螺栓设计和计算
钢结构柱脚螺栓计算

钢结构柱脚螺栓计算
1.确定载荷:首先需要确定柱脚所承受的垂直荷载和水平荷载。
这些荷载通常由设计师或结构工程师提供。
2.选择螺栓类型:根据设计要求和压力要求,选择适当的螺
栓类型。
常见的螺栓类型有标准螺栓、高强度螺栓和预应力螺栓。
3.计算柱脚尺寸:根据柱脚尺寸和构件结构类型,计算柱脚
的几何参数,如柱脚板的厚度、直径等。
4.确定螺栓数量:根据设计要求和载荷,计算确定所需的螺
栓数量。
通常,需要确保每个柱脚周围均匀分布的螺栓。
5.计算螺栓的阻力:根据柱脚螺栓的受力情况,计算出螺栓
的阻力。
这可以通过使用螺栓的强度参数和载荷来完成。
6.检查螺栓的预紧力:根据螺栓的阻力和实际设计载荷,检
查螺栓的预紧力是否在合理范围内。
确保螺栓的预紧力足够大,以确保柱脚连接的稳定性。
7.检查剪切强度:根据螺栓在剪切方向上受力的情况,检查
螺栓的剪切强度是否符合设计要求。
预埋件螺栓计算

预埋件螺栓计算
预埋件螺栓计算主要包括螺栓的数量和尺寸计算。
下面是预埋件螺栓计算的一般步骤:
1. 确定螺栓数量:根据设计要求和安全系数确定预埋件螺栓的数量。
一般情况下,螺栓数量应满足最小螺栓数量和最大螺栓数量的要求。
2. 确定螺栓尺寸:根据设计要求和安全系数确定预埋件螺栓的尺寸。
螺栓尺寸需满足以下要求:承载力要大于或等于设计载荷,钢筋混凝土基底面应承受钢筋拉力。
3. 计算螺栓的承载力:根据预埋件螺栓的材料和尺寸,使用相应的公式计算螺栓的承载力。
一般计算公式包括轴向拉力承载力、抗剪承载力和抗拧剪承载力等。
4. 校核螺栓的承载力:根据设计要求和安全系数校核螺栓的承载力。
确保螺栓的承载力大于或等于设计载荷,以保证螺栓的安全可靠。
需要注意的是,预埋件螺栓计算一般需要根据具体的工程设计要求和材料规范进行,可能每个工程都有不同的计算方法和参数,所以在具体的工程中,需要参考相应的规范和设计手册进行计算。
普通螺栓连接的构造和计算

二、螺栓的排列
端距 中距 中距 边距 边距
A 并列
B 错列
螺栓的排列应满足: 受力要求 构造要求 施工要求
1)受力要求 任意方向的中距、边距和端距不能过小,以防 止钢板截面过度削弱而承载力不足; 对于受压构件,中距不能太大,以防止连接板 件发生鼓曲。
2)构造要求
螺栓的边距和中距不宜太大,以免板件间贴合 不密,潮气侵入腐蚀钢材。 3)施工要求
拼接板强度验算:
N
0.5 N An f
c1 b1 c 3 c2
2 2’ b 2 2’
t1 t
N
对于2 2截面:An b1 m d 0 t 1 ;
2 2 对于2’2’ 截面:An 2c 4 m 1 c1 c 2 m d 0 t 1 ;
i 1 n 2 yi
b Nt
(四)普通螺栓拉、剪联合作用
1、两种破坏形式 螺杆受剪兼受拉破坏 孔壁承压破坏;
NV
e V V
M=Ve
2、拉剪相关曲线 “四分之一圆”
NV
b
1
b a
1 N t N tb
0
为防止螺杆受剪兼受拉破坏,应满足:
NV
Nv Nt 1 Nb Nb v t
☻M作用下螺栓连接按弹性设计,其假定为:
1)连接板件绝对刚性,螺栓为弹性; 2)螺栓群的中和轴位于最下排螺栓的形心处, 各螺栓所受拉力与其至中和轴的距离呈正比。
‘1’号螺栓在M作用下所受拉力最大
1 2 3 4
M
刨平顶紧 承托(板)
M
N1 N2 y N3 y2 1 y N4 3 中和轴
螺栓组受力分析与计算

螺栓组受力分析与计算一.螺栓组联接得设计设计步骤:1.螺栓组结构设计2.螺栓受力分析3.确定螺栓直径4.校核螺栓组联接接合面得工作能力5.校核螺栓所需得预紧力就是否合适确定螺栓得公称直径后,螺栓得类型,长度,精度以及相应得螺母,垫圈等结构尺寸,可根据底板得厚度,螺栓在立柱上得固定方法及防松装置等全面考虑后定出。
1、螺栓组联接得结构设计螺栓组联接结构设计得主要目得,在于合理地确定联接接合面得几何形状与螺栓得布置形式,力求各螺栓与联接接合面间受力均匀,便于加工与装配。
为此,设计时应综合考虑以下几方面得问题:1)联接接合面得几何形状通常都设计成轴对称得简单几何形状,如圆形,环形,矩形,框形,三角形等。
这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组得对称中心与联接接合面得形心重合,从而保证接合面受力比较均匀。
2)螺栓得布置应使各螺栓得受力合理。
对于铰制孔用螺栓联接,不要在平行于工作载荷得方向上成排地布置八个以上得螺栓,以免载荷分布过于不均。
当螺栓联接承受弯矩或转矩时,应使螺栓得位置适当靠近联接接合面得边缘,以减小螺栓得受力(下图)。
如果同时承受轴向载荷与较大得横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓得预紧力及其结构尺寸。
接合面受弯矩或转矩时螺栓得布置3)螺栓排列应有合理得间距,边距。
布置螺栓时,各螺栓轴线间以及螺栓轴线与机体壁间得最小距离,应根据扳手所需活动空间得大小来决定。
扳手空间得尺寸(下图)可查阅有关标准。
对于压力容器等紧密性要求较高得重要联接,螺栓得间距t0不得大于下表所推荐得数值。
扳手空间尺寸螺栓间距t0注:表中d为螺纹公称直径。
4)分布在同一圆周上得螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时得分度与画线。
同一螺栓组中螺栓得材料,直径与长度均应相同。
5)避免螺栓承受附加得弯曲载荷。
除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母与螺栓头部得支承面平整,并与螺栓轴线相垂直。
标准 螺栓 计算

标准螺栓计算
计算螺栓的标准通常涉及以下几个方面:螺栓尺寸、螺栓强度等级、预紧力和螺栓的拧紧力。
1. 螺栓尺寸:螺栓的尺寸包括直径、长度和螺纹规格等。
根据具体的应用需求和设计标准,选择适当的螺栓尺寸。
2. 螺栓强度等级:螺栓的强度等级表示其抗拉强度和材料的硬度。
常见的螺栓强度等级包括4.8、8.8、10.9和12.9等。
根据需要,选择符合设计要求的螺栓强度等级。
3. 预紧力:预紧力是螺栓在拧紧前施加的力,用于保持连接件紧固并承受负荷。
预紧力的计算通常基于连接件的类型、材料和设计要求等因素。
可以通过使用紧固力计或根据工程经验来确定适当的预紧力。
4. 螺栓的拧紧力:螺栓的拧紧力是施加在螺栓上的力,使其产生摩擦力来保持连接件紧固。
拧紧力的计算通常基于摩擦力系数、螺纹的摩擦因数和预紧力等参数。
可以使用拧紧力计或根据标准拧紧规程来确定适当的拧紧力。
需要注意的是,具体的螺栓计算方法和标准可能因不同的应用和行业而有所不同。
在进行螺栓计算时,建议参考相应的设计规范、标准或咨询专业工程师,以确保螺栓的选择和设计满足安全和可靠性要求。
螺栓组受力分析与计算..

式中:Q—螺栓总拉力,N 。
其余符号意义同前。
螺栓总拉力的计算:
Q=Qp+[Cb/(Cb+Cm)]·F
式中:Cb/(Cb+Cm)称为螺栓的相对刚度,一般设计时,可按下表推荐
的数据选取。
螺栓的相对刚度Cb/(Cb+Cm)
被联接钢板间所用垫片类别
Cb/(Cb+Cm)
金属垫片(或无垫片)
r1=r2=…=rz的关系以及螺栓联接的类型,分别代人式(5-25)或
(5-28)即可求得。
3).受轴向载荷的螺栓组联接
下图为一受轴向总载荷FΣ的汽缸盖螺栓组联接。FΣ的作用线与螺 栓轴线平行,并通过螺栓组的对称中心O。计算时,认为各螺栓平均受 载,则每个螺栓所受的轴向工作载荷为
图:受轴向载荷的螺栓组联接
螺栓组受力分析与计算
1. 螺栓组联接的设计
设计步骤: 1. 螺栓组结构设计 2. 螺栓受力分析 3. 确定螺栓直径 4. 校核螺栓组联接接合面的工作能力 5. 校核螺栓所需的预紧力是否合适 确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫 圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装 置等全面考虑后定出。
1. 螺栓组联接的结构设计 螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形 状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工 和装配。为此,设计时应综合考虑以下几方面的问题: 1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆 形,环形,矩形,框形,三角形等。这样不但便于加工制造,而且便于 对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保 证接合面受力比较均匀。 2)螺栓的布置应使各螺栓的受力合理。对于铰制孔用螺栓联接,不要 在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布 过于不均。当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联 接接合面的边缘,以减小螺栓的受力(下图)。如果同时承受轴向载荷 和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载 荷,以减小螺栓的预紧力及其结构尺寸。
螺栓组受力分析与计算(可编辑)

螺栓组受力分析与计算一.螺栓组联接的设计设计步骤:1.螺栓组结构设计2.螺栓受力分析3.确定螺栓直径4.校核螺栓组联接接合面的工作能力5.校核螺栓所需的预紧力是否合适确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。
1. 螺栓组联接的结构设计螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。
为此,设计时应综合考虑以下几方面的问题:1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形,三角形等。
这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。
2)螺栓的布置应使各螺栓的受力合理。
对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。
当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。
如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。
接合面受弯矩或转矩时螺栓的布置3)螺栓排列应有合理的间距,边距。
布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的最小距离,应根据扳手所需活动空间的大小来决定。
扳手空间的尺寸(下图)可查阅有关标准。
对于压力容器等紧密性要求较高的重要联接,螺栓的间距t0不得大于下表所推荐的数值。
扳手空间尺寸螺栓间距t0注:表中d为螺纹公称直径。
4)分布在同一圆周上的螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时的分度和画线。
同一螺栓组中螺栓的材料,直径和长度均应相同。
5)避免螺栓承受附加的弯曲载荷。
除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。
螺栓结构设计计算公式与实例

松螺栓连接紧螺栓连接1、受横向工作载荷(1)当普通螺栓联结承受横向载荷时,由于预紧力的作用,将在接合面间产生摩擦力来抵抗工作载荷(如图),这时螺栓仅承受预紧力的作用,而且预紧力不受工作载荷的影响,在联结承受工作载荷后仍保持不变。
预紧力F0的大小,根据接合面不产生滑移的条件确定。
假设为保证接合面不产生滑移所需要的预紧力为F0,则结合面间的摩擦力与横向外载荷平衡的条件是:(2)螺栓除受预紧力的拉伸而产生拉伸应力外,还受拧紧螺纹时,因螺纹摩擦力矩而产生的扭转切应力,使螺栓处于拉伸与扭转的复合应力状态下。
因此在进行强度计算时,应综合考虑拉伸应力和扭转切应力的作用。
螺栓危险截面的拉伸应力为:预紧螺栓时由螺纹力矩T 产生的扭转剪切应力: 1.3:系数将外载荷提高30%,以考虑螺纹力矩对螺栓联接强度的影响,这样把拉扭的复合应力状态简化为纯拉伸来处理,大大简化了计算手续,故又称简化计算法2、受轴向工作载荷松螺栓连接装配时螺母不需拧紧,故在承受工作载荷之前螺栓不受力。
这种连接应用范围有限,主要用于拉杆、起重吊钩等连接方面。
螺栓所受拉力=工作载荷d1:螺栓小径F:螺栓总拉力[σ]:许用拉应力σs:螺栓屈服强度S S :安全系数,一般取1.2-1.7z.f.F0≥KF z:结合面数目f-结合面的摩擦系数,K-防滑系数,K=1.1-1.3F —横向载荷σs:螺栓屈服强度S S :安全系数,一般取1.2-1.7受轴向工作载荷时,螺栓所受的总拉力:F2 = F1+ FF2 : 总拉力F1 : 残余预紧力F:工作载荷16/311d T πτ=][41σπF d ≥[]S ss σσ=[]S s s σσ=MPad F ca ][4/3.13.1212σπσσ≤==3、铰制孔螺栓(螺栓承受剪切力)螺栓杆与孔壁之间无间隙,接触表面受挤压;在连接接合面处,螺栓杆则受剪切。
因此,应分别按挤压及剪切强度条件计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
联接接合面材料的许用挤压应力
材料
钢
铸铁
混 凝 土 砖(水泥浆缝) 木 材
2.0-3.0
1.5-2.0
2.0-4.0
螺栓的性能等级(摘自 GB 3098.1--82)
性能等级(标记) 抗拉强度极限 屈服极限
3.6 4.6 4.8 5.6 5.8 6.8 8.8 9.8 330 400 420 500 520 600 800 900 190 240 340 300 420 480 640 720
图:受倾覆力矩的螺栓组联接 联接接合面材料的许用挤压应力[σ]p,可查下表。 表:联接接合面材料的许用挤压应力[σ]p
注: l)σs 为材料屈服权限,MPa; σB 为材料强度极限,MPa。 2)当联接接合面的材料不同时,应按强度较弱者选取。
第 10 页 共 12 页
3)联接承受载荷时,[σ]p 应取表中较大值;承受变载荷时,则应取较小值 计算受倾覆力矩的螺栓组的强度时,首先由预紧力 Qp、最大工作载荷 Fmax 确定受力最
图 1 凸台与沉头座的应用
图 2 斜面垫圈的应用
2. 螺栓组联接的受力分析 1).受横向载荷的螺栓组联接 2).受转矩的螺栓组联接 3).受轴向载荷的螺栓组联接 4).受倾覆力矩的螺栓组联接
进行螺栓组联接受力分析的目的是,根据联接的结构和受载情况,求出受力最大的螺栓 及其所受的力,以便进行螺栓联接的强度计算。
3.承受工作剪力的紧螺栓联接
螺栓杆与孔壁的挤压强度条件为
螺栓杆的剪切强度条件为
式中:F ——螺栓所受的工作剪力,N;
d0 ——螺栓剪切面的直径(可取为螺栓孔的直径),mm; L Lmin ——螺栓杆与孔壁挤压面的最小高度,mm,设计时应使 min
[σ]p——螺栓或孔壁材料的许用挤压应力,MPa ;
[τ] ——螺栓材料的许用切应力,MPa 。
联 及 螺 化计算 接 横栓
合金 钢 5.7∼5
5∼3.4
3.4∼3 合金钢 10∼6.8
6.8
6.8∼10
向联 载接 荷
考虑预 紧力的
计算
1.2∼1.5
1.2∼1.5 (Sa=2.5∼4)
铰制孔用 螺栓联接
钢:Sr=2.5,Sp=1.25 铸铁: Sp=2.0∼2.5
钢:Sr=3.5∼5,Sp=1.5 铸铁:Sp=2.5∼3.0
1.25d0;
承受工作剪力的紧螺栓联接
第 3 页 共 12 页
有效应力集中系数
材料的
400
600
800
3.0
3.9
4.8
1000 5.2
尺寸系数
直径 d(mm) 16 20 24 28
32
40 48 56 64 72 80
1 0.81 0.76 0.71 0.68 0.63 0.60 0.57 0.54 0.52 0.50
由上式可得各螺栓所需的预紧力为
【5-25】
式中:f——接合面的摩擦系数,见表; ri——第 i 个螺栓的轴线到螺栓组对称中心 O 的距离;
z ——螺栓数目;
Ks ——防滑系数,同前。
由上式求得预紧力 Qp,然后按式(5-14)校核螺栓的强度。
采用铰制孔用螺栓时,在转矩 T 的作用下,各螺栓受到剪切和挤压作用,各螺栓所受的
为了简化计算,在分析螺栓组联接的受力时,假设所有螺栓的材料,直径,长度和预紧 力均相同;螺栓组的对称中心与联接接合面的形心重合;受载后联接接合面仍保持为平面。 下面针对几种典型的受载情况,分别加以讨论。 1)受横向载荷的螺栓组联接 图所示为一由四个螺栓组成的受横向载荷的螺栓组联接。横向载荷的作用线与螺栓轴线垂 直,并通过螺栓组的对称中心。当采用螺栓杆与孔壁间留有间隙的普通螺栓联接时(图 a)。 靠联接预紧后在接合面间产生的摩擦力来抵抗横向载荷;当采用铰制孔用螺栓联接时(图 b), 靠螺栓杆受剪切和挤压来抵抗横向载荷。虽然两者的传力方式不同,但计算时可近似地认为,
大时,其所受的工作剪力也越大。如图 b 所示,用 ri、rmax 分别表示第 i 个螺栓和受力最
第 8 页 共 12 页
大螺栓的轴线到螺栓组对称中心 O 的距离;Fi、Fmax。分别表示第 i 个螺栓和受力最大螺栓
的工作剪力,则得
根据作用在底板上的力矩平衡的条件得
【5-26】
即
.
【5-27】
联解式(5-26)及(5-27),可求得受力最大的螺栓的工作剪力为
图:受轴向载荷的螺栓组联接 4).受倾覆力矩的螺栓组联接
下图 a 为一受倾覆力矩的底板螺栓组联接。倾覆力矩 M 作用在通过 x-x 轴并垂直于联 接接合面的对称平面内。底板承受倾覆力矩前,由于螺栓已拧紧,螺栓受预紧力 Qp,有均匀
第 9 页 共 12 页
的伸长;地基在各螺栓的 Qp 作用下.有均匀的压缩,如图 b 所示。当底板受到倾覆力矩作 用后,它绕轴线 O—O 倾转一个角度,假定仍保持为平面。此时,在轴线 O-O 左侧,地基被 放松,螺栓被进一步拉伸,在右侧,螺栓被放松,地基被进一步压缩。底板的受力情况如图 c 所示。
在横向总载荷 F∑的作用下,各螺栓所承担的工作载荷是均等的。因此,对于铰制孔用螺栓
联接,每个螺栓所受的横向工作剪力为
第 6 页 共 12 页
(5-23) 式中 z 为螺栓联接数目。 对于普通螺栓联接,应保证联接预紧后,接合面间所产生的最大摩擦力必须大于或等于横向 载荷。
假设各螺栓所需要的预紧力均为 Qp,螺栓数目为 z,则其平衡条件为
式中:
σ σ -1tc ——螺栓材料的对称循环拉压疲劳极限,MPa , -1tc 值见表
——试件的材料特性,即循环应力中平均应力的折算系数,对于碳素钢,
=0.1—0.2,对于合金钢,
=0.2—0.3;
ε ——拉压疲劳强度综合影响系数,如忽略加工方法的影响,则 Kσ=kσ/ σ,Kσ 此处
ε 为有效应力集中系数,见表 σ 为尺寸系数,见附表;
关于螺栓设计
I 单个螺栓设计
一.螺纹联接的强度计算 松螺纹联接强度计算 紧螺栓联接强度计算 1.仅承受预紧力的紧螺栓联接拉伸强度条件为 2.承受预紧力和工作拉力的紧螺栓联接 拉伸强度条件为 疲劳强度计算 3 承受工作剪力的紧螺栓联接
松螺纹联接强度计算 拉伸强度条件为:
【5-14】
式中:F--螺栓工作载荷,N;
10.9 1040 940
12.9 1220 1100
硬度 推荐材料
90 109 113 134 140 181 232 269 312
365
低碳钢
低碳钢或中碳钢
中碳钢,低、 中碳合金 中碳钢,淬火 并回火 钢,淬火并 合金钢 回火,合金
钢
第 4 页 共 12 页
II 组合螺栓设计
一. 螺栓组联接的设计 设计步骤: 1. 螺栓组结构设计 2. 螺栓受力分析 3. 确定螺栓直径 4. 校核螺栓组联接接合面的工作能力 5. 校核螺栓所需的预紧力是否合适 确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根 据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。
第 1 页 共 12 页
式中:Cb/(Cb+Cm)称为螺栓的相对刚度,一般设计时,可按下表推荐的数据选取。 螺栓的相对刚度 Cb/(Cb+Cm)
被联接钢板间所用垫片类别
Cb/(Cb+Cm)
金属垫片(或无垫片)
0.2~0.3
皮革垫片
0.7
铜皮石棉垫片
0.8
橡胶垫片
0.9
②疲劳强度计算
对于受轴向变载荷的重要联接,应对螺栓的疲劳强度作精确校核,计算其最大应力计算安全 系数:
1. 螺栓组联接的结构设计 螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形 式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。为此,设计时应综合考虑以下 几方面的问题: 1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框 形,三角形等。这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联 接接合面的形心重合,从而保证接合面受力比较均匀。 2)螺栓的布置应使各螺栓的受力合理。对于铰制孔用螺栓联接,不要在平行于工作载荷的 方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。当螺栓联接承受弯矩或转矩时, 应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。如果同时承受轴 向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓 的预紧力及其结构尺寸。
接合面受弯矩或转矩时螺栓的布置 3)螺栓排列应有合理的间距,边距。布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间 的最小距离,应根据扳手所需活动空间的大小来决定。扳手空间的尺寸(下图)可查阅有关 标准。对于压力容器等紧密性要求较高的重要联接,螺栓的间距 t0 不得大于下表所推荐的 数值。
扳手空间尺寸螺栓间距 t0
第 5 页 共 12 页
注:表中 d 为螺纹公称直径。 4)分布在同一圆周上的螺栓数目,应取成 4,6,8 等偶数,以便在圆周上钻孔时的分度和 画线。同一螺栓组中螺栓的材料,直径和长度均应相同。 5)避免螺栓承受附加的弯曲载荷。除了要在结构上设法保证载荷不偏心外,还应在工艺上 保证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。对于在铸,锻件等的 粗糙表面上应安装螺栓时,应制成凸台或沉头座(下图 1)。当支承面为倾斜表面时,应采 用斜面垫圈(下图 2)等。
横向工作剪力和各该螺栓轴线到螺栓组对称中心 O 的连线(即力臂 r。)相垂直(图 b)。
为了求得各螺栓的工作剪力的大小,计算时假定底板为刚体,受载后接合面仍保持为平面。 则各螺栓的剪切变形量与各该螺栓轴线到螺栓组对称中心 O 的距离成正比。即距螺栓组对称 中心 O 越远,螺栓的剪切变形量越大。如果各螺栓的剪切刚度相同,则螺栓的剪切变形量越