函数单调性的定义与应用之欧阳歌谷创作
高中数学公式大全(必备版)之欧阳学文创作

高中数学公式及知识点速记欧阳学文1、函数的单调性(1)设1212[,],x x a b x x ∈<、且那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数. (2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数; 若0)(<'x f ,则)(x f 为减函数; 若()=0f x ',则)(x f 有极值。
2、函数的奇偶性若)()(x f x f =-,则)(x f 是偶函数;偶函数的图象关于y 轴对称。
若)()(x f x f -=-,则)(x f 是奇函数;奇函数的图象关于原点对称。
3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数)(0x f '是曲线)(x f y =在))(,(00x f x P 处的切线的斜率,相应的切线方程是))((000x x x f y y -'=-.4、几种常见函数的导数①'C 0=;②1')(-=n n nx x ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a x x ln )('=;⑥x x e e =')(; ⑦ax x a ln 1)(log '=;⑧xx 1)(ln '=5、导数的运算法则 (1)'''()u v u v ±=±. (2)'''()uv u v uv =+.(3)'''2()u u v uv v v-=.6、求函数()y f x =的极值的方法是:解方程()0f x '=得0x .当()00f x '=时:① 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值;② 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 7、分数指数幂(1)m na =.(2)1m nm naa-==.8、根式的性质(1)na =.(2)当na =;当n,0||,0a a a a a ≥⎧==⎨-<⎩.9、有理指数幂的运算性质(1)r s r s a a a +⋅=; (2)()r s rs a a =; (3)()r r r ab a b =. 10、对数公式(1)指数式与对数式的互化式:log b a N b a N =⇔=。
复合函数单调性(讲解+练习)之欧阳音创编

课题:函数的单调性(二)复合函数单调性北京二十二中刘青教学目标1.掌握有关复合函数单调区间的四个引理.2.会求复合函数的单调区间.3.必须明确复合函数单调区间是定义域的子集.教学重点与难点1.教学重点是教会学生应用本节的引理求出所给的复合函数的单调区间.2.教学难点是务必使学生明确复合函数的单调区间是定义域的子集.教学过程设计师:这节课我们将讲复合函数的单调区间,下面我们先复习一下复合函数的定义.生:设y=f(u)的定义域为A,u=g(x)的值域为B,若AÍB,则y关于x函数的y=f[g(x)]叫做函数f与g的复合函数,u叫中间量.师:很好.下面我们再复习一下所学过的函数的单调区间.(教师把所学过的函数均写在黑板上,中间留出写答案的地方,当学生回答得正确时,由教师将正确答案写在对应题的下边.)(教师板书,可适当略写.)例求下列函数的单调区间.1.一次函数y=kx+b(k≠0).解当k>0时,(-∞,+∞)是这个函数的单调增区间;当k <0时,(-∞,+∞)是这个函数的单调减区间.2.反比例函数y=x k (k≠0).解 当k >0时,(-∞,0)和(0,+∞)都是这个函数的单调减区间,当k <0时,(-∞,0)和(0,+∞)都是这个函数的单调增区间.3.二次函数y=ax2+bx+c(a≠0).解 当a >1时(-∞,-a b 2)是这个函数的单调减区间,(-a b2,+∞)是它的单调增区间;当a <1时(-∞,-a b 2)是这个函数的单调增区间,(-a b 2,+∞)是它的单调减区间;4.指数函数y=ax(a >0,a≠1).解 当a >1时,(-∞,+∞)是这个函数的单调增区间,当0<a <1时,(-∞,+∞)是这个函数的单调减区间.5.对数函数y=logax(a >0,a≠1).解 当a >1时,(0,+∞)是这个函数的单调增区间,当0<a <1时,(0,+∞)是它的单调减区间.师:我们还学过幂函数y=xn(n 为有理数),由于n 的不同取值情况,可使其定义域分几种情况,比较复杂,我们不妨遇到具体情况时,再具体分析.师:我们看看这个函数y=2x2+2x+1,它显然是复合函数,它的单调性如何?生:它在(-∞,+∞)上是增函数.师:我猜你是这样想的,底等于2的指数函数为增函数,而此函数的定义域为(-∞,+∞),所以你就得到了以上的答案.这种做法显然忽略了二次函数u=x2+2x+1的存在,没有考虑这个二次函数的单调性.咱们不难猜想复合函数的单调性应由两个函数共同决定,但一时猜不准结论.下面我们引出并证明一些有关的预备定理.(板书)引理1 已知函数y=f[g(x)].若u=g(x)在区间(a,b)上是增函数,其值域为(c,d),又函数y=f(u)在区间(c,d)上是增函数,那么,原复合函数y=f [g(x)]在区间(a,b)上是增函数.(本引理中的开区间也可以是闭区间或半开半闭区间.)证明在区间(a,b)内任取两个数x1,x2,使a<x1<x2<b.因为u=g(x)在区间(a,b)上是增函数,所以g(x1)<g(x2),记u1=g(x1),u2=g(x2)即u1<u2,且u1,u2∈(c,d).因为函数y=f(u)在区间(c,d)上是增函数,所以f(u1)<f(u2),即f[g(x1)]<f[f(x2)],故函数y=f[g(x)]在区间(a,b)上是增函数.师:有了这个引理,我们能不能解决所有复合函数的单调性问题呢?生:不能.因为并非所有的简单函数都是某区间上的增函数.师:你回答得很好.因此,还需增加一些引理,使得求复合函数的单调区间更容易些.(教师可以根据学生情况和时间决定引理2是否在引理1的基础上做些改动即可.建议引理2的证明也是改动引理1的部分证明过程就行了.)引理2 已知函数y=f[g(x)].若u=g(x)在区间(a,b)上是减函数,其值域为(c,d),又函数y=f(u)在区间(c,d)上是减函数,那么,复合函数y=f[g(x)]在区间(a,b)上是增函数.证明在区间(a,b)内任取两个数x1,x2,使a<x1<x2<b.因为函数u=g(x)在区间(a,b)上是减函数,所以g(x1)>g(x2),记u1=g(x1),u2=g(x2)即u1>u2,且u1,u2∈(c,d).因为函数y=f(u)在区间(c,d)上是减函数,所以f(u1)<f(u2),即f[g(x1)]<f[f(x2)],故函数y=f[g(x)]在区间(a,b)上是增函数.师:我们明白了上边的引理及其证明以后,剩下的引理我们自己也能写出了.为了记忆方便,咱们把它们总结成一个图表.(板书)师:你准备怎样记这些引理?有规律吗?(由学生自己总结出规律:当两个函数的单调性相同时,其复合函数是增函数;当两个函数的单调性不同时,其复合函数为减函数.)师:由于中学的教学要求,我们这里只研究y=f(u)为u的单调函数这一类的复合函数.做例题前,全班先讨论一道题目.(板书).例1 求下列函数的单调区间:y=log4(x2-4x+3)师:咱们第一次接触到求解这种类型问题,由于对它的解题步骤、书写格式都不太清楚,我们先把它写在草稿纸上,待讨论出正确的结论后再往笔记本上写.师:下面谁说一下自己的答案?生:这是由 y=log4u与u=x2-4x+3构成的一个复合函数,其中对数函数 y=log4u在定义域(0,+∞)上是增函数,而二次函数u=x2-4x+3,当x∈(-∞,2)时,它是减函数,当x∈(2,+∞)时,它是增函数,.因此,根据今天所学的引理知,(-∞,2)为复合函数的单调减区间;(2,+∞)为复合函数的单调增区间.师:大家是否都同意他的结论?还有没有不同的结论?我可以告诉大家,他的结论不正确.大家再讨论一下,正确的结论应该是什么?生:……生:我发现,当x=1时,原复合函数中的对数函数的真数等于零,于是这个函数没意义.因此,单调区间中不应含原函数没有意义的x的值.师:你说得很好,怎样才能做到这点呢?生:先求复合函数的定义域,再在定义域内求单调区间.师:非常好.我们研究函数的任何性质,都应该首先保证这个函数有意义,否则,函数都不存在了,性质就更无从谈起了.刚才的第一个结论之所以错了,就是因为没考虑对数函数的定义域.注意,对数函数只有在有意义的情况下,才能讨论单调性.所以,当我们求复合函数的单调区间时,第一步应该怎么做?生:求定义域.师:好的.下面我们把这道题作为例1写在笔记本上,我在黑板上写.(板书)解设 y=log4u,u=x2-4x+3.由u>0,u=x2-4x+3,解得原复合函数的定义域为x<1或x>3.师:这步咱们大家都很熟悉了,是求复合函数的定义域.下面该求它的单调区间了,怎样求解,才能保证单调区间落在定义域内呢?生:利用图象.师:这种方法完全可以.只是再说清楚一点,利用哪个函数的图象?可咱们并没学过画复合函数的图象啊?这个问题你想如何解决?生:……师:我来帮你一下.所有的同学都想想,求定义域也好,求单调区间也好,是求x的取值范围还是求复合函数的函数值的取值范围?或是求中间量u的取值范围?生:求x的取值范围.师:所以我们只需画x的范围就行了,并不要画复合函数的图象.(板书)师:当x∈(-∞,1)时,u=x2-4x+3为减函数,而y=log4u为增函数,所以(-∞,1)是复合函数的单调减区间;当x∈(3,±∞)时,u=x2-4x+3为增函数y=log4u为增函数,所以,(3,+∞)是复合函数的单调增区间.师:除了这种办法,我们还可以利用代数方法求解单调区间.下面先求复合函数单调减区间.(板书)u=x2-4x+3=(x-2)2-1,x>3或x<1,(复合函数定义域)x<2 (u减)解得x<1.所以x∈(-∞,1)时,函数u单调递减.由于y=log4u在定义域内是增函数,所以由引理知:u=(x-2)2-1的单调性与复合函数的单调性一致,所以(-∞,1)是复合函数的单调减区间.下面我们求一下复合函数的单调增区间.(板书)u=x2-4x+3=(x-2)2-1,x>3或x<1,(复合函数定义域)x>2 (u增)解得x>3.所以(3,+∞)是复合函数的单调增区间.师:下面咱们再看例2.(板书)例2 求下列复合函数的单调区间:1 (2x-x2)y=log3师:先在笔记本上准备一下,几分钟后咱们再一起看黑板,我再边讲边写.(板书)1u,u=2x-x2.由解设 y=log3u>0u=2x-x2解得原复合函数的定义域为0<x<2.1u在定义域(0,+∞)内是减函数,由于y=log3所以,原复合函数的单调性与二次函数u=2x-x2的单调性正好相反.易知u=2x-x2=-(x-1)2+1在x≤1时单调增.由0<x<2 (复合函数定义域)x≤1,(u增)解得0<x≤1,所以(0,1]是原复合函数的单调减区间.又u=-(x-1)2+1在x≥1时单调减,由x<2, (复合函数定义域)x≥1, (u减)解得0≤x<2,所以[0,1=是原复合函数的单调增区间.师:以上解法中,让定义域与单调区间取公共部分,从而保证了单调区间落在定义域内.师:下面我们再看一道题目,还是自己先准备一下,就按照黑板上第一题的格式写.(板书)例3 求y=267x x --的单调区间.(几分钟后,教师找一个做得对的或基本做对的学生,由他口述他的全部解题过程,教师在黑板上写,整个都写完后,教师边讲边肯定或修改学生的做法,以使所有同学再熟悉一遍解题思路以及格式要求.)解 设y=u ,u=7-6x -x2,由u≥0,u=7-6x -x2解得原复合函数的定义域为-7≤x≤1.因为y=u 在定义域[0+∞]内是增函数,所以由引理知,原复合函数的单调性与二次函数u=-x2-6x+7的单调性相同.易知u=-x2-6x+7=-(x+3)2+16在x≤-3时单调增加。
《函数单调性的概念》课件

如果函数f(x)在区间[a, b]上连续,且f'(x) > 0,那么函数f(x)在区间[a, b]上单 调递增。
证明
设x1, x2是区间[a, b]上的任意两点,且x1 < x2,考虑差值f(x2) - f(x1)。由于 f'(x) > 0,差值可以表示为f'(c)(x2 - x1) > 0,其中c位于x1和x2之间。因此, f(x2) > f(x1),说明函数在区间[a, b]上单调递增。
通过观察函数的图像来判断函数的增减性。如果图像在某区间内从左到
右上升,则函数在该区间内单调递增;如果图像在某区间内从左到右下
降,则函数在该区间内单调递减。
导数在判定单调性中的应用
导数大于0的区间内 ,函数单调递增。
导数等于0的点可能 是函数的极值点或拐 点。
导数小于0的区间内 ,函数单调递减。
单调性判定定理的证明
周期性
单调函数可能是周期函数,但并非所 有单调函数都具有周期性。
单调函数的极限和积分性质
极限性质
单调函数的极限值存在且唯一,且极限 值等于函数值。
VS
积分性质
单调函数的积分值与被积函数值成正比, 即对于任意区间[a, b],有 ∫baf(x)dx=k∫baf(x)dxf(x)dx int_a^b f(x) dx = k int_a^b f(x) dxf(x)dx∫abf(x)dx=k∫abf(x)dxdx,其 中k为常数。
《函数单调性的概念 》ppt课件
REPORTING
• 函数单调性的定义 • 函数单调性的判定 • 函数单调性的应用 • 函数单调性的性质 • 函数单调性的扩展知识
目录
PART 01
【函数的单调性和奇偶性_例题和练习_高中数学】之欧阳歌谷创编

函数的单调性和奇偶性 欧阳歌谷(2021.02.01)经典例题透析类型一、函数的单调性的证明1.证明函数x x f 1)(=在(0,+∞)上的单调性.证明:在(0,+∞)上任取x 1、x 2(x 1≠x 2), 令△x =x 2−x 1>0则∵x 1>0,x 2>0,∴01>x ,02>x ,021<-x x , ∴上式<0,∴△y =f(x 2)−f(x 1)<0∴x x f 1)(=在(0,+∞)上递减.总结升华:[1]证明函数单调性要求使用定义;[2]如何比较两个量的大小?(作差)[3]如何判断一个式子的符号?(对差适当变形)举一反三:【变式1】用定义证明函数上是减函数. 思路点拨:本题考查对单调性定义的理解,在现阶段,定义是证明单调性的唯一途径.证明:设x 1,x 2是区间上的任意实数,且x 1<x 2,则∵0<x 1<x 2≤1 ∴x 1−x 2<0,0<x 1x 2<1∵0<x1x2<1故,即f(x1)−f(x2)>0∴x1<x2时有f(x1)>f(x2)上是减函数.总结升华:可以用同样的方法证明此函数在上是增函数;在今后的学习中经常会碰到这个函数,在此可以尝试利用函数的单调性大致给出函数的图象.类型二、求函数的单调区间2. 判断下列函数的单调区间;(1)y=x2−3|x|+2; (2)解:(1)由图象对称性,画出草图∴f(x)在上递减,在上递减,在上递增.(2)∴图象为∴f(x)在上递增.举一反三:【变式1】求下列函数的单调区间:(1)y=|x+1|; (2)(3).解:(1)画出函数图象,∴函数的减区间为,函数的增区间为(−1,+∞);(2)定义域为,其中u=2x−1为增函数,在(−∞,0)与(0,+∞)为减函数,则上为减函数;(3)定义域为(−∞,0)∪(0,+∞),单调增区间为:(−∞,0),单调减区间为(0,+∞).总结升华:[1]数形结合利用图象判断函数单调区间;[2]关于二次函数单调区间问题,单调性变化的点与对称轴相关.[3]复合函数的单调性分析:先求函数的定义域;再将复合函数分解为内、外层函数;利用已知函数的单调性解决.关注:内外层函数同向变化复合函数为增函数;内外层函数反向变化复合函数为减函数.类型三、单调性的应用(比较函数值的大小,求函数值域,求函数的最大值或最小值)3. 已知函数f(x)在(0,+∞)上是减函数,比较f(a2−a+1)与的大小.解:又f(x)在(0,+∞)上是减函数,则.4. 求下列函数值域:(1); 1)x∈[5,10]; 2)x∈(−3,−2)∪(−2,1);(2)y=x2−2x+3; 1)x∈[−1,1]; 2)x∈[−2,2].思路点拨:(1)可应用函数的单调性;(2)数形结合.解:(1)2个单位,再上移2个单位得到,如图1)f(x)在[5,10]上单增,;2);(2)画出草图1)y∈[f(1),f(−1)]即[2,6];2).举一反三:【变式1】已知函数.(1)判断函数f(x)的单调区间;(2)当x∈[1,3]时,求函数f(x)的值域.思路点拨:这个函数直接观察恐怕不容易看出它的单调区间,但对解析式稍作处理,即可得到我们相对熟悉的形式.,第二问即是利用单调性求函数值域.解:(1)上单调递增,在上单调递增;(2)故函数f(x)在[1,3]上单调递增∴x=1时f(x)有最小值,f(1)=−2x=3时f(x)有最大值∴x∈[1,3]时f(x)的值域为.5. 已知二次函数f(x)=x2−(a−1)x+5在区间上是增函数,求:(1)实数a的取值范围;(2)f(2)的取值范围.解:(1)∵对称轴是决定f(x)单调性的关键,联系图象可知只需;(2)∵f(2)=22−2(a−1)+5=−2a+11又∵a≤2,∴−2a≥−4∴f(2)=−2a+11≥−4+11=7.类型四、判断函数的奇偶性6. 判断下列函数的奇偶性:(1)(2)(3)f(x)=x2−4|x|+3 (4)f(x)=|x+3|−|x−3|(5)(6)(7)思路点拨:根据函数的奇偶性的定义进行判断.解:(1)∵f(x)的定义域为,不关于原点对称,因此f(x)为非奇非偶函数;(2)∵x−1≥0,∴f(x)定义域不关于原点对称,∴f(x)为非奇非偶函数;(3)对任意x∈R,都有−x∈R,且f(−x)=x2−4|x|+3=f(x),则f(x)=x2−4|x|+3为偶函数;(4)∵x∈R,f(−x)=|−x+3|−|−x−3|=|x−3|−|x+3|=−f(x),∴f(x)为奇函数;(5),∴f(x)为奇函数;(6)∵x∈R,f(x)=−x|x|+x∴f(−x)=−(−x)|−x|+(−x)=x|x|−x=−f(x),∴f(x)为奇函数;(7),∴f(x)为奇函数.举一反三:【变式1】判断下列函数的奇偶性:(1);(2)f(x)=|x+1|−|x−1|;(3)f(x)=x2+x+1;(4).思路点拨:利用函数奇偶性的定义进行判断.解:(1);(2)f(−x)=|−x+1|−|−x−1|=−(|x+1|−|x−1|)=−f(x) ∴f(x)为奇函数;(3)f(−x)=(−x)2+(−x)+1=x2−x+1∴f(−x)≠−f(x)且f(−x)≠f(x) ∴f(x)为非奇非偶函数;(4)任取x>0则−x<0,∴f(−x)=(−x)2+2(−x)−1=x2−2x−1=−(−x2+2x+1)=−f(x)任取x<0,则−x>0 f(−x)=−(−x)2+2(−x)+1=−x2−2x+1=−(x2+2x−1)=−f(x)x=0时,f(0)=−f(0) ∴x∈R时,f(−x)=−f(x) ∴f(x)为奇函数.举一反三:【变式2】已知f(x),g(x)均为奇函数,且定义域相同,求证:f(x)+g(x)为奇函数,f(x)·g(x)为偶函数.证明:设F(x)=f(x)+g(x),G(x)=f(x)·g(x)则F(−x)=f(−x)+g(−x)=−f(x)−g(x)=−[f(x)+g(x)]=−F(x)G(−x)=f(−x)·g(−x)=−f(x)·[−g(x)]=f(x)·g(x)=G(x)∴f(x)+g(x)为奇函数,f(x)·g(x)为偶函数.类型五、函数奇偶性的应用(求值,求解析式,与单调性结合)7.已知f(x)=x5+ax3−b x−8,且f(−2)=10,求f(2).解:法一:∵f(−2)=(−2)5+(−2)3a−(−2)b−8=−32−8a+2b−8=−40−8a+2b=10∴8a−2b=−50 ∴f(2)=25+23a−2b−8=8a−2b+24=−50+24=−26法二:令g(x)=f(x)+8易证g(x)为奇函数∴g(−2)=−g(2) ∴f(−2)+8=−f(2)−8∴f(2)=−f(−2)−16=−10−16=−26.8. f(x)是定义在R上的奇函数,且当x<0时,f(x)=x2−x,求当x≥0时,f(x)的解析式,并画出函数图象.解:∵奇函数图象关于原点对称,∴x>0时,−y=(−x)2−(−x)即y=−x2−x又f(0)=0,,如图9. 设定义在[−3,3]上的偶函数f(x)在[0,3]上是单调递增,当f(a−1)<f(a)时,求a的取值范围.解:∵f(a−1)<f(a) ∴f(|a−1|)<f(|a|)而|a−1|,|a|∈[0,3].类型六、综合问题10.定义在R上的奇函数f(x)为增函数,偶函数g(x)在区间的图象与f(x)的图象重合,设a>b>0,给出下列不等式,其中成立的是_________.①f(b)−f(−a)>g(a)−g(−b);②f(b)−f(−a)<g(a)−g(−b);③f(a)−f(−b)>g(b)−g(−a);④f(a)−f(−b)<g(b)−g(−a).答案:①③.11. 求下列函数的值域:(1) (2) (3)思路点拨:(1)中函数为二次函数开方,可先求出二次函数值域;(2)由单调性求值域,此题也可换元解决;(3)单调性无法确定,经换元后将之转化为熟悉二次函数情形,问题得到解决,需注意此时t范围.解:(1);(2)经观察知,,;(3)令.12. 已知函数f(x)=x2−2ax+a2−1.(1)若函数f(x)在区间[0,2]上是单调的,求实数a的取值范围;(2)当x∈[−1,1]时,求函数f(x)的最小值g(a),并画出最小值函数y=g(a)的图象.解:(1)∵f(x)=(x−a)2−1 ∴a≤0或a≥2(2)1°当a<−1时,如图1,g(a)=f(−1)=a2+2a2°当−1≤a≤1时,如图2,g(a)=f(a)=−13°当a>1时,如图3,g(a)=f(1)=a2−2a,如图13. 已知函数f(x)在定义域(0,+∞)上为增函数,f(2)=1,且定义域上任意x、y都满足f(xy)=f(x)+f(y),解不等式:f(x)+f(x−2)≤3.解:令x=2,y=2,∴f(2×2)=f(2)+f(2)=2 ∴f(4)=2再令x=4,y=2,∴f(4×2)=f(4)+f(2)=2+1=3 ∴f(8)=3∴f(x)+f(x−2)≤3可转化为:f[x(x−2)]≤f(8).14. 判断函数上的单调性,并证明.证明:任取0<x1<x2,∵0<x1<x2,∴x1−x2<0,x1·x2>0(1)当时0<x1·x2<1,∴x1·x2−1<0∴f(x1)−f(x2)>0即f(x1)>f(x2)上是减函数.(2)当x1,x2∈(1,+∞)时,上是增函数.难点:x1·x2−1的符号的确定,如何分段.15. 设a为实数,函数f(x)=x2+|x−a|+1,x∈R,试讨论f(x)的奇偶性,并求f(x)的最小值.解:当a=0时,f(x)=x2+|x|+1,此时函数为偶函数;当a≠0时,f(x)=x2+|x−a|+1,为非奇非偶函数.(1)当x≥a时,[1]且[2]上单调递增,上的最小值为f(a)=a2+1.(2)当x<a时,[1]上单调递减,上的最小值为f(a)=a2+1[2]上的最小值为综上:.学习成果测评基础达标一、选择题1.下面说法正确的选项( )A.函数的单调区间就是函数的定义域B.函数的多个单调增区间的并集也是其单调增区间C.具有奇偶性的函数的定义域定关于原点对称D.关于原点对称的图象一定是奇函数的图象2.在区间上为增函数的是( )A.B.C.D.3.已知函数为偶函数,则的值是( )A. B. C. D.4.若偶函数在上是增函数,则下列关系式中成立的是( )A.B.C.D.5.如果奇函数在区间上是增函数且最大值为,那么在区间上是( )A.增函数且最小值是B.增函数且最大值是C.减函数且最大值是D.减函数且最小值是6.设是定义在上的一个函数,则函数,在上一定是( )A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数.7.下列函数中,在区间上是增函数的是( )A.B.C.D.8.函数f(x)是定义在[−6,6]上的偶函数,且在[−6,0]上是减函数,则( )A. f(3)+f(4)>0B. f(−3)−f(2)<0C. f(−2)+f(−5)<0D. f(4)−f(−1)>0二、填空题1.设奇函数的定义域为,若当时,的图象如右图,则不等式的解是____________.2.函数的值域是____________.3.已知,则函数的值域是____________.4.若函数是偶函数,则的递减区间是____________.5.函数在R上为奇函数,且,则当,____________.三、解答题1.判断一次函数反比例函数,二次函数的单调性.2.已知函数的定义域为,且同时满足下列条件:(1)是奇函数;(2)在定义域上单调递减;(3)求的取值范围.3.利用函数的单调性求函数的值域;4.已知函数.①当时,求函数的最大值和最小值;②求实数的取值范围,使在区间上是单调函数.能力提升一、选择题1.下列判断正确的是( )A.函数是奇函数B.函数是偶函数C.函数是非奇非偶函数D.函数既是奇函数又是偶函数2.若函数在上是单调函数,则的取值范围是( )A.B.C.D.3.函数的值域为( )A.B.C.D.4.已知函数在区间上是减函数,则实数的取值范围是( )A.B.C. D.5.下列四个命题:(1)函数在时是增函数,也是增函数,所以是增函数;(2)若函数与轴没有交点,则且;(3) 的递增区间为;(4) 和表示相等函数.其中正确命题的个数是( )A.B.C.D.6.定义在R上的偶函数,满足,且在区间上为递增,则( )A. B.C.D.二、填空题1.函数的单调递减区间是____________________.2.已知定义在上的奇函数,当时,,那么时,______.3.若函数在上是奇函数,则的解析式为________.4.奇函数在区间上是增函数,在区间上的最大值为8,最小值为−1,则__________.5.若函数在上是减函数,则的取值范围为__________.三、解答题1.判断下列函数的奇偶性(1)(2)2.已知函数的定义域为,且对任意,都有,且当时,恒成立,证明:(1)函数是上的减函数;(2)函数是奇函数.3.设函数与的定义域是且,是偶函数,是奇函数,且,求和的解析式.4.设为实数,函数,.(1)讨论的奇偶性;(2)求的最小值.综合探究1.已知函数,,则的奇偶性依次为( )A.偶函数,奇函数 B.奇函数,偶函数C.偶函数,偶函数D.奇函数,奇函数2.若是偶函数,其定义域为,且在上是减函数,则的大小关系是( )A.>B.<C. D.3.已知,那么=_____.4.若在区间上是增函数,则的取值范围是________.5.已知函数的定义域是,且满足,,如果对于,都有,(1)求;(2)解不等式.6.当时,求函数的最小值.7.已知在区间内有一最大值,求的值.8.已知函数的最大值不大于,又当,求的值.答案与解析基础达标一、选择题1.C.2.B.3.B. 奇次项系数为4.D.5.A. 奇函数关于原点对称,左右两边有相同的单调性6.A.7.A. 在上递减,在上递减,在上递减8.D.二、填空题1.. 奇函数关于原点对称,补足左边的图象2.. 是的增函数,当时,3.. 该函数为增函数,自变量最小时,函数值最小;自变量最大时,函数值最大4..5..三、解答题1.解:当,在是增函数,当,在是减函数;当,在是减函数,当,在是增函数;当,在是减函数,在是增函数,当,在是增函数,在是减函数.2.解:,则,3.解:,显然是的增函数,,4.解:对称轴∴(2)对称轴当或时,在上单调∴或.能力提升一、选择题1.C. 选项A中的而有意义,非关于原点对称,选项B中的而有意义,非关于原点对称,选项D中的函数仅为偶函数;2.C. 对称轴,则,或,得,或3.B. ,是的减函数,当4.A. 对称轴5.A. (1)反例;(2)不一定,开口向下也可;(3)画出图象可知,递增区间有和;(4)对应法则不同6.A.二、填空题1.. 画出图象2. . 设,则,,∵∴,3. .∵∴即4. . 在区间上也为递增函数,即5. . .三、解答题1.解:(1)定义域为,则,∵∴为奇函数.(2)∵且∴既是奇函数又是偶函数.2.证明:(1)设,则,而∴∴函数是上的减函数;(2)由得即,而∴,即函数是奇函数.3.解:∵是偶函数,是奇函数,∴,且而,得,即,∴,.4.解:(1)当时,为偶函数,当时,为非奇非偶函数;(2)当时,当时,,当时,不存在;当时,当时,,当时,.综合探究1.D. ,画出的图象可观察到它关于原点对称或当时,,则当时,,则2.C. ,3.. ,4.. 设则,而,则5.解:(1)令,则(2),则.6.解:对称轴当,即时,是的递增区间,;当,即时,是的递减区间,;当,即时,.7.解:对称轴,当即时,是的递减区间,则,得或,而,即;当即时,是的递增区间,则,得或,而,即不存在;当即时,则,即;∴或.8.解:,对称轴,当时,是的递减区间,而,即与矛盾,即不存在;当时,对称轴,而,且即,而,即∴.。
高等数学教材1之欧阳科创编

目录一、函数与极限21、集合的概念22、常量与变量32、函数43、函数的简单性态54、反函数55、复合函数66、初等函数77、双曲函数及反双曲函数88、数列的极限99、函数的极限1110、函数极限的运算规则13欧阳科创编一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。
如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+。
⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。
集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。
⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。
⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。
即A A②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。
函数单调性的判断或证明方法之欧阳与创编

函数单调性的判断或证明方法.(1)时间:2021.03.08 创作:欧阳与(2)定义法。
用定义法证明函数的单调性的一般步骤是①取值,设,且;②作差,求;③变形(合并同类项、通分、分解因式、配方等)向有利于判断差值符号的方向变形;④定号,判断的正负符号,当符号不确定时,应分类讨论;⑤下结论,根据函数单调性的定义下结论。
例1.判断函数在(-1,+∞)上的单调性,并证明.解:设-1<x1<x2,则f(x1)-f(x2)=-==∵-1<x1<x2,∴x1-x2<0,x1+1>0,x2+1>0.∴当a>0时,f(x1)-f(x2)<0,即f(x1)<f(x2),∴函数y=f(x)在(-1,+∞)上单调递增.当a<0时,f(x1)-f(x2)>0,即f(x1)>f(x2),∴函数y=f(x)在(-1,+∞)上单调递减.例2.证明函数在区间和上是增函数;在上为减函数。
(增两端,减中间)证明:设,则因为,所以,所以,所以所以设则,因为,所以,所以所以同理,可得(3)运算性质法.①在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.(增+增=增;减+减=减;增-减=增,减-增=减)②若.③当函数.④函数二者有相反的单调性。
⑤运用已知结论,直接判断函数的单调性,如一次函数、反比例函数等。
(3)图像法.根据函数图像的上升或下降判断函数的单调性。
例3.求函数的单调区间。
解:在同一坐标系下作出函数的图像得所以函数的单调增区间为减区间为.(4)复合函数法.(步骤:①求函数的定义域;②分解复合函数;③判断内、外层函数的单调性;④根据复合函数的单调性确定函数的单调性.⑤若集合是内层函数的一个单调区间,则便是原复合函数的一个单调区间,如例4;若不是内层函数的一个单调区间,则需把划分成内层函数的若干个单调子区间,这些单调子区间便分别是原复合函数的单调区间,如例5.)设,,都是单调函数,则在上也是单调函数,其单调性由“同增异减”来确定,即“里外”函数增减性相同,复合函数为增函数,“里外”函数的增减性相反,复合函数为减函数。
高一函数单调性完整版之欧阳法创编

函数的单调性1)掌握函数的基本性质(单调性、最大值或最小值、奇偶性),能应用函数的基本性质解决一些问题。
(2)从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.(3)了解奇偶性的概念,回 会利用定义判断简单函数的奇偶性。
(1)判断或证明函数的单调性;(2)奇偶性概念的形成与函数奇偶性的判断。
1. 2. 会根据图像说出函数的单调区间,并能指出其增减性;3. 会用定义证明一些简单函数的单调性.自学评价x观察函数x x f =)(,2)(x x f =的图象 从左至右看函数图象的变化规律:(1).x x f =)(的图象是_________的,2)(x x f =的图象在y 轴左侧是______的,2)(x x f =的图象在y 轴右侧是_______的.(2). x x f =)(在),(+∞-∞上,f (x )随着x 的增大而___________;2)(x x f =在]0,(-∞上,f (x )随着x的增大而_______;2)(x x f =在),0(+∞上,f (x )随着x 的增大而________.一、 函数的单调性1.单调函数的定义(1)增函数:一般地,设函数()f x 的定义域为I :如果对于属于I 内某个区间上的任意两个自变量的值1x 、2x ,当1x <2x 时都有12()()f x f x <,那么就说()f x 在这个区间上是增函数。
(2)减函数:如果对于属于I 内某个区间上的任意两个自变量的值1x 、2x ,当1x <2x 时都有12()()f x f x >,那么就说()f x 在这个区间上是减函数。
(3)单调性:如果函数()y f x =在某个区间是增函数或减函数。
那么就说函数()y f x =在这一区间具有(严格的)单调性,这一区间叫做()y f x =的单调区间。
※增函数、减函数的定义增函数: )()(2121x f x f x x <⇒< 减函数: )()(2121x f x f x x >⇒<;2(1判断下列函数的单调区间:21x y =(2)图像法:从左往右,图像上升即为增函数,从左往右,图像下降即为减函数。
抽象函数的单调性之欧阳学创编

抽象函数的单调性抽象函数的含义:没有解析式的函数,在考试中抽象函数始终作为一大难点出现在考生面前。
思路:添项法。
类型:一次函数型,幂函数型,指数函数型,对数函数型。
函数满足:()()()f a b f a f b k +=++ 或 ()()()f a b f a f b k -=-+例1、 ()f x 对任意,x y R ∈都有:()()()f x y f x f y +=+,当0,()0x f x ><时,判断()f x 在R 上的单调性。
例2、f(x)对任意实数x 与y 都有()()()2f x f y f x y -=--,当x>0时,f(x)>2(1)求证:f(x)在R 上是增函数; (2)若f(1)=5/2,解不等式f(2a-3) < 3【专练】:1、已知函数f x ()对任意x y R ,∈有f x f y f x y ()()()+=++2,当x >0时,f x ()>2,f ()35=, 求不等式f a a ()2223--<的解集。
2、定义在R 上的函数f(x)满足:对任意x ,y ∈R 都有()()()f x y f x f y -=-,且当0,()0x f x <<时(1)求证f(x)为奇函数; (2)若f(k ·3x )+f(3x -9x -2)<0对任意x ∈R 恒成立,求实数k 的取值范围.函数满足:()()()f a b f a f b =+ 或 ()()()a f f a f b b =-例1、f(x)是定义在x>0的函数,且f(xy) = f(x) + f(y);当x>1时有f(x)<0;f(3) = -1.(1) 求f(1)和f(1/9)的值;(2)证明f(x)在x>0上是减函数;(3)解不等式f(x) + f(2-x) < 2。
例2、定义在(0,)+∞上函数()y f x =对任意的正数,a b 均有:()()()a f f a f b b =-,且当1x <时,()0f x >,(I )求(1)f 的值;(II )判断()f x 的单调性,【专练】:1、定义在(0,)+∞上的函数f(x)对任意的正实数,x y 有)()()(y f x f y x f -=且当01x <<时,()0f x <. 求:(1))1(f 的值. (2)若1)6(=f ,解不等式2)1()3(<-+x f x f ; 2、 函数()f x 的定义域是0x ≠的一切实数,对定义域内的任意12,x x 都有1212()()()f x x f x f x ⋅=+,且当1x >时()0,(2)1f x f >=又, (1)求证:()f x 是偶函数;(2)()f x 在(0,)+∞上是增函数(3)解不等式2(21)2f x -<3、设()f x 是定义在(0,)+∞上的函数,对任意,(0,)x y ∈+∞,满足()()()f xy f x f y =+且当1x >时,()0f x >。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的性质——单调性
欧阳歌谷(2021.02.01)
【教学目的】使学生了解增函数、减函数的概念,掌握判断函数增减性的方法步骤;
【重点难点】重点:函数的单调性的有关概念;
难点:证明或判断函数的单调性
一、增函数与减函数
⒈增函数与减函数定义:对于函数f(x)的定义域I内某个区间上的任意两个自变量的值x1,x2.
⑴若当x1<x2时,都有f(x1)<(fx2),则说f(x)在这个区间上是增函数
⑵若当x1<x2时,都有f(x1)>(fx2),则说f(x) 在这个区间上是减函数
说明:函数是增函数还是减函数,是对定义域内某个区间而言的.有的函数在一些区间上是增函数,而在另一些区间上不是增函数.例如函数y=x2,当x∈[0,+∞)时是增函数,当x∈(-∞,0)时是减函数.
⒉单调性与单调区间
若函数y=f(x)在某个区间是增函数或减函数,则就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做函数y=f(x)的单调区间.此时也说函数是这一区间上的单调函数.
在单调区间上,增函数的图象是上升的,减函数的图象是下降的.
说明:⑴函数的单调区间是其定义域的子集;
⑵应是该区间内任意的两个实数,忽略需要任意取值这个条件,就不能保证函数是增函数(或减函数),例如,图5中,在x 1,x 2那样的特定位置上,虽然使得
f(x 1)<(fx 2),但显然此图象表示的函数不是一
个单调函数;
⑶除了严格单调函数外,还有不严格单调函数,它的定义类似上述的定义,只要将上述定义中的“f(x 1)<(fx 2) 或f(x 1)>(fx 2) ”改为“f(x 1)≤(fx 2) 或f(x 1)≥(fx 2)”即可;
⑷定义的内涵与外延:内涵是用自变量的大小变化来刻划函数值的变化情况;外延:①一般规律:自变量的变化与函数值的变化一致时是单调递增,自变量的变化与函数值的变化相对时是单调递减. ②几何特征:在自变量取值区间上,若单调函数的图象上升,则为增函数,图象下降则为减函数. ⒊ 例题
例1图6是定义在闭区间[-5,5]上的函数y=f(x)的图象,根据图象说出y=f(x)的单调区间,以及在每一单调区间上,函数y=f(x)是增函数还是减函数.
练习:1、函数11-=x y 的增减性的正确说
法是:
A .单调减函数 B.在)0,(-∞上是减函数,在),0(+∞上是减函数
C. 在)1,(-∞是减函数,在),1(+∞是减函数
D.除1=x 点外,在),(+∞-∞上是单调递减函数
二次函数的单调性:对函数c bx ax x f ++=2)()0(≠a ,
当0>a 时函数)(x f 在对称轴
a b x 2-=的左侧单调减小,右侧单调增加;
当0<a 时函数)(x f 在对称轴
a b x 2-=的左侧单调增加,右侧单调减小;
例:讨论函数322+-=ax x f(x)在(-2,2)内的单调性。
二、函数单调性的证明步骤:
① 任取x 1,x 2∈D ,且x 1<x 2;
② 作差f(x 1)-f(x 2);
③变形(通常是因式分解和配方);
④定号(即判断差f(x 1)-f(x 2)的正负);
⑤下结论(即指出函数f(x)在给定的区间D 上的单调性). 例1、证明函数x x y 1
+=在(1,+∞)上为减函数.
例2、证明函数
x x x f -1)(2+=在R 上是单调减函数。
练习1 证明函数f(x)=1/x 在(0,+∞)上是减函数.
练习2 试判断函数x x x f 1
-)(2=在)(0,+∞上的单调性并加以证明。
例 已知函数f(x)=x a x
+2(a>0)在(2,+∞)上递增,求实数a 的取
值范围.
三、复合函数单调性
对于函数y =f (u )和u =g (x ),如果u =g (x )在区间(a ,b )上具有单调性,当x ∈(a ,b )时,u ∈(m ,n ),且y =f (u )在区间(m ,n )上也具有单调性,则复合函数y =f (g (x ))在区间(a ,b )具有单调性的规律见下表:
例:函数
322-+=x x y 的单调减区间是 ( ) A.]3,(--∞ B.),1[+∞- C.]1,(--∞ D.),1[+∞
求函数单调区间(复合函数)
1.函数1
y x =-的单调区间是( )
A .(-∞,+∞) B.(-∞,0) (1,∞,)
C.(-∞,1) 、(1,∞)
D. (-∞,1)(1,∞)
2. 下列函数中,在区间(0,2)上为增函数的是( ).
A .32y x =-+
B .
3
y x = C .245y x x =-+
D .23810y x x =+-
3.函数
y =的增区间是( )。
A .[-3,-1] B .[-1,1] C .1
13a -<<-(,3)-∞- D .(1,)-∞
4、已知函数1
()f x x x =+,
判断()f x 在区间〔0,1〕和(1,+∞)上的单调性。
五、函数单调性的应用:判断函数)(x f y =的单调性;比较大小;解不等式;求最值(值域)。
例 (1)若函数
52)(2++=ax x x f 在)(-2,+∞上单调递增,在)2,-(-∞上单调递减,求其实数a 的取值;
(2)若函数
52)(2++=ax x x f 在)(-2,+∞上单调递增,其实数a 的取值范围;
(3)若函数
52x )(2++=ax x f 在)(-2,+∞上单调递增,其实数a 的取值范围;
例 若函数
5)2(log )(22++=x ax x f 在)(-2,+∞上单调递增,其实数a 的
取值范围; 例 已知函数
⎩⎨⎧≥<+=1log 14)1-3()(x x x a x a x f a 是),(-+∞∞上的减函数,求实
数a 的取值范围; 练 习
判断函数的单调性
1.在区间)1,(-∞上为增函数的是: A.)
1(log 21x y --= B.21x y -= C.2)1(+-=x y D.
x x y -=1 2.设),(a -∞是函数
221)(--=x x x f 的反函数的一个单调增区间,则实数a
的取值范围是 A.2≤a B.2≥a C.2-≤a D.2-≥a
3.下列命题:(1)若)(x f 是增函数,则)(1x f 是减函数;(2)若)(x f 是减函
数,则2)]([x f 是减函数;(3)若)(x f 是增函数,)(x g 是减函数,)]([x f g 有意
义,则)]([x f g 为减函数,其中正确的个数有:
A.1
B.2
C.3
D.0
4.2)1(2)(2+-+=x a x x f 在区间(]4,∞-上是减函数,则实数a 的取值范围是
5.已知函数f (x )=|2-x |+|x |的值随x 值的增大而增大,求x 的取值范围.
6.)(x f 是定义在),0(+∞上的增函数,则不等式)]2(8[)(->x f x f 的解集是
7.已知函数f (x )=13--x , 用函数单调性的定义证明:)(x f 在(-∞,+∞)上单调递减.
8.讨论函数21)(x x f -=在区间[-1,1]上的单调性,并证明.
9.函数x x x f -+=2)(,求证
)(x f 在]47,(-∞上是增函数. 二次函数的单调性
1. 函数2
2)1()(2-+-+=a x a x x f 在]3,(-∞上是减函数,求a 的取值范围。
2. 函数14)3(2)(2-+-+-=a x a x
x f 在),1[+∞上是减函数求a 的取值范围。
3. 函数b ax x x f +-=2)(在)1,(-∞上是减函数,在),1(+∞上是增函数,求a 。
4. 函数1)13()(2++-=x m mx
x f 在[-1,2]上是增函数,求m 的取值范围。
5. 已知2)1(2)(2+-+=x a x x f 在)4,(-∞上是减函数,且,0)(>x f 求a 的取值范围。
6.
2)1(2)(2+-+=x a x x f 在区间(]4,∞-上是减函数,则实数a 的取值
范围
7.已知二次函数f (x )的二次项系数为正,且对于任意实数x ,都有f (2-x )=f (x +2),讨论函数f (x )的单调性。
单调性与大小关系
1.如果ax 2+bx +c >0(a ≠0)的解集为{x |x <-2或x >4},设f (x )=ax 2+bx +c ,试比较f (-1),f (2),f (5)的大小.
2.比较大小:)0,.(,>>++m b a m b m a b a
3.设10<<x ,使一次函数)0)((>-=m a x m y 都是正数,则a 的范围是:
A.0≤a
B.0<a
C.1≤a
D.1>a
4.)(x f 是定义在),0(+∞上的增函数,则不等式)]2(8[)(->x f x f 的解集是
5.)(x f 是定义在R 上增函数,且满足)()()(y f x f y x f -=
(1)求)1(f 的值; (2)若1)6(=f ,解不等式2)1()3(<-+x f x f。