【同步测试】《二次函数》同步练习
北师大版九年级数学下册第二章《二次函数》同步练习3

《二次函数》同步练习3一、选择题1、下列是二次函数的是( ) A .281y x =+ B .81y x =+ C .xy 8=D .281y x =+2、抛物线2x y -=不具有的性质是( ). A 、开口向下B 、对称轴是y 轴C 、与y 轴不相交D 、最高点是原点3、二次函数222+-=x x y 有( ). A 、最小值1 B 、最小值2 C 、最大值1D 、最大值24、已知点A ()1,1y 、B ()2,2y -、C ()3,2y -在函数()21122-+=x y 上,则1y 、2y 、3y 的大小关系是( ).A 、321y y y >>B 、131y y y >>C 、213y y y >>D 、312y y y >>5、二次函数()02≠++=a c bx ax y 图象如图所示,下面五个代数式:ab 、ac 、c b a +-、ac b 42-、b a +2中, 值大于0的有( )个. A 、2B 、3C 、4D 、56、232m m y mx ++=是二次函数,则m 的值为( )A .0,-3B .0,3C .0D .-3二、填空题7、二次函数()223+-=x y 的对称轴是__________.8、当m __________时12)1(+-=mx m y 是二次函数.9、若点A ()m ,2在函数12-=x y 上,则A 点的坐标为_______. 10、当k =______时,y =(k -2)x42-+k k 是关于x 的二次函数.-1xOy11、抛物线x x y 622+=与x 轴的交点坐标是_______________.12、抛物线2x y =向左平移4个单位,再向上平移3个单位可以得到抛物线__________________的图像.13、将322+-=x x y 化为()k h x a y +-=2的形式,则=y _____________.14、抛物线x x y 32-=的顶点在第____象限.15、试写出一个二次函数,它的对称轴是直线1=x ,且与y 轴交于点()3,0._________________.16、抛物线()31212+-=x y 绕它的顶点旋转180°后得到的新抛物线的解析式为________________.17、已知抛物线c x x y -+=422的顶点在x 轴上,则c 的值为______.18、如图,将边长为1的正方形OAPB 沿x 轴正方向连续翻转2007次,点P 依次落在点20074321,,,,,P P P P P 的位置,则2007P 的坐标为___________.三、解答题19、(8分)已知抛物线的顶点坐标是()1,2-,且过点()2,1-,求该抛物线的解析式.20、(8分) 写出下列各函数关系,并判断它们是什么类型的函数. (1)写出正方体的体积V (cm 3)与正方体棱长a (cm )之间的函数关系;(2)写出圆的面积y (cm 2)与它的半径x (cm )之间的函数关系;21、(8分)如图,矩形的长是4cm ,宽是3cm .如果将矩形的长和宽都增加cm x ,那么面积增加2cm y .①求y 与x 之间的函数关系式;②求当边长增加多少时,面积增加82cm .22、(8分) 为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m )的空地上修建一个矩形绿化带ABCD ,绿化带一边靠墙,另三边用总长为40m 的栅栏围住(如图).若设绿化带的BC 边长为x m ,绿化带的面积为y m 2.求y 与x 之间的函数关系式,并写出自变量x 的取值范围.23、(8分)画函数()122--=x y 的图象,并根据图象回答:(1)当x 为何值时,y 随x 的增大而减小. (2)当x 为何值时,0>y .24、(8分)利用右图,运用图象法求下列方程的解.012432=--x x (精确到0.1).34xx25、(8分)某广告公司要为客户设计一幅周长为12m 的矩形广告牌,广告牌的设计费为每平方米1000元.请你设计一个广告牌边长的方案,使得根据这个方案所确定的广告牌的长和宽能使获得的设计费最多,设计费最多为多少元?26、(8分)行驶中的汽车刹车后,由于惯性的作用,还会继续向前滑行一段距离,这段距离称为“刹车距离”,刹车距离是分析交通事故的重要依据.在一条限速120h km /的高速公路上,甲、乙两车相向而行,发现情况不对,同时刹车,但还是相撞了.事后现场测得甲车的刹车距离为21m ,乙车的刹车距离超过20m ,但小于21m . 根据两车车型查阅资料知:甲车的车速()h km x /与刹车距离()m s 甲之间有下述关系:2002.001.0x x s +=甲;乙车的车速()h km x /与刹车距离()m s 乙之间则有下述关系:x s 61=乙. 请从两车的速度方面分析相撞的原因.27、(13分)如图①,扇形ODE 的圆心O 重合于边长为3得正三角形ABC 的内心O ,扇形的圆心角∠DOE=120°,且OD >OB.将扇形ODE 绕点O 顺时针方向旋转(旋转角α满足条件:0°<α<120°),四边形OFBG 是旋转过程中扇形与三角形的重叠部分(如图②) (1)在上述旋转过程中,CG 、BF 有怎样的数量关系? 四边形OFBG 的面积有怎样的变化?证明你发现的结论?(2)若连结FG ,设CG =x ,△OFG 的面积为y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围.(3)在(2)的前提下,是否存在某一位置,使△OFG 的面积最小?若存在,求出此时x 的值,若不存在,说明理由.图①28、(13分)如图,已知抛物线t ax ax y ++=42()0>a 交x 轴于A 、B 两点,交y 轴于点C ,抛物线的对称轴交x 轴于点E ,点B 的坐标为(-1,0). (1)求抛物线的对称轴及点A 的坐标;(2)过点C 作x 轴的平行线交抛物线的对称轴于点P ,你能判断四边形ABCP•是什么四边形?并证明你的结论;(3)连结CA 与抛物线的对称轴交于点D ,当∠APD=∠ACP 时,求抛物线的解析式.【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
【人教版】九年级下册数学《二次函数》同步检测题(含答案)

《二次函数》同步检测一、精心选一选(每小题4分,共40分.每小题有4个选项,其中只有一个选项是符合题目要求的)1.二次函数y=x 2+2x -7的函数值是8,那么对应的x 的值是( )A .3B .5C .-3和5D .3和-52.若二次函数y=x 2-x 与y=-x 2+k 的图象的顶点重合,则下列结论不正确的是( )A .这两个函数图象有相同的对称轴B .这两个函数图象的开口方向相反C .方程-x 2+k=0没有实数根D .二次函数y=-x 2+k 的最大值为12 3.已知二次函数c bx ax y ++=2(a ≠0)的图象如右图所示,则下列结论:①a 、b 同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=-2时,x 的值只能取0.其中正确的个数是( )A .l 个B .2个C .3个D .4个 4.已知抛物线c bx x y ++=2的部分图象如右图所示,若y<0,则x 的取值范围是( )A .-1<x<4 B.-1<x<3 C.x<-1或x>4 D.x<-1或x>35. 已知二次函数y=3(x-1)2+k 的图象上有三点A(2,y 1),B(2,y 2),C(-5,y 3),则y 1、y 2、y 3的大小关系为( )A .y 1.> y 2> y 3 B..y 2> y 1> y 3 C .y 3> y 1> y 2 D .y 3> y 2> y 16.已知二次函数,2c bx ax y ++=且0,0>+-<c b a a ,则一定有( )A .042>-ac bB .042=-ac bC .042<-ac bD .042≤-ac b7.已知抛物线m m x m x y (141)1(22--++=为整数)与x 轴交于点A ,与y 轴交于点B ,且OB OA =,则m 等于( )A 、52+B 、52-C 、2D 、2-8.在同一直角坐标系中,一次函数y =ax +c 和二次函数y =ax 2+c 的图象大致为( )9.小敏在某次投篮中,球的运动路线是抛物线的x y O x y O B x y O y O一部分(如图),若命中篮圈中心,则他与篮底的距离l 是( ).A .3.5mB .4mC .4.5mD .4.6m10.用列表法画二次函数2y x bx c =++的图象时先列一个表,当表中对自变量x 的值以相等间隔的值增加时,函数y 所对应的函数值依次为:20,56,110,182,274,380,506,650。
数学人教版九年级上册22.1.1二次函数同步训练(解析版)

2019-2019 学年数学人教版九年级上册 22.1.1 二次函数同步训练一、选择题1.二次函数 y=2x(x﹣3)的二次项系数与一次项系数的和为()A. 2B.﹣2C.﹣1 D.﹣42.对于 y=ax2+bx+c,有以下四种说法,此中正确的选项是()A. 当 b=0 时,二次函数是y=ax2+cB. 当 c=0 时,二次函数是 y=ax2+bxC. 当 a=0 时,一次函数是y=bx+cD. 以上说法都不对3.已知对于 x 的函数 y=(m﹣1)x m+(3m+2)x+1 是二次函数,则此分析式的一次项系数是()A. ﹣1B. 8C﹣.2 D. 14.以下函数分析式中,必定为二次函数的是()A. y=3x ﹣1B. y=ax2+bx+cC. s=2t2﹣2t+1 D. y=x2+二次函数y=3x 2﹣2x﹣4 的二次项系数与常数项的和是()5.A. 1B. ﹣1 C. 7D﹣.66.已知 x 是实数,且知足(x﹣2)(x﹣3)=0,则相应的函数 y=x2+x+1的值为()A. 13或 3B. 7或3 C. 3D. 13或7 或 3π 2中, S 与 R 之间的关系是()7.圆的面积公式 S= RA. S 是 R 的正比率函数B. S 是 R 的一次函数C. S是 R 的二次函数 D. 以上答案都不对8.已知函数:①y=3x﹣1;② y=3x2﹣1;③y=3x3+2x2;④y=2x2﹣2x+1,其中二次函数的个数为()A.1B.2C.3D. 4二、填空题9.已知两个变量 x,y 之间的关系式为y= (a﹣2)x2+(b+2)x﹣3.(1)当 ________时, x,y 之间是二次函数关系;(2)当 ________时, x,y 之间是一次函数关系.10.已知方程 ax2+bx+cy=0(a≠0、b、c 为常数),请你经过变形把它写成你所熟习的一个函数表达式的形式.则函数表达式为________,建立的条件是________,是 ________函数.11.函数 y=2x2中,自变量 x 的取值范围是 ________,函数值 y 的取值范围是________.12.若 y= (m2+m)x m2﹣2m﹣1﹣x+3 是对于 x 的二次函数,则m=________.13.函数的图象是抛物线,则m=________.14.已知函数 y=(m﹣2)x2+mx﹣3(m 为常数).(1)当 m________时,该函数为二次函数;第- 2 -页/共11页(2)当 m________时,该函数为一次函数.三、解答题15.已知 y=( m﹣2) x+3x+6 是二次函数,求m 的值.16.已知函数 y=(9k2﹣1)x2+2kx+3 是对于 x 的二次函数,求不等式的解集.17.若 y= (m﹣3)是二次函数,(1)求 m 的值.(2)求出该图象上纵坐标为﹣ 6 的点的坐标.18.已知函数 y=(m2﹣m)x2+(m﹣1)x+2﹣2m.(1)若这个函数是二次函数,求 m 的取值范围.(2)若这个函数是一次函数,求 m 的值.(3)这个函数可能是正比率函数吗?为何?19.已知 y=( m﹣1) x是对于x的二次函数,求m 的值.20.依据下边的条件列出函数分析式,并判断列出的函数能否为二次函数:(1)假如两个数中,一个比另一个大 5,那么,这两个数的乘积 p 是较大的数 m 的函数;(2)一个半径为 10cm 的圆上,挖掉 4 个大小同样的正方形孔,节余的面积 S(cm2)是方孔边长 x(cm)的函数;(3)有一块长为 60m、宽为 40m 的矩形绿地,计划在它的周围同样的宽度内栽种阔叶草,中间种郁金香,那么郁金香的栽种面积 S(cm2)是草坪宽度a(m)的函数.答案分析部分一、选择题1.【答案】 D【考点】二次函数的定义【分析】【解答】解:y=2x(x﹣3)=2x2﹣6x.因此二次项系数与一次项系数的和=2+(﹣ 6)=﹣4.故答案为: D【剖析】第一将函数分析式整理成一般形式,而后直接得出二次项系数与一次项系数,再依占有理数加法法例算出答案。
《二次函数》同步综合练习卷(含答案)

《二次函数》同步综合练习卷一.选择题1.下列函数中属于二次函数的是()A.y=x(x+1)B.x2y=1C.y=2x2﹣2(x2+1)D.y=2.若b>0时,二次函数y=ax2+bx+a2﹣1的图象如下列四图之一所示,根据图象分析,则a的值等于()A.﹣1 B.1 C.D.3.设函数y=kx2+(3k+2)x+1,对于任意负实数k,当x<m时,y随x的增大而增大,则m的最大整数值为()A.2 B.﹣2 C.﹣1 D.04.若二次函数y=x2﹣6x+c的图象过A(﹣1,a),B(2,b),C(5,c),则下列正确的是()A.a>b>c B.a>c>b C.b>a>c D.c>a>b5.已知抛物线c:y=x2+2x﹣3,将抛物线c平移得到抛物线c′,如果两条抛物线,关于直线x=1对称,那么下列说法正确的是()A.将抛物线c沿x轴向右平移个单位得到抛物线c′B.将抛物线c沿x轴向右平移4个单位得到抛物线c′C.将抛物线c沿x轴向右平移个单位得到抛物线c′D.将抛物线c沿x轴向右平移6个单位得到抛物线c′6.当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a的值为()A.﹣1 B.2 C.0或2 D.﹣1或27.已知二次函数y=ax2+bx+c(a≠0)的图象经过点A(1,0),B(0,﹣3),且对称轴为x=2,则这条抛物线的顶点坐标为()A.(2,3)B.(2,1)C.(﹣2,1)D.(2,﹣1)8.用配方法将y=x2﹣6x+11化成y=a(x﹣h)2+k的形式为()A.y=(x+3)2+2 B.y=(x﹣3)2﹣2 C.y=(x﹣6)2﹣2 D.y=(x﹣3)2+29.已知抛物线y=ax2+bx+c上部分点的横坐标x与纵坐标y的对应值如表:有以下几个结论:①抛物线y=ax2+bx+c的开口向下;②抛物线y=ax2+bx+c的对称轴为直线x=﹣1;③方程ax2+bx+c=0的根为0和2;④当y>0时,x的取值范围是x<0或x>2;其中正确的是()A.①④B.②④C.②③D.③④10.如表是一组二次函数y=x2+x﹣1的自变量x与函数值y的对应值.由上表可知,方程x2+x﹣1=0的一个近似解是()A.0.4 B.0.5 C.0.6 D.0.811.如图是抛物线y=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,4),与x轴的一个交点是B (3,0),下列结论:①abc>0;②2a+b=0;③方程ax2+bx+c=4有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣2.0);⑤x(ax+b)≤a+b,其中正确结论的个数是()A.4个B.3个C.2个D.1个12.如图,半圆O的直径AB=4,与半圆O内切的动圆O1与AB切于点M,设⊙O1的半径为y,AM=x,则y关于x 的函数关系式是()A.y=﹣x2+x B.y=﹣x2+x C.y=﹣x2﹣x D.y=x2﹣x13.跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.15m C.20m D.22.5m二.填空题14.有下列函数:①y=1﹣x2;②y=;③y=x(x﹣3);④y=ax2+bx+c;⑤y=2x+1.其中,是二次函数的有(填序号)15.二次函数y1=mx2、y2=nx2的图象如图所示,则m n(填“>”或“<”).16.若抛物线y=ax2﹣x+c与y=2(x﹣3)2+1对称轴相同,且两抛物线的顶点相距3个单位长度,则c的值为.17.已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,则下列结论正确的有.①abc>0②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3③2a+b=0④当x>0时,y随x的增大而减小18.已知点(﹣1,m)、(2,n)在二次函数y=ax2﹣2ax﹣1的图象上,如果m>n,那么a0(用“>”或“<”连接).19.将抛物线y=﹣3x2向左平移一个单位后,得到的抛物线解析式是.20.函数y=﹣(x﹣1)2﹣7的最大值为.21.有一个二次函数的图象,甲、乙、丙三位同学分别说出了它的特点:甲:对称轴是直线x=2;乙:与x轴两个交点的横坐标都是整数;丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形的面积为3.请你写出满足上述全部特点的一个二次函数解析式.22.将二次函数y=x2+6x+5化为y=a(x﹣h)2+k的形式为.23.已知抛物线y=ax2+bx+c的图象与x轴交于点A(m﹣4,0)和B(m,0),与直线y=﹣x+p相交于点A和C (2m﹣4,m﹣6),抛物线y=ax2+bx+c与y轴交于点D,点P在抛物线的对称轴上,连PA,PD,当PA+PD的长最短时,点P的坐标为.24.试写出一个二次函数关系式,使它对应的一元二次方程的一个根为0,另一个根在1到2之间:.25.如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.下列判断:①当x>2时,M=y2;②当x<0时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1.其中正确的说法有.(请填写正确说法的番号)26.某快递公司十月份快递件数是10万件,如果该公司第四季度每个月快递件数的增长率都为x(x>0),十二月份的快递件数为y万件,那么y关于x的函数解析式是.27.有一座抛物线形拱桥,正常水位时桥下水面宽度为20米,拱顶距离水面4米.设正常水位时桥下的水深为2米,为保证过往船只顺利航行,桥下水面的宽度不得小于18米,则水深超过米时就会影响过往船只在桥下的顺利航行.28.如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE ﹣ED﹣DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ 的面积为ycm2.已知y与t的函数关系图象如图(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段),则下列结论:①AD=BE=5;②当0<t≤5时,y=t2;③cos∠ABE=;④当t=秒时,△ABE∽△QBP;⑤当△BPQ的面积为4cm2时,时间t的值是或;其中正确的结论是.参考答案一.选择题1.解:A、y=x2+x,是二次函数;B、y=,不是二次函数;C、y=﹣2,不是二次函数;D、不是整式,不是二次函数;故选:A.2.解:因为前两个图象的对称轴是y轴,所以﹣=0,又因为a≠0,所以b=0,与b>0矛盾;第三个图的对称轴﹣<0,a>0,则b>0,正确;第三个图的对称轴﹣<0,a<0,则b<0,故与b>0矛盾.由于第三个图过原点,所以将(0,0)代入解析式,得:a2﹣1=0,解得a=±1,由于开口向上,a=1.故选:B.3.解:∵对于任意负实数k,当x<m时,y随x的增大而增大,∵k为负数,即k<0,∴函数y=kx2+(3k+2)x+1表示的是开口向下的二次函数,∴在对称轴的左侧,y随x的增大而增大,∵对于任意负实数k,当x<m时,y随x的增大而增大,∴x=﹣=﹣∴m≤﹣=.∵k<0,∴﹣>0∴,∵m≤对一切k<0均成立,∴m≤,∴m的最大整数值是m=﹣2.故选:B.4.解:∵二次函数y=x2﹣6x+c,∴该二次函数的抛物线开口向上,且对称轴为:x=3.∵点A(﹣1,a),B(2,b),C(5,c)都在二次函数y=x2﹣6x+c的图象上,而三点横坐标离对称轴x=3的距离按由远到近为:(﹣1,a)、(5,c)、(2,b),∴a>c>b,故选:B.5.解:∵抛物线C:y=x2+2x﹣3=(x+1)2﹣4,∴抛物线对称轴为x=﹣1.∴抛物线与y轴的交点为A(0,﹣3).则与A点以对称轴对称的点是B(2,﹣3).若将抛物线C平移到C′,并且C,C′关于直线x=1对称,就是要将B点平移后以对称轴x=1与A点对称.则B点平移后坐标应为(4,﹣3)..因此将抛物线C向右平移4个单位.故选:B.6.解:当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a≤x≤a+1时,函数有最小值1,∴a=2或a+1=0,∴a=2或a=﹣1,故选:D.7.解:根据题意得:,解得:a=﹣1,b=4,c=﹣3,∴抛物线解析式为y=﹣x2+4x﹣3=﹣(x﹣2)2+1,则抛物线顶点坐标为(2,1).故选:B.8.解:y=x2﹣6x+11,=x2﹣6x+9+2,=(x﹣3)2+2.故选:D.9.解:设抛物线的解析式为y=ax2+bx+c,将(﹣1,3)、(0,0)、(3,3)代入得:,解得:,∴抛物线的解析式为y=x2﹣2x=x(x﹣2)=(x﹣1)2﹣1,由a=1>0知抛物线的开口向上,故①错误;抛物线的对称轴为直线x=1,故②错误;当y=0时,x(x﹣2)=0,解得x=0或x=2,∴方程ax2+bx+c=0的根为0和2,故③正确;当y>0时,x(x﹣2)>0,解得x<0或x>2,故④正确;故选:D.10.解:观察表格得:方程x2+x﹣1=0的一个近似根为0.6,故选:C.11.解:由图象可知,抛物线开口向下,则a<0,c>0∵抛物线的顶点坐标是A(1,4)∴抛物线对称轴为直线x=﹣∴b=﹣2a∴b>0,则①错误,②正确;方程ax2+bx+c=4方程的解,可以看做直线y=4与抛物线y=ax2+bx+c的交点的横坐标.由图象可知,直线y=4经过抛物线顶点,则直线y=4与抛物线有且只有一个交点.则方程ax2+bx+c=4有两个相等的实数根,③正确;由抛物线对称性,抛物线与x轴的另一个交点是(﹣1.0)则④错误;不等式x(ax+b)≤a+b可以化为ax2+bx+c≤a+b+c∵抛物线顶点为(1,4)∴当x=1时,y最大=a+b+c∴ax2+bx+c≤a+b+c故⑤正确故选:B.12.解:连接O1M,OO1,可得到直角三角形OO1M,依题意可知⊙O的半径为2,则OO1=2﹣y,OM=2﹣x,O1M=y.在Rt△OO1M中,由勾股定理得(2﹣y)2﹣(2﹣x)2=y2,解得y=﹣x2+x.故选:A.13.解:根据题意知,抛物线y=ax2+bx+c(a≠0)经过点(0,54.0)、(40,46.2)、(20,57.9),则解得,所以x=﹣==15(m).故选:B.二.填空题(共15小题)14.解:①y=1﹣x2;②y=,是反比例函数;③y=x(x﹣3);④y=ax2+bx+c,需要添加a≠0;⑤y=2x+1,是一次函数.其中,是二次函数的有:①y=1﹣x2;③y=x(x﹣3).故答案为:①③.15.解:根据抛物线的开口大小与二次函数的二次项系数的关系:系数越大,开口越小,故m>n,故答案为>.16.解:y=2(x﹣3)2+1对称轴是x=3,顶点坐标为(3,1),∵抛物线y=ax2﹣x+c与y=2(x﹣3)2+1对称轴相同,∴﹣=3,解得,a=,∵两抛物线的顶点相距3个单位长度,∴y=x2﹣x+c的顶点坐标为(3,4)或(3,﹣2),把(3,4)代入y=x2﹣x+c得,c=,把(3,﹣2)代入y=x2﹣x+c得,c=﹣,故答案为:或﹣.17.解:∵抛物线开口向下,∴a<0,∵对称轴在y轴右侧,∴>0,∴b>0,∵抛物线与y轴的交点在y轴正半轴,∴c>0,∴abc<0,故①错误;∵抛物线与x轴的一个交点为(3,0),又对称轴为直线x=1,∴抛物线与x轴的另一个交点为(﹣1,0),∴方程ax2+bx+c=0的两根是x1=﹣1,x2=3,故②正确;∵对称轴为直线x=1,∴=1,即2a+b=0,故③正确;∵由函数图象可得:当0<x<1时,y随x的增大而增大;当x>1时,y随x的增大而减小,故④错误;故答案为②③.18.解:∵二次函数的解析式为y=ax2﹣2ax﹣1,∴该抛物线对称轴为x=1,∵|﹣1﹣1|>|2﹣1|,且m>n,∴a>0.故答案为:>.19.解:∵抛物线y=﹣3x2向左平移一个单位后的顶点坐标为(﹣1,0),∴所得抛物线的解析式为y=﹣3(x+1)2,故答案为:y=﹣3(x+1)2.20.解:∵在函数y=﹣(x﹣1)2﹣7中a=﹣1<0,∴当x=1时,y取得最大值,最大值为﹣7,故答案为:﹣7.21.解:对称轴是直线x=2,则一次项系数与二次项系数的比是﹣4,因而可设函数解析式是y=ax2﹣4ax+ac,与y轴交点的纵坐标也是整数,因而ac是整数,y=ax2﹣4ax+ac=a(x2﹣4x+c),与x轴两个交点的横坐标都是整数,即方程x2﹣4x+c=0有两个整数解,设是﹣1和+5,则c=﹣5,则y=ax2﹣4ax+ac=a(x2﹣4x﹣5),∵以这三个交点为顶点的三角形的面积为3,∴a=±.则函数是:y=±(x+1)(x﹣5).(答案不唯一).22.解:y=x2+6x+5,=x2+6x+9﹣4,=(x2+6x+9)﹣4,=(x+3)2﹣4.故答案是:y=(x+3)2﹣4.23.解:∵点A(m﹣4,0)和C(2m﹣4,m﹣6)在直线y=﹣x+p上∴,解得:m=3,p=﹣1,∴A(﹣1,0),B(3,0),C(2,﹣3),设抛物线y=ax2+bx+c=a(x﹣3)(x+1),∵C(2,﹣3),代入得:﹣3=a(2﹣3)(2+1),∴a=1∴抛物线解析式为:y=x2﹣2x﹣3=(x﹣1)2﹣4,对称轴EF为x=1,当x=0时y=﹣3,即D点的坐标为(0,﹣3),作D关于EF的对称点N,连接AN,交EF于P,则此时P为所求,根据对称得N的坐标为(2,﹣3),设直线AN的解析式为y=kx+e,把A、N的坐标代入得:,解得:k=﹣1,e=﹣1,即y=﹣x﹣1,把x=1代入得:y=﹣2,即P点的坐标为(1,﹣2),故答案为:(1,﹣2).24.解:∵一元二次方程的一个根为0,另一个根在1到2,∴设两个根分别为0和,∴此一元二次方程可以是:x(x﹣)=0,∴二次函数关系式为:y=x(x﹣)=x2﹣x.故答案为:y=x2﹣x.25.解:∵当y1=y2时,即﹣x2+4x=2x时,解得:x=0或x=2,∴当x>2时,利用函数图象可以得出y2>y1;当0<x<2时,y1>y2;当x<0时,利用函数图象可以得出y2>y;1∴①错误;∵抛物线y1=﹣x2+4x,直线y2=2x,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;∴当x<0时,根据函数图象可以得出x值越大,M值越大;∴②正确;∵抛物线y1=﹣x2+4x的最大值为4,故M大于4的x值不存在,∴③正确;∵如图:当0<x<2时,y1>y2;当M=2,2x=2,x=1;x>2时,y>y1;2=2+,x2=2﹣(舍去),当M=2,﹣x2+4x=2,x∴使得M=2的x值是1或2+,∴④错误;∴正确的有②③两个.故答案为②③.26.解:根据题意得:y=10(x+1)2,故答案为:y=10(x+1)227.解:设抛物线解析式为y=ax2,把点B(10,﹣4)代入解析式得:﹣4=a×102,解得:a=﹣,∴y=﹣x2,把x=9代入,得:y=﹣=﹣3.24,此时水深=4+2﹣3.24=2.76米.28.解:根据图(2)可得,当点P到达点E时点Q到达点C,∵点P、Q的运动的速度分别是1cm/秒、2cm/秒∴BC=BE=10,∴AD=BC=10.∴①错误;又∵从M到N的变化是4,∴ED=4,∴AE=AD﹣ED=10﹣4=6.∵AD∥BC,∴∠EBQ=∠AEB,∴cos∠EBQ=cos∠AEB=,故③错误;如图1,过点P作PF⊥BC于点F,∵AD∥BC,∴∠EBQ=∠AEB,∴sin∠EBQ=sin∠AEB==,∴PF=PB sin∠EBQ=t,∴当0<t≤5时,y=BQ×PF=×2t×t=t2,故②正确,如图4,当t=时,点P在CD上,∴PD=﹣BE﹣ED=﹣10﹣4=,PQ=CD﹣PD=8﹣=,∴,,∴∵∠A=∠Q=90°,∴△ABE∽△QBP,故④正确.由②知,y=t2当y=4时, t2=4,从而,故⑤错误综上所述,正确的结论是②④.。
二次函数同步练习(2024年版)九年级上册数学人教版

22.1.1二次函数同步练习2024-2025学年九年级上册数学人教版知识点一二次函数的概念1.下列函数中,是二次函数的是( )x−2A. y=2x+1B. y=-2x+1C.y=x²+2D.y=122.已知二次函数y=1−3x+5x²,则二次项系数a= ,一次项系数b= .3.已知函数y=(m−3)x²−x+5是二次函数,则常数m 的取值范围是 .4.已知函数y=x²−2x−3,下列结论错误的是( )A.当x=0时,y=-3B.当x=-1时,y=0C.当y=0时,x=-1D.当y=-4时,x=15.已知函数y=(m−2)x m2+m−4+3x−5是关于x 的二次函数,求m 的值.知识点二列函数关系式6.等边三角形的边长为x,面积为y,用x 表示y的关系式为y= .7.已知长方形窗户的周长为6m,写出窗户面积y(m²)与窗户宽x(m)之间的函数关系式,并写出自变量x 的取值范围.8.如图,正方形 ABCD 的边长为4,E 为AB 边上一点,点 F 在AD 的延长线上,BE=DF=x,四边形AEGF 为矩形,设矩形AEGF 的面积为y,则y与x的函数关系式为 .9.国家决定对某药品价格分两次降价,若设平均每次降价的百分率为x,该药品原价为18元,降价后的价格为y元,则y与x的函数关系式为 .10.若x个球队参加比赛,每两个队之间进行一场比赛,比赛场数为y,则y与x的函数关系式为 .11.已知函数y=x²−2x−3,(1)x=0时,y= ;(2)y=0时,x= .12.已知x+1=t,y=t²−4t+3,则y与x 的函数关系式为 .13.已知二次函数y=x²−2mx+2m−3(m为常数)的图象恒过一个定点,则此定点坐标为.14.如图,有一段长为24米的篱笆,一面利用墙(墙的最大长度为10米)围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB 为x米,面积为S 平方米.(1)求S 与x 的函数关系式;(2)如果要围成面积为45 平方米的花圃,AB 的长为多少米?15.为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,其他三边用总长为60米的栅栏围住(如图),若设绿化带的边长BC 为x 米,绿化带的面积为 y平方米.(1)求y与x 的函数关系式,并写出自变量的取值范围;(2)绿化带的面积能否为450平方米? 若能,请求出x 的值;若不能,请说明理由.16.如图,在平面直角坐标系中,A(0,2),P(x,y),PB⊥x轴于B 点,若PA=PB,求y 与x 的函数关系式.。
九年级数学同步练习:二次函数专题练习

九年级数学同步练习:二次函数专题练习一、选择题(46=24)1.二次函数的图像经过点( )(A)( ,1); ( B)(1,1); (C)(0,1); (D)(1,0).2.假定a0,那么函数的图像的顶点在( )(A)第一象限; (B)第二象限; (C)第三象限; (D)第四象限.3.二次函数图像的对称轴直线是( )(A) ; (B) ; (D) .4.把二次函数的图像先向左平移2个单位,再向上平移1个单位,所失掉的对应的二次函数解析式是( )(A) ; (B) ;(C) ; (D) .5.以下各图中,有能够是函数在同一坐标系中的图像的是( )6.二次函数的图像的顶点的横坐标为1,那么的值是( )(A)3; (B)2 ; (C)-3; (D)-2.二、填空题(412=48)7.假设二次函数的图像过原点,那么 ________.8.二次函数的图像的启齿方向是__________.9.二次函数的图像的顶点坐标是_____________.10.二次函数的图像的对称轴是_____________.11.函数,当 ______时,随的增大而增大.12.抛物线与y轴的交点是______.13.与抛物线的图像外形相反,但启齿方向不同,顶点坐标是(0, )的抛物线解析式是________________________. 14.假定,由以下表格的信息:x-1 01183可知y与x之间的函数关系式是_______________.15.假定点A(2,m)在函数的图像上,那么点A关于x轴的对称点的坐标是_________________.16.抛物线顶点是 (1,5),那么b= ,c= _________.17.抛物线的顶点在x轴上,那么k的值是 .18.抛物线的顶点坐标为__________,在y轴上的截距是 .三、解答题(104+122+14=72)19.假设二次函数的图像经过点(1,2),求这个二次函数的解析式,并写出该函数图像的对称轴.20.求抛物线的启齿方向、顶点坐标和对称轴.21.把二次函数的图像向右平移3个单位,再向下平移2个单位,求经过上述平移后二次函数的解析式.22. 二次函数的图像过点(0,5)、(1,0)、(2,-3).求这个二次函数的解析式.23. (1)怎样平移二次函数的图像,可使它与x轴只要一个交点?(2)长方形的长为2cm,宽为1cm.假设长、宽各添加xcm,那么新的长方形面积添加y(cm2),求y关于x的函数解析式.24. 有一个二次函数的图像,三位同窗区分说出了它的一些特征:甲:对称轴是x=4;乙:与x轴两个交点的横坐标都是整数;丙:与y轴交点的纵坐标也是整数,且以这三个点为顶点的三角形面积为3.请写出满足上述全部特征的一个二次函数的解析式.25. 直线与x轴交于点A,与y轴交于点B;一抛物线的解析式为 .(1)假定该抛物线过点B,且它的顶点P在直线上,试确定这条抛物线的解析式;(2)过点B作直线BCAB交x轴于点C,假定抛物线的对称轴恰恰过C点,试确定直线的解析式.参考答案1.C2.D3.C4.C5.C6.D7.-28.向上9.(2,-6) 10. 11. 12.(0,-3) 13. 14. 15。
初三数学同步练习:二次函数测试题

初三数学同步练习:二次函数测试题初三数学同步练习:下学期二次函数测试题选择题:(共5题,每题4分,共20分)1.二次函数的最小值是( )A.-2B.2C.-1D.12. 二次函数的图象的顶点坐标是( )A.(1,3)B.(-1,3)C.(1,-3)D.(-1,-3)3、二次函数与x轴的交点个数是( )A.0B.1C.2D.34、经过原点的抛物线是( )A y=2x2+xBC y=2x2-1D y=2x2+15、二次函数的图象如下图,那么以下结论正确的选项是( )A. B.C. D.二、填空题:(共4题,每题4分,共20分)6、抛物线y = x 2的,对称轴是 ,顶点坐标是。
7、假定函数关系式为二次函数关系式,那么m的取值范围是8、请写出一个启齿向上,对称轴为直线x=2,的抛物线的关系式9. 如下图,二次函数的图象交轴于、两点,交轴于点,那么的面积10、右图是直角坐标中某抛物线的局部图象,请写出抛物线与轴左边交点的坐标。
三、解答题:(共8题,11~14每题8分,15~16每题9分,17题10分,共60分)11、用配方法求二次函数的顶点坐标。
12、用公式法求二次函数y=(1-x)(x+2)的顶点坐标。
13、求二次函数与横轴、纵轴的交点坐标。
14. 依据图像,求二次函数的关系式15、(1)请在坐标系中画出二次函数的大致图象;(提示:作图时应先求顶点坐标)(2)在同一个坐标系中画出的图象向上平移两个单位后的图象;(3)直接写出平移后的图象的关系式.注:图中小正方形网格的边长为1.16、二次函数的图象如图9所示,依据图象解答以下效果:(1)写出方程的两个根.(2)写出不等式的解集.(3)写出随的增大而减小的自变量的取值范围.(4)观察图象,估量方程的根,并在图象上标示出根的位置。
(准确到0.1)17. 东平桥是佛山的一道亮丽的景色线,该桥的局部横截面如下图,上方可看作是一个经过A、C、B三点的抛物线,以桥面的水平线为X轴,经过抛物线的顶点C与X轴垂直的直线为Y轴,树立直角坐标系,此桥垂直于桥面的相邻两柱之间距离为2米(图中用线段AD、CO、BE等表示桥柱)CO=1米,FG=2米写出点A、B、C的坐标。
《二次函数》同步综合练习卷(含答案)

《二次函数》同步综合练习卷一.选择题1.下列函数中属于二次函数的是()A.y=x(x+1)B.x2y=1C.y=2x2﹣2(x2+1)D.y=2.若b>0时,二次函数y=ax2+bx+a2﹣1的图象如下列四图之一所示,根据图象分析,则a的值等于()A.﹣1 B.1 C.D.3.设函数y=kx2+(3k+2)x+1,对于任意负实数k,当x<m时,y随x的增大而增大,则m的最大整数值为()A.2 B.﹣2 C.﹣1 D.04.若二次函数y=x2﹣6x+c的图象过A(﹣1,a),B(2,b),C(5,c),则下列正确的是()A.a>b>c B.a>c>b C.b>a>c D.c>a>b5.已知抛物线c:y=x2+2x﹣3,将抛物线c平移得到抛物线c′,如果两条抛物线,关于直线x=1对称,那么下列说法正确的是()A.将抛物线c沿x轴向右平移个单位得到抛物线c′B.将抛物线c沿x轴向右平移4个单位得到抛物线c′C.将抛物线c沿x轴向右平移个单位得到抛物线c′D.将抛物线c沿x轴向右平移6个单位得到抛物线c′6.当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a的值为()A.﹣1 B.2 C.0或2 D.﹣1或27.已知二次函数y=ax2+bx+c(a≠0)的图象经过点A(1,0),B(0,﹣3),且对称轴为x=2,则这条抛物线的顶点坐标为()A.(2,3)B.(2,1)C.(﹣2,1)D.(2,﹣1)8.用配方法将y=x2﹣6x+11化成y=a(x﹣h)2+k的形式为()A.y=(x+3)2+2 B.y=(x﹣3)2﹣2 C.y=(x﹣6)2﹣2 D.y=(x﹣3)2+29.已知抛物线y=ax2+bx+c上部分点的横坐标x与纵坐标y的对应值如表:有以下几个结论:①抛物线y=ax2+bx+c的开口向下;②抛物线y=ax2+bx+c的对称轴为直线x=﹣1;③方程ax2+bx+c=0的根为0和2;④当y>0时,x的取值范围是x<0或x>2;其中正确的是()A.①④B.②④C.②③D.③④10.如表是一组二次函数y=x2+x﹣1的自变量x与函数值y的对应值.由上表可知,方程x2+x﹣1=0的一个近似解是()A.0.4 B.0.5 C.0.6 D.0.811.如图是抛物线y=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,4),与x轴的一个交点是B (3,0),下列结论:①abc>0;②2a+b=0;③方程ax2+bx+c=4有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣2.0);⑤x(ax+b)≤a+b,其中正确结论的个数是()A.4个B.3个C.2个D.1个12.如图,半圆O的直径AB=4,与半圆O内切的动圆O1与AB切于点M,设⊙O1的半径为y,AM=x,则y关于x 的函数关系式是()A.y=﹣x2+x B.y=﹣x2+x C.y=﹣x2﹣x D.y=x2﹣x13.跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.15m C.20m D.22.5m二.填空题14.有下列函数:①y=1﹣x2;②y=;③y=x(x﹣3);④y=ax2+bx+c;⑤y=2x+1.其中,是二次函数的有(填序号)15.二次函数y1=mx2、y2=nx2的图象如图所示,则m n(填“>”或“<”).16.若抛物线y=ax2﹣x+c与y=2(x﹣3)2+1对称轴相同,且两抛物线的顶点相距3个单位长度,则c的值为.17.已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,则下列结论正确的有.①abc>0②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3③2a+b=0④当x>0时,y随x的增大而减小18.已知点(﹣1,m)、(2,n)在二次函数y=ax2﹣2ax﹣1的图象上,如果m>n,那么a0(用“>”或“<”连接).19.将抛物线y=﹣3x2向左平移一个单位后,得到的抛物线解析式是.20.函数y=﹣(x﹣1)2﹣7的最大值为.21.有一个二次函数的图象,甲、乙、丙三位同学分别说出了它的特点:甲:对称轴是直线x=2;乙:与x轴两个交点的横坐标都是整数;丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形的面积为3.请你写出满足上述全部特点的一个二次函数解析式.22.将二次函数y=x2+6x+5化为y=a(x﹣h)2+k的形式为.23.已知抛物线y=ax2+bx+c的图象与x轴交于点A(m﹣4,0)和B(m,0),与直线y=﹣x+p相交于点A和C (2m﹣4,m﹣6),抛物线y=ax2+bx+c与y轴交于点D,点P在抛物线的对称轴上,连PA,PD,当PA+PD的长最短时,点P的坐标为.24.试写出一个二次函数关系式,使它对应的一元二次方程的一个根为0,另一个根在1到2之间:.25.如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.下列判断:①当x>2时,M=y2;②当x<0时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1.其中正确的说法有.(请填写正确说法的番号)26.某快递公司十月份快递件数是10万件,如果该公司第四季度每个月快递件数的增长率都为x(x>0),十二月份的快递件数为y万件,那么y关于x的函数解析式是.27.有一座抛物线形拱桥,正常水位时桥下水面宽度为20米,拱顶距离水面4米.设正常水位时桥下的水深为2米,为保证过往船只顺利航行,桥下水面的宽度不得小于18米,则水深超过米时就会影响过往船只在桥下的顺利航行.28.如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE ﹣ED﹣DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ 的面积为ycm2.已知y与t的函数关系图象如图(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段),则下列结论:①AD=BE=5;②当0<t≤5时,y=t2;③cos∠ABE=;④当t=秒时,△ABE∽△QBP;⑤当△BPQ的面积为4cm2时,时间t的值是或;其中正确的结论是.参考答案一.选择题1.解:A、y=x2+x,是二次函数;B、y=,不是二次函数;C、y=﹣2,不是二次函数;D、不是整式,不是二次函数;故选:A.2.解:因为前两个图象的对称轴是y轴,所以﹣=0,又因为a≠0,所以b=0,与b>0矛盾;第三个图的对称轴﹣<0,a>0,则b>0,正确;第三个图的对称轴﹣<0,a<0,则b<0,故与b>0矛盾.由于第三个图过原点,所以将(0,0)代入解析式,得:a2﹣1=0,解得a=±1,由于开口向上,a=1.故选:B.3.解:∵对于任意负实数k,当x<m时,y随x的增大而增大,∵k为负数,即k<0,∴函数y=kx2+(3k+2)x+1表示的是开口向下的二次函数,∴在对称轴的左侧,y随x的增大而增大,∵对于任意负实数k,当x<m时,y随x的增大而增大,∴x=﹣=﹣∴m≤﹣=.∵k<0,∴﹣>0∴,∵m≤对一切k<0均成立,∴m≤,∴m的最大整数值是m=﹣2.故选:B.4.解:∵二次函数y=x2﹣6x+c,∴该二次函数的抛物线开口向上,且对称轴为:x=3.∵点A(﹣1,a),B(2,b),C(5,c)都在二次函数y=x2﹣6x+c的图象上,而三点横坐标离对称轴x=3的距离按由远到近为:(﹣1,a)、(5,c)、(2,b),∴a>c>b,故选:B.5.解:∵抛物线C:y=x2+2x﹣3=(x+1)2﹣4,∴抛物线对称轴为x=﹣1.∴抛物线与y轴的交点为A(0,﹣3).则与A点以对称轴对称的点是B(2,﹣3).若将抛物线C平移到C′,并且C,C′关于直线x=1对称,就是要将B点平移后以对称轴x=1与A点对称.则B点平移后坐标应为(4,﹣3)..因此将抛物线C向右平移4个单位.故选:B.6.解:当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a≤x≤a+1时,函数有最小值1,∴a=2或a+1=0,∴a=2或a=﹣1,故选:D.7.解:根据题意得:,解得:a=﹣1,b=4,c=﹣3,∴抛物线解析式为y=﹣x2+4x﹣3=﹣(x﹣2)2+1,则抛物线顶点坐标为(2,1).故选:B.8.解:y=x2﹣6x+11,=x2﹣6x+9+2,=(x﹣3)2+2.故选:D.9.解:设抛物线的解析式为y=ax2+bx+c,将(﹣1,3)、(0,0)、(3,3)代入得:,解得:,∴抛物线的解析式为y=x2﹣2x=x(x﹣2)=(x﹣1)2﹣1,由a=1>0知抛物线的开口向上,故①错误;抛物线的对称轴为直线x=1,故②错误;当y=0时,x(x﹣2)=0,解得x=0或x=2,∴方程ax2+bx+c=0的根为0和2,故③正确;当y>0时,x(x﹣2)>0,解得x<0或x>2,故④正确;故选:D.10.解:观察表格得:方程x2+x﹣1=0的一个近似根为0.6,故选:C.11.解:由图象可知,抛物线开口向下,则a<0,c>0∵抛物线的顶点坐标是A(1,4)∴抛物线对称轴为直线x=﹣∴b=﹣2a∴b>0,则①错误,②正确;方程ax2+bx+c=4方程的解,可以看做直线y=4与抛物线y=ax2+bx+c的交点的横坐标.由图象可知,直线y=4经过抛物线顶点,则直线y=4与抛物线有且只有一个交点.则方程ax2+bx+c=4有两个相等的实数根,③正确;由抛物线对称性,抛物线与x轴的另一个交点是(﹣1.0)则④错误;不等式x(ax+b)≤a+b可以化为ax2+bx+c≤a+b+c∵抛物线顶点为(1,4)∴当x=1时,y最大=a+b+c∴ax2+bx+c≤a+b+c故⑤正确故选:B.12.解:连接O1M,OO1,可得到直角三角形OO1M,依题意可知⊙O的半径为2,则OO1=2﹣y,OM=2﹣x,O1M=y.在Rt△OO1M中,由勾股定理得(2﹣y)2﹣(2﹣x)2=y2,解得y=﹣x2+x.故选:A.13.解:根据题意知,抛物线y=ax2+bx+c(a≠0)经过点(0,54.0)、(40,46.2)、(20,57.9),则解得,所以x=﹣==15(m).故选:B.二.填空题(共15小题)14.解:①y=1﹣x2;②y=,是反比例函数;③y=x(x﹣3);④y=ax2+bx+c,需要添加a≠0;⑤y=2x+1,是一次函数.其中,是二次函数的有:①y=1﹣x2;③y=x(x﹣3).故答案为:①③.15.解:根据抛物线的开口大小与二次函数的二次项系数的关系:系数越大,开口越小,故m>n,故答案为>.16.解:y=2(x﹣3)2+1对称轴是x=3,顶点坐标为(3,1),∵抛物线y=ax2﹣x+c与y=2(x﹣3)2+1对称轴相同,∴﹣=3,解得,a=,∵两抛物线的顶点相距3个单位长度,∴y=x2﹣x+c的顶点坐标为(3,4)或(3,﹣2),把(3,4)代入y=x2﹣x+c得,c=,把(3,﹣2)代入y=x2﹣x+c得,c=﹣,故答案为:或﹣.17.解:∵抛物线开口向下,∴a<0,∵对称轴在y轴右侧,∴>0,∴b>0,∵抛物线与y轴的交点在y轴正半轴,∴c>0,∴abc<0,故①错误;∵抛物线与x轴的一个交点为(3,0),又对称轴为直线x=1,∴抛物线与x轴的另一个交点为(﹣1,0),∴方程ax2+bx+c=0的两根是x1=﹣1,x2=3,故②正确;∵对称轴为直线x=1,∴=1,即2a+b=0,故③正确;∵由函数图象可得:当0<x<1时,y随x的增大而增大;当x>1时,y随x的增大而减小,故④错误;故答案为②③.18.解:∵二次函数的解析式为y=ax2﹣2ax﹣1,∴该抛物线对称轴为x=1,∵|﹣1﹣1|>|2﹣1|,且m>n,∴a>0.故答案为:>.19.解:∵抛物线y=﹣3x2向左平移一个单位后的顶点坐标为(﹣1,0),∴所得抛物线的解析式为y=﹣3(x+1)2,故答案为:y=﹣3(x+1)2.20.解:∵在函数y=﹣(x﹣1)2﹣7中a=﹣1<0,∴当x=1时,y取得最大值,最大值为﹣7,故答案为:﹣7.21.解:对称轴是直线x=2,则一次项系数与二次项系数的比是﹣4,因而可设函数解析式是y=ax2﹣4ax+ac,与y轴交点的纵坐标也是整数,因而ac是整数,y=ax2﹣4ax+ac=a(x2﹣4x+c),与x轴两个交点的横坐标都是整数,即方程x2﹣4x+c=0有两个整数解,设是﹣1和+5,则c=﹣5,则y=ax2﹣4ax+ac=a(x2﹣4x﹣5),∵以这三个交点为顶点的三角形的面积为3,∴a=±.则函数是:y=±(x+1)(x﹣5).(答案不唯一).22.解:y=x2+6x+5,=x2+6x+9﹣4,=(x2+6x+9)﹣4,=(x+3)2﹣4.故答案是:y=(x+3)2﹣4.23.解:∵点A(m﹣4,0)和C(2m﹣4,m﹣6)在直线y=﹣x+p上∴,解得:m=3,p=﹣1,∴A(﹣1,0),B(3,0),C(2,﹣3),设抛物线y=ax2+bx+c=a(x﹣3)(x+1),∵C(2,﹣3),代入得:﹣3=a(2﹣3)(2+1),∴a=1∴抛物线解析式为:y=x2﹣2x﹣3=(x﹣1)2﹣4,对称轴EF为x=1,当x=0时y=﹣3,即D点的坐标为(0,﹣3),作D关于EF的对称点N,连接AN,交EF于P,则此时P为所求,根据对称得N的坐标为(2,﹣3),设直线AN的解析式为y=kx+e,把A、N的坐标代入得:,解得:k=﹣1,e=﹣1,即y=﹣x﹣1,把x=1代入得:y=﹣2,即P点的坐标为(1,﹣2),故答案为:(1,﹣2).24.解:∵一元二次方程的一个根为0,另一个根在1到2,∴设两个根分别为0和,∴此一元二次方程可以是:x(x﹣)=0,∴二次函数关系式为:y=x(x﹣)=x2﹣x.故答案为:y=x2﹣x.25.解:∵当y1=y2时,即﹣x2+4x=2x时,解得:x=0或x=2,∴当x>2时,利用函数图象可以得出y2>y1;当0<x<2时,y1>y2;当x<0时,利用函数图象可以得出y2>y;1∴①错误;∵抛物线y1=﹣x2+4x,直线y2=2x,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;∴当x<0时,根据函数图象可以得出x值越大,M值越大;∴②正确;∵抛物线y1=﹣x2+4x的最大值为4,故M大于4的x值不存在,∴③正确;∵如图:当0<x<2时,y1>y2;当M=2,2x=2,x=1;x>2时,y>y1;2=2+,x2=2﹣(舍去),当M=2,﹣x2+4x=2,x∴使得M=2的x值是1或2+,∴④错误;∴正确的有②③两个.故答案为②③.26.解:根据题意得:y=10(x+1)2,故答案为:y=10(x+1)227.解:设抛物线解析式为y=ax2,把点B(10,﹣4)代入解析式得:﹣4=a×102,解得:a=﹣,∴y=﹣x2,把x=9代入,得:y=﹣=﹣3.24,此时水深=4+2﹣3.24=2.76米.28.解:根据图(2)可得,当点P到达点E时点Q到达点C,∵点P、Q的运动的速度分别是1cm/秒、2cm/秒∴BC=BE=10,∴AD=BC=10.∴①错误;又∵从M到N的变化是4,∴ED=4,∴AE=AD﹣ED=10﹣4=6.∵AD∥BC,∴∠EBQ=∠AEB,∴cos∠EBQ=cos∠AEB=,故③错误;如图1,过点P作PF⊥BC于点F,∵AD∥BC,∴∠EBQ=∠AEB,∴sin∠EBQ=sin∠AEB==,∴PF=PB sin∠EBQ=t,∴当0<t≤5时,y=BQ×PF=×2t×t=t2,故②正确,如图4,当t=时,点P在CD上,∴PD=﹣BE﹣ED=﹣10﹣4=,PQ=CD﹣PD=8﹣=,∴,,∴∵∠A=∠Q=90°,∴△ABE∽△QBP,故④正确.由②知,y=t2当y=4时, t2=4,从而,故⑤错误综上所述,正确的结论是②④.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《二次函数(第1课时)》同步练习
1.关于,,的图像,下列说法中不正确的是()A.顶点相同B.对称轴相同C.图像形状相同D.最低点相同2.两条抛物线与在同一坐标系内,下列说法中不正确的是()A.顶点相同B.对称轴相同C.开口方向相反D.都有最小值3.在抛物线上,当y<0时,x的取值范围应为()
A.x>0B.x<0C.x≠0D.x≥0
4.对于抛物线与下列命题中错误的是()
A.两条抛物线关于轴对称B.两条抛物线关于原点对称
C.两条抛物线各自关于轴对称D.两条抛物线没有公共点
5.已知抛物线的顶点为( 1, 2),且通过(1,10),则这条抛物线的表达式为()A.y=3-2 B.y=3+2
C.y=3-2 D.y=-3-2
1.二次函数(a>0)的图像开口向____,对称轴是____,顶点坐标是____,图像有最___点,x___时,y随x的增大而增大,x___时,y随x的增大而减小。
2.抛物线y=-b+3的对称轴是___,顶点是___。
3.抛物线y=--4的开口向___,顶点坐标___,对称轴___,x___时,y随x的增大而增大,x___时,y随x的增大而减小。
1.已知二次函数当x=1时,y= -1;当x=2时,y=2,求该函数解析式。
2
1
3
y x
=2
y x
=2
3
y x
=
2
y x
=2
y x
=-
2
y x
=-
2
y x
=2
y x
=-
x
y
2
y ax
=
2
x
2
1
(2)
2
x+
◆简答题
◆填空题
◆选择题
参考答案
1.C
2.D
3.C
4.D
5.C
1.上y轴(0,0)低>0 <0
2.y轴 (0 , 3)
3.下(―2,―4)x=-2 <-2 >-2 1.2
2-
=x
y
◆填空题
◆简答题
◆选择题。