紫外吸收光谱与红外吸收光谱
紫外吸收光谱与红外吸收光谱

共轭烯烃(不多于四个双键)p p*跃迁吸收峰位置可由伍德
沃德——菲泽 规则估算。 max= 基+nii 基-----是由非环或六环共轭二烯母体决定的基准值; 无环、非稠环二烯母体: 基=217 nm
2020/10/25
异环(稠环)二烯母体:
基=214 nm
同环(非稠环或稠环)二烯母体:
基=253 nm
niI : 由双键上取代基种类和个数决定的校正项
(1)每增加一个共轭双键 +30
(2)环外双键
+5
(3)双键上取代基:
酰基(-OCOR) 0 卤素(-Cl,-Br) +5
烷基(-R)
+5 烷氧基(-OR) +6
2020/10/25
(3)羰基化合物共轭烯烃中的 p → p*
1.紫外—可见吸收光谱
有机化合物的紫外—可见吸收光谱是三种电子跃迁的结果:
σ电子、π电子、n电子。
s*
HC O
s
Hp
n
p*
K
R
E
E,B
n
p
分子轨道理论:成键轨道—反键轨道。
s
当外层电子吸收紫外或可见辐射后,就从基态向激发态(反
键轨道)跃迁。主要有四种跃迁所需能量ΔΕ大小顺序为:
n→π* < π→π* < n→σ* < σ→σ*
① Y=H,R n → s* 150-160nm p → p* 180-190nm
p* KR K
ห้องสมุดไป่ตู้
n → p* 275-295nm
②Y= -NH2,-OH,-OR 等助色基团 p
紫外-可见吸收光谱与红外光谱.

紫外-可见吸收光谱与红外光谱基本概念紫外-可见吸收光谱:让不同波长的光通过待测物,经待测物吸收后,测量其对不同波长光的吸收程度(吸光度A),以吸光度A为纵坐标,辐射波长为横坐标作图,得到该物质的吸收光谱或吸收曲线,即为紫外—可见吸收光谱。
红外光谱:又称为分子振动转动光谱,属分子吸收光谱。
样品受到频率连续变化的红外光照射时,分子吸收其中一些频率的辐射,分子振动或转动引起偶极矩的净变化,使振-转能级从基态跃迁到激发态,相应于这些区域的透射光强减弱,记录百分透过率T%对波数或波长的曲线,即为红外光谱。
两者都是红分了的吸收光谱图。
区别--起源不同1.紫外吸收光谱由电子能级跃迁引起紫外线波长短、频率高、光子能量大,能引起分子外层电子的能级跃迁。
电子跃迁虽然伴随着振动及转动能级跃迁,但因后者能级差小,常被紫外曲线所淹没。
除某些化合物蒸气(如苯等)的紫外吸收光谱会显现振动能级跃起迁外,一般不显现。
因此,紫外吸收光谱属电子光谱。
光谱简单。
2.中红外吸收光谱由振—转能级跃迁引起? 红外线的波长比紫外线长,光子能量比紫外线小得多,只能收起分子的振动能级并伴随转动能级的跃迁,因而中红外光谱是振动—转动光谱,光谱复杂。
适用范围紫外吸收光谱法只适用于芳香族或具有共轭结构的不饱和脂肪族化合物及某些无物的定性分析,不适用于饱和有机化合物。
红外吸收光谱法不受此限,在中红外区,能测得所有有机化合物的特征红外光谱,用于定性分析及结构研究,而且其特征性远远高于紫外吸收光谱,除此之外,红外光谱还可以用于某些无机物的研究。
紫外分光光度法测定对象的物态以溶液为主,以及少数物质的蒸气;而红外分光光度法的测定对象比紫外分光光度法广泛,可以测定气、液、固体样品,并以测定固体样品最为方便。
红外分光光度法主要用于定性鉴及测定有机化合物的分子结构,紫外分光光度法主要用于定量分析及测定某些化合物的类别等。
特性红外光谱的特征性比紫外光谱强。
因为紫外光谱主要是分子的∏电子或n电子跃迁所产生的吸收光谱。
3.3 紫外、红外吸收和拉曼散射光谱分析

标识 1 2 3 4 5
ppm 21.41 125.38 128.28 129.09 137.83
强度 209 517 1000 910 214
-----苯 -----甲苯 -----二甲苯
标识 1 2 3
ppm 20.90 128.97 134.66
强度 229 1000 239
红外线灯
红外光谱图解析
利用本地计算机谱库检索 利用大型的红外图集检索(Sadtler) 红外识谱歌(不要求背诵)
布鲁克公司 OPUS 6.5中文版红外光谱工作站的基本操作
开机:打开计算机电源、主机电源,检查
主机面板上status指示灯应该黄灯亮。启
动Windows XP,双击OPUS快捷键,输入
密码后登录,点击OK进入工作站主界面。
测定:首先扫描空白背景;然后扫描样品,即
可得到样品的红外光谱图。基线校正,平滑, 标峰,快速打印谱图。定性时可以检索谱库。 也可以将满意的已知详细信息的化合物添加的 到谱库中。
点击高级数据采集
3.3.3 激光拉曼散射光谱法
Laser Raman spectroscopy,LRS
强度 403 1000 473 423 547
-----间二甲苯
紫外光谱图简单解析
丁省 蒽 萘 菲
苯
多核芳烃的紫外吸收
定性分析-有限的辅助方法
max:化合物特性参数,可作为定性依据;
有机化合物紫外吸收光谱:反映结构中生色团和助色 团的特性;
结构确定的辅助手段;
max , max都相同,可能是同一个化合物;
3.3 紫外、红外吸收 和拉曼散射光谱分析
2011-03
紫外光谱与红外光谱的区别

紫外光谱与红外光谱的区别
1)定义不同、
紫外可见吸收光谱:让不同波长的光通过待测物,经待测物吸收后测量其对不同波长光的吸收程度(吸光度A),以吸光度A为纵坐标,辐射波长为横坐标作图,得到该物质的吸收曲线,即为紫外可见吸收光谱。
红外光谱:又称为分子振动转动光谱,属分子吸收光谱。
样品收到频率连续变化的红外光照射时,分子吸收其中一些频率的辐射,分子振动或转动引起偶极矩的净变化,使振转能级从基态跃迁带激发态,相应于这些区域的投射光强减弱,记录百分透过率T%对波长或波数的曲线,即为红外光谱。
两者都是分子的吸收光谱图。
2)
1)
•。
核磁共振波谱与紫外可见光谱及红外光谱的区别

核磁共振波谱与紫外可见光谱及红外光谱的区别核磁共振波谱与紫外可见光谱及红外光谱的主要不同有两点:①原理不同紫外可见吸收光谱是分子吸收200~700nm的电磁波,吸收紫外光能量,引起分子中电子能级的跃迁,主要是引起最外层电子能级发生跃迁。
红外光谱是分子吸收2.5~50um(2500~50000nm)的电磁波,吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁。
核磁共振波谱则是在外磁场下,吸收60cm~300m 的电磁波,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁。
②测定方法不同。
紫外和红外等一般光谱是通过测定不同波长下的透光率(T%=出射光强/入射光强)来获得物质的吸收光谱。
这种方法只适用于透过光强度变化较大的能级跃迁。
60cm~300m的电磁波穿透力很弱,故核磁共振无法通过测定透光率来获得核磁共振光谱,它是通过“共振吸收法”来测定核磁共振信号的。
共振吸收法是指:在一定磁场强度下,原子核在一定频率的电磁波照射下发生自旋能级跃迁时引起核磁矩方向改变进而产生感应电流,通过放大、记录此感应电流便得到核磁共振信号。
依次改变磁场强度(或电磁波的照射频率)使满足不同化学环境核的共振条件,收集共振引起的磁感应信号,经过数学处理,就获得核磁共振波谱图。
③谱图的表示方法不同:紫外谱图的表示方法:相对吸收光能量随吸收光波长的变化。
红外谱图的表示方法:相对透射光能量随透射光频率变化。
核磁谱图的表示方法:吸收光能量随化学位移的变化。
④提供的信息不同:紫外提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息。
红外提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率。
核磁提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息。
核磁共振谱的优缺点:优点:(仪器的灵敏度和分辨率非常高,较容易解析NMR图(随着计算机技术的应用,多脉冲激发的方法的采用及由此产生的二维谱图、多维谱图等许多新技术,是许多复杂化合物的结构测定引刃而解,NMR可以说是化学研究中最有力的武器之一。
红外光谱和紫外光谱的区别

1-辛烯的红外光谱:
1640中等强度的峰为C=C双键的伸缩振动; 双键碳上的C—H键伸缩振动3080,弯曲振动993,909。
(3) 炔烃
C≡C键伸缩振动吸收峰2260~2100cm-1,若三键两边是 对称的烃基吸收峰减弱或不出现; 三键碳上的C—H键伸缩振动在3320~3310cm-1有强而 尖的吸收峰;
②振动光谱:谱带,在中红外区域内。
③电子光谱:互相重叠的谱带,在可见-紫外区域内。
红外光谱
红外光谱的作用:确定化合物中官能团的存在,确定 两个化合物是否相同。
1 分子的振动与红外吸 收(1) 分子的振动
近似的用弹簧连接小球的机械模型来表示;
用Hooke定律来近似的描述。
1 2
k( 1 + m1
红外光谱图,以1500cm-1为界分成两个区域:
①特征谱带区:波数在3800~1500cm-1间的高频区,吸收 峰大多由成键原子之间键的伸缩振动产生,与整个分子 的关系不大,不同化合物中的相同官能团的出峰位置相 对固定,可用于确定分子中含有哪些官能团。
②指纹区:波数在1500~650cm-1间的低频区,吸收峰主 要是C—C、C—N、C—O单键的伸缩振动和各种键的弯 曲振动产生的。指纹区吸收峰大多与整个分子的结构密 切相关。
溶剂的影响,π→π*跃迁,溶剂极性增加,吸收红移。 n→π*跃迁,溶剂极性增加,吸收蓝移。
4 各类化合物的紫外吸收
饱和有机化合物: σ→σ*跃迁的紫外 吸收都在远紫外区 , 吸收波长
<200nm。 只有部分饱和有机化合物如溴化物、碘化物、胺等,
苯环上的C—H键 伸缩振动吸收峰在3040~3030cm-1;
面内弯曲振动吸收峰在1225~950 cm-1 ;
紫外可见吸收光谱红外吸收光谱核磁共振光谱相同之处

紫外可见吸收光谱、红外吸收光谱和核磁共振光谱是化学分析中常用的三种光谱技术。
它们虽然在应用领域和原理上有所不同,但在某些方面也存在一些相似之处。
在本文中,我将深入探讨这三种光谱技术的共同点,并分析它们之间的联系。
1. 这三种光谱技术都是分析化学领域中常用的手段,用于研究物质的结构和性质。
它们能够通过不同的原理和方法,对物质进行分析和表征,从而为化学研究和实际应用提供重要的数据支持。
2. 在实验操作上,这三种光谱技术都需要对样品进行预处理和制备,以确保获得准确和可靠的测试数据。
对于紫外可见吸收光谱和红外吸收光谱,样品通常需要溶解或制备成适当的样品片;而对于核磁共振光谱,则需要对样品进行氢化处理和溶解。
3. 就数据解析而言,这三种光谱技术都需要对实验数据进行处理和解释,以获得与化学结构和性质相关的信息。
这包括对光谱图谱的解读和峰位的标定,以及对峰强度和形状的分析。
4. 这三种光谱技术在实验原理和测试方法上也存在一些共通之处。
它们都是基于物质对电磁辐射的吸收和发射现象,通过测定不同波长或频率下的吸收或发射光谱,获得与物质结构和性质相关的信息。
总结回顾:在本文中,我们从实验操作、数据解析和实验原理三个方面分析了紫外可见吸收光谱、红外吸收光谱和核磁共振光谱的共同点。
这三种光谱技术在化学分析中发挥着重要作用,对研究物质的结构和性质具有重要意义。
通过深入理解和比较这三种技术,我们能够更全面、深刻和灵活地应用它们,在化学研究和实际应用中取得更好的成果。
个人观点和理解:我个人认为,紫外可见吸收光谱、红外吸收光谱和核磁共振光谱的相同之处并不仅仅局限于实验操作、数据解析和实验原理上,更重要的是它们共同承担了化学分析和表征的重任,为我们揭示了物质的结构和性质。
在今后的研究和应用中,我们应该充分发挥这三种光谱技术的优势,进一步加深对它们的理解和应用。
通过本文的阐述,我相信你对紫外可见吸收光谱、红外吸收光谱和核磁共振光谱的相同之处已经有了更全面的理解。
紫外-可见吸收光谱与红外光谱

紫外-可见吸收光谱与红外光谱基本概念紫外-可见吸收光谱:让不同波长的光通过待测物,经待测物吸收后,测量其对不同波长光的吸收程度(吸光度A),以吸光度A为纵坐标,辐射波长为横坐标作图,得到该物质的吸收光谱或吸收曲线,即为紫外—可见吸收光谱。
红外光谱:又称为分子振动转动光谱,属分子吸收光谱。
样品受到频率连续变化的红外光照射时,分子吸收其中一些频率的辐射,分子振动或转动引起偶极矩的净变化,使振-转能级从基态跃迁到激发态,相应于这些区域的透射光强减弱,记录百分透过率T%对波数或波长的曲线,即为红外光谱。
两者都是红分了的吸收光谱图。
区别--起源不同1.紫外吸收光谱由电子能级跃迁引起紫外线波长短、频率高、光子能量大,能引起分子外层电子的能级跃迁。
电子跃迁虽然伴随着振动及转动能级跃迁,但因后者能级差小,常被紫外曲线所淹没。
除某些化合物蒸气(如苯等)的紫外吸收光谱会显现振动能级跃起迁外,一般不显现。
因此,紫外吸收光谱属电子光谱。
光谱简单。
2.中红外吸收光谱由振—转能级跃迁引起? 红外线的波长比紫外线长,光子能量比紫外线小得多,只能收起分子的振动能级并伴随转动能级的跃迁,因而中红外光谱是振动—转动光谱,光谱复杂。
适用范围紫外吸收光谱法只适用于芳香族或具有共轭结构的不饱和脂肪族化合物及某些无物的定性分析,不适用于饱和有机化合物。
红外吸收光谱法不受此限,在中红外区,能测得所有有机化合物的特征红外光谱,用于定性分析及结构研究,而且其特征性远远高于紫外吸收光谱,除此之外,红外光谱还可以用于某些无机物的研究。
紫外分光光度法测定对象的物态以溶液为主,以及少数物质的蒸气;而红外分光光度法的测定对象比紫外分光光度法广泛,可以测定气、液、固体样品,并以测定固体样品最为方便。
红外分光光度法主要用于定性鉴及测定有机化合物的分子结构,紫外分光光度法主要用于定量分析及测定某些化合物的类别等。
特性红外光谱的特征性比紫外光谱强。
因为紫外光谱主要是分子的∏电子或n电子跃迁所产生的吸收光谱。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
00:12:37
对吸收曲线的说明:
④不同浓度的同一种物质,在某一定波长下吸光度 A 有差异,在λ max处吸光度A 的差异最大。此特性可作为
物质定量分析的依据。 ⑤在λ max处吸光度随浓度变化的幅度最大,所以测定 最灵敏。吸收曲线是定量分析中选择入射光波长的重要 依据。
-OR 30(nm)
-Cl 5(nm)
CH3 5(nm)
00:12:37
(2)共轭烯烃中的 p → p*
具有共轭双键的化合物,相间的p 键与p 键相互作用,生 成大p 键。由于大p 键各能级的距离较近电子容易激发, 所以吸收峰的波长就增加,生色作用加强发生深色移动。
K带——共轭非封闭体系的p p* 跃迁产生的吸收带。
M +热
基态
激发态
M + 荧光或磷光
E1 (△E) E2
E = E2 - E1 = h 量子化 ;选择性吸收
吸收曲线与最大吸收波
长 max
用不同波长的单色光 照射,测吸光度;
00:12:37
对吸收曲线的说明:
①同一种物质对不同波长光的吸光度 不同。吸光度最大处对应的波长称为最 大吸收波长λ max ②不同浓度的同一种物质,其吸收曲 线形状相似λ max不变。而对于不同物质, 它们的吸收曲线形状和λ max则不同。
s*
HC O
s
Hpnp*源自KREE,B
n
p
分子轨道理论:成键轨道—反键轨道。
s
当外层电子吸收紫外或可见辐射后,就从基态向激发态(反 键轨道)跃迁。主要有四种跃迁所需能量Δ Ε 大小顺序为:
n→π * < π →π * < n→σ * < σ →σ *
00:12:37
2 σ→σ*跃迁
所需能量最大;σ 电子只有吸收远紫外光的能量才能发
共轭烯烃(不多于四个双键)p p*跃迁吸收峰位置可由伍德
沃德——菲泽 规则估算。 max= 基+nii 基-----是由非环或六环共轭二烯母体决定的基准值; 无环、非稠环二烯母体: 基=217 nm
00:12:37
紫外吸收光谱与红外吸收光谱
00:12:37
第一部分 紫外吸收光谱分析法
• 第一节 紫外吸收光谱分析基本原理 • 一、 紫外吸收光谱的产生 • 二、 有机物紫外吸收光谱
00:12:37
一、紫外吸收光谱的产生
formation of UV
1.概述
紫外-可见吸收光谱:分子价电子能级跃迁。
波长范围:100-800 nm.
00:12:37
3.电子跃迁与分子吸收光谱
物质分子内部三种运动形式: (1)电子相对于原子核的运动; (2)原子核在其平衡位置附近的相对振动; (3)分子本身绕其重心的转动。 分子具有三种不同能级:电子能级、振动能级和转动能级 三种能级都是量子化的,且各自具有相应的能量。 分子的内能:电子能量Ee 、振动能量Ev 、转动能量Er 即: E=Ee+Ev+Er
00:12:37
说明:
(4)吸收光谱的波长分布是由产生谱带的跃迁能级间的 能量差所决定,反映了分子内部能级分布状况,是物质定性 的依据;
(5)吸收谱带的强度与分子偶极矩变化、跃迁几率有关, 也提供分子结构的信息。通常将在最大吸收波长处测得的摩
尔吸光系数ε max也作为定性的依据。不同物质的λ max有时 可能相同,但ε max不一定相同;
生跃迁;
饱和烷烃的分子吸收光谱出现在远紫外区;
吸收波长λ <200 nm;
例:甲烷的λ max为125nm , 乙烷λ max为135nm。
只能被真空紫外分光光度计检测到;
s*
作为溶剂使用;
p*
E K
R
E,B
n
p
s
00:12:37
3 n→σ*跃迁
所需能量较大。 吸收波长为150~250nm,大部分在远紫外区,近紫外区 仍不易观察到。 含非键电子的饱和烃衍生物(含N、O、S和卤素等杂原
(6)吸收谱带强度与该物质分子吸收的光子数成正比,定 量分析的依据。
00:12:37
二、有机物吸收光谱与电子跃迁
ultraviolet spectrometry of organic compounds
1.紫外—可见吸收光谱
有机化合物的紫外—可见吸收光谱是三种电子跃迁的结果:
σ 电子、π 电子、n电子。
(1) 远紫外光区: 100-200nm
(2) 近紫外光区: 200-400nm
(3)可见光区:400-800nm
可用于结构鉴定和定量分析。e
1 2
4
电子跃迁的同时,伴随着振
动转动能级的跃迁;带状光谱。
3
250 300 350
00:12:37
λ 400nm
2.物质对光的选择性吸收及吸收曲线
M + h → M *
子)均呈现n→σ * 跃迁(生色团、助色团、红移、蓝移)。
化合物 H2O
CH3OH CH3CL
CH3I CH3NH2
max(nm) 167 184 173 258 215
emax 1480 150 200 365 600
00:12:37
4 π→π*跃迁
所需能量较小,吸收波长处于远紫外区的近紫外端或近 紫外区,ε max一般在104L·mol-1·cm-1以上,属于强吸收。 (1) 不饱和烃π →π *跃迁
ΔΕe>ΔΕv>ΔΕr
00:12:37
能级跃迁
电子能级间跃 迁的同时,总伴 随有振动和转动 能级间的跃迁。 即电子光谱中总 包含有振动能级 和转动能级间跃 迁产生的若干谱 线而呈现宽谱带 。
00:12:37
说明:
(1) 转动能级间的能量差Δ Ε r:0.005~0.050eV,跃迁
产生吸收光谱位于远红外区。远红外光谱或分子转动光谱; (2) 振动能级的能量差Δ Ε v约为:0.05~1eV,跃迁产 生的吸收光谱位于红外区,红外光谱或分子振动光谱; (3) 电子能级的能量差Δ Ε e较大1~20eV。电子跃迁产生 的吸收光谱在紫外—可见光区,紫外—可见光谱或分子的电 子光谱;
乙烯π →π *跃迁的λ max为171nm,ε max为: 1×104
L·mol-1·cm-1。 K带——共轭非封闭体系的p p* 跃迁
C=C
H c
H
发色基团, 但 p p*200nm。
H
c
max=171nm
H 助色基团取代 n p*发生红移。
取代基 -SR 红移距离 45(nm)
-NR2 40(nm)