)在[a,b]上不是增函数,也不是减函数,且当ωx+=2kπ时g(x)可取到最大值M,答案为C.解法二:由题意知,可令ω=1,=0,区间[a,b]为[-,],M=1,则g(x)为cos x,由基本余弦函数的性质得答案为C.评述:本题主要考查函数y=A sin(ωx+)的性质,兼考分析思维能力.要求对基本函数的性质能熟练运用(正用逆用);解法二取特殊值可降低难度,简化命题.14.答案:B解法一:取α=±,±代入求出sinα、tanα、cotα之值,易知α=-适合,又只有-∈(-,0),故答案为B.解法二:先由sinα>tanα得:α∈(-,0),再由tanα>cotα得:α∈(-,0)评述:本题主要考查基本的三角函数的性质及相互关系,1995年、1997年曾出现此类题型,运用特殊值法求解较好.15.答案:B解析:取f(x)=cos x,则f(x)·sin x=sin2x为奇函数,且T=π.评述:本题主要考查三角函数的奇偶与倍角公式.16.答案:B解法一:P(sinα-cosα,tanα)在第一象限,有tanα>0,A、C、D中都存在使tanα<0的α,故答案为B.解法二:取α=∈(),验证知P在第一象限,排除A、C,取α=∈(,π),则P点不在第一象限,排除D,选B.解法三:画出单位圆如图4—10使sinα-cosα>0是图中阴影部分,又tanα>0可得或π<α<,故选B.评述:本题主要考查三角函数基础知识的灵活运用,突出考查了转化思想和转化方法的选择,采用排除法不失为一个好办法.17.答案:A解析:y=tan(π)=tan(x-),显然函数周期为T=2π,且x=时,y=0,故选A.评述:本题主要考查正切函数性质及图象变换,抓住周期和特值点是快速解题的关键.18.答案:D解析一:由已知可得cos2x=cos2x-sin2x<0,所以2kπ+<2x<2kπ+π,k∈Z.解得kπ+<x<kπ+π,k∈Z(注:此题也可用降幂公式转化为cos2x<0).解析二:由sin2x>cos2x得sin2x>1-sin2x,sin2x>.因此有sin x>或sin x<-.由正弦函数的图象(或单位圆)得2kπ+<x<2kπ+π或2kπ+π<x<2kπ+π(k∈Z),2kπ+π<x<2kπ+π可写作(2k+1)π+<x<(2k+1)π+,2k为偶数,2k+1为奇数,不等式的解可以写作nπ+<x<nπ+,n∈Z.评述:本题考查三角函数的图象和基本性质,应注意三角公式的逆向使用.19.答案:Ass解法一:由已知得:sin(x-)≤0,所以2kπ+π≤x-≤2kπ+2π,2kπ+≤x≤2kπ+,令k=-1得-≤x≤,选A.图4—11解法二:取x=,有sin,排除C、D,取x=,有sin=,排除B,故选A.图4—12解法三:设y=sin x,y=cos x.在同一坐标系中作出两函数图象如图4—11,观察知答案为A.解法四:画出单位圆,如图4—12,若sin x≤cos x,显然应是图中阴影部分,故应选A.评述:本题主要考查正弦函数、余弦函数的性质和图象,属基本求范围题,入手容易,方法较灵活,排除、数形结合皆可运用.20.答案:C解析:y=4sin(3x+)+3cos(3x+)=5[sin(3x+)+cos(3x+)]=5sin(3x++)(其中tan=)所以函数y=sin(3x+)+3cos(3x+)的最小正周期是T=.故应选C.评述:本题考查了a sinα+b cosα=sin(α+),其中sin=,cos =,及正弦函数的周期性.21.答案:A解法一:将原式配方得(sin2θ+cos2θ)2-2sin2θcos2θ=于是1-sin22θ=,sin22θ=,由已知,θ在第三象限,故2kπ+π<θ<2kπ+从而4kπ+2π<2θ<4kπ+3π故2θ在第一、二象限,所以sin2θ=,故应选A.解法二:由2kπ+π<θ<2kπ+,有4kπ+2π<4kπ+3π(k∈Z),知sin2θ>0,应排除B、D,验证A、C,由sin2θ=,得2sin2θcos2θ=,并与sin4θ+cos4θ=相加得(sin2θ+cos2θ)2=1成立,故选A.评述:本题考查了学生应用正余弦的平方关系配方的能力及正弦函数值在各象限的符号的判别.22.答案:D解析:函数y=sin2x+a cos2x的图象关于直线x=-对称,表明:当x=-时,函数取得最大值,或取得最小值-,所以有[sin(-)+a·cos(-)]2=a2+1,解得a=-1.评述:本题主要考查函数y=a sin x+b cos x的图象的对称性及其最值公式.23.答案:A解法一:因为θ为第二象限角,则2kπ+<θ<2kπ+π(k∈Z),即为第一象限角或第三象限角,从单位圆看是靠近轴的部分如图4—13,所以tan>cot.解法二:由已知得:2kπ+<θ<2kπ+π,kπ+<<图4—13kπ+,k为奇数时,2nπ+<<2nπ+(n∈Z);k为偶数时,2nπ+<<2nπ+(n∈Z),都有tan>cot,选A.评述:本题主要考查象限角的概念和三角函数概念,高于课本. 24.答案:解析:∵0<ω<1 ∴T=>2π∴f(x)在[0,]区间上为单调递增函数∴f(x)max=f()即2sin 又∵0<ω<1 ∴解得ω=25.答案:cosπ<sin<tan解析:cos<0,tan=tan ∵0<x<时,tan x>x>sin x>0∴tan>sin>0 ∴tan>sin>cos26.答案:2-解析:.评述:本题重点考查两角差的三角公式、积化和差公式、半角公式等多个知识点.27.答案:解析:tan60°=,∴tan20°+tan40°=-tan20°tan40°,∴tan20°+tan40°+tan20°tan40°=.28.答案:-解析:y=sin(x-)cos x=[sin(2x-)-sin]=[sin(2x-)当sin(2x-)=-1时,函数有最小值,y最小=(-1-)=-.评述:本题考查了积化和差公式和正弦函数有界性(或值域). 29.答案:[]解析:y=sin+cos=sin(),当2kπ-≤+≤2kπ+(k∈Z)时,函数递增,此时4kπ-≤x≤4kπ+(k∈Z),只有k=0时,[-,](-2π,2π).30.答案:-解法一:设法求出sinθ和cosθ,cotθ便可求了,为此先求出sinθ-cosθ的值.将已知等式两边平方得1+2sinθcosθ=变形得1-2sinθcosθ=2-,即(sinθ-cosθ)2=图4—14又sinθ+cosθ=,θ∈(0,π)则<θ<,如图4—14所以sinθ-cosθ=,于是sinθ=,cosθ=-,cotθ=-.解法二:将已知等式平方变形得sinθ·cosθ=-,又θ∈(0,π),有cosθ<0<sinθ,且cosθ、sinθ是二次方程x2-x-=0的两个根,故有cosθ=-,sinθ=,得cotθ=-.评述:本题通过考查三角函数的求值考查思维能力和运算能力,方法较灵活.31.解:(1)y=cos2x+sin x cos x+1=(2cos2x-1)++(2sin x cos x)+1=cos2x+sin2x+=(cos2x·sin+sin2x·cos)+=sin(2x+)+y取得最大值必须且只需2x+=+2kπ,k∈Z,即x=+kπ,k∈Z.所以当函数y取得最大值时,自变量x的集合为{x|x=+kπ,k∈Z}.(2)将函数y=sin x依次进行如下变换:①把函数y=sin x的图象向左平移,得到函数y=sin(x+)的图②把得到的图象上各点横坐标缩短到原来的倍(纵坐标不变),得到函数y=sin(2x+)的图象;③把得到的图象上各点纵坐标缩短到原来的倍(横坐标不变),得到函数y=sin(2x+)的图象;④把得到的图象向上平移个单位长度,得到函数y=sin(2x+)+的图象;综上得到函数y=cos2x+sin x cos x+1的图象.评述:本题主要考查三角函数的图象和性质,考查利用三角公式进行恒等变形的技能以及运算能力.32.解:(1)y=sin x+cos x=2(sin x cos+cos x sin)=2sin(x+),x∈Ry取得最大值必须且只需x+=+2kπ,k∈Z,即x=+2kπ,k∈Z.所以,当函数y取得最大值时,自变量x的集合为{x|x=+2kπ,k∈Z}(2)变换的步骤是:①把函数y=sin x的图象向左平移,得到函数y=sin(x+)的图象;②令所得到的图象上各点横坐标不变,把纵坐标伸长到原来的2倍,得到函数y=2sin(x+)的图象;经过这样的变换就得到函数y=sin x+cos x的图象.评述:本题主要考查三角函数的图象和性质,利用三角公式进行恒等变形的技能及运算能力.33.(1995全国理,22)求sin220°+cos250°+sin20°cos50°的值.33.解:原式=(1-cos40°)+(1+cos100°)+(sin70°-sin30°)=1+(cos100°-cos40°)+sin70°-=-sin70°sin30°+sin70°=-sin70°+sin70°=.评述:本题考查三角恒等式和运算能力.34.(1994上海,21)已知sinα=,α∈(,π),tan(π-β)=,求tan(α-2β)的值.34.解:由题设sinα=,α∈(,π),可知cosα=-,tanα=-又因tan(π-β)=,tanβ=-,所以tan2β=tan(α-2β)=35.(1994全国理,22)已知函数f(x)=tan x,x∈(0,),若x1、x2∈(0,),且x1≠x2,证明[f(x1)+f(x2)]>f().35.证明:tan x1+tan x2=因为x1,x2∈(0,),x1≠x2,所以2sin(x1+x2)>0,cos x1cos x2>0,且0<cos(x1-x2)<1,从而有0<cos(x1+x2)+cos(x1-x2)<1+cos(x1+x2),由此得tan x1+tan x2>,所以(tan x1+tan x2)>tan即[f(x1)+f(x2)]>f().36.已知函数⑴求它的定义域和值域;⑵求它的单调区间;⑶判断它的奇偶性;⑷判断它的周期性.解(1)x必须满足sin x-cos x>0,利用单位圆中的三角函数线及,k∈Z∴函数定义域为,k∈Z∵∴当x∈时,∴∴∴函数值域为[)(3)∵定义域在数轴上对应的点关于原点不对称,∴不具备奇偶性(4)∵ f(x+2π)=f(x)∴函数f(x)最小正周期为2π注;利用单位圆中的三角函数线可知,以Ⅰ、Ⅱ象限角平分线为标准,可区分sin x-cos x的符号;以Ⅱ、Ⅲ象限角平分线为标准,可区分sin x+cos x的符号37. 求函数f (x)=的单调递增区间解:∵f (x)= 令,∴y=,t是x的增函数,又∵0<<1,∴当y=为单调递增时,cost 为单调递减且cost>0,∴2k≤t<2k+ (kZ),∴2k≤<2k+ (kZ) ,6k-≤x<6k+ (kZ),∴f (x)=的单调递减区间是[6k-,6k+) (kZ)38. 已知f(x)=5sin x cos x-cos2x+(x∈R)⑴求f(x)的最小正周期;⑵求f(x)单调区间;⑶求f(x)图象的对称轴,对称中心。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用心辅导中心 高二数学三角函数知识点梳理:⒈L 弧长=αR=nπR 180 S 扇=21L R=21R 2α=3602R n ⋅π⒉正弦定理:A asin =B b sin =Cc sin = 2R (R 为三角形外接圆半径)⒊余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cosc 2=a 2+b2-2ab C cos bca cb A 2cos 222-+=⒋S ⊿=21a a h ⋅=21ab C sin =21bc A sin =21ac B sin =Rabc 4=2R 2A sin B sin C sin=A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=CB A c sin 2sin sin 2=pr =))()((c p b p a p p ---(其中)(21c b a p ++=, r 为三角形内切圆半径)⒌同角关系:⑴商的关系:①θtg =x y =θθcos sin =θθsec sin ⋅ ②θθθθθcsc cos sin cos ⋅===y x ctg ③θθθtg ry⋅==cos sin ④θθθθcsc cos 1sec ⋅===tg x r ⑤θθθctg rx⋅==sin cos ⑥θθθθsec sin 1csc ⋅===ctg y r ⑵倒数关系:1sec cos csc sin =⋅=⋅=⋅θθθθθθctg tg ⑶平方关系:1csc sec cos sin 222222=-=-=+θθθθθθctg tg ⑷)sin(cos sin 22ϕθθθ++=+b a b a(其中辅助角ϕ与点(a,b )在同一象限,且ab tg =ϕ)⒍函数y=++⋅)sin(ϕωx A k 的图象及性质:(0,0>>A ω) 振幅A ,周期T =ωπ2, 频率f =T1, 相位ϕω+⋅x ,初相ϕ⒎五点作图法:令ϕω+x 依次为ππππ2,23,,20 求出x 与y , 依点()y x ,作图 ⒏诱导公试 三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限三角函数值等于α的异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名改变,符号看象限⒐和差角公式①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos(μ=± ③βαβαβαtg tg tg tg tg ⋅±=±μ1)( ④)1)((βαβαβαtg tg tg tg tg ⋅±=±μ⑤γβγαβαγβαγβαγβαtg tg tg tg tg tg tg tg tg tg tg tg tg ⋅-⋅-⋅-⋅⋅-++=++1)( 其中当A+B+C=π时,有:i).tgC tgB tgA tgC tgB tgA ⋅⋅=++ ii).1222222=++Ctg B tg C tg A tg B tgA tg⒑二倍角公式:(含万能公式) ①θθθθθ212cos sin 22sin tg tg +== ②θθθθθθθ22222211sin 211cos 2sin cos 2cos tg tg +-=-=-=-=③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2θθ+=⒒三倍角公式:①)60sin()60sin(sin 4sin 4sin 33sin 3θθθθθθ+︒-︒=-= ②)60cos()60cos(cos 4cos 4cos 33cos 3θθθθθθ+︒-︒=+-=③)60()60(313323θθθθθθθ+⋅-⋅=--=tg tg tg tg tg tg tg ⒓半角公式:(符号的选择由2θ所在的象限确定) ①2cos 12sin θθ-±= ②2cos 12sin 2θθ-= ③2cos 12cos θθ+±= ④2cos 12cos 2θθ+=⑤2sin 2cos 12θθ=- ⑥2cos 2cos 12θθ=+ ⑦2sin2cos )2sin 2(cos sin 12θθθθθ±=±=±⑧θθθθθθθsin cos 1cos 1sin cos 1cos 12-=+=+-±=tg⒔积化和差公式:[])sin()sin(21cos sin βαβαβα-++=[])sin()sin(21sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++=()[]βαβαβα--+-=cos )cos(21sin sin ⒕和差化积公式: ①2cos2sin2sin sin βαβαβα-+=+ ②2sin2cos2sin sin βαβαβα-+=-③2cos2cos2cos cos βαβαβα-+=+ ④2sin2sin2cos cos βαβαβα-+-=-例题:1.已知x ∈(-π2 ,0),cos x =45 ,则tan2x 等于 ( )A. 724B.-724C. 247D.-2472.3 cos π12 -sin π12 的值是 ( )A.0B.- 2C.2D.23.已知α,β均为锐角,且sin α=55,cos β=31010,则α+β的值为 ( )A. π4 或3π4B. 3π4C. π4D.2kπ+π4 (k ∈Z )4.sin15°cos30°sin75°的值等于 ( )A. 34B. 38C. 18D. 145.若f (cos x )=cos2x ,则f (sin π12 )等于 ( )A. 12B.-12C.-32D. 326.sin(x +60°)+2sin(x -60°)- 3 cos(120°-x )的值为 ( )A. 12B. 32 C.1D.07.已知sin α+cos α=13 ,α∈(0,π),那么sin2α,cos2α的值分别为 ( )A. 89 ,179 B.-89 ,179C.-89 ,-179D.-89 ,±1798.在△ABC 中,若tan A tan B >1,则△ABC 的形状是 ( )A.锐角三角形B.钝角三角形C.直角三角形D.不能确定9.化简cos (π4 +α)-sin (π4 +α)cos (π4 -α)+sin (π4 -α)的结果为 ( ) A.tan αB.-tan αC.cot αD.-cot α10.已知sin α+sin β+sinγ=0,cos α+cos β+co sγ=0,则cos(α-β)的值为 ( )A.-12B. 12 C.-1D.1二、填空题(本大题共6小题,每小题5分,共30分) 11.sin70+cos150sin80cos70-sin150sin80 的值等于_____________.12.若1-tan A 1+tan A =4+ 5 ,则cot( π4 +A )=_____________.13.已知tan x =43 (π<x <2π),则cos(2x -π3 )cos(π3 -x )-sin(2x -π3 )sin(π3 -x )=_____.14.sin(π4 -3x )cos(π3 -3x )-cos(π6 +3x )sin(π4 +3x )=_____________.15.已知tan(α+β)=25 ,tan(β-π4 )=14 ,则sin(α+π4 )·sin(π4 -α)的值为____________.16.已知5cos(α-β2 )+7cos β2 =0,则tan α-β2 tan α2 =_____________.1.下列函数中,最小正周期为π的偶函数是 ( )A.y =sin2xB.y =cos x2C.y =sin2x +cos2xD.y =1-tan 2x 1+tan 2x2.设函数y =cos(sin x ),则 ( )A.它的定义域是[-1,1]B.它是偶函数C.它的值域是[-cos1,cos1]D.它不是周期函数3.把函数y =cos x 的图象上的所有点的横坐标缩小到原来的一半,纵坐标扩大到原来的两倍,然后把图象向左平移π4 个单位.则所得图象表示的函数的解析式为 ( )A.y =2sin2xB.y =-2sin2xC.y =2cos(2x +π4 )D.y =2cos(x 2 +π4 )4.函数y =2sin(3x -π4 )图象的两条相邻对称轴之间的距离是 ( )A. π3B. 2π3 C.πD. 4π35.若sin α+cos α=m ,且- 2 ≤m <-1,则α角所在象限是 ( )A.第一象限B.第二象限C.第三象限D.第四象限17.已知cos(α-π6 )=1213 ,π6 <α<π2 ,求cos α.18.已知sin 22α+sin2αcos α-cos2α=1,α∈(0,π2 ),求sin α、tan α.19.在△ABC 中,已知A 、B 、C 成等差数列,求tan A 2 +tan C 2 + 3 tan A 2 tan C2 的值.20.已知cos α=-1213 ,cos(α+β)=17226,且α∈(π,32 π),α+β∈(32 π,2π),求β.。