【2019龙岩二检数学含答案】2019年龙岩市市质检
福建省龙岩市2019-2020学年第二次中考模拟考试数学试卷含解析

福建省龙岩市2019-2020学年第二次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图是二次函数2y ax bx c =++的图象,有下面四个结论:0abc >①;0a b c ②-+>; 230a b +>③;40c b ->④,其中正确的结论是( )A .①②B .①②③C . ①③④D . ①②④2.二次函数2y ax bx c =++的图象如图所示,则反比例函数a y x=与一次函数y bx c =+在同一坐标系中的大致图象是( )A .B .C .D .3.如图,在以O 为原点的直角坐标系中,矩形OABC 的两边OC 、OA 分别在x 轴、y 轴的正半轴上,反比例函数k y x=(x >0)与AB 相交于点D ,与BC 相交于点E ,若BD=3AD ,且△ODE 的面积是9,则k 的值是( )A .92B .74C .245D .124.如图,△ABC 中,BC =4,⊙P 与△ABC 的边或边的延长线相切.若⊙P 半径为2,△ABC 的面积为5,则△ABC 的周长为( )A .8B .10C .13D .145.已知O 为圆锥的顶点,M 为圆锥底面上一点,点P 在OM 上.一只蜗牛从P 点出发,绕圆锥侧面爬行,回到P 点时所爬过的最短路线的痕迹如图所示.若沿OM 将圆锥侧面剪开并展开,所得侧面展开图是( )A .B .C .D .6.如果1∠与2∠互补,2∠与3∠互余,则1∠与3∠的关系是( )A .13∠=∠B .11803∠=-∠oC .1903∠=+∠oD .以上都不对7.如图,下列条件不能判定△ADB ∽△ABC 的是( )A .∠ABD=∠ACBB .∠ADB=∠ABC C .AB 2=AD•ACD . AD AB AB BC= 8.长江经济带覆盖上海、江苏、浙江、安徽、江西、湖北、湖南、重庆、四川、云南、贵州等11省市,面积约2 050 000平方公里,约占全国面积的21% .将2 050 000用科学记数法表示应为( )A .205万B .420510⨯C .62.0510⨯D .72.0510⨯9.肥皂泡的泡壁厚度大约是0.00000071米,数字0.00000071用科学记数法表示为( )A .7.1×107B .0.71×10﹣6C .7.1×10﹣7D .71×10﹣810.如图,在△ABC 中,AB=AC=5,BC=8,D 是线段BC 上的动点(不含端点B ,C).若线段AD 长为正整数,则点D 的个数共有( )A.5个B.4个C.3个D.2个11.用6个相同的小正方体搭成一个几何体,若它的俯视图如图所示,则它的主视图不可能是()A.B.C.D.12.将抛物线绕着点(0,3)旋转180°以后,所得图象的解析式是().A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若2x+y=2,则4x+1+2y的值是_______.14.如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块.15.如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为_______.16.不等式2x-5<7-(x-5)的解集是______________.17.关于x的一元二次方程24410x ax a+++=有两个相等的实数根,则581a aa--的值等于_____.18.如图,在Rt△ABC中,∠A=90°,AB=AC,2+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)甲、乙、丙、丁四位同学进行乒乓球单打比赛,要从中选出两位同学打第一场比赛.若确定甲打第一场,再从其余三位同学中随机选取一位,恰好选中乙同学的概率是.若随机抽取两位同学,请用画树状图法或列表法,求恰好选中甲、乙两位同学的概率.20.(6分)如图所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.求证:△ACE≌△BCD;若AD=5,BD=12,求DE的长.21.(6分)解不等式组:426113x xxx>-⎧⎪+⎨-≤⎪⎩,并写出它的所有整数解.22.(8分)在平面直角坐标系中,△ABC的顶点坐标是A(﹣2,3),B(﹣4,﹣1),C(2,0).点P (m,n)为△ABC内一点,平移△ABC得到△A1B1C1,使点P(m,n)移到P(m+6,n+1)处.(1)画出△A1B1C1(2)将△ABC绕坐标点C逆时针旋转90°得到△A2B2C,画出△A2B2C;(3)在(2)的条件下求BC扫过的面积.23.(8分)2018年4月12日上午,新中国历史上最大规模的海上阅兵在南海海域隆重举行,中国人解放军海军多艘战舰、多架战机和1万余名官兵参加了海上阅兵式,已知战舰和战机总数是124,战数的3倍比战机数的2倍少8.问有多少艘战舰和多少架战机参加了此次阅兵.24.(10分)如图,已知A(﹣4,12),B(﹣1,m)是一次函数y=kx+b与反比例函数y=nx图象的两个交点,AC⊥x轴于点C,BD⊥y轴于点D.(1)求m的值及一次函数解析式;(2)P是线段AB上的一点,连接PC、PD,若△PCA和△PDB面积相等,求点P坐标.25.(10分)甲、乙两家商场以同样价格出售相同的商品,在同一促销期间两家商场都让利酬宾,让利方式如下:甲商场所有商品都按原价的8.5折出售,乙商场只对一次购物中超过200元后的价格部分按原价的7.5折出售.某顾客打算在促销期间到这两家商场中的一家去购物,设该顾客在一次购物中的购物金额的原价为x(x>0)元,让利后的购物金额为y元.(1)分别就甲、乙两家商场写出y关于x的函数解析式;(2)该顾客应如何选择这两家商场去购物会更省钱?并说明理由.26.(12分)(1)问题发现:如图①,在等边三角形ABC中,点M为BC边上异于B、C的一点,以AM为边作等边三角形AMN,连接CN,NC与AB的位置关系为;(2)深入探究:如图②,在等腰三角形ABC中,BA=BC,点M为BC边上异于B、C的一点,以AM为边作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,连接CN,试探究∠ABC与∠ACN的数量关系,并说明理由;(3)拓展延伸:如图③,在正方形ADBC中,AD=AC,点M为BC边上异于B、C的一点,以AM为边作正方形AMEF,点N为正方形AMEF的中点,连接CN,若BC=10,CN=2,试求EF的长.27.(12分)科技改变世界.2017年底,快递分拣机器人从微博火到了朋友圈,据介绍,这些机器人不仅可以自动规划最优路线,将包裹准确地放入相应的格口,还会感应避让障碍物,自动归队取包裹.没电的时候还会自己找充电桩充电.某快递公司启用80台A种机器人、300台B种机器人分拣快递包裹.A,B 两种机器人全部投入工作,1小时共可以分拣1.44万件包裹,若全部A种机器人工作3小时,全部B种机器人工作2小时,一共可以分拣3.12万件包裹.(1)求两种机器人每台每小时各分拣多少件包裹;(2)为了进一步提高效率,快递公司计划再购进A,B两种机器人共200台,若要保证新购进的这批机器人每小时的总分拣量不少于7000件,求最多应购进A种机器人多少台?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据抛物线开口方向得到a 0>,根据对称轴02b x a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >;1x =-时,由图像可知此时0y >,所以0a b c -+>;由对称轴123b x a =-=,可得230a b +=;当2x =时,由图像可知此时0y >,即420a bc ++>,将23a b =-代入可得40c b ->.【详解】①根据抛物线开口方向得到0a >,根据对称轴02b x a =->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >,故①正确.②1x =-时,由图像可知此时0y >,即0a b c -+>,故②正确. ③由对称轴123b x a =-=,可得230a b +=,所以230a b +>错误,故③错误; ④当2x =时,由图像可知此时0y >,即420a bc ++>,将③中230a b +=变形为23a b =-,代入可得40c b ->,故④正确.故答案选D.【点睛】本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解决问题。
龙岩市2019年高中毕业班教学质量检查数学(理科)参考答案Word版

(第4题图) 龙岩市2019年高中毕业班教学质量检查数学(理科)试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)全卷满分150分,考试时间120分钟注意事项:1.考生将自己的姓名、准考证号及所有的答案均填写在答题卡上. 2.答题要求见答题卡上的“填涂样例”和“注意事项”.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.已知(2)(2)43,m i i i +-=+,m R i ∈为虚数单位,则m 的值为 A .1 B .1-C .2D .2-2.已知3cos()45πα-=,则sin 2α= A .725- B .15-C .15D .7253.已知等差数列{}n a 的公差为2,若431,,a a a 成等比数列,则数列{}n a 的前8 项和为A .20-B .18-C .8-D .10- 4.如果执行右面的程序框图,输入正整数,n m ,且满足n ≥那么输出的p 等于 A .1m n A - B .mn AC . 1m n C -D .mnC5.已知实数x ,y 满足不等式组220210320x y x y x y -+≥⎧⎪++≤⎨⎪+-≤⎩,则x y -的取值范围为 A .[)2,-+∞B .[)1,-+∞C .(],2-∞D .[]2,2-2222正视图 侧视图俯视图(第7题图)(第11题图) M P DABC1B 1C 1D 1A (第8题图)AB CDO6.已知双曲线22122:1x y C a b -=()0,0a b >>和双曲线22222:1y x C m n-=()0,0m n >>焦距相等,离心率分别为1e 、2e ,若2212111e e +=,则下列结论正确的是A .1C 和2C 离心率相等B .1C 和2C 渐近线相同 C .1C 和2C 实轴长相等D .1C 和2C 虚轴长相等7.已知一个三棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的外接球表面积为 A 3π B .23π C .43π D .12π 8.如图,AB 和CD 是圆O 两条互相垂直的直径,分别以OA ,OB ,OC ,OD 为直径作四个圆,在圆O 内随机取一点,则此点取自阴影部分的概率是A .21π-B .112π-C .2πD .1π9.已知函数()cos 3f x x ωπ⎛⎫=+ ⎪⎝⎭()0ω>在区间36π5π⎡⎤-⎢⎥⎣⎦,上单调,则ω的取值范围为A .120,15⎛⎤ ⎥⎝⎦B .10,5⎛⎤ ⎥⎝⎦C .112,515⎡⎤⎢⎥⎣⎦D .12,115⎡⎤⎢⎥⎣⎦10.设23451111log log log log s ππππ=+++,||,*T a s a N =-∈,当T 取最小值时a 的值为A .2B .3C .4D .511.如图,已知正方体1111ABCD A B C D -的棱长为4,P 是1AA 的中点,点M 在侧面11AA B B 内,若1D M CP ⊥,则BCM ∆面积的最小值为A .8B .4C .82D 8512.已知数列{}n a 各项均为整数,共有7项,且满足11k k a a +-=,1,2,6k =,其中11a =,7a a =(a 为常数且0a >).若满足上述条件的不同数列个数共有15个,则a 的值为A .1B .3C .5D .7ADBME NFC O(第18题图)第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.已知向量a ,b 的夹角为60°,2a =,37a b -=,则b = . 14.若4(1)()x a x ++的展开式中3x 项的系数为16,则实数a = .15.已知抛物线24y x =的焦点为F ,其准线与x 轴的交点为Q ,过点F 作直线与抛物线交于,A B 两点.若以QF 为直径的圆过点B ,则AF BF -的值为 .16.已知32()||4f x x x =-,若()f x 的图像和y ax =的图像有四个不同的公共点,则实数a 的取值范围是 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知2cos 2c B a b =-. (Ⅰ)求角C 的大小;(Ⅱ)设D 为BC 中点,若3AD =,求ABC ∆面积的取值范围.18.(本小题满分12分)如图,已知四边形ABCD 是边长为2的菱形,且060ABC ∠=,BM ABCD ⊥平面,//DN BM ,2BM DN =,点E 是线段MN 上的一点.O 为线段BD 的中点.(Ⅰ)若OF ⊥BE 于F 且1OF =,证明:AF ⊥平面ECB ;(Ⅱ)若4BM =,13NE NM =,求二面角E BC M --的余弦值.19.(本小题满分12分)已知椭圆E 的方程为2221x y a+=,点A 为长轴的右端点.,B C 为椭圆E 上关于原点对称的两点.直线AB 与直线AC 的斜率AB AC k k 和满足:12AB AC k k =-.(Ⅰ)求椭圆E 的标准方程;(Ⅱ)若直线:l y kx t =+与圆2223x y +=相切,且与椭圆E 相交于,M N 两点,求证:以线段MN 为直径的圆恒过原点.20.(本小题满分12分)某医院为筛查某种疾病,需要检验血液是否为阳性,现有n (n N *∈)份血液样本,有以下两种检验方式:(1)逐份检验,则需要检验n 次;(2)混合检验,将其中k (k N *∈且2k ≥)份血液样本分别取样混合在一起检验.若检验结果为阴性,这k 份的血液全为阴性,因而这k 份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这k 份血液究竟哪几份为阳性,就要对这k 份再逐份检验,此时这k 份血液的检验次数总共为1k +次.假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为(01)p p <<.(Ⅰ)假设有5份血液样本,其中只有2份样本为阳性,若采用逐份检验方式,求恰好经过4次检验就能把阳性样本全部检验出来的概率.(Ⅱ)现取其中k (k N *∈且2k ≥)份血液样本,记采用逐份检验方式,样本需要检验的总次数为1ξ,采用混合检验方式,样本需要检验的总次数为2ξ(ⅰ)试运用概率统计的知识,若1E ξ=2E ξ,试求p 关于k 的函数关系式()p f k =;(ⅱ)若1p =,采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数期望值更少,求k 的最大值.参考数据:ln20.6931≈,ln3 1.0986≈,ln4 1.3863≈,ln5 1.6094≈,ln6 1.7918≈21.(本小题满分12分)已知函数1()ln (0)x f x x a R a ax -=+∈≠且,1()(1)()x g x b x xe b R x=---∈ (Ⅰ)讨论函数()f x 的单调性;(Ⅱ)当1=a 时,若关于x 的不等式()()2f x g x +≤-恒成立,求实数b 的取值范围.请考生在22、23两题中任选一题作答. 注意:只能做所选定的题目.如果多做,则按所做第一个题目计分. 作答时,请用2B 铅笔在答题卡上将所选题号后的方框涂黑. 22.(本小题满分10分)选修4-4:坐标系与参数方程已知平面直角坐标系xOy 中,直线l 的参数方程为2cos 1sin x t y t αα=-+⎧⎨=+⎩(t 为参数,02πα≤<),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为24cos 2sin 40ρρθρθ---=.(Ⅰ)求直线l 的普通方程、曲线C 的直角坐标方程;(Ⅱ)若直线l 与曲线C 交于A B 、两点,且2AB =.求α的大小.23.(本小题满分10分)选修4-5:不等式选讲已知函数()()f x x m m R =-∈.(Ⅰ)当2m =时,解不等式()1f x x >7--;(Ⅱ)若存在x R ∈,使()1f x x >7+-成立,求m 的取值范围.龙岩市2019年高中毕业班教学质量检查数学(理科)参考答案一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有13.1 14.2-或4315. 4 16.(4,0)(0,4)- 三、解答题:本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤. 17.(本小题满分12分) 解:(Ⅰ)由2cos 2c B a b =-,得2sin cos 2sin sin C B A B =- ……………………1分即()2sin cos 2sin sin C B B C B =+-,2sin cos sin B C B ∴=sin 0B >, 1cos 2C ∴=……………………5分0C π<<, 3C π∴=……………………6分(Ⅱ)在ADC ∆中,由余弦定理得:2222cos3ADAC DC AC DC π=+-••……7分即229AC DC AC DC +-•=, 又222AC DC AC DC +≥• 90AC DC ∴≥•>, ……………………9分1sin 23ADCSAC DC π=••0ADC S ∴<≤ …………………10分 2ABC ADC S S = 0ABC S ∴<≤……………………12分18.(本小题满分12分)解:(Ⅰ)四边形ABCD 是边长为2的菱形,且060ABC ∠=∴ AC 与BD 交于点O 且ABC ∆为等边三角形2AC ∴=,BO =又112OF AC ==,AF CF ∴⊥ ………………2分ADBME NxC O (第18题图)yzFBM ABCD ⊥平面,AC BM ∴⊥又AC BD ⊥,∴AC BMND ⊥平面 OF BMND ⊂平面,AC OF ∴⊥在Rt AOF 中,2222AF AO OF =+=在Rt BOF 中,2222FB BO OF =-=∴在ABF ∆中, 24AB =, 224AF FB +=, 222AF FB AB += (4)分AF BE ∴⊥,又,,CF BE CBE CF BE F ⊂=平面,∴AF ECB ⊥平面 ……………………5分 (Ⅱ)在平面BMND 中,过O 作直线l ∥BM , 则l ABCD ⊥面,如图,以l 为z 轴,AC所在直线为x 轴,BD 所在直线为y 轴建立空间直角坐标系, ………………6分()3,0B ∴,()1,0,0C -,()3,4M ,()0,3,2N -13NE NM =,380,33E ⎛⎫∴-⎪⎝⎭, ()1,3,0BC ∴=--,4380,,33BE ⎛⎫=-⎪⎝⎭ 设(),,n x y z =是平面BCE 的法向量,则00n BC n BE ⎧=⎪⎨=⎪⎩,即3043803x y z ⎧--=⎪⎨+=⎪⎩, 取()6,23,3n =-,取BC 中点G ,连结AG ,AG BC ∴⊥,AG BM ⊥, AG BCM ∴⊥面因此,AG 是平面BCM 的法向量,13,,022G ⎛⎫- ⎪⎝⎭,()1,0,0A 3322AG ⎛⎫∴=- ⎪⎝⎭, (10)分设二面角E BC M --的大小为θ,则419cos 19933612944n AG n AGθ===+++ ∴二面角E BC M --419……………………12分19.(本小题满分12分) 解:(Ⅰ)设00(x ,)B y 则00(x ,)C y -- …………………1分由220021x y a +=得,2222000221x a x y a a-=-= …………………2分 由12AB AC k k ⋅=-,即000012y y x a x a -⋅=----得,222002a x y -= …………4分所以22220022a x a x a --=,所以22a = 即椭圆E 的标准方程为:2212x y += …………………5分(Ⅱ)设1122(x ,),(x ,)M y N y由2212x y y kx t ⎧+=⎪⎨⎪=+⎩得: 222(12k )4220x ktx t +++-= 2121222422,1212kt t x x x x k k--+==++ …………………6分 2212121212()()()y y kx t kx t k x x kt x x t =++=+++2222222222(22)42121212k t k t t k t k k k ---=++=+++ 又l 与圆C=22231t k =+ …………………8分 所以2221212222212t t k OM ON x x y y k-+-⋅=+=+ 22222232(1)2(1)2(1)01212t k k k k k-++-+===++ …………………11分 所以,OM ON ⊥,即090MON ∠=所以,以线段MN 为直径的圆经过原点. …………………12分20.(本小题满分12分)解:(Ⅰ) 112223325535C C A A p A ==………………3分 ∴恰好经过4次检验就能把阳性样本全部检验出来的概率为35………………4分(Ⅱ)(ⅰ)由已知得1E k ξ=,2ξ的所有可能取值为1,1k +()()211k P p ξ∴==-, ()()2111kP k p ξ=+=--∴()()21(1)11k k E p k p ξ⎡⎤=-++--⎣⎦=()11kk k p +--……………6分若1E ξ=2E ξ,则1(1)k k k k p =+-- ∴(1)1kk p -=1(1)kp k-= ∴111()k p k -= ∴111()k p k =-∴p 关于k 的函数关系式111()k p k =-(k N *∈且2k ≥) ………………8分(ⅱ)由题意可知21E E ξξ<,得()11,kp k <-31p =-1kk ∴<,1ln 3k k ∴>,设()1ln (0)3f x x x x =->……………10分 ()33xf x x-'=,∴当3x >时,()0f x '<,即()f x 在()3,+∞上单调递减又ln4 1.3863≈,4 1.33333≈,4ln 43∴>,ln5 1.6094≈,5 1.66673≈,5ln53∴< ∴k 的最大值为4. (12)分21.(本小题满分12分) 解:(Ⅰ)11()ln f x x ax a =+- 22111()(0)ax f x x x ax ax -'∴=-=> …………1分 当0a <时,()0f x '∴>,()f x ∴在(0,)+∞单调递增; …………2分当0a >时,由()0f x '>得:1x a >;由()0f x '<得:10x a <<,()f x ∴在1(0,)a单调递减,在1(,)a+∞单调递增 ……………………4分综上:当0a <时,()f x 在(0,)+∞单调递增;当0a >时,()f x 在1(0,)a单调递减,在1(,)a +∞单调递增. ………………5分(Ⅱ)由题意:当0a <时,不等式()()2f x g x +≤-,即11ln 1(1)2x x b x xe x x+-+---≤- 即ln 11xx b e x x -≤--在(0,)+∞恒成立, ……………6分 令ln 1()x x h x e x x =--,则22221ln 1ln ()x xx x e x h x e x x x-+'=-+=, ………7分 令2()ln x u x x e x =+,则21()(2)0xu x x x e x'=++>,()u x ∴在(0,)+∞单调递增又1u(1)e 0,u()ln 2024=>=-<,所以,()u x 有唯一零点0x (0112x <<) 所以,0()0u x =,即0000ln x x x e x =---------(※) ………………9分当0(0,)x x ∈时,()0u x <即h ()0x '<,()h x 单调递减;0(,)x x ∈+∞时,()0u x >即h ()0x '>,()h x 单调递增,所以0()h x 为()h x 在定义域内的最小值. ……10分令1()(1)2xk x xe x =<<则方程(※)等价于()(ln )k x k x =-又易知()k x 单调递增,所以ln x x =-,1xe x=………………11分 所以,()h x 的最小值000000000ln 111()1x x x h x e x x x x x -=--=--= 所以11b -≤,即2b ≤所以实数b 的取值范围是(],2-∞ ………………12分22.(本小题满分10分)选修4-4:坐标系与参数方程解:(Ⅰ)由2cos ,1sin ,x t y t αα+=⎧⎨-=⎩消t 得y 1tan 2x α-=+,直线l 的普通方程为tan 2tan 10x y αα-++=,将222cos ,sin ,x y x y ρθρθρ===+代入24cos 2sin 40ρρθρθ---=得 曲线C 的直角坐标方程为224240x y x y +---= ………………4分 (Ⅱ)曲线C 的方程化为22(2)(1)9x y -+-=,曲线C 是以(2,1)为圆心,3为半径的圆.2AB =,圆心到直线l 的距离d ===又d ==解得tan 1α=±,02πα≤<,∴4πα=……………………10分(注:用21t t -求解一样给分)23.(本小题满分10分)选修4-5:不等式选讲 解:(Ⅰ)由已知21x x -+->7当1x <时,不等式等价于217x x -+->,解得2x <-,∴2x <-; 当12x ≤≤时,217x x -+->,此时不等式无解; 当x >2时,217x x -+->,解得5x >,∴5x >综上:解集为{2x x <-或}5x > ………………………5分 (Ⅱ)∵()()111x m x x m x m ---≤---=-∴11x m x m ---≤-当且仅当()()10x m x --≥且1x m x -≥-时等号成立. 依题意1m ->7,解之得8m >或6m <-,∴m 的取值范围为()(),68,-∞-⋃+∞. ………………………10分(注:可编辑下载,若有不当之处,请指正,谢谢!)。
2019年5月福建省龙岩市毕业班质量检测二模数学试卷(包含答案解析)

2019年5月福建省龙岩市毕业班质量检测二模数学试卷姓名: 得分: 日期:一、选择题(本大题共 10 小题,共 40 分)1、(4分) 如图,数轴上的单位长度为1,若实数a ,b 所表示的数恰好在整数点上,则a +b =( )A.0B.-1C.1D.52、(4分) 下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D.3、(4分) 下列调查中,适合采用全面调查(普查)方式的是( )A.对汀江流域水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.对某班40名同学身高情况调查D.对某类烟花爆竹燃放安全情况的调查 4、(4分) 是{x =a y =b 方程组{2x +y =33x −2y =7的解,则5a −b 的值是( ) A.10 B.-10 C.14 D.215、(4分) 下列图形中,∠1一定大于∠2的是( )A.B. C. D.6、(4分) .若关于x的一元一次不等式组{2x−1>3(x−2)<5,则m的取值范围是()x<m的解是xA. m≥5B.m>5C. m≤5D.m<57、(4分) 三个等边三角形的摆放位置如图,若∠3=60°,则∠1+∠2的度数是()A.90°B.120°C.270°D.360°8、(4分) 如图,x,y,z分别表示以直角三角形三边为边长的正方形面积,则下列结论正确的是()A.x2=y2+z2B.x<y+zC.x−y>zD. x=y+z9、(4分) 如图,抛物线y=ax2+bx+c与x轴交于点A(−1,0),顶点坐标是(1,n),与y轴的交点在(0,3)和(0,6)之间(包含端点),则下列结论错误的是()A.3a+b<0B.−2≤a≤−1C. abc>0D.9a+3b+2c>010、(4分) 某些整数的所有正约数之和可以按如下方法求得,如:6=2×3,则6的所有正约数之和为(1+3)+(2+6)=(1+2)×(1+3)=12;12=22×3,则12的所有正约数之和为(1+3)+(2+6)+(4+12)=(1+2+22)×(1+3)=2836=22×32,则36的所有正约数之和为(1+3+9)+(2+6+18)+(4+12+36)=(1+2+22)×(1+3+32)=91参照上述方法,那么144的所有正约数之和为()A.424B.421C.420D.403二、填空题(本大题共 6 小题,共 24 分)11、(4分) (−2)−1=12、(4分) 一个不透明的袋子中装有4个黑球,2个白球,每个球除颜色外其他都相同,从中任意摸出1个球是白球的概率是_______13、(4分) 已知∠A是锐角,且sin∠A=13,则cos∠A=______14、(4分) 当x=a与x=b(a≠b)时,代数式x2−2x+3的值相等,则x=a+b时,代数式x2−2x+3的值为______15、(4分) 如图,AB是⊙O的直径,点E是的中点,过点E的切线分别交AF,AB的延长线于点D,C,若∠C=30∘,⊙O的半径是2,则图形中阴影部分的面积是_______.16、(4分) 如图,ΔABC中,∠ABC=30∘,AB=4,BC=5,P是ΔABC内部的任意一点,连接PA,PB,PC,则PA+PB+PC的最小值为_______.三、解答题(本大题共 9 小题,共 86 分)17、(8分) 解方程:xx−1−2x=118、(8分) 先化简,再求值:x−21+2x+x2÷(x−3xx+1),其中x=1319、(8分) 在四边形ABCD中,AB∥CD.(1)如图1,已知∠A=∠B,求证:AD=BC;(2)如图2,已知∠A=60∘,∠B=45∘,AD=2,求BC的长.20、(8分) 证明:三角形的中位线平行于三角形的第三边,并且等于第三边的一半.(要求:在给出的ΔABC中用尺规作出AB,AC边的中点M,N,保留作图痕迹,不要求写作法,并根据图形写出已知、求证和证明)21、(8分) 计算:11×2+12×3+13×4+14×5+15×6.求证:13<11×3+12×4+13×5+14×6<4522、(10分) 小宝大学毕业后回家乡透行园艺创业,第一期培植盆景与花卉各50盆,售后进行统计得知:盆景的平均每盆利润是160元,花卉的平均每盆利润是20元. 调研发现:①盆景每增加1盆,盆景的平均好盆利润减少2元:每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均际盆利润始终不变,小宝计划第二期培植盆景与花齐共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元)(1)用含x的代数式分别表示W1,W2(2)当x取何们叫时,第二期培植的盆景与花卉作售完行获得的总利润最大?最大总利润是多少?23、(10分) 随着互联网、移动终端的迅速发展,数字化阅读越来越普及. 公交、地铁上的“低头族”越来越多,某研究机构针对“您如何看待数字化阅读”问题进行了随机问卷调查(问卷训查表如下图所示),并将调查结果绘制成图①和图②所示的统计图(均不完整).“您如何看待教化阅读”问卷调查表您好!这是一份关于“您如何看待数字化间读问调查表,请在表格中选择一项您最认观点,在其后空格内打“√”,非常感谢您的合作.随着互联网、移动终端的迅速发展,数字化阅读越来越普及. 公交、地铁上的“低头族”越来越多,某研究机构针对“您如何看待数字化阅读”问题进行了随机问卷调查(问卷训查表如下图所示),并将调查结果绘制成图①和图②所示的统计图(均不完整).“您如何看待教化阅读”问卷调查表您好!这是一份关于“您如何看待数字化间读问调查表,请在表格中选择一项您最认观点,在其后空格内打“√”,非常感谢您的合作.请根据统计图中提供的信息,解答下列问题:(1)本次接受词查的总人数是______人,并将条形统计图补充完整;、(2)在扇形统计图中,观点E的百分比是_______,表示观点B的扇形的圆心角度数为______度.(3)某市共有300万人,请根据以上调查结果估算该市持A,B,D观点赞成数字化阅读的人数共有多少万人.24、(12分) 如图,点P是⊙O直径AB上的一点,过P作直线CD⊥AB,分别交⊙O于C,D两点,连接AC,并将线段AC绕点A进时针旋转90°得到AE,连接ED,分别交⊙O和AB于F,G,连接FC.(1)求证:∠ACF=∠AED;(2)若点P在直径AB上运动(不与点A,B重合),其它条件不变,请问EG是否为定值?若是,请求出AP其值;若不是,请说明理由.(k>0)交于C,D两点,过C作CA⊥x轴于点A,25、(14分) 已知直线y=x+t与双曲线y=kx过 D作DB⊥y轴于点B,连接AB.(1)求C,D两点的坐标;(2)试探究直线AB与CD的位置关系并说明理由;(3)已加点D(3,2),且C,D在抛物线y=ax2+bx+5(a≠0)上,若当m≤x≤n(其中mn<0)时,函数y=ax2+bx+5的最小值为2m,最大值为2n,求m+n的值,2019年5月福建省龙岩市毕业班质量检测二模数学试卷【第 1 题】【答案】B【解析】根据数轴点的位置知a=−3,b=2,所以a+b=−1.故选B.【第 2 题】【 答 案 】A【 解析 】根据中心对称定义与轴对称定义知A 符合.B,C,D,是轴对称不是中心对称.故选A.【 第 3 题 】【 答 案 】C【 解析 】对于A,B,D ,适用于抽样调查,C 可以用全面调查.故选C.【 第 4 题 】【 答 案 】A【 解析 】将{x =a y =b 代入{2x +y =33x −2y =7得{2a +b =3①3a −2b =7②. ①+②得:5a −b =10故选A.【 第 5 题 】【 答 案 】C【 解析 】A,B,D ,角相等,根据对顶角相等,二直线平行内错角相等.同弧所对的圆周角相等.C 中外角一定大于不相邻的内角.故选C.【第 6 题】【答案】A【解析】解:{2x−1>3(x−2)①x<m②解①得:x<5∵不等式组的解集为x<5,根据同小取小原则得m≥5.故选A.【第 7 题】【答案】B【解析】根据图形知∠1+∠2+∠3=3×180∘−3×60∘−180∘=180∘又∠3=60∘,故∠1+∠2=120∘故选B.【第 8 题】【答案】D【解析】由题意得三个正方体的边长分别为√x,√y,√z,根据勾股定理得x=y+z.故选D.【第 9 题】【答案】C【解析】根据开口向下知a<0,对称轴在右边b>0,与y轴交点c>0.根据对称轴x=−b2a=1,得b+2a=0,故3a+b<0正确.abc<0故C错误,因为A(−1,0)所以得令一个与x轴交点为(3.0)代入函数得9a+3b+c=0故9a+3b+2c>0.将A(−1,0)代入函数得c=b−a,又3≤c≤6,b+2a=0,故3≤−3a≤6故−2≤a≤−1故选C.【第 10 题】【答案】D【解析】解:∵144=122=(22×3)2=24×32根据题中给出的规律:144的所有正约数之和为(1+2+22+23+24)×(1+3+32)=31×13=403.故选D.【第 11 题】【答案】−1【解析】根据负指数幂法则得(−2)−1=1−2=−12.故答案为.−12【第 12 题】【答案】13【解析】根据概率公式p=26=13.故答案为13.【第 13 题】【答案】2√23【解析】根sin∠A=13,所以设A的对边与斜边长分别为1和3,根据勾股定理得A邻边为√32−12=2√2所以cosA=邻边斜边=2√23故答案为2√23【第 14 题】【答案】3【解析】解:因为x=a与x=b(a≠b)使得代数式x2−2x+3的值相等.所以a,b关于x=1对称,故a+b=2,所以x=a+b=2代入代数式得3. 故答案为3.【第 15 题】【答案】3√3 2−2π3【解析】解:连接OE,EF.连接OF交AE与点G.连接BE∵点E是的中点即,∠C=30∘. ∴EF=BE,∠DAB=60∘又OF=AO∴∠AEC=90∘,ΔAFO为等边三角形∴AF=AO=OE=EF,即四边形AOEF为菱形, ∴EF∥AO,从而∠DFE=∠FAO=60∘∵AB为直径∴∠AEB=90∘又∵CD为切线∴OE⊥CD∴∠EOC=60∘,又OE=OB,∴ΔEOB为等边三角形.∴BE=2,∠EBA=60∘,∴sin∠EBA=sin60∘=AEAB ,即AE=AB⋅sin60∘=4×√32=2√3..2S弓=S扇AOE−S菱形AOEF=13π×22−12×2×2√3=4π3−2√3.即S弓=2π3−√3在RTFDE中,sin∠DFE=sin60∘=DEEF 即ED=EFsin60∘=2×√32=√3.∴DF=√EF2−DE2=1∴S阴=SΔFDE−S弓=12×1×√3−(2π3−√3)=3√32−2π3【第 16 题】【答案】√41【解析】解:将ΔABP逆时针旋转60°得如图所示由于旋转所以有BP=BP′,∠P′BP=60∘,A′B=AB故ΔBPP′为等边三角形,∠A′BC=90∘∴PP′=BP,又∠A′BP′+∠P′BA=∠ABP+∠PBA=60∘.∴∠A′BP′=∠ABP∴ΔA′BP′≌ΔABP.∴A′P′=AP∴AP+BP+PC=A′P′+PP′+PC.若PA+PB+PC最小,只需A′P′+PP′+PC共线即可, 所以A′C=√A′B2+BC2=√41.【第 17 题】【答案】解:方程两边同乘以x(x−1)得x2−2(x−1)=x(x−1)整理得−x=−2解得x=2.检验:当x=2时,x(x−1)=2≠0.所以x=2是方程的根.【解析】先去分母再解方程,最后要检验.【第 18 题】【答案】解:原式=x−2(x+1)2÷(x 2+xx+1−3xx+1).=x −2()2⋅x +1()=1x (x +1) 当x =13,时原式=113×43=94【 解析 】先将分式进行化简1x (x+1)在代入求值即可.【 第 19 题 】 【 答 案 】(1) 证明: 如图,过点C 作CE ∥AD 交AB 于点E, ∵CE ∥AD ∴∠A =∠1∴AB ∥CD,CE ∥AD,∴四边形AECD 为平行四边形 ∴AD =CE , ∴AD =BC(2) 分别过D,C 作DE ⊥AB ,垂足为E,F, ∴DE ∥CF , ∵AB ∥CD,∴四边形DEFC 为矩形,在RTΔDAE 中,∠A =60∘,AD =2 ∴sin60∘=DEAD ,即√32=DE 2.∴DE =√3【 解析 】(1)过点C 作CE ∥AD 交AB 于点E,证明四边形AECD 为平行四边形即可.(2)分别过D,C 作DE ⊥AB ,垂足为E,F,证明四边形DEFC 为矩形在根据三角函数特殊角即可求得.【 第 20 题 】 【 答 案 】解:如图,点M,N 即为所求作的点.已知:如图,ΔABC 中,点M,N 分别是AB,AC 的中点,连接MN . 求证:MN ∥BC,MN =12BC .证明:延长MN 至点D,使得MN =ND ,连接CD在ΔAMN 和ΔCDN 中,{AN =CD∠AMM =∠DNC MN =ND.∴ΔAMN ≌ΔCDN (SAS ) ∴∠AMN =∠D .∴AM ∥CD 即BM ∥CD ∵AM =BM =CD∴四边形BMDC 为平行四边形 ∴MN ∥BC,MD =BC ∵MN =12MD ∴MN =12BC . 【 解析 】(1)作AB 与AB 的中垂线找到两边的中点M,N 即可.(2)延长MN 至点D,使得MN =ND ,连接CD ,证明四边形BMDC 为平行四边形即可.【 第 21 题 】 【 答 案 】(1)解:原式=1−12+12−13+14−15+15−16=1−16=56. (2)证明:方法一:11×3+12×4+13×5+14×6=12(1−13)+12(12−14)+12(13−15)+12(14−16). =12(1−13+12−14+13−15+14−16)=1730. ∵13=1030,45=2430.∴13=1030<1730<2430=45,即原式得证. 解法二:∵12×3+13×4+14×4+15×6<11×3+12×4+13×4+14×6<11×2+12×4+13×4+14×5∴12−13+13−14+14+15+15−16<11×3+12×4+13×5+14×6<1−12+12−13−14−14−15 ∴13<11×3+12×4+13×5+14×6<45,即原式得证. 【 解析 】(1) 将11×2拆成11−12,以此类推都拆开即可.(2) 方法一:同(1)将原式拆开进行求和得到11×3+12×4+13×5+14×6=12(1−13)+12(12−14)+12(13−15)+12(14−16)=1730.13=1030<1730<2430=45即可. 方法二:原式12×3+13×4+14×4+15×6<11×3+12×4+13×4+14×6<11×2+12×4+13×4+14×5在根据(1)的方法将两边拆开求和即可.【 第 22 题 】 【 答 案 】解:(1) W 1=(160−2x )(50+x )=−2x 2+60x +8000 W 2=20(50−x )=−20x +1000.(2) 依题意得:W =W 1+W 2=−2x 2+40x +9000. =−2(x −10)2+9200因为x 为正整数,所以当x =10时,总利润W 最大,最大值为9200答:当x =10取何们叫时,第二期培植的盆景与花卉作售完行获得的总利润最大最大总利润是9200元. 【 解析 】(1)根据利润=盆数×单盆利润即可. (2)根据二次函数性质即可得到最大值.【 第 23 题 】【答案】(1)5000.(2)4%,18°(3)解:观点B占的百分比=1−46%−30%−15%−4%=5%.300×(46%+5%+15%)=300×66%=198万.答:该市持A,B,D观点赞成数字化阅读的人数共有198万人.【解析】(1)利用条形统计图和扇形统计图的总人数为2300÷46%=5000人.所以C有5000×30%=1500人,画出图形即可.(2) E为2005000×100%=4%,B所占的百分比为2505000×100%=5%,故圆心角度数为360∘×5%=18∘.(3)用总人数乘以A,B,D的百分比之和即可.【第 24 题】【答案】(1) 连接AD.则由同弧所对的圆周角相等可知∠ACF=∠ADF又AE是由线段AC绕点A逆时针旋转90°得到,∴AC=AE.∴∠AED=∠ADF.∴∠ACF=∠AED.(2) 是定值√2.理由如下.如图,过点E作EN∥CD,过点D作DN⊥CD,且EN与直线AB交于点M,与直线DN交于点N.∵∠EAC=∠CPA=90∘∴∠EAM+∠CAB=∠CAB+∠ACP=90∘∴∠EAM=∠ACP,同理∠MEA=∠CAB又AC=AE, ∴ΔEAM≌ΔACP∴EM=AP,AM=CP∵DN⊥CD,CD⊥AB.∴DN∥AB又EN∥CD∴四边形MNDP是矩形∴MN=PD,MP=ND∵AB是直径,CD⊥AB∴MN=PD=CP=AM,又∵EM=AP,∴EM+MN=AP+AM,即EN=MP=ND.∴ΔEND是等腰直角三角形. ∴∠EDN=45∘∵DN∥AB.∴∠EGM=∠EDN=45∘∴EG AP =EGEM=1sin∠EGM=√2【解析】(1)连接AD.由同弧所对的圆周角相等可知∠ACF=∠ADF,在根据旋转证明AC=AE即可.(2) 是定值√2.过点E作EN∥CD,过点D作DN⊥CD,且EN与直线AB交于点M,与直线DN交于点N.证明四边形MNDP是矩形.再证明【第 25 题】【答案】(1) 直线y=x+t与双曲线y=kx相交.由kx =x+t得x2+tx−k=0,所以x=−t±√b2+4k2.设C(x c,y c),D(x D,y D).若x C<x D,则C(−t−√b2+4k2,t−√b2+4k2),D(−t+√b2+4k2,t+√b2+4k2).若x C>x D,则D(−t−√b2+4k2,t−√b2+4k2),C(−t+√b2+4k2,t+√b2+4k2).(注:只写其中一种不扣分)(2) AB∥CD,理由如下:不妨设x C<x D.由(1)知C(−t−√b2+4k2,t−√b2+4k2),D(−t+√b2+4k2,t+√b2+4k2).所以A(−t−√b2+4k2,0),B(0,t+√b2+4k2).设直线AB的解析式为y=px+q.则将A,B两点坐标代入有:p⋅−t−√b2+4k2+q=0.q=t+√b2+4k2所以p=1.所以直线AB 的解析式为y =x +t+√b 2+4k2.所以直线AB 与CD 的位置关系是AB ∥CD . (3) 将D (3,2)代入双曲线y =kx (k >0)得k =6, 将D (3,2)代入直线y =x +t ,得t =−1. ∴双曲线:y =bx ,直线y =x −1.由6x =x −1得x 1=3,x 2=−2,所以C (−2,−3).因为C (−2,−3),D (3,2)在抛物线y =ax 2+bx +5(a ≠0)上,所以有{4a −2b +5=−39a +3b +5=2.解得:{a =−1b =2即y =−x 2+2x +5=−(x −1)2+6.由mn <0,可知m <0, n >0.①当0<n ≤1时,由函数的最小值为2m,最大值为2n 可知{−n 2+2n +5=2n −m 2+2m +5=2m.所以m,n 即为一元二次方程−x 2+2x +5=2x 的两解x =±√5, 又m <n ,所以m =−√5,n =√5.,又因为0<n ≤1,所以m =−√5,n =√5.不合题意. ②当12(m +n )≤1,即m ≤2−n 时 由函数的最小值为2m,.最大值为2n 可知{2n =6−m 2+2m +5=2m.所以{n =3m =−√5,此时m =−√5≤−1=2−3=2−n ,满足题意.所以m +n =−√5+3.③当12(m +n )>1,即m >2−n ,由函数的最小值为2m,.最大值为2n 可知{2n =6−n 2+2n +5=2m.所以{n =3m =1.又因为m <0.∴m =1, n =3不符合题意.综上所述,满足题意的m +n =−√5+3. 【 解析 】(1) 设C (x c ,y c ),D (x D ,y D )直线与双曲线联立即可.(2) AB ∥CD 不妨设x C <x D .求出直线AB 的解析式为y =x +t+√b 2+4k2即可.(3) 用待定系数法求出二次函数解析式y =−x 2+2x +5=−(x −1)2+6再进行①0<n ≤1,②m ≤2−n③m >2−n 进行分类讨论即可.。
福建省龙岩市2019-2020学年中考二诊数学试题含解析

福建省龙岩市2019-2020学年中考二诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列各数中,最小的数是( )A .3-B .()2--C .0D .14- 2.如图,在菱形ABCD 中,∠A=60°,E 是AB 边上一动点(不与A 、B 重合),且∠EDF=∠A ,则下列结论错误的是( )A .AE=BFB .∠ADE=∠BEFC .△DEF 是等边三角形D .△BEF 是等腰三角形3.小带和小路两个人开车从A 城出发匀速行驶至B 城.在整个行驶过程中,小带和小路两人车离开A 城的距离y(km)与行驶的时间t(h)之间的函数关系如图所示.有下列结论;①A ,B 两城相距300 km ;②小路的车比小带的车晚出发1 h ,却早到1 h ;③小路的车出发后2.5 h 追上小带的车;④当小带和小路的车相距50 km 时,t =54或t =154.其中正确的结论有( )A .①②③④B .①②④C .①②D .②③④ 4.12的相反数是( )A .12B 2﹣1C 2D .﹣15.若关于x 、y 的方程组4xy k x y =⎧⎨+=⎩有实数解,则实数k 的取值范围是( ) A .k >4 B .k <4C .k≤4D .k≥4 6.初三(1)班的座位表如图所示,如果如图所示建立平面直角坐标系,并且“过道也占一个位置”,例如小王所对应的坐标为(3,2),小芳的为(5,1),小明的为(10,2),那么小李所对应的坐标是( )A.(6,3)B.(6,4)C.(7,4)D.(8,4)7.实数﹣5.22的绝对值是()A.5.22 B.﹣5.22 C.±5.22 D. 5.228.下列命题是真命题的是( )A.过一点有且只有一条直线与已知直线平行B.对角线相等且互相垂直的四边形是正方形C.平分弦的直径垂直于弦,并且平分弦所对的弧D.若三角形的三边a,b,c满足a2+b2+c2=ac+bc+ab,则该三角形是正三角形9.某中学篮球队12名队员的年龄如下表:年龄:(岁)13 14 15 16人数 1 5 4 2关于这12名队员的年龄,下列说法错误的是( )A.众数是14岁B.极差是3岁C.中位数是14.5岁D.平均数是14.8岁10.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃11.如图,把长方形纸片ABCD折叠,使顶点A与顶点C重合在一起,EF为折痕.若AB=9,BC=3,试求以折痕EF为边长的正方形面积()A.11 B.10 C.9 D.1612.若正比例函数y=mx(m是常数,m≠0)的图象经过点A(m,4),且y的值随x值的增大而减小,则m等于()A.2 B.﹣2 C.4 D.﹣4二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,边长一定的正方形ABCD,Q是CD上一动点,AQ交BD于点M,过M作MN⊥AQ交BC于N点,作NP⊥BD于点P,连接NQ,下列结论:①AM=MN;②MP=12BD;③BN+DQ=NQ;④AB BNBM+为定值。
福建省龙岩市2019届高三下学期教学质量检查数学理试题(解析版)

龙岩市2019届高三教学质量检查数学(理科)试题2019.2注意事项:1.考生将自己的姓名、准考证号及所有的答案均填写在答题卡上.2.答题要求见答题卡上的“填涂样例”和“注意事项”.第Ⅰ卷(选择题)一、选择题.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.已知为虚数单位,则的值为()A. B. C. D.【答案】A【解析】【分析】先化简已知的等式,再利用两个复数相等的条件,解方程组求得x的值.【详解】∵∴,∴,即故选:A【点睛】本题考查两个复数的乘法法则的应用,以及两个复数相等的条件,基本知识的考查.2.已知,则()A. B.C. D.【答案】A【解析】,两边平方得:,,即,故选A.3.已知等差数列的公差为,若成等比数列,则数列的前8 项和为()A. -20B. -18C. -8D. -10【答案】C【解析】【分析】运用等比数列中项的性质和等差数列的通项公式,解方程可得首项,再由等差数列求和公式,计算即可得到所求值.【详解】解:等差数列的公差d为2,若,成等比数列,可得a32=,即有(+4)2=(+6),解得=﹣8,则{a n}前8项的和为8×(﹣8)8×7×2=﹣8,故选:C.【点睛】本题考查等差数列的通项公式和求和公式的运用,考查等比数列中项的性质,以及运算能力,属于基础题.4.如果执行下面的程序框图,输入正整数,且满足,那么输出的等于()A. B. C. D.【答案】D【解析】【分析】该程序的作用是利用循环计算并输出变量p的值,模拟程序的运行,用表格对程序运行过程中各变量的值进行分析,不难得到输出结果.【详解】解:第一次循环:k=1,p=1,p=;第二次循环:k=2,p=;第三次循环:k=3,p=…第m次循环:k=m,p=此时结束循环,输出p==故选:D.【点睛】解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.5.已知实数,满足不等式组,则的取值范围为()A. B. C. D.【答案】B【解析】【分析】作出不等式组对应的平面区域,设z=x﹣y,利用目标函数的几何意义,利用数形结合确定z的取值范围.【详解】解:设z=x﹣y,则y=x﹣z,作出不等式对应的平面区域(阴影部分)如图:平移直线y=x﹣z,由图象可知当直线y=x﹣z经过点A(﹣1,0)时,直线y=x﹣z的截距最大,此时z最小,最小值z=﹣1﹣0=﹣1继续向下平移直线y=x﹣z,z值越来越大,∴的取值范围为故选:.【点睛】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.6.已知双曲线和双曲线焦距相等,离心率分别为、,若,则下列结论正确的是()A. 和离心率相等B. 和渐近线相同C. 和实轴长相等D. 和虚轴长相等【答案】B【解析】【分析】根据可知:,a,从而得到结果.【详解】设两个双曲线的焦距为,∴,又∴,∴∴,即,故又双曲线的渐近线方程为:,双曲线的渐近线方程为:∴和渐近线相同故选:B【点睛】本题考查双曲线的简单几何性质,考查双曲线渐近线方程,考查计算能力,属于基础题.7.已知一个三棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的外接球表面积为()A. B. C. D.【答案】C【解析】【分析】由三视图知几何体是一个侧棱与底面垂直的三棱锥,底面是斜边上的高为的等腰直角三角形,与底面垂直的侧面是个等腰三角形,底边长为,高为,故三棱锥的外接球与以棱长为的正方体的外接球相同,由此可得结论【详解】由三视图知几何体是一个侧棱与底面垂直的三棱锥,底面是斜边上的高为的等腰直角三角形,与底面垂直的侧面是个等腰三角形,底边长为,高为,故三棱锥的外接球与以棱长为的正方体的外接球相同,其直径为,半径为三棱锥的外接球体积为故选【点睛】本题主要考查了三视图,几何体的外接球的体积,考查了空间想象能力,计算能力,属于中档题。
龙岩市2019年高中毕业班教学质量检查数学参考答案

2(第4题图) 数学(理科)试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)全卷满分150分,考试时间120分钟注意事项:1.考生将自己的姓名、准考证号及所有的答案均填写在答题卡上. 2.答题要求见答题卡上的“填涂样例”和“注意事项”.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.已知(2)(2)43,m i i i +-=+,m R i ∈为虚数单位,则m 的值为 A .1 B .1-C .2D .2-2.已知3cos()45πα-=,则sin 2α= A .725- B .15-C .15D .7253.已知等差数列{}n a 的公差为2,若431,,a a a 成等比数列,则数列{}n a 的前8 项和为 A .20- B .18-C .8-D .10-4.如果执行右面的程序框图,输入正整数,n m ,且满足n ≥那么输出的p 等于 A . B .C .D .5.已知实数x ,y 满足不等式组220210320x y x y x y -+≥⎧⎪++≤⎨⎪+-≤⎩,则x y -的取值范围为 A .[)2,-+∞B .[)1,-+∞C .(],2-∞D .[]2,2-6.已知双曲线22122:1x y C a b -=()0,0a b >>和双曲线22222:1y x C m n-=()0,0m n >>焦距相等,离心率分别为1e 、2e ,若2212111e e +=,则下列结论正确的是(第11题图)M P DABC1B 1C 1D 1A (第8题图)ABCD OA .1C 和2C 离心率相等B .1C 和2C 渐近线相同 C .1C 和2C 实轴长相等D .1C 和2C 虚轴长相等7.已知一个三棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的外接球表面积为 AB. C. D .12π 8.如图,AB 和CD 是圆O 两条互相垂直的直径,分别以OA ,OB ,OC ,OD 为直径作四个圆,在圆O 内随机取一点,则此点取自阴影部分的概率是 A . B .C .D . 9.已知函数()cos 3f x x ωπ⎛⎫=+ ⎪⎝⎭()0ω>在区间36π5π⎡⎤-⎢⎥⎣⎦,上单调,则ω的取值范围为 A .120,15⎛⎤ ⎥⎝⎦ B .10,5⎛⎤ ⎥⎝⎦ C .112,515⎡⎤⎢⎥⎣⎦ D .12,115⎡⎤⎢⎥⎣⎦10.设23451111log log log log s ππππ=+++,||,*T a s a N =-∈,当T 取最小值时a 的值为A .2B .3C .4D .511.如图,已知正方体1111ABCD A B C D -的棱长为4,P 是1AA 的中点,点M 在侧面11AA B B 内,若1D M CP ⊥,则BCM ∆面积的最小值为 A .8 B .4C.D.512.已知数列{}n a 各项均为整数,共有7项,且满足11k k a a +-=,1,2,6k =L ,其中11a =,7a a =(a 为常数且0a >).若满足上述条件的不同数列个数共有15个,则a 的值为A .1B .3C .5D .7第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.已知向量a r ,b r的夹角为60°,2a =r,3a b -=r r b =r . 14.若4(1)()x a x ++的展开式中3x 项的系数为16,则实数a = .15.已知抛物线24y x =的焦点为F ,其准线与x 轴的交点为Q ,过点F 作直线与抛物线交于,A B 两点.若以QF 为直径的圆过点B ,则AF BF -的值为 .ADBME NFC O(第18题图)16.已知32()||4f x x x =-,若()f x 的图像和y ax =的图像有四个不同的公共点,则实数a 的取值范围是 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知2cos 2c B a b =-. (Ⅰ)求角C 的大小;(Ⅱ)设D 为BC 中点,若3AD =,求ABC ∆面积的取值范围.18.(本小题满分12分)如图,已知四边形ABCD 是边长为2的菱形,且060ABC ∠=,BM ABCD ⊥平面,//DN BM ,2BM DN =,点E 是线段MN 上的一点.O 为线段BD 的中点.(Ⅰ)若OF ⊥BE 于F 且1OF =,证明:AF ⊥平面ECB ;(Ⅱ)若4BM =,13NE NM =u u u r u u u u r,求二面角E BC M --的余弦值.19.(本小题满分12分)已知椭圆E 的方程为2221x y a+=,点A 为长轴的右端点.,B C 为椭圆E 上关于原点对称的两点.直线AB 与直线AC 的斜率AB AC k k 和满足:12AB AC k k =-g .(Ⅰ)求椭圆E 的标准方程;(Ⅱ)若直线:l y kx t =+与圆2223x y +=相切,且与椭圆E 相交于,M N 两点,求证:以线段MN 为直径的圆恒过原点.20.(本小题满分12分)某医院为筛查某种疾病,需要检验血液是否为阳性,现有n (n N *∈)份血液样本,有以下两种检验方式:(1)逐份检验,则需要检验n 次;(2)混合检验,将其中k (k N *∈且2k ≥)份血液样本分别取样混合在一起检验.若检验结果为阴性,这k 份的血液全为阴性,因而这k 份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这k 份血液究竟哪几份为阳性,就要对这k 份再逐份检验,此时这k 份血液的检验次数总共为1k +次.假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为(01)p p <<.(Ⅰ)假设有5份血液样本,其中只有2份样本为阳性,若采用逐份检验方式,求恰好经过4次检验就能把阳性样本全部检验出来的概率.(Ⅱ)现取其中k (k N *∈且2k ≥)份血液样本,记采用逐份检验方式,样本需要检验的总次数为1ξ,采用混合检验方式,样本需要检验的总次数为2ξ(ⅰ)试运用概率统计的知识,若1E ξ=2E ξ,试求p 关于k 的函数关系式()p f k =;(ⅱ)若1p =,采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数期望值更少,求k 的最大值.参考数据:ln20.6931≈,ln3 1.0986≈,ln4 1.3863≈,ln5 1.6094≈,ln6 1.7918≈21.(本小题满分12分)已知函数1()ln (0)x f x x a R a ax -=+∈≠且,1()(1)()x g x b x xe b R x=---∈ (Ⅰ)讨论函数()f x 的单调性;(Ⅱ)当时,若关于x 的不等式()()2f x g x +≤-恒成立,求实数b 的取值范围.请考生在22、23两题中任选一题作答. 注意:只能做所选定的题目.如果多做,则按所做第一个题目计分. 作答时,请用2B 铅笔在答题卡上将所选题号后的方框涂黑. 22.(本小题满分10分)选修4-4:坐标系与参数方程已知平面直角坐标系xOy 中,直线l 的参数方程为2cos 1sin x t y t αα=-+⎧⎨=+⎩(t 为参数,02πα≤<),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为24cos 2sin 40ρρθρθ---=.(Ⅰ)求直线l 的普通方程、曲线C 的直角坐标方程;(Ⅱ)若直线l 与曲线C 交于A B 、两点,且2AB =.求α的大小.23.(本小题满分10分)选修4-5:不等式选讲已知函数()()f x x m m R =-∈.(Ⅰ)当2m =时,解不等式()1f x x >7--;(Ⅱ)若存在x R ∈,使()1f x x >7+-成立,求m 的取值范围.龙岩市2019年高中毕业班教学质量检查数学(理科)参考答案一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有MEzF13.1 14.2-或4315.4 16.(4,0)(0,4)-U 三、解答题:本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤. 17.(本小题满分12分) 解:(Ⅰ)由2cos 2c B a b =-,得2sin cos 2sin sin C B A B =- ……………………1分即()2sin cos 2sin sin C B B C B =+-,2sin cos sin B C B ∴=sin 0B >Q , 1cos 2C ∴=……………………5分0C π<<Q , 3Cπ∴=……………………6分(Ⅱ)在ADC ∆中,由余弦定理得:2222cos3AD AC DC AC DC π=+-••……7分即229AC DC AC DC +-•=,又222AC DC AC DC +≥•Q 90AC DC ∴≥•>, (9)分1sin 23ADC S AC DC π=••VQ0ADC S ∴<≤V …………………10分2ABCADC S S =V V Q 02ABC S ∴<≤V……………………12分18.(本小题满分12分)解:(Ⅰ)Q 四边形ABCD 是边长为2的菱形,且060ABC ∠=∴ AC 与BD 交于点O 且ABC ∆为等边三角形2AC ∴=,BO =又Q 112OF AC ==,AF CF ∴⊥ ………………2分 Q BM ABCD ⊥平面,AC BM ∴⊥又Q AC BD ⊥,∴AC BMND ⊥平面 OF BMND ⊂Q 平面,AC OF ∴⊥在Rt AOF V 中,2222AF AO OF =+=在Rt BOF V 中,2222FB BO OF =-=∴在ABF ∆中,24AB =, 224AF FB +=, 222AF FB AB+= (4)分AF BE ∴⊥,又Q ,,CF BE CBE CF BE F ⊂=I 平面,∴AF ECB ⊥平面 ……………………5分 (Ⅱ)在平面BMND 中,过O 作直线l ∥BM , 则l ABCD ⊥面,如图,以l 为z 轴,AC所在直线为x 轴,BD 所在直线为y 轴建立空间直角坐标系, ………………6分()B ∴,()1,0,0C -,()M ,()0,N13NE NM =u u u r u u u u r Q,80,33E ⎛⎫∴-⎪⎝⎭,()1,BC ∴=-u u u r,80,,33BE ⎛⎫=- ⎪⎝⎭u u u r 设(),,n x y z =r是平面BCE 的法向量,则 00n BC n BE ⎧=⎪⎨=⎪⎩r u u u r g r u u u r g ,即0803x y z ⎧--=⎪⎨+=⎪⎩,取()n =-r,取BC 中点G ,连结AG ,AG BC ∴⊥,AG BM ⊥, AG BCM ∴⊥面因此,AG uuu r是平面BCM 的法向量,1,,022G ⎛⎫- ⎪⎝⎭Q ,()1,0,0A322AG ⎛⎫∴=- ⎪⎝⎭u u u r , (10)分设二面角E BC M --的大小为θ,则cos 19n AGn AGθ===r u u u r g r u u u r g ∴二面角E BC M --……………………12分19.(本小题满分12分)解:(Ⅰ)设00(x ,)B y 则00(x ,)C y -- …………………1分由220021x y a +=得,2222000221x a x y a a-=-= …………………2分 由12AB AC k k ⋅=-,即000012y y x a x a -⋅=----得,222002a x y -= …………4分所以22220022a x a x a --=,所以22a = 即椭圆E 的标准方程为:2212x y += …………………5分(Ⅱ)设1122(x ,),(x ,)M y N y由2212x y y kx t ⎧+=⎪⎨⎪=+⎩得: 222(12k )4220x ktx t +++-=2121222422,1212kt t x x x x k k--+==++ …………………6分 2212121212()()()y y kx t kx t k x x kt x x t =++=+++2222222222(22)42121212k t k t t k t k k k---=++=+++ 又l 与圆C=22231t k =+ …………………8分 所以2221212222212t t k OM ON x x y y k-+-⋅=+=+u u u u r u u u r 22222232(1)2(1)2(1)01212t k k k k k -++-+===++ …………………11分 所以,OM ON ⊥u u u u r u u u r,即090MON ∠=所以,以线段MN 为直径的圆经过原点. …………………12分20.(本小题满分12分)解:(Ⅰ) 112223325535C C A A p A ==………………3分 ∴恰好经过4次检验就能把阳性样本全部检验出来的概率为35………………4分(Ⅱ)(ⅰ)由已知得1E k ξ=,2ξ的所有可能取值为1,1k +()()211k P p ξ∴==-, ()()2111kP k p ξ=+=--∴()()21(1)11k k E p k p ξ⎡⎤=-++--⎣⎦=()11kk k p +--……………6分若1E ξ=2E ξ,则1(1)k k k k p =+-- ∴(1)1kk p -=1(1)kp k-= ∴111()kp k -= ∴111()k p k =-∴p 关于k 的函数关系式111()k p k =-(k N *∈且2k ≥) ………………8分(ⅱ)由题意可知21E E ξξ<,得()11,kp k <-1p =-Q1kk ∴<,1ln 3k k ∴>,设()1ln (0)3f x x x x =->……………10分 ()33xf x x-'=Q ,∴当3x >时,()0f x '<,即()f x 在()3,+∞上单调递减又ln4 1.3863≈,4 1.33333≈,4ln 43∴>,ln5 1.6094≈,5 1.66673≈,5ln53∴< ∴k 的最大值为4. (12)分21.(本小题满分12分)解:(Ⅰ)11()ln f x x ax a =+-Q 22111()(0)ax f x x x ax ax -'∴=-=> …………1分 当0a <时,()0f x '∴>,()f x ∴在(0,)+∞单调递增; …………2分当0a >时,由()0f x '>得:1x a >;由()0f x '<得:10x a <<,()f x ∴在1(0,)a单调递减,在1(,)a+∞单调递增 ……………………4分综上:当0a <时,()f x 在(0,)+∞单调递增;当0a >时,()f x 在1(0,)a单调递减,在1(,)a+∞单调递增. ………………5分(Ⅱ)由题意:当0a <时,不等式()()2f x g x +≤-,即11ln 1(1)2xx b x xe x x+-+---≤-即ln 11xx b e x x -≤--在(0,)+∞恒成立, ……………6分 令ln 1()x x h x e x x =--,则22221ln 1ln ()x xx x e x h x e x x x-+'=-+=, ………7分 令2()ln xu x x e x =+,则21()(2)0x u x x x e x'=++>,()u x ∴在(0,)+∞单调递增又1u(1)e 0,u()ln 202=>=<,所以,()u x 有唯一零点0x (0112x <<)所以,0()0u x =,即0000ln x x x e x =---------(※) ………………9分 当0(0,)x x ∈时,()0u x <即h ()0x '<,()h x 单调递减;0(,)x x ∈+∞时,()0u x >即h ()0x '>,()h x 单调递增,所以0()h x 为()h x 在定义域内的最小值. ……10分令1()(1)2xk x xe x =<<则方程(※)等价于()(ln )k x k x =-又易知()k x 单调递增,所以ln x x =-,1xe x=………………11分 所以,()h x 的最小值000000000ln 111()1x x x h x e x x x x x -=--=--= 所以11b -≤,即2b ≤所以实数b 的取值范围是(],2-∞ ………………12分22.(本小题满分10分)选修4-4:坐标系与参数方程解:(Ⅰ)由2cos ,1sin ,x t y t αα+=⎧⎨-=⎩消t 得y 1tan 2x α-=+,直线l 的普通方程为tan 2tan 10x y αα-++=,将222cos ,sin ,x y x y ρθρθρ===+代入24cos 2sin 40ρρθρθ---=得 曲线C 的直角坐标方程为224240x y x y +---= ………………4分 (Ⅱ)曲线C 的方程化为22(2)(1)9x y -+-=,曲线C 是以(2,1)为圆心,3为半径的圆.2AB =,圆心到直线l 的距离d ===又d ==解得tan 1α=±,02πα≤<Q ,∴4πα=……………………10分(注:用21t t -求解一样给分)23.(本小题满分10分)选修4-5:不等式选讲 解:(Ⅰ)由已知21x x -+->7当1x <时,不等式等价于217x x -+->,解得2x <-,∴2x <-; 当12x ≤≤时,217x x -+->,此时不等式无解; 当x >2时,217x x -+->,解得5x >,∴5x >综上:解集为{2x x <-或}5x > ………………………5分 (Ⅱ)∵()()111x m x x m x m ---≤---=-∴11x m x m ---≤-当且仅当()()10x m x --≥且1x m x -≥-时等号成立. 依题意1m ->7,解之得8m >或6m <-,∴m 的取值范围为()(),68,-∞-⋃+∞. ………………………10分。
福建省龙岩市2019-2020学年高二下学期期末2份数学监测试题

同步练习一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在一个6×6的表格中放3颗完全相同的白棋和3颗完全相同的黑棋,若这6颗棋子不在同一行也不在同一列上,则不同的放法有 A .14400种B .518400种C .720种D .20种2.甲、乙、丙、丁四名同学报名参加假期社区服务活动,社区服务活动共有关怀老人、环境监测、教育咨询、交通宣传等四个项目,每人限报其中一项,记事件为4名同学所报项目各不相同”,事件为“只有甲同学一人报关怀老人项目”,则( )A .B .C .D .3.若函数()()sin 2f x x b ϕ=++,对任意实数x 都有()2,133f x f x f ππ⎛⎫⎛⎫+=-=- ⎪ ⎪⎝⎭⎝⎭,则实数b 的值为( ) A .2-和0 B .0 和1C .1±D .2±4.函数2y x 在点1x =处的导数是( ).A .0B .1C .2D .35.已知函数()f x 的导函数为()f x ',且对任意的实数x 都有()()()23xf x ex f x -'=+-(e 是自然对数的底数),且()01f =,若关于x 的不等式()0f x m -<的解集中恰有两个整数,则实数m 的取值范围是( ) A .)2,0e ⎡-⎣B .(],0e -C .[),0e - D .(2,0e ⎤-⎦6.在复平面内,复数()21i i -对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限7.已知X 是离散型随机变量,3(2)4P X ==,1()4P X a ==,9()4E X =,则(21)D X +=( ) A .34B .38C .316D .928.2018年元旦期间,某高速公路收费站的三个高速收费口每天通过的小汽车数X (单位:辆)均服从正态分布()2600,Nσ,若()5007000.6P X <<=,假设三个收费口均能正常工作,则这个收费口每天至少有一个超过700辆的概率为( ) A .1 B .12 C .61 D .649.已知函数()y xf x '=的图象如图所示(其中()f x '是函数()f x 的导函数),下面四个图象中,()y f x =的图象大致是( )A .B .C .D .10.给定下列两个命题:①“p q ∧”为真是“p q ∨”为真的充分不必要条件;②“x R ∀∈,都有0x e x +>”的否定是“0x R ∃∈,使得000xe x +≤”, 其中说法正确的是() A .①真②假B .①假②真C .①和②都为假D .①和②都为真11.曲线sin (02)y x x π=≤≤与x 轴所围成的封闭图形的面积为( ) A .2B .2πC .πD .412.下面有五个命题:① 函数的最小正周期是;② 终边在轴上的角的集合是;③ 在同一坐标系中,函数的图象和函数的图象有三个公共点;④ 把函数;;其中真命题的序号是( )A .①③B .①④C .②③D .③④二、填空题:本题共4小题13.一射手对同一目标独立地进行4次射击,已知至少命中一次的概率为8081,则此射手的命中率是______.14.已知球的半径为24cm ,一个圆锥的高等于这个球的直径,而且球的表面积等于圆锥的表面积,则这个圆锥的体积是__________ cm 1.(结果保留圆周率π)15.已知三棱锥P ABC -的四个顶点都在球O 的球面上,且球O 的表面积为22π,AB AC ⊥,PA ⊥平面ABC ,3AB PA ==,则三棱锥P ABC -的体积为__________.16.正六棱柱相邻两个侧面所成的二面角的大小为________ 三、解答题:解答应写出文字说明、证明过程或演算步骤。
福建省龙岩市2019届高三下学期理数教学质量检测试卷

福建省龙岩市2019届高三下学期理数教学质量检测试卷一、单选题1.已知 (m +2i)(2−i)=4+3i, m ∈R,i 为虚数单位,则 m 的值为( )A .1B .−1C .2D .−22.已知 cos(π4−α)=35,则 sin2α= ( )A .−725B .−15C .15D .7253.已知等差数列 {a n } 的公差为 2 ,若 a 1,a 3,a 4 成等比数列,则数列 {a n } 的前8 项和为( ) A .-20B .-18C .-8D .-104.如果执行下面的程序框图,输入正整数 n,m ,且满足 n ≥m ,那么输出的 p 等于( )A .A n m−1B .A n mC .C n m−1D .C n m5.已知实数 x , y 满足不等式组 {2x −y +2≥0x +2y +1≤03x +y −2≤0 ,则 x −y 的取值范围为( )A .[−2,+∞)B .[−1,+∞)C .(−∞,2]D .[−2,2]6.已知双曲线 C 1:x 2a 2−y 2b2=1 (a >0,b >0) 和双曲线 C 2:y 2m 2−x 2n 2=1 (m >0,n >0) 焦距相等,离心率分别为 e 1 、 e 2 ,若 1e 12+1e22=1 ,则下列结论正确的是( ) A .C 1 和 C 2 离心率相等 B .C 1 和 C 2 渐近线相同 C .C 1 和 C 2 实轴长相等D .C 1 和 C 2 虚轴长相等7.已知一个三棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的外接球表面积为()A.√3πB.2√3πC.4√3πD.12π8.如图,AB和CD是圆O两条互相垂直的直径,分别以OA, OB, OC, OD为直径作四个圆,在圆O内随机取一点,则此点取自阴影部分的概率是()A.1−2πB.12−1πC.2πD.1π9.已知函数f(x)=|cos(ωx+π3)|(ω>0)在区间[−π3,5π6]上单调,则ω的取值范围为()A.(0,1215]B.(0,15]C.[15,1215]D.[1215,1]10.设s=1log2π+1log3π+1log4π+1log5π,T=|a−s|,a∈N∗,当T取最小值时a的值为()A.2B.3C.4D.511.如图,已知正方体ABCD−A1B1C1D1的棱长为4,P是AA1的中点,点M在侧面AA1B1B内,若D1M⊥CP,则ΔBCM面积的最小值为()A.8B.4C.8√2D.8√5512.已知数列{a n}各项均为整数,共有7项,且满足|a k+1−a k|=1, k=1,2,⋯6,其中a1=1 , a 7=a ( a 为常数且 a >0 ).若满足上述条件的不同数列个数共有15个,则 a 的值为( ) A .1B .3C .5D .7二、填空题13.已知向量 a ⇀ , b ⇀ 的夹角为 60° , |a ⇀|=2 , |a ⇀−3b⇀|=√7 ,则 |b ⇀|= . 14.若 (1+x)(a +x)4 的展开式中 x 3 项的系数为16,则实数 a = . 15.已知抛物线 y 2=4x 的焦点为 F ,其准线与 x 轴的交点为 Q ,过点 F 作直线与抛物线交于 A,B 两点.若以 QF 为直径的圆过点 B ,则 |AF|−|BF| 的值为 .16.已知 f(x)=|x|3−4x 2 ,若 f(x) 的图像和 y =ax 的图像有四个不同的公共点,则实数 a的取值范围是 .三、解答题17.在 ΔABC 中,内角 A , B , C 所对的边分别为 a , b , c ,已知 2ccosB =2a −b .(Ⅰ)求角 C 的大小;(Ⅱ)设 D 为 BC 中点,若 AD =3 ,求 ΔABC 面积的取值范围.18.如图,已知四边形 ABCD 是边长为2的菱形,且 ∠ABC =600 , BM ⊥平面ABCD ,DN//BM , BM =2DN ,点 E 是线段 MN 上的一点. O 为线段 BD 的中点.(Ⅰ)若 OF ⊥ BE 于 F 且 OF =1 ,证明: AF ⊥ 平面 ECB ;(Ⅱ)若 BM =4 , NE⇀=13NM ⇀ ,求二面角 E −BC −M 的余弦值. 19.已知椭圆 E 的方程为 x 2a2+y 2=1 ,点 A 为长轴的右端点. B,C 为椭圆 E 上关于原点对称的两点.直线 AB 与直线 AC 的斜率 k AB 和k AC 满足: k AB ·k AC =−12 .(Ⅰ)求椭圆 E 的标准方程;(Ⅱ)若直线 l:y =kx +t 与圆 x 2+y 2=23相切,且与椭圆 E 相交于 M,N 两点,求证:以线段 MN 为直径的圆恒过原点.20.某医院为筛查某种疾病,需要检验血液是否为阳性,现有 n ( n ∈N ∗ )份血液样本,有以下两种检验方式:(1)逐份检验,则需要检验 n 次;(2)混合检验,将其中 k ( k ∈N ∗ 且 k ≥2 )份血液样本分别取样混合在一起检验.若检验结果为阴性,这 k 份的血液全为阴性,因而这 k 份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这 k 份血液究竟哪几份为阳性,就要对这 k 份再逐份检验,此时这 k 份血液的检验次数总共为 k +1 次.假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为 p(0<p <1) .(Ⅰ)假设有5份血液样本,其中只有2份样本为阳性,若采用逐份检验方式,求恰好经过4次检验就能把阳性样本全部检验出来的概率.(Ⅱ)现取其中 k ( k ∈N ∗ 且 k ≥2 )份血液样本,记采用逐份检验方式,样本需要检验的总次数为 ξ1 ,采用混合检验方式,样本需要检验的总次数为 ξ2(ⅰ)试运用概率统计的知识,若 Eξ1= Eξ2 ,试求 p 关于 k 的函数关系式 p =f(k) ;(ⅱ)若 p =1−1√e3 ,采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数期望值更少,求 k 的最大值.参考数据: ln2≈0.6931 , ln3≈1.0986 , ln4≈1.3863 , ln5≈1.6094 , ln6≈1.791821.已知函数 f(x)=lnx +1−xax (a ∈R 且a ≠0) , g(x)=(b −1)x −xe x −1x(b ∈R) (Ⅰ)讨论函数 f(x) 的单调性;(Ⅱ)当a=1时,若关于 x 的不等式 f(x)+g(x)≤−2 恒成立,求实数 b 的取值范围.22.选修4-4:坐标系与参数方程已知平面直角坐标系 xOy 中,直线 l 的参数方程为 {x =−2+tcosαy =1+tsinα ( t 为参数, 0≤α<π2 ),以原点 O 为极点, x 轴正半轴为极轴建立极坐标系,曲线 C 的极坐标方程为 ρ2−4ρcosθ−2ρsinθ−4=0 .(Ⅰ)求直线 l 的普通方程、曲线 C 的直角坐标方程;(Ⅱ)若直线 l 与曲线 C 交于 A 、B 两点,且 |AB|=2 .求 α 的大小.23.选修4-5:不等式选讲已知函数 f(x)=|x −m|(m ∈R) .(Ⅰ)当 m =2 时,解不等式 f(x)>7−|x −1| ;(Ⅱ)若存在 x ∈R ,使 f(x)>7+|x −1| 成立,求 m 的取值范围.答案解析部分1.【答案】A【解析】【解答】∵(m +2i)(2−i)=4+3i,∴2m +2+(4−m)i =4+3i , ∴{2m +2=44−m =3 ,即 m =1故答案为:A【分析】由复数运算及 复数相等的充要条件即可求出 m 的值 .2.【答案】A【解析】【解答】 cos(π4−α)=√22cosα+√22sinα=35,√22cosα+√22sinα=35两边平方得: 12+cosαsinα=925 , 2cosαsinα=1825−1=−725 , 即 sin2α=−725, 故答案为:A.【分析】 由两角差的余弦函数整理已知等式,两边平方后可得结果.3.【答案】C【解析】【解答】解:等差数列 {a n } 的公差d 为2,若 a 1 , a 3,a 4 成等比数列,可得a 32= a 1a 4 ,即有( a 1 +4)2= a 1 ( a 1 +6), 解得 a 1 =﹣8,则{a n }前8项的和为8×(﹣8) +12× 8×7×2=﹣8,故答案为:C .【分析】利用等比数列的性质可得等差数列 {a n } 的首项,即可得到{a n }前8项的和.4.【答案】D【解析】【解答】解:第一次循环:k =1,p =1,p = 1×(n−m+1)m;第二次循环:k =2,p = (n−m+1)m ×n−m+2m−1 ;第三次循环:k =3,p = (n−m+1)m ×n−m+2m−1×n−m+3m−2 …第m 次循环:k =m ,p = (n−m+1)m ×n−m+2m−1×n−m+3m−2×⋯×n ﹣12×n 1此时结束循环,输出p = (n−m+1)m ×n−m+2m−1×n−m+3m−2×⋯×n ﹣12×n 1 = C n m故答案为:D .【分析】运行程序,当结束循环时,即可得到输出p 的值.5.【答案】B【解析】【解答】解:设z =x ﹣y ,则y =x ﹣z ,作出不等式对应的平面区域(阴影部分)如图:平移直线y =x ﹣z ,由图象可知当直线y =x ﹣z 经过点A (﹣1,0)时,直线y =x ﹣z 的截距最大, 此时z 最小,最小值z =﹣1﹣0=﹣1 继续向下平移直线y =x ﹣z ,z 值越来越大, ∴x −y 的取值范围为 [−1,+∞) 故答案为: B .【分析】作出不等式对应的平面区域,平移直线y =x ﹣z ,由图象可得 x −y 的取值范围.6.【答案】B【解析】【解答】设两个双曲线的焦距为 2c , ∴e 1=c a , e 2=cm又 1e12+1e 22=1 ∴a 2c 2+m 2c2=1 ,∴a 2+m 2=c 2 ∴m 2=c 2−a 2=b 2 ,即 m =b ,故 n =a又双曲线 C 1:x 2a 2−y 2b2=1 的渐近线方程为: y =±ba x ,双曲线 C 2:y 2m 2−x 2n2=1 的渐近线方程为: y =±mn x∴C 1 和 C 2 渐近线相同 故答案为:B【分析】由双曲线方程分别求出他们的离心率 e 1 、 e 2 ,由 1e 12+1e 22=1可计算出 C 1 和 C 2渐近线相同 .7.【答案】C【解析】【解答】由三视图知几何体是一个侧棱与底面垂直的三棱锥,底面是斜边上的高为 √2 的等腰直角三角形,与底面垂直的侧面是个等腰三角形,底边长为 2 ,高为 2 ,故三棱锥的外接球与以棱长为 2 的正方体的外接球相同,其直径为 2√3 ,半径为 √3∴ 三棱锥的外接球体积为 43π×(√3)3=4√3π故答案为: C【分析】由三视图知几何体是一个侧棱与底面垂直的三棱锥,计算可得 该三棱锥的外接球表面积 .8.【答案】A【解析】【解答】解:根据圆的对称性只需看四分之一即可,设扇形的半径为r ,则扇形OBC 的面积为 14πr 2 ,连接BC ,把下面的阴影部分平均分成了2部分,然后利用位移割补的方法,分别平移到图中划线部分,则阴影部分的面积为: 14πr 2−12r 2 ,∴此点取自阴影部分的概率是 14πr 2−12r 214πr2=1−2π .故答案为:A .【分析】分别计算扇形OBC 的面积与阴影部分的面积,利用 几何概型概率计算公式可得结果.9.【答案】B【解析】【解答】令 u =ωx +π3 ,则 y =|cosu| ,其中 u =ωx +π3 在区间 [−π3,5π6] 上单调递增,且 u ∈[−π3ω+π3,5π6ω+π3]y =|cosu| 在 [0,π2] 上单调递减, ∴{ −π3ω+π3≥05π6ω+π3≤π2ω>0,∴0<ω≤15 ,故答案为:B【分析】由余弦函数的图象可得,当函数在区间 [−π3,5π6] 上单调时 ω 的取值范围.10.【答案】C【解析】【解答】 s =1log 2π+1log 3π+1log 4π+1log 5π=ln2lnπ+ln3lnπ+ln4lnπ+ln5lnπ=ln120lnπ=log π120∈(4,5) ,此时 (5−log π120)−(log π120−4)=9−2log π120=log ππ91202>0 ∴T 取最小值时 a 的值为4 故答案为:C【分析】利用对数的运算性质可得 T 取最小值时 a 的值.11.【答案】D【解析】【解答】解:以AB ,AD ,AA 1为坐标轴建立空间坐标系如图所示:则P (0,0,2),C (4,4,0),D 1(0,4,4),设M (a ,0,b ),则 D 1M ⃗⃗⃗⃗⃗⃗⃗⃗⃗ = (a ,﹣4,b ﹣4), CP ⃗⃗⃗⃗⃗ = (﹣4,﹣4,2), ∵D 1M ⊥CP ,∴D 1M ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ⋅CP⃗⃗⃗⃗⃗ =− 4a+16+2b ﹣8=0,即b =2a ﹣4. 取AB 的中点N ,连结B 1N ,则M 点轨迹为线段B 1N ,过B作BQ⊥B1N,则BQ =4×225=4√55.又BC⊥平面ABB1A1,BC⊥BQ,∴S△PBC的最小值为S△QBC=12×4×4√55=8√55.故答案为:D.【分析】以AB,AD,AA1为坐标轴建立空间坐标系,利用空间向量计算可得S△PBC的最小值. 12.【答案】B【解析】【解答】解:∵|a k+1−a k|=1,∴a k+1−a k=1或a k+1−a k=﹣1设有x个1,则有6x个﹣1∴a7﹣a1=(a7﹣a6)+(a6﹣a5)+…+(a2﹣a1)∴a−1=x+(6﹣x)•(﹣1)∴x=a+52∴这样的数列个数有C6x=15,解得x=2或4,∴a=−1(舍)或a=3故答案为:B.【分析】由题意a k+1−a k=1或a k+1−a k=﹣1,由满足上述条件的不同数列个数共有15个可得a的值 .13.【答案】1【解析】【解答】解:a⃗⋅b⃗=| a⃗|| b⃗|cos60°=| b⃗|,∵|a⇀−3b⇀|=√7,∴|a |2﹣6| b⃗|+9| b⃗|2=7,即9| b⃗|2﹣6| b⃗| −3=0,解得| b⃗|=1或−13(舍去).故答案为:1.【分析】由平面向量数量积的运算即可求得向量b⇀的模.14.【答案】−2或43【解析】【解答】(a+x)4的通项公式为T r+1=C4r a4−r x r,∴(a+x)4展开式的含x3,x2项的系数分别是C43a,C42a2,∴(1+x)(a+x)4的展开式中x3项的系数为C43a+C42a2=16∴3a2+2a−8=0∴a= −2或43故答案为:−2或43【分析】由二项式展开式的通项公式可得展开式中x3项的系数为C43a+C42a2=16,即可解出实数a的值.15.【答案】4【解析】【解答】解:假设k存在,设AB方程为:y=k(x﹣1),与抛物线y2=4x联立得k2(x2﹣2x+1)=4x,即k2x2﹣(2k2+4)x+k2=0设两交点为A(x2,y2),B(x1,y1),∵以QF为直径的圆过点B,∴∠QBA=90°,∴(x1﹣2)(x1+2)+y12=0,∴x12+y12=4,∴x12+4x1﹣1=0(x1>0),∴x1=√5−2,∵x1x2=1,∴x2=√5+2,∴|AF|﹣|BF|=(x2+1)﹣(x1+1)=4,故答案为:4【分析】设AB方程为:y=k(x﹣1),与抛物线y2=4x联立设两交点为A(x2,y2),B(x1,y1),由题意及韦达定理计算可得所求.16.【答案】(−4,0)∪(0,4)【解析】【解答】f(x)的图像和y=ax的图像有四个不同的公共点等价于方程|x|3−4x2=ax 有四个不同的实根,当x=0时,方程显然成立,即x=0为方程的一个实根,问题转化为x≠0时,方程有三个不等的实根,当x>0时,a=x2−4x当x<0时,a=−x2−4x作出图象如图:由图象可得:a∈(−4,0)∪(0,4)故答案为:(−4,0)∪(0,4)【分析】由题意方程|x|3−4x2=ax有四个不同的实根,分离a利用函数图象可得满足题意的实数a的取值范围 .17.【答案】解:(Ⅰ)由2ccosB=2a−b,得2sinCcosB=2sinA−sinB即2sinCcosB=2sin(B+C)−sinB,∴2sinBcosC=sinB∵sinB>0,∴cosC=1 2∵0<C<π,∴C=π3(Ⅱ)在ΔADC中,由余弦定理得:AD2=AC2+DC2−2AC⋅DC⋅cos π3即AC2+DC2−AC•DC=9,又∵AC2+DC2≥2AC•DC∴9≥AC•DC>0,∵S△ADC=12AC•DC•sinπ3∴0<S△ADC≤9√34,∵S△ABC=2S△ADC∴0<S △ABC ≤9√32【解析】【分析】(1)利用三角函数公式计算可得 角 C 的大小 ;(2) 在 ΔADC 中,由余弦定理得 AC 2+DC 2−AC •DC =9 ,则 9≥AC •DC >0,利用三角形面积可得 ΔABC 面积的取值范围.18.【答案】解:(Ⅰ) ∵ 四边形 ABCD 是边长为2的菱形,且 ∠ABC =600∴ AC 与 BD 交于点 O 且 ΔABC 为等边三角形∴AC =2 , BO =√3 又 ∵ OF =1=12AC , ∴AF ⊥CF∵ BM ⊥平面ABCD , ∴AC ⊥BM 又 ∵ AC ⊥BD , ∴ AC ⊥平面BMND ∵OF ⊂平面BMND , ∴AC ⊥OF在 Rt △AOF 中, AF 2=AO 2+OF 2=2 在 Rt △BOF 中, FB 2=BO 2−OF 2=2∴ 在 ΔABF 中, AB 2=4 , AF 2+FB 2=4 , AF 2+FB 2=AB 2 ∴AF ⊥BE ,又 ∵ CF,BE ⊂平面CBE,CF ∩BE =F ,∴ AF ⊥平面ECB(Ⅱ)在平面 BMND 中,过 O 作直线 l ∥ BM , 则 l ⊥面ABCD ,如图,以 l 为 z 轴, AC 所在直线为 x 轴, BD 所在直线为 y 轴建立空间直角坐标系,∴B(0,√3,0) , C(−1,0,0) , M(0,√3,4) , N(0,−√3,2) ∵NE ⇀=13NM ⇀ , ∴E(0,−√33,83) , ∴BC⇀=(−1,−√3,0) , BE ⇀=(0,−4√33,83) 设 n ⇀=(x,y,z) 是平面 BCE 的法向量,则{n ⇀·BC ⇀=0n ⇀·BE⇀=0 ,即 {−x −√3y =0−4√33y +83z =0 , 取 n ⇀=(−6,2√3,3) ,取 BC 中点 G ,连结 AG , ∴AG ⊥BC , AG ⊥BM , ∴AG ⊥面BCM因此, AG⇀ 是平面 BCM 的法向量, ∵G(−12,√32,0) , A(1,0,0) ∴AG ⇀=(−32,√32,0) , 设二面角 E −BC −M 的大小为 θ ,则cosθ=|n ⇀·AG ⇀|n ⇀|·|AG ⇀||=9+3√36+12+9·√94+34=4√1919 , ∴ 二面角 E −BC −M 的余弦值为 4√1919【解析】【分析】(1)由题意 AF ⊥CF , AF ⊥BE ,即可证明 AF ⊥ 平面 ECB ;(2) 以 l 为 z 轴, AC 所在直线为 x 轴, BD 所在直线为 y 轴建立空间直角坐标系, 根据空间向量计算可得 二面角 E −BC −M 的余弦值 .19.【答案】解:(Ⅰ)设 B(x 0,y 0) 则 C(−x 0,−y 0) 由 x 02a2+y 02=1 得, y 02=1−x 02a 2=a 2−x 02a 2由 k AB ⋅k AC =−12 ,即 y 0x 0−a ⋅−y 0−x 0−a =−12 得, y 02=a 2−x 022所以a 2−x 02a2=a 2−x 022 ,所以 a 2=2 即椭圆 E 的标准方程为: x 22+y2=1(Ⅱ)设 M(x 1,y 1),N(x 2,y 2)由 {x 22+y 2=1y =kx +t得: (1+2k 2)x 2+4ktx +2t 2−2=0x 1+x 2=−4kt 1+2k 2,x 1x 2=2t 2−21+2k2y 1y 2=(kx 1+t)(kx 2+t)=k 2x 1x 2+kt(x 1+x 2)+t 2=k 2(2t 2−2)1+2k2+−4k 2t 21+2k 2+t 2=t 2−2k 21+2k2又 l 与圆C 相切,所以 √63=|t|√1+k 即 23=t 21+k2 所以 OM ⇀⋅ON ⇀=x 1x 2+y 1y 2=2t 2−2+t 2−2k 21+2k 2=3t 2−2(1+k 2)1+2k 2=2(1+k 2)−2(1+k 2)1+2k2=0所以, OM⇀⊥ON ⇀ ,即 ∠MON =900 所以,以线段 MN 为直径的圆经过原点.【解析】【分析】(1)由题意可求得, a 2=2,可得椭圆 E 的标准方程;(2) 直线 l:y =kx +t 与圆 x 2+y 2=23联立,由 OM ⇀⋅ON ⇀=0可得以线段 MN 为直径的圆恒过原点.20.【答案】解:(Ⅰ) p =C 21C 31A 32A 22A 55=35∴ 恰好经过4次检验就能把阳性样本全部检验出来的概率为 35(Ⅱ)(ⅰ)由已知得 Eξ1=k , ξ2 的所有可能取值为 1,k +1 ∴P(ξ2=1)=(1−p)k , P(ξ2=k +1)=1−(1−p)k ∴ Eξ2=(1−p)k +(k +1)[1−(1−p)k ] = k +1−k(1−p)k 若 Eξ1= Eξ2 ,则 k =k +1−k(1−p)k ∴k(1−p)k =1(1−p)k =1k ∴1−p =(1k )1k ∴p =1−(1k)1k∴p 关于 k 的函数关系式 p =1−(1k)1k ( k ∈N ∗ 且 k ≥2 )(ⅱ)由题意可知 Eξ2<Eξ1 ,得 1k <(1−p)k , ∵p =1−1√e3∴1k <(1√e3)k , ∴lnk >13k ,设 f(x)=lnx −13x(x >0)∵f ′(x)=3−x3x, ∴ 当 x >3 时, f ′(x)<0 ,即 f(x) 在 (3,+∞) 上单调递减 又 ln4≈1.3863 , 43≈1.3333 , ∴ln4>43 , ln5≈1.6094 , 53≈1.6667 , ∴ln5<53∴ k 的最大值为4.【解析】【分析】(1)由古典概型的计算公式可得结果;(2) 由已知得 Eξ1=k , ξ2 的所有可能取值为 1,k +1 ,由期望运算可得 p 关于 k 的函数关系式 ; 由题意可知 Eξ2<Eξ1 ,得 1k <(1−p)k , 利用单调性可得 k 的最大值.21.【答案】解:(Ⅰ) ∵f(x)=lnx +1ax −1a ∴f ′(x)=1x −1ax 2=ax−1ax 2(x >0) 当 a <0 时, ∴f ′(x)>0 , ∴f(x) 在 (0,+∞) 单调递增;当 a >0 时,由 f ′(x)>0 得: x >1a ;由 f ′(x)<0 得: 0<x <1a,∴f(x) 在 (0,1a ) 单调递减,在 (1a,+∞) 单调递增综上:当 a <0 时, f(x) 在 (0,+∞) 单调递增;当 a >0 时, f(x) 在 (0,1a ) 单调递减,在 (1a,+∞) 单调递增.(Ⅱ)由题意:当 a =1 时,不等式 f(x)+g(x)≤−2 ,即 lnx +1x −1+(b −1)x −xe x −1x≤−2即 b −1≤e x −lnx x−1x 在(0,+∞) 恒成立, 令 ℎ(x)=e x −lnx x −1x ,则 ℎ′(x)=e x −1−lnx x 2+1x 2=x 2e x +lnx x 2, 令 u(x)=x 2e x +lnx ,则 u ′(x)=(x 2+2x)e x +1x >0,∴u(x) 在 (0,+∞) 单调递增又 u(1)=e >0,u(12)=√e4−ln2<0 ,所以, u(x) 有唯一零点 x 0 ( 12<x 0<1 )所以, u(x 0)=0 ,即 x 0e x 0=−lnx0x 0--------(※)当 x ∈(0,x 0) 时, u(x)<0 即 ℎ′(x)<0 , ℎ(x) 单调递减; x ∈(x 0,+∞) 时, u(x)>0 即 ℎ′(x)>0 , ℎ(x) 单调递增,所以 ℎ(x 0) 为 ℎ(x) 在定义域内的最小值.令 k(x)=xe x (12<x <1) 则方程(※)等价于 k(x)=k(−lnx)又易知 k(x) 单调递增,所以 x =−lnx , e x =1x所以, ℎ(x) 的最小值 ℎ(x 0)=e x 0−lnx 0x 0−1x 0=1x 0−−x 0x 0−1x 0=1所以 b −1≤1 ,即 b ≤2 所以实数 b 的取值范围是 (−∞,2]【解析】【分析】(1) 利用导数的符号可得函数的单调性;(2) 当 a =1 时, 分离常数b, 利用导数求函数 ℎ(x)=e x −lnx x −1x 的最值 ,即可得到实数b 的取值范围.22.【答案】解:(Ⅰ)由 {x +2=tcosα, y −1=tsinα, 消 t 得y−1x+2=tanα , 直线 l 的普通方程为 xtanα−y +2tanα+1=0 ,将 ρcosθ=x,ρsinθ=y,ρ2=x 2+y 2 代入 ρ2−4ρcosθ−2ρsinθ−4=0 得 曲线 C 的直角坐标方程为 x 2+y 2−4x −2y −4=0(Ⅱ)曲线 C 的方程化为 (x −2)2+(y −1)2=9 ,曲线 C 是以 (2,1) 为圆心, 3 为半径的圆.|AB|=2,圆心到直线l的距离d=√r2−(AB2)2=√9−1=2√2,又d=|4tanα|√tanα+1,∴|4tanα|√tanα+1=2√2,解得tanα=±1,∵0≤α<π2,∴α=π4【解析】【分析】(1)消参可得直线l的普通方程,利用极坐标与直角坐标互化可得曲线C的直角坐标方程;(2)由直线与圆的位置关系可得α的大小.23.【答案】解:(Ⅰ)由已知|x−2|+|x−1|>7当x<1时,不等式等价于2−x+1−x>7,解得x<−2,∴x<−2;当1≤x≤2时,2−x+x−1>7,此时不等式无解;当x>2时,x−2+x−1>7,解得x>5,∴x>5综上:解集为{x|x<−2或x>5}(Ⅱ)∵||x−m|−|x−1||≤|(x−m)−(x−1)|=|m−1|∴|x−m|−|x−1|≤|m−1|当且仅当(x−m)(x−1)≥0且|x−m|≥|x−1|时等号成立.依题意|m−1|>7,解之得m>8或m<−6,∴m的取值范围为(−∞,−6)∪(8,+∞).【解析】【分析】(1)解绝对值不等式可得其解集;(2)由绝对值三角不等式可将原不等式转化为关于m的不等式,可得m的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
参照上述方法,那么 144 的所有正约数之和为
A.424 B.421
C.420 D.403
二、填空题:本大题共 6 小题,每小题 4 分,共 24 分 11.(-2)-1=_______.
12.一个不透明的袋子中装有 4 个黑球,2 个自球,每个球除颜色
外其他都相同,从中任意摸出 1 个球是白球的概率是_______. 13.已知∠A 是锐角,且 sin∠A= 1 ,则 cos∠A=_______.
2019 年龙岩市九年级学业(升学)质量检查数学试题
(满分:150 分考试时间:120 分钟)
一、选择题:本大题共 10 小题,每小题 4 分,共 40 分
1.如图,数轴上的单位长度为 1,若实数 a,b 所表示的数恰好在整数点上,则 a+b=
A. 0
B.-1
C. 1
D. 5
2.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是
坐标是(1,n),与 y 轴的交点在(0,3)和(0,6)之间(包含端
点),则下列结论错误的是
A.3a+b<0
B. -2≤a≤-l
C. abc>0 D.9a+3b+2c>0
(第9题)
10.某些整数的所有正约数之和可以按如下方法求得,如:
6=2×3,则 6 的所有正约数之和为(1+3)+(2+6)=(1+2)×(1+3)=12; 12=22×3,则 12 的所有正约数之和为(1+3)+(2+6)+(4+12)=(1+2+22)×(1+3)=28 36=2×32,则 36 的所有正约数之和为(1+3+9)+(2+6+18)+(4+12+36)= (1+2+22)×(1+3+32)=91
21.(8 分)
(1)计算:
1 1
2
+
2
1
3
+
3
1
4
+
4
1
5
+
5
1
6
(2)求证:
1 3
<
1 1
3
+
2
1
4
+
3
1
5
+
4
1
6
<
4 5
第3页 共5页
22.(10 分)小宝大学毕业后回家乡透行园艺创业,第一期培植盆景与花卉各 50 盆,售后进行 统计得知:盆景的平均每盆利润是 160 元,花卉的平均每盆利润是 20 元. 调研发现:①盆景 每增加 1 盆,盆景的平均好盆利润减少 2 元:每减少 1 盆,盆景的平均每盆利润增加 2 元; ②花卉的平均际盆利润始终不变,小宝计划第二期培植盆景与花齐共 100 盆,设培植的盆景 比第一期增加 x 盆,第二期盆景与花卉售完后的利润分别为 W1、W2(单位:元)
16.如图,△ABC 中,∠ABC=30°,AB=4,BC=5,P 是△ABC 内部的任意一点,连接 PA, PB,PC,则 PA+PB+PC 的最 小值为_______.
三、解答题:本大题共 9 小题,共 86 分. 17. (8 分)解方程: x - 2 =1
x 1 x
(第16题)
18.(8
分)先化简,再求值:
表如下图所示),并将调查结果绘制成图①和图②所示的统计图(均不完整).
“您如何看待教化阅读”问卷调查表
您好!这是一份关于“您如何看待数字化间读问调查表,请在表格中选择一项您最认
观点,在其后空格内打“√”,非常感谢您的合作.
代码 观点
A 获取信息方便,可以随时随地观看
B 价格便宜易得
C 使得人们成为“低头族”,不利于
A.
B.
C.
D.
3.下列调查中,适合采用全面调查(普查)方式的是
A.对汀江流域水质情况的调查
B.对端午节期间市场上粽子质量情况的调查
C.对某班 40 名同学身高情况调查
D.对某类烟花爆竹燃放安全情况的调查
x a
2x y 3
4.是
y
b
方程组
3x
2
y
7
的解,则
5a-b
的值是
A. 10
B. -10
C. 14 D.21
5.下列图形中,∠1 一定大于∠2 的是
A.
B.
C.
D.
(第7题)
2x 1 3(x 2)
6.若关于 x 的一元一次不等式组 x m
的解是 x<5,则 m 的取值范围是
A. m≥5
B.m>5
C. m≤5
D.m<5
7.如图,x、y、z 分别表示以直角三角形三边为边长的正方形面
积,则下列结论正确的是、
(1)用含 x 的代数式分别表示 W1、W2;
(2)当 x 取何们叫时,第二期培植的盆景与花卉作售完行获得的总利润最大?最大总利润是多 少?
23. (10 分)随着互联网、移动终端的迅速发展,数字化阅读越来越普及. 公交、地铁上的“低头
族”越来越多,某研究机构针对“您如何看待数字化阅读”问题进行了随机问卷调查(问卷训查
1
x 2
x
2
x
2
÷(x-
3x x 1
),其中
x= 1 3
第2页 共5页
19.(8 分)在四边形 ABCD 中,AB∥CD. (1)如图 1,已知∠A=∠B,求证:AD=BC; (2)如图 2,已知∠A=60°,∠B=45°,AD=2,求 BC 的长.
20.(8 分)证明:三角形的中位线平行于三角形的第三边,并且等于第三边的一半. (要求:在给出的△ABC 中用尺规作出 AB、AC 边的中点 M、N,保留作图痕迹,不要求写作 法,并根据图形写出已知、求证和证明)
3 14.当 x=a 与 x=b(a≠b)时,代数式 x2-2x+3 的值相等,则 x=a+b 时, 代数式 x2-2x+3 的值为_______.
(第15题)
15.如图,AB 是⊙O 的直径,点 E 是 BF 的中点,过点 E 的切 线分别交 AF、AB 的延长线于 点 D、C,若∠C=30°,⊙O 的半径是 2,则图形中阴影部分的面积是_______.
A. x2=y2+z2
B. x <y+z
C. x-y > z
D. x =y+z
8.三个等边三角形的摆放位置如图,若∠3=60°,则∠1+∠2 的度数是
(第8题)
第1页 共5页
A.9 0° B. 120°
C.270° D. 360°
9.如图,抛物线 y=ax2+bx+c 与 x 轴交于点 A(-1,0),顶点
人际交往
D 内容丰富,比低纸质书涉猎更广
E
其他
请根据统计图中提供的信息,解答下列问题:
(1)本次接受词查的总人数是______人,并将条形统计图补充完整;、
(2)在扇形统计图中,观点 E 的百分比是_______,表示观点 B 的扇形的圆心角度数为______度.
(3)某市共有 300 万人,请根据以上调查结果估算该市持 A、B、D 观点赞成数字化阅读的人数