高分子间作用力与物质性质详解
分子间作用力与超分子化学

4.2 分子间作用力与超分子化学4.2.1 分子间作用力1. 分子间作用力(van de Walls Interaction)在物质的凝聚态中,除了分子内相邻原子间存在的强烈的化学键外,分子和分子之间还存在着一种较弱的吸引力——分子间作用力。
早在1972年,范德华(van de Walls)就已注意到这种力的存在,并考虑这种力的影响和分子本身占有体积的事实,提出了著名的范德华状态方程式。
所以分子间作用力也称为范德华引力。
范德华引力是决定物质的熔点、沸点、气化热、熔化热、溶解热、表面张力、粘度等物理化学性质的主要因素。
分子间主要作用包括:荷电基团、偶极子、诱导偶极子之间的相互作用,氢键、疏水基团相互作用、π…π堆叠作用以及非键电子推斥作用等。
大多数分子的分子间作用能在10kJ·mol-1以下,比一般的共价键键能小1~2个数量级,作用范围在300~500pm。
荷电基团间的静电作用的本质与离子键相当,又称盐键,例如—COO-…+H3N —,其作用能正比于互相作用的基团间荷电的数量,与基团电荷重心间的距离成反比。
偶极子、诱导偶极子和高级电极矩(如四极矩)间的相互作用,通称范德华作用。
氢键作用是分子间最重要的强相互作用,下面将详细介绍。
疏水基团相互作用是指极性基团间的静电作用和氢键使极性基团倾向于聚集在一起,因而排挤疏水基团,使疏水基团相互聚集所产生的能量效应和熵效应。
在蛋白质分子中,疏水侧链基团如苯丙氨酸、亮氨酸、异亮氨酸等较大的疏水基团,受水溶液中溶剂水分子的排挤,使溶液中蛋白质分子的构象趋向于把极性基团分布在分子表面,和溶剂分子形成氢键和盐键,而非极性基团聚集成疏水区,藏在分子的内部,这种效应即为疏水基团相互作用。
据测定使两个>CH2基团聚集在一起形成>CH2…H2C<的稳定能约达3kJ·mol-1。
π…π堆叠作用是两个或多个平面型的芳香环平行地堆叠在一起产生的能量效应。
分子间作用力与物质性质的关系

分子间作用力与物质性质的关系近年来,分子间作用力与物质性质的关系成为科学界研究的热门话题。
分子间作用力是指分子之间的相互作用力,是物质性质的重要决定因素之一。
本文将从分子间作用力对物质的物理性质、化学性质以及生物性质的影响三个方面进行探讨。
一、分子间作用力对物质的物理性质的影响1. 熔点和沸点分子间作用力与物质的熔点和沸点密切相关。
分子间作用力较强的物质,其分子间结合力较大,熔点和沸点较高;相反,分子间作用力较弱的物质,其熔点和沸点较低。
例如,离子晶体由于离子间的静电作用较强,熔点较高;而分子间作用力较弱的非极性分子,如氯仿,其熔点相对较低。
2. 导电性和溶解性分子间作用力还直接影响物质的导电性和溶解性。
具有离子键或极性分子键的物质,由于分子间作用力较大,离子或极性分子在溶液中能够解离或形成氢键,导致物质具有较好的导电性和溶解性。
例如,氯化钠具有离子结构,能够在水中快速溶解并形成导电的溶液。
3. 质量密度和硬度分子间作用力还对物质的质量密度和硬度产生影响。
分子间作用力较强的物质,其分子间距较小,分子排列较紧密,导致质量密度较大。
例如,金属物质由于具有金属键,分子间作用力较强,质量密度往往较大。
此外,分子间作用力还会影响物质的硬度。
晶体由于离子或分子间的结合力较强,往往具有较高的硬度。
二、分子间作用力对物质的化学性质的影响1. 化学反应速率分子间作用力与物质的化学反应速率呈反比关系。
分子间作用力较强的物质,分子间的碰撞频率较低,反应速率较慢。
相反,分子间作用力较弱的物质,分子间的碰撞频率较高,反应速率较快。
例如,液氨的分子间作用力较强,反应速率较慢,而液体溴的分子间作用力较弱,反应速率较快。
2. 化学稳定性分子间作用力还与物质的化学稳定性密切相关。
分子间作用力较强的物质,分子结构较稳定,不容易发生化学反应。
分子间作用力较弱的物质,由于分子间的相对运动较大,分子结构较不稳定,容易发生化学反应。
例如,乙酸在常温下能够逐渐分解,而乙醇由于氢键的存在具有较高的化学稳定性。
分子间作用力与物质性质

§3 分子间作用力和氢键一、分子间作用力1、极性分子与非极性分子每个分子中正、负电荷总量相等,整个分子是电中性的。
但对每一种电荷量来说,都可设想一个集中点,称“电荷中心”。
在任何一个分子中都可以找到一个正电荷中心和一个负电荷中心。
⑴极性分子:若正电荷中心和负电荷中心不相互重合的分子叫极性分子。
⑵非极性分子:若正电荷中心和负电荷中心相互重合的分子叫非极性分子。
⑶在简单双原子分子中,如果是两个相同的原子,由于电负性相同,两原子所形成的化学键为非极性键,这种分子是非极性分子。
如果两个原子不相同,其电负性不等,所形成的化学键为极性键,分子中正负电荷中心不重合,这种分子就为极性分子。
⑷复杂的多原子分子来说,若组成的原子相同(如S8、P4等),原子间的化学键一定是非极性键,这种分子是非极性分子(O3除外,它有微弱的极性)。
如果组成的原子不相同(如CH4、SO2、CO2等),其分子的极性不仅取决于元素的电负性(或键的极性),而且还决定于分子的空间构型。
如CO2是非极性分子,SO2是极性分子。
2、分子偶极矩(μ):衡量分子极性的大小⑴μ=q.d d为偶极长(正负电重心之间的距离),d为正负电荷中心上的电荷量,μ可用实验测定,单位是库·米(C·m)。
⑵应用:①若某分子μ=O则为非极性分子,μ≠0为极性分子。
μ越大,极性越强,因此可用μ比较分子极性的强弱。
如μHCl=3.50×10-30 C·m,μH2O=6.14×10-30 C·m②用μ验证或判断某些分子的几何构型。
如NH3和BeCl3都是四原子分子。
μNH3=4.94×10-30 C·m,μBeCl3=0 C·m,说明NH3是极性分子为三角锥形,BeCl3为非极性分子为平面三角形的构型。
⑶诱导偶极和瞬间偶极①诱导偶极:外电场影响下所产生的偶极②瞬间偶极:在某一瞬间,分子的正电荷重心和负电荷重心会发生不重合现象,这时所产生的偶极3. 分子间作用力(范德华力)化学键的结合能一般在-1 数量级,而分子间力的能量只有几个kJ · mol-1 。
第4节分子间作用力与物质性质

第4节分子间作用力与物质性质【学习目标】1知道分子间作用力的广泛存在及其对物质性质(如熔点、沸点)的影响。
2、理解氢键的形成条件、类型、特点以及氢键对物质性质(如熔点、沸点、溶解度)影响。
3、了解范德华力、氢键与化学键的关系,会区分范德华力、化学键与氢键4、运用所学知识解释物质熔沸点变化的原因【教学重难点】分子间作用力、氢键及其对物质性质的影响本节知识框架分子间普遍存分子间前预习区】范德华力【课1什么是范存在于某些原德华子或分子之间华力对物质的性质何影响?^氢键J物质熔点、沸点以及溶解度等性质2、氢键是化学键吗?氢键的形成条件是什么?氢键对物质的性质有何影响?分为哪几类?3、 氢键与范德华力、化学键的强弱关系是什么?请你根据表中的数据与同学交流讨论以下问题: (1)卤素单质熔化或气化时破坏的微粒间作用力是什么?卤素单质的熔、沸点有怎样的变化规律?(2 )导致卤素单质熔、沸点规律变化的原因是什么?它与卤素单质相对分子质量的变化 规律有怎样的关系?【预习达标区】1、下列氢化物在液态时, 分子间不存在氢键的是 ()A. HF B.H 2O C .NH D .CH2、 在 HCl 、 HBr 、HI 、HF 中, 沸点最低的是()A. HFB.HCl C.HBrD.HI【课堂互动区】【问题组1】范德华力与物质性质1. 比较CO 和CS 、CO 和ChHCHO 常温下的状态,判断这两组物质的熔沸点高低。
2. 两组物质熔沸点差异的主要原因是什么?3. 范德华力除与相对分子质量有关以外,还与什么因素有关? 【知识梳理1】升咼,是 ____________________ 增大的结果;例如, F 2、Cl 2、B 「2、I 2分子间作用力越来越 __________ ,熔沸点越来越__________ 。
3、范德华力主要影响物质的 _____________________ 的性质。
其影响规律是:①范德华力弱的时候物质一般呈 ___________ 态,强的时候一般呈 _______ 态氢键又可以②范德华力越强,物质的熔沸点越_____________ 。
决定物质性质的一种重要因素——分子间作用力

决定物质性质的一种重要因素——分子间作用力段连运周公度(北京大学化学系100871)物质的许多性质与分子的大小、形状以及分子间作用力密切相关。
在讨论物质的这些性质时不可忽视分子间作用力这一因素。
在结构化学教学中也应给予恰当的地位。
一分子间作用力的种类和性质本文将分子间作用力看作是除共价键、离子键和金属键外基团间和分子间相互作用力的总称,它主要包括:离子或荷电基团、偶极子、诱导偶极子等之间的相互作用力;氢键;疏水基团相互作用力及非键电子推斥力等。
大多数分子的分子间作用能在10kJ/mol以下,比通常的共价键键能小1—2个数量级。
作用范围一般在0.3—0.5nm,与其他力相比属于短程力。
除氢键外,一般无饱和性和方向性。
现将离子或荷电基团、偶极子及诱导偶极子等之间相互作用的能量与距离间有明确函数关系者列于表1。
表1一些分子间作用能与距离的关系最早被提出、并成为分子间作用力主要内容的是范德华力(van derWaalsforces简称范氏力)。
它是人们在研究气体行为,发现在气相中分子之间存在吸引和排斥的作用时,用范德华方程以校正实际气体对理想气体的偏离而提出的。
表1中作用能与r6成反比的三种力统称为范氏力。
其来源有下列三种:1.静电力(keeson force)它是极性分子的永久偶极矩之间产生的静电吸引作用,其平均作用能为式中μ1和μ2分别是两个极性分子的永久偶极矩,r是两个分子质心间的距离,k是Boltzmann常数,T和ε0分别是绝对温度和真空电容率。
2.诱导力(Debye force)它是永久偶极矩和诱导偶极矩之间产生的吸引作用,其平均诱导能为式中α2是分子2的极化率,μ1是分子1的永久偶极矩,r和ε0的意义同上。
3.色散力(London force)它是瞬间偶极矩与诱导偶极矩之间的相互作用,两分子间色散能的近似表达式为式中I1和I2分别是分子1和分子2的电离能,其余符号意义同上。
静电力和诱导力只存在于极性分子,色散力则存在于各种分子。
分子间力在物质性质中的作用分析

表面活性剂在工业生产中的应用
表面活性剂能够降低水的表面张力,提高物质的润湿性,促进液体的渗透和溶解。
在工业生产中,表面活性剂可用于清洁、洗涤、乳化、发泡等过程,提高生产效率和 产品质量。
表面活性剂在石油工业中用于提高采油效率和油水分离效果,降低生产成本。
离子键和共价键
离子键:由正离 子和负离子之间 的吸引力形成, 对物质的电导率 和热导率有显著 影响。
共价键:由两个 原子共享电子形 成,对物质的化 学性质和稳定性 起着关键作用。
分子间力:除了 离子键和共价键 外,分子间力还 包括氢键、范德 华力等,这些力 在物质性质中也 有重要作用。
作用机制:分子 间力通过影响物 质的聚集状态、 分子排列和运动 等方式,最终影 响物质的物理性 质和化学性质。
在制药工业中,表面活性剂可用于制备药物和药物载体,提高药物的溶解度和生物利 用度。
分子间力对物质 性质的影响机制 研究进展
实验研究方法的发展与改进
早期实验方法:通过观察和实验验 证分子间力的存在和性质
实验方法的改进:采用新型传感器和 测量技术,提高实验的灵敏度和精度, 进一步揭示分子间力的作用机制
影响。
分子间力对物质表 面张力的影响:表 面张力是液体表面 受到的使表面收缩 的力,分子间力的 大小和性质对物质 表面张力有重要影
响。
分子间力对物质溶 解性的影响:溶解 性是指物质在溶剂 中的溶解程度,分 子间力的大小和性 质对物质的溶解性
有重要影响。
密度和光学性质
分子间力对物质密度的影响:分子 间力的大小和性质决定了物质的密 度。
高分子材料在航空航天领域的应用,如高性能的塑料、橡胶等材料用于制造飞机、 火箭等航空航天器的零部件,提高航空航天器的性能和安全性。
分子间作用力与物质的一些性质的关系

分子间作用力与物质的一些性质的关系(1)分子间作用力与物质的沸点和熔点气体分子能够凝结为液体和固体,是分子间作用力作用的结果。
分子间引力越大,则越不易气化,所以沸点越高,气化热越大。
固体熔化为液体时也要部分地克服分子间引力,所以分子间引力较大者,熔点较高,熔化热较大。
①稀有气体和一些简单的对称分子的沸点和熔点随相对分子质量增大而升高。
在稀有气体的原子里,电子云和核之间经常产生瞬时的相对位移,因而产生瞬时偶极,这样便产生了原子间的引力。
从He 至Rn 随着原子序数增加,原子核与最外层的电子联系相应减弱,相应的原子的极化率(在单位电场强度下,由分子极化而产生的诱导偶极矩,用μ表示)也增加,因而加强了色散力。
这样一来,就增加了原子间的相互吸引力,所以相对原子质量越大,极化率越大,色散力也越大,反映在沸点上随相对原子质量增大而升高。
②同系物的沸点和熔点,随相对分子质量增大而升高,这是因为同系物的偶极矩大致相等,电离能也大致相等。
所以分子间引力的大小主要决定于极化率α的大小。
由于在同系物中相对分子质量越大的极化率也越大,因此沸点和熔点也就越高。
③同分异构体的极化率α相等,所以偶极矩越大的分子,分子间作用力越大,沸点越高。
表 同分异构体的偶极矩与沸点液体的互溶以及固态、气态的非电解质在液体里的溶解度都与分子间力有密切的关系。
例如,非极性分子组成的气体像稀有气体、2H 、2O 、2N 和卤素等溶于非极性液体,主要是由于溶质分子与溶剂分子之间色散力的作用;至于溶解于极性溶剂里,虽然有诱导力等,但仍然是色散力起主要作用。
因此,溶质或溶剂(指同系物)的极化率增大,溶解度增大,尤其当溶质和溶剂的极化率都增大时,这种效应更为明显。
极性溶剂的缔合作用主要是偶极间的相互作用,此种作用比溶质与溶剂分子间的诱导力大得多,所以非极性溶质在极性溶剂里的溶解度一般是很小的,这也就是平常所说的“相似相溶”的根据之一。
除上述一些性质外,分子间作用力还决定着物质的熵效应、气化热、粘度、表面张力、物理吸附作用,等等。
有机化学基础知识点分子间力与物质性质的关系

有机化学基础知识点分子间力与物质性质的关系有机化学作为化学的重要分支,研究有机物的结构、性质以及它们之间的相互作用。
在有机化学中,分子间力对于物质的性质起着至关重要的作用。
本文将从分子间力对物质性质的影响以及常见的分子间力类型进行探讨。
一、分子间力对物质性质的影响1. 沸点和熔点分子间力强的物质通常具有较高的沸点和熔点。
这是因为在高分子间力作用下,分子之间的结合较为牢固,需要更高的温度才能克服分子间力,使物质从固态或液态转变为气态。
2. 溶解度分子间力也对物质的溶解度产生显著影响。
通常来说,具有相似性质的物质更容易相互溶解。
例如,极性分子与极性分子之间的分子间力相对较强,因此极性物质更容易相互溶解,而与之相反的是,非极性物质间的相互作用较弱。
3. 导电性分子间力对于物质的导电性也有一定的影响。
在有机化合物中,分子间力相对较弱,不能带来自由电子的移动,因此大部分有机物质都不导电。
然而,某些有机化合物如酸、碱和盐等,在溶液中能离解成离子,从而具备一定的导电性。
二、常见的分子间力类型1. 静电作用力静电作用力是分子间力的一种形式,由于正负电荷间的相互引力而产生。
当两个分子中的正负电荷之间存在相互吸引时,静电作用力被称为氢键。
氢键通常存在于含有氢原子和电负性较强的原子(如氧、氮和氟)的化合物中。
2. 范德华力范德华力是分子间力中相对较弱的一种类型。
它是由于分子间随机运动而导致的瞬时电荷分布不均引起的。
尽管范德华力相对较弱,但在大量分子之间的作用下,它可以显著影响物质的性质,如相对溶解度。
3. 疏水力疏水力是分子间力的一种特殊形式,它是由于非极性分子间的作用而产生的。
当非极性分子相互接近时,由于电子云的分布不均匀,分子间会产生吸引力。
疏水力是指这种非极性分子间的疏水相互作用。
疏水力在有机物质的溶解度和聚集体形成等方面起着重要作用。
总结起来,有机化学中分子间力是影响物质性质的重要因素之一。
通过了解和研究分子间力的类型和特点,我们能够更好地理解有机化合物的性质及其相互作用,为有机化学的研究和应用提供理论基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
范德华力 KJ/mol 键 能 KJ/mol
21.14
432
23.11
366
26.00
298
相对 分子质量越大,范德华力越大。 (3)分子极性越强,范德华力越大
-----范德华力增大,分子晶体熔沸点升高
随堂练习:比较下列物质的熔沸点的高低
1、 O2 >_ N2 2、CO2 <_ CH3CH2OH 3、正戊烷__>__异戊烷 __>__新戊烷 4、CH4 <_ C2H6<_ C3H8<_ C4H10
5、 F2<_ Cl2<_ Br2<_ I2 6、CH4<_ CF4<_ CCl4<_ CBr4 <_ CI4
随堂练习:比较下列物质的熔沸点的高低
1、 CH4<_SiH4<_GeH4<_SeH4
2、NH3 <_ PH3 <_ _AsH3
< NH3
3、H2O<_ H2S _<H2Se _<H2Te < H2O
实质: 电性作用
氢 键 特征:有饱和性、有方向性
影响:物质的熔点、沸点溶解度
随堂练习
离子键、共价键、金属键、分子间作 用力都是微粒间的作用力。下列物质 中,只存在一种作用力的是 ( B )
A. 干冰 B. NaCl
C. NaOH D. I2
E. H2SO4
卤化氢分子中范德华力和化学键的比较
化学键
【探究一】
冰雪融化,是物理变化还 是化学变化?有没有破坏其中 的化学键?
水的三态转变 -----伴随着能量变化
固Hale Waihona Puke 水液态水气态水分子间也存在着相互作用力
----分子间作用力
分子间作用力的种类
范德华力
主要有两种:
氢键
一、分子间作用力--范德华力
1.定义:是分子之间 普遍存在的一种相互作用力
它使得许多物质能以一定的凝聚态
(固态和液态)存在
2.存在范围: -----分子晶体
大多非金属单质:含稀有气体 (金刚石、晶体硅除外)
非金属氧化物(SiO2除外) 大多共价化合物: 非金属氢化物、
酸 大多有机物等
3、特点: (1)作用力弱 (2)无方向性、无饱和性
4、实质: 电性作用
5、大小影响因素 (1)分子间距离:同种物质,分子间距离越大 范德华力越小。 (2)一般情况下,组成和结构相似的分子,
分子内“裸露”的氢核与 另一分子中带负电荷的原 子产生的静电作用
分子之间
作用力强弱 较
强
与化学键相比 小于化学键,大
弱的多
于范德华力
对物质的影 主要影响化学
响
性质
主要影响物理 主要影响物理
性质(如熔沸 性质(如熔沸
点)
点)
知识梳理
分
分 子
存在
子 间 作
用
力
范 实质: 电性作用 德 华 特征: 无饱和性、无方向性 力 影响: 物质的熔点和沸点
8、对物质性质的影响
(1)分子间氢键,将使物质的熔沸点升高 分子内氢键,将使物质的熔沸点降低
(2)若分子与溶剂分子间形成氢键,则该物质在溶 剂中的溶解度增大 (3)冰的反膨胀
(4)氢键对物质的电离等性质也产生一定的影响
随堂练习
1、下列分子中,不能形成氢键的是( )D
A.NH3 B.HF C.C2H5OH D. CH4
2、本质 3、特点:
作用力较弱 方向性、饱和性
4、表示:
X—H… Y
5、键长与键能:
6、形成条件:
① 分子内含有氢原子 ②X、Y:电负性大,原子半径小元素,N、O、F
7、存在与分类:
① 分子间氢键
HO
对羟基苯甲醛 熔点:115℃ 沸点:250℃
O C H
② 分子内氢键
OH O
C
H
邻羟基苯甲醛 熔点:2℃ 沸点:196.5℃
2.固体冰中不存在的作用力是( )A
A.离子键 B.极性键 C. 氢键 D. 范德华力
3、假如水分子间没有氢键的结合,则水的沸点熔点
( )B
A.增大
B.降低
C. 不变
D.无法判断
知识整合
化学键与范德华力氢键的比较
化学键 范德华力
氢键
概
念 相邻的原子间 把分子聚集在
强烈的相互作 一起的作用力
用
存 在 范 围 分子内、原子间 分子之间
4、 HF<_ HCl<_ HBr<_ HI < HF
沸点
100
H2O
HF 50
0 NH3
-50
-100
-200
CH4
2
联想质疑
H2S
HCl PH3 SiH4
3
H2Se AsH3 HBr GeH4
4
H2Te SbH3
HI SnH4
5
水分间的氢键
二、氢键
1、定义: 分子内“裸露”的氢核与另一分子 中带负电荷的原子产生的静电作用