2019年高考数学导数解答题
2019全国二卷数学导数

2019全国二卷数学导数
导数是一个重要的数学概念,它在研究函数的单调性、极值、最值等方面有着广泛的应用。
在2019年全国二卷数学中,导数也是必考的知识点之一。
在2019年全国二卷数学中,导数的题目通常会给出函数的表达式,要求求出函数的导数,并利用导数研究函数的单调性、极值和最值等性质。
例如,题目可能会给出函数 f(x) = x^3 - 3x^2 + 2,要求求出函数的导数f'(x),并研究函数的单调性和极值。
对于函数 f(x) = x^3 - 3x^2 + 2,我们可以求出它的导数 f'(x) = 3x^2 - 6x。
接下来,我们可以令 f'(x) = 0,解得 x = 0 或 x = 2。
当 x < 0 时,f'(x) > 0,所以函数在区间 (-∞, 0) 上是单调递增的;
当 0 < x < 2 时,f'(x) < 0,所以函数在区间 (0, 2) 上是单调递减的;
当 x > 2 时,f'(x) > 0,所以函数在区间(2, +∞) 上是单调递增的。
因此,函数在 x = 0 处取得极大值 f(0) = 2,在 x = 2 处取得极小值 f(2) = 0。
需要注意的是,这只是导数的一种应用示例,具体的题目可能会涉及到更多的知识点和解题技巧。
因此,考生在备考时需要全面掌握导数的基本概念和性质,并多做一些练习题来提高自己的解题能力。
2019年全国三卷文科高考数学真题解析

2019年全国三卷文科高考数学真题解析2019年全国统一高考数学试卷(文科)(全国新课标Ⅲ)一、选择题:1.已知集合A={-1.0.1.2},B={x|x1},则A∩B= { }A。
{-1.1} B。
{0.1} C。
{1.2} D。
{ }解析:B中的元素为2和1<x<2的实数,与A中的元素1和2相交,因此A∩B={1.2}。
2.若z(1+i)=2i,则z=()A。
1-i B。
-1+i C。
1+i D。
-1-i解析:将z(1+i)=2i化简得z=-2+2i,因此z=-1-i。
3.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是()A。
1/6 B。
1/3 C。
1/2 D。
2/3解析:一共有4!种排列方式,其中两位女同学相邻的排列方式有2!*2!*2!种,因此所求概率为(2!*2!*2!)/4!=1/3.4.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并成为中国古典小说四大名著。
某中学为了了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该学校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为()A。
0.5 B。
0.6 C。
0.7 D。
0.8解析:根据容斥原理,阅读过《西游记》或《红楼梦》的学生数目为90,阅读过《西游记》和《红楼梦》的学生数目为90-80=10,因此阅读过《西游记》的学生数目为60-10=50.所求比值的估计值为50/100=0.5.5.函数f(x)=2sinx-sin^2x在[0,2π]的零点个数为()解析:将f(x)化简得f(x)=sinx(2-cosx),因此f(x)=0的解为x=0,π,2π/3,4π/3,共4个零点。
6.已知各项均为正数的等比数列{an}的前4项和为15,且a5=3a3+4a1,则a3=()解析:根据等比数列的性质,设首项为a,公比为q,则a1+a2+a3+a4=a(1-q^4)/(1-q)=15,因此a(1-q^4)=15.又根据a5=3a3+4a1,代入an=aq^(n-1)得到a^2q^4=3a^2q^2+4a,化简得q^2=4/3.将q代入a(1-q^4)=15中得到a=5/2,因此a3=aq^2=5/3.7.已知曲线y=aex+xlnx在点(1,ae)处的切线方程为y=2x+b,则a=()解析:曲线在点(1,ae)处的斜率为y'(1)=a+1,因此切线的斜率为2,即a+1=2,解得a=1.将a=1代入原方程得到y=ex+xlnx,将(1,ae)代入得到ae=e,因此b=0.8.如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则BN=()解析:连接BN,因为BN垂直于平面ECD,所以BN⊥CD,又因为BN平分CD,所以BN=ND=1/2CD=1/2BC=1/2(√2/2)AB=1/2√2.因此BN=1/2√2.9.执行如图所示的程序框图,如果输入为0.01,则输出的s值等于()解析:按照程序框图计算得到s=2^-26.10.已知F是双曲线C: x^2/9-y^2/4=1的一个焦点,O为坐标原点,点P在C上,若|OP|=|OF|=5,则△OPF的面积为()解析:双曲线的焦距为c=√(a^2+b^2)=3√2,因此F为(3√2,0)或(-3√2,0)。
2019年高考数学(理) 第三章 专题1导数在函数及方程中的应用

专题1导数在函数及方程中的应用刷难关1.[河南安阳2018 一模]已知函数2233)(x x x f +=与g (x )=6x +a 的图像有3个不同的交点,则a 的取值范围是( )A .⎥⎦⎤⎢⎣⎡-227,322 B .⎪⎭⎫⎝⎛-227,322C .⎥⎦⎤⎝⎛-322,227D .⎥⎦⎤⎢⎣⎡-322,227 2.[湖南长沙长郡中学2018 一模]已知函数)0(ln )(>=x x x e x f ,若对⎥⎦⎤⎢⎣⎡∈∀e e x ,1,彐k ∈[-a ,a](a>0),使得方程ƒ(x)=k 有解,则实数a 的取值范围是( )A.(0,e e ] B .[e e ,+∞)C .[e ,+∞)D .⎥⎥⎦⎤⎢⎢⎣⎡e e e e ,13.[河南洛阳2018联考]已知函数ƒ(x)=(ax+ Inx ).(x- Inx )-x ²有三个不同的零点x ₁,x ₂,x ₃,其中x ₁<x ₂<x ₃,则)ln 1)(ln 1(2)ln 1(332211x x x x x x ---的值为( )A .1 -aB .a-1C .-1D .14.[甘肃武威二中2018月考]若正数t 满足a(2e -t)In t=1(e 为自然对数的底数),则实数a 的取值范围为_____.5.[山西四十五校2018联考]已知函数ƒ(x)满足)(ln 1)(ln )1()(x f x f e x f +-=,当x ∈(0,1]时,x e x f ==)(.设g(x)=ƒ(x)-kx ,若方程g(x)=e 在(0,e]上有且仅有三个实数解,则实数k 的取值范围是_____.6.[河北衡水武邑中学2018调研]设函数ƒ(x)=ln x ,g(x) =xxe -x -1.(1)若关于x 的方程ƒ(x )=x ²-310+m 在区间[1,3]上有解,求m 的取值范围; (2)当x>0时,g (x )-a ≥ƒ(x)恒成立,求实数a 的取值范围.7.[江西新余2018 -模]已知函数ƒ(x)=ln x- 2x ² +3,g(x)=ƒ'(x )+4x+ alnx (a ≠0). (1)求函数ƒ(x)的单调区间;(2)若关于x 的方程g(x)=a 有实数根,求实数a 的取值范围.8.[贵州凯里一中2018一模]已知ƒ(x)=2xln x -mx+e 2.(1)若方程ƒ(x)=0在),41(e 上有实数根,求实数m 的取值范围;(2)若y=ƒ(x)在[1,e]上的最小值为-4+e 2,求实数m 的值.9.[河南郑州2018 -模]已知函数a ax x x f 11ln )(-+=,a ∈R 且a ≠0.(1)讨论函数ƒ(x)的单调性;(2)当⎥⎦⎤⎢⎣⎡∈e e x ,1时,试判断函数g(x)=(Inx-1)x e +x- m 零点个数.10.[湖北武汉2018调研]已知函数ƒ(x)=xe - ax -1(a ∈R )(e=2.718 28...是自然对数的底数). (1)求ƒ(x)的单调区间;(2)讨论g (x )=ƒ(x)(x-21)在区间[0,1]上零点的个数.11.[山东德州2018期末]已知221)1()(ax x e x x f +-=.(1)若ƒ(x)在x=1处切线的斜率为2e ,求a 的值;(2)在(1)的前提下,求ƒ(x)的极值;(3)若ƒ(x)有两个不同的零点,求a 的取值范围.12.[山西孝义2018一模]已知函数ƒ(x)=2(a-1)x+b . (1)讨论函数g(x)=xe - ƒ(x)在[0,1]上的单调性; (2)已知函数h (x )=xe -x ƒ(2x)-1,若h(1)=0,且函数h (x )在(0,1)内有零点,求a 的取值范围.专题1导数在函数及方程中的应用 刷难关1.B 【解析】原问题等价于函数xx x x h 62233)(-+=的图像与直线y=a 有三个不同的交点.h ’(x)=x ² +x-6=(x-2)(x+3),当x ∈(-∞,-3)时,h ’(x)>0,h(x)单调递增;当x ∈(-3,2)时,H ’(x)<0,h(x)单调递减;当x ∈(2,+∞)时,h ’(x)>0,h(x)单调递增.函数h(x)的图像,如图,又h (-3)=227,h(2)=222-,数形结合可得a 的取值范围是)227,222(-.故选B .2.B 【解析】)1(ln ln )('x x x e x x e x x e x f +=+=,令x x x g 1ln )(+=,则21211)('x x x x x g -=-= ∴当0 <x<1时,g ‘(x)<0,当x>1时,g ’(x)>0,∴g(x)在)1,1(e 上单调递减,在(1,e)上单调递增.∴g (x )≥g(1)=1,∴f ’(x )>0,∴f(x)在⎥⎦⎤⎢⎣⎡1,1e 上单调递增,∴f(x)在⎥⎦⎤⎢⎣⎡1,1e 上的值域为⎥⎥⎦⎤⎢⎢⎣⎡-e e e e,1. ∵对∀X ∈⎥⎦⎤⎢⎣⎡1,1e ,]彐k ∈[-a ,a](a>0),使得方程f(x)=k 有解,∴⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤-≥-,0,,1a a e e a e e,解得ee a ≥,∴实数a 的取值范围是[ee ,+∞).3.D 【解析】易知x> Inx .令f(x)=0,分离参数得x x x x x a ln ln --=,令x xx x x x h ln ln )(--=,则2)ln (2)ln 2)(ln 1(ln )('x x x x x x x x h ---=,令h ’(x)=0,得x=1或x=e .当X ∈(0,1)时,h ’(x)<0,当X ∈(1,e)时,h ’(x)>0,当x ∈(e ,+∞)时,h ’(x)<0,即h(x)在(0,1),(e ,+∞)上为减函数,在(1,e)上为增函数,所以0 <x ₁ <1 <X ₂ <e<X ₃,且h(1)<a<h(e),即x x x x x x x x x a e e e a ln ln 11ln ln ·111--=--=--<<,令x x u ln =,则u u a --=11,即u ²+(a -1)u+1 -a =0.设u ₁,u ₂为方程U ²+(a-1)u+1-a=0的两根,则u ₁+u ₂2=1-n <0,u ₁u ₂=1-a <0.对于x xu ln =,2ln 1'x x u -=,则当0<x<e 时,u ’>0;当x>e 时,u ’<0.而当x>e 时,u 恒大于零,作出xx u ln =的大致图像,如图所示,不妨设u ₁<u ₂,则111ln x x u =,333222ln ln x x u x x u ===,则)1)(1(2)1()ln 1)(ln 1(·2)ln 1(321332211u u u x x x x x x ---=---=[(1 -u ₁)(1-u ₂)]²=[1-(1-a)+(1-a)]²=1.故选D.4.(-∞ ,0)∪⎪⎭⎫⎢⎣⎡+∞,1e【解析】设f(t)= (2e -t)Int ,则1ln 22ln )('--=-+-=t t e t t e t t f .显然f ’(e)=0,令g(t)=f ’(t),则t t e t g 12)('-=,当t>0时,g ’(t)<0,故f ’(t)是减函数,所以当0<t<e时,f ’(t)>0,f(t)递增,当t>e 时,f ’(t)<0,f(t)单调递减,所以当t=e 时f(t)取得极大值,也是最大值,且f(e)=(2e - e)ln e=e ,当t →+∞(或t →0)时f(t)→∞,因此f(t)≤e ,所以01<a 或ea ≤<10,解得a <0或e a 1≥.5. ⎥⎦⎤ ⎝⎛--21,41e e 解析 ∵当x ∈(0,1]时,x e x f =)(.∴当x ∈(1,e]时,Inx ∈(0,1]x x e x f ==ln )(ln ,从而111)(ln 1)(ln )1()(-+=+-=+-=e xx x ex x f x f e x f .故有⎪⎩⎪⎨⎧≤<-+≤<=.1,11,10,)(e x e x x x e x f .由g(x)=f(x) -kx=e ,可得f(x)= kx+e .在同一直角坐标系内画出y=f(x)与y= kx+e 的图像,如图所示:设A(0,e),AB 为曲线y=f(x),x ∈(1,e]的切线,B 为切点,)11,(-+e e e C ,由图可知,当直线y=kx+e位于切线AB 和直线AC 之间时,y=kx +e 的图像与y= f(x)的图像有三个交点.设B (x ₀,y ₀),由21)'11(x e x -=-+,可得切线)(201)11(:00x x x e x y AB --=-+-.又切线过点)0(201)11(00x x e x e --=-+-,解得x ₀ =2,故41-=ABk .又2111e e e e e e k AC -=--+=,∴当方程g(x)=e 。
2019届高考数学(浙江版)一轮配套讲义:3.1 导 数

第三章导数§3.1导数考纲解读分析解读 1.导数是高考中的重要内容.导数的运算是高考命题的热点,是每年的必考内容.2.本节主要考查导数的运算,导数的几何意义,考查函数与其导函数图象之间的关系.3.预计2019年高考中,导数运算的考查必不可少,同时要注意对切线的考查,复习时应引起高度重视.五年高考考点一导数的概念及其几何意义1.(2016山东,10,5分)若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质.下列函数中具有T性质的是()A.y=sinxB.y=lnxC.y=e xD.y=x3答案A2.(2014课标Ⅱ,8,5分)设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0B.1C.2D.3答案D3.(2017课标全国Ⅰ文,14,5分)曲线y=x2+在点(1,2)处的切线方程为.答案x-y+1=04.(2017天津文,10,5分)已知a∈R,设函数f(x)=ax-lnx的图象在点(1,f(1))处的切线为l,则l在y轴上的截距为.答案15.(2016课标全国Ⅲ,15,5分)已知f(x)为偶函数,当x<0时,f(x)=ln(-x)+3x,则曲线y=f(x)在点(1,-3)处的切线方程是.答案y=-2x-16.(2014江苏,11,5分)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P(2,-5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是.答案-37.(2014江西,13,5分)若曲线y=e-x上点P处的切线平行于直线2x+y+1=0,则点P的坐标是.答案(-ln2,2)8.(2016浙江自选,“复数与导数”模块,03(2),5分)求曲线y=2x2-lnx在点(1,2)处的切线方程.解析因为(2x2-lnx)'=4x-,所以曲线在点(1,2)处的切线的斜率为3.因此,曲线在点(1,2)处的切线方程为y=3x-1.9.(2013浙江,22,14分)已知a∈R,函数f(x)=x3-3x2+3ax-3a+3.(1)求曲线y=f(x)在点(1,f(1))处的切线方程;(2)当x∈[0,2]时,求|f(x)|的最大值.解析(1)由题意得f'(x)=3x2-6x+3a,故f'(1)=3a-3.又f(1)=1,所以所求的切线方程为y=(3a-3)x-3a+4.(2)由于f'(x)=3(x-1)2+3(a-1),0≤x≤2.故(i)当a≤0时,有f'(x)≤0,此时f(x)在[0,2]上单调递减,故|f(x)|max=max{|f(0)|,|f(2)|}=3-3a.(ii)当a≥1时,有f'(x)≥0,此时f(x)在[0,2]上单调递增,故|f(x)|max=max{|f(0)|,|f(2)|}=3a-1.(iii)当0<a<1时,设x1=1-,x2=1+,则0<x1<x2<2,f'(x)=3(x-x1)(x-x2).由于f(x1)=1+2(1-a),f(x2)=1-2(1-a)·,故f(x1)+f(x2)=2>0,f(x1)-f(x2)=4(1-a)·>0.从而f(x1)>|f(x2)|.所以|f(x)|max=max{f(0),|f(2)|,f(x1)}.①当0<a<时,f(0)>|f(2)|.又f(x1)-f(0)=2(1-a)-(2-3a)= >0,故|f(x)|max=f(x1)=1+2(1-a).②当≤a<1时,|f(2)|=f(2),且f(2)≥f(0).又f(x1)-|f(2)|=2(1-a)-(3a-2)=,所以当≤a<时,f(x1)>|f(2)|.故f(x)max=f(x1)=1+2(1-a).当≤a<1时,f(x1)≤|f(2)|.故f(x)max=|f(2)|=3a-1.综上所述,|f(x)|max=10.(2013浙江文,21,15分)已知a∈R,函数f(x)=2x3-3(a+1)x2+6ax.(1)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;(2)若|a|>1,求f(x)在闭区间[0,2|a|]上的最小值.解析(1)当a=1时,f'(x)=6x2-12x+6,所以f'(2)=6.又因为f(2)=4,所以切线方程为y=6x-8.(2)记g(a)为f(x)在闭区间[0,2|a|]上的最小值.f'(x)=6x2-6(a+1)x+6a=6(x-1)(x-a).令f'(x)=0,得到x1=1,x2=a.比较f(0)=0和f(a)=a2(3-a)的大小可得g(a)=当a<-1时,得g(a)=3a-1.综上所述,f(x)在闭区间[0,2|a|]上的最小值为g(a)=11.(2017北京文,20,13分)已知函数f(x)=e x cosx-x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间上的最大值和最小值.解析本题考查导数的几何意义,考查利用导数研究函数的单调性、最值.(1)因为f(x)=e x cosx-x,所以f'(x)=e x(cosx-sinx)-1,f'(0)=0.又因为f(0)=1,所以曲线y=f(x)在点(0,f(0))处的切线方程为y=1.(2)设h(x)=e x(cosx-sinx)-1,则h'(x)=e x(cosx-sinx-sinx-cosx)=-2e x sinx.当x∈时,h'(x)<0,所以h(x)在区间上单调递减.所以对任意x∈有h(x)<h(0)=0,即f'(x)<0.所以函数f(x)在区间上单调递减.因此f(x)在区间上的最大值为f(0)=1,最小值为f=-.12.(2017山东文,20,13分)已知函数f(x)=x3-ax2,a∈R.(1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程;(2)设函数g(x)=f(x)+(x-a)cosx-sinx,讨论g(x)的单调性并判断有无极值,有极值时求出极值.解析本题考查导数的几何意义;用导数研究函数的单调性;用导数求函数的极值、最值.(1)由题意f'(x)=x2-ax,所以当a=2时,f(3)=0,f'(x)=x2-2x,所以f'(3)=3,因此,曲线y=f(x)在点(3,f(3))处的切线方程是y=3(x-3),即3x-y-9=0.(2)因为g(x)=f(x)+(x-a)cosx-sinx,所以g'(x)=f'(x)+cosx-(x-a)sinx-cosx=x(x-a)-(x-a)sinx=(x-a)(x-sinx),令h(x)=x-sinx,则h'(x)=1-cosx≥0,所以h(x)在R上单调递增.因为h(0)=0,所以当x>0时,h(x)>0;当x<0时,h(x)<0.(1)当a<0时,g'(x)=(x-a)(x-sinx),当x∈(-∞,a)时,x-a<0,g'(x)>0,g(x)单调递增;当x∈(a,0)时,x-a>0,g'(x)<0,g(x)单调递减;当x∈(0,+∞)时,x-a>0,g'(x)>0,g(x)单调递增.所以当x=a时g(x)取到极大值,极大值是g(a)=-a3-sina,当x=0时g(x)取到极小值,极小值是g(0)=-a.(2)当a=0时,g'(x)=x(x-sinx),当x∈(-∞,+∞)时,g'(x)≥0,g(x)单调递增;所以g(x)在(-∞,+∞)上单调递增,g(x)无极大值也无极小值.(3)当a>0时,g'(x)=(x-a)(x-sinx),当x∈(-∞,0)时,x-a<0,g'(x)>0,g(x)单调递增;当x∈(0,a)时,x-a<0,g'(x)<0,g(x)单调递减;当x∈(a,+∞)时,x-a>0,g'(x)>0,g(x)单调递增.所以当x=0时g(x)取到极大值,极大值是g(0)=-a;当x=a时g(x)取到极小值,极小值是g(a)=-a3-sina.综上所述:当a<0时,函数g(x)在(-∞,a)和(0,+∞)上单调递增,在(a,0)上单调递减,函数既有极大值,又有极小值,极大值是g(a)=-a3-sina,极小值是g(0)=-a;当a=0时,函数g(x)在(-∞,+∞)上单调递增,无极值;当a>0时,函数g(x)在(-∞,0)和(a,+∞)上单调递增,在(0,a)上单调递减,函数既有极大值,又有极小值,极大值是g(0)=-a,极小值是g(a)=-a3-sina.教师用书专用(13—19)13.(2015陕西,15,5分)设曲线y=e x在点(0,1)处的切线与曲线y=(x>0)上点P处的切线垂直,则P的坐标为.答案(1,1)14.(2015课标Ⅱ,16,5分)已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=.答案815.(2014广东,10,5分)曲线y=e-5x+2在点(0,3)处的切线方程为.答案5x+y-3=016.(2017山东,20,13分)已知函数f(x)=x2+2cosx,g(x)=e x(cosx-sinx+2x-2),其中e=2.71828…是自然对数的底数.(1)求曲线y=f(x)在点(π,f(π))处的切线方程;(2)令h(x)=g(x)-af(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.解析本题考查导数的几何意义和极值.(1)由题意知,f(π)=π2-2,又f'(x)=2x-2sinx,所以f'(π)=2π,因此曲线y=f(x)在点(π,f(π))处的切线方程为y-(π2-2)=2π(x-π),即y=2πx-π2-2.(2)由题意得h(x)=e x(cosx-sinx+2x-2)-a(x2+2cosx),因为h'(x)=e x(cosx-sinx+2x-2)+e x(-sinx-cosx+2)-a(2x-2sinx)=2e x(x-sinx)-2a(x-sinx)=2(e x-a)(x-sinx),令m(x)=x-sinx,则m'(x)=1-cosx≥0,所以m(x)在R上单调递增.因为m(0)=0,所以当x>0时,m(x)>0;当x<0时,m(x)<0.(i)当a≤0时,e x-a>0,当x<0时,h'(x)<0,h(x)单调递减,当x>0时,h'(x)>0,h(x)单调递增,所以当x=0时h(x)取到极小值,极小值是h(0)=-2a-1;(ii)当a>0时,h'(x)=2(e x-e lna)(x-sinx),由h'(x)=0得x1=lna,x2=0.①当0<a<1时,lna<0,当x∈(-∞,lna)时,e x-e lna<0,h'(x)>0,h(x)单调递增;当x∈(lna,0)时,e x-e lna>0,h'(x)<0,h(x)单调递减;当x∈(0,+∞)时,e x-e lna>0,h'(x)>0,h(x)单调递增.所以当x=lna时h(x)取到极大值,极大值为h(lna)=-a[(lna)2-2lna+sin(lna)+cos(lna)+2],当x=0时h(x)取到极小值,极小值是h(0)=-2a-1;②当a=1时,lna=0,所以当x∈(-∞,+∞)时,h'(x)≥0,函数h(x)在(-∞,+∞)上单调递增,无极值;③当a>1时,lna>0,所以当x∈(-∞,0)时,e x-e lna<0,h'(x)>0,h(x)单调递增;当x∈(0,lna)时,e x-e lna<0,h'(x)<0,h(x)单调递减;当x∈(lna,+∞)时,e x-e lna>0,h'(x)>0,h(x)单调递增.所以当x=0时h(x)取到极大值,极大值是h(0)=-2a-1;当x=lna时h(x)取到极小值,极小值是h(lna)=-a[(lna)2-2lna+sin(lna)+cos(lna)+2].综上所述:当a≤0时,h(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,函数h(x)有极小值,极小值是h(0)=-2a-1;当0<a<1时,函数h(x)在(-∞,lna)和(0,+∞)上单调递增,在(lna,0)上单调递减,函数h(x)有极大值,也有极小值,极大值是h(lna)=-a[(lna)2-2lna+sin(lna)+cos(lna)+2],极小值是h(0)=-2a-1;当a=1时,函数h(x)在(-∞,+∞)上单调递增,无极值;当a>1时,函数h(x)在(-∞,0)和(lna,+∞)上单调递增,在(0,lna)上单调递减,函数h(x)有极大值,也有极小值,极大值是h(0)=-2a-1,极小值是h(lna)=-a[(lna)2-2lna+sin(lna)+cos(lna)+2].17.(2013湖南,22,13分)已知a>0,函数f(x)=.(1)记f(x)在区间[0,4]上的最大值为g(a),求g(a)的表达式;(2)是否存在a,使函数y=f(x)在区间(0,4)内的图象上存在两点,在该两点处的切线互相垂直?若存在,求a的取值范围;若不存在,请说明理由.解析(1)当0≤x≤a时,f(x)=;当x>a时,f(x)=.因此,当x∈(0,a)时,f'(x)=<0,f(x)在(0,a)上单调递减;当x∈(a,+∞)时,f'(x)=>0,f(x)在(a,+∞)上单调递增.①若a≥4,则f(x)在(0,4)上单调递减,g(a)=f(0)=.②若0<a<4,则f(x)在(0,a)上单调递减,在(a,4)上单调递增.所以g(a)=max{f(0),f(4)}.而f(0)-f(4)=-=,故当0<a≤1时,g(a)=f(4)=;当1<a<4时,g(a)=f(0)=.综上所述,g(a)=(2)由(1)知,当a≥4时,f(x)在(0,4)上单调递减,故不满足要求.当0<a<4时,f(x)在(0,a)上单调递减,在(a,4)上单调递增.若存在x1,x2∈(0,4)(x1<x2),使曲线y=f(x)在(x1,f(x1)),(x2,f(x2))两点处的切线互相垂直,则x1∈(0,a),x2∈(a,4),且f'(x1)·f'(x2)=-1.即·=-1.亦即x1+2a=.(*)由x1∈(0,a),x2∈(a,4)得x1+2a∈(2a,3a),∈.故(*)成立等价于集合A={x|2a<x<3a}与集合B=的交集非空.因为<3a,所以当且仅当0<2a<1,即0<a<时,A∩B≠⌀.综上所述,存在a使函数f(x)在区间(0,4)内的图象上存在两点,在该两点处的切线互相垂直,且a的取值范围是.18.(2015安徽,18,12分)设n∈N*,x n是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标.(1)求数列{x n}的通项公式;(2)记T n=…,证明:T n≥.解析(1)y'=(x2n+2+1)'=(2n+2)x2n+1,曲线y=x2n+2+1在点(1,2)处的切线斜率为2n+2.从而切线方程为y-2=(2n+2)(x-1).令y=0,解得切线与x轴交点的横坐标x n=1-=.(2)证明:由题设和(1)中的计算结果知T n=…=….当n=1时,T1=.当n≥2时,因为==>==.所以T n>×××…×=.综上可得对任意的n∈N*,均有T n≥.19.(2013北京,18,13分)设L为曲线C:y=在点(1,0)处的切线.(2)证明:除切点(1,0)之外,曲线C在直线L的下方.解析(1)设f(x)=,则f'(x)=.所以f'(1)=1.所以L的方程为y=x-1.(2)证明:令g(x)=x-1-f(x),则除切点之外,曲线C在直线L的下方等价于g(x)>0(∀x>0,x≠1).g(x)满足g(1)=0,且g'(x)=1-f'(x)=.当0<x<1时,x2-1<0,lnx<0,所以g'(x)<0,故g(x)单调递减;当x>1时,x2-1>0,lnx>0,所以g'(x)>0,故g(x)单调递增.所以,g(x)>g(1)=0(∀x>0,x≠1).所以除切点之外,曲线C在直线L的下方.考点二导数的运算1.(2014大纲全国,7,5分)曲线y=xe x-1在点(1,1)处切线的斜率等于()A.2eB.eC.2D.1答案C2.(2013江西,13,5分)设函数f(x)在(0,+∞)内可导,且f(e x)=x+e x,则f'(1)=.答案23.(2017浙江,20,15分)已知函数f(x)=(x-)e-x.(1)求f(x)的导函数;(2)求f(x)在区间上的取值范围.解析本题主要考查函数的最大(小)值,导数的运算及其应用,同时考查分析问题和解决问题的能力.(1)因为(x-)'=1-,(e-x)'=-e-x,所以f'(x)=e-x-(x-)e-x=.(2)由f'(x)==0,解得x=1或x=.又f(x)=(-1)2e-x≥0,所以f(x)在区间上的取值范围是.4.(2016北京,18,13分)设函数f(x)=xe a-x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e-1)x+4.(2)求f(x)的单调区间.解析(1)因为f(x)=xe a-x+bx,所以f'(x)=(1-x)e a-x+b.依题设,知即解得a=2,b=e.(2)由(1)知f(x)=xe2-x+ex.由f'(x)=e2-x(1-x+e x-1)及e2-x>0知,f'(x)与1-x+e x-1同号.令g(x)=1-x+e x-1,则g'(x)=-1+e x-1.所以,当x∈(-∞,1)时,g'(x)<0,g(x)在区间(-∞,1)上单调递减;当x∈(1,+∞)时,g'(x)>0,g(x)在区间(1,+∞)上单调递增.故g(1)=1是g(x)在区间(-∞,+∞)上的最小值,从而g(x)>0,x∈(-∞,+∞).综上可知,f'(x)>0,x∈(-∞,+∞).故f(x)的单调递增区间为(-∞,+∞).三年模拟A组2016—2018年模拟·基础题组考点一导数的概念及其几何意义1.(2018浙江镇海中学12月测试,2)已知直线y=x+1与曲线y=ln(x+a)相切,则a的值为()A.2B.1C.-1D.-2答案A2.(2017浙江测试卷,4)已知直线y=ax是曲线y=lnx的切线,则实数a=()A. B. C. D.答案C3.(2017浙江衢州质量检测(1月),14)已知函数f(x)=x3+2ax2+1在x=1处的切线的斜率为1,则实数a=,此时函数y=f(x)在[0,1]最小值为.答案-;4.(2017浙江台州质量评估,20)已知函数f(x)=x3+|x-a|(a∈R).(1)当a=1时,求f(x)在(0,f(0))处的切线方程;(2)当a∈(0,1)时,求f(x)在区间[-1,1]上的最小值(用a表示).解析(1)当a=1,x<1时,f(x)=x3+1-x,f'(x)=3x2-1,所以f(0)=1,f'(0)=-1,所以f(x)在(0,f(0))处的切线方程为y=-x+1.(2)当a∈(0,1)时,由已知得f(x)=当a≤x≤1时,由f'(x)=3x2+1>0,知f(x)在(a,1)上是单调递增的.当-1≤x<a时,f'(x)=3x2-1,(i)当a∈时,f(x)在上递增,在上递减,在上递增,所以在区间[-1,1]上,f(x)min=min=min=a-.(ii)当a∈时,f(x)在上递增,在上递减,所以在区间[-1,1]上,f(x)min=min{f(-1),f(a)}=min{a,a3}=a3.综上所述,f(x)min=考点二导数的运算5.(2018浙江镇海中学12月测试,1)下列求导结果正确的是()A.(1-x2)'=1-2xB.(cos30°)'=-sin30°C.[ln(2x)]'=D.()'=答案D6.(2017浙江名校(诸暨中学)交流卷四,4)设f1(x)=sinx+cosx,对任意的n∈N*,定义f n+1(x)=f n'(x),则f2017(x)等于()A.sinx-cosxB.sinx+cosxC.-sinx-cosxD.-sinx+cosx答案B7.(2017浙江镇海中学阶段测试(二),13)已知函数f(x)=sinx-f'cosx,若f'=0,则f'=.答案-1B组2016—2018年模拟·提升题组一、选择题1.(2017浙江湖州期末调研,2)函数y=e x(e是自然对数的底数)的图象在点(0,1)处的切线方程是()A.y=x-1B.y=x+1C.y=-x-1D.y=-x+1答案B二、解答题2.(2018浙江重点中学12月联考,20)已知函数f(x)=-ln(x+b)+a(a,b∈R).(1)若y=f(x)的图象在点(2,f(2))处的切线方程为y=-x+3,求a,b的值;(2)当b=0时,f(x)≥-对定义域内的x都成立,求a的取值范围.解析(1)由f(x)=-ln(x+b)+a,得f'(x)=-,所以得(6分)(2)当b=0时,f(x)≥-对定义域内的x都成立,即-lnx+a≥-恒成立,所以a≥lnx-恒成立,则a≥(lnx-)max.(9分)令g(x)=lnx-,则g'(x)=-=.(11分)令m(x)=-x,则m'(x)=-1=,令m'(x)>0,得x<1,所以m(x)在上单调递增,在(1,+∞)上单调递减,所以m(x)max=m(1)=0,(13分)所以g'(x)≤0,所以g(x)在定义域上单调递减,所以g(x)max=g=ln,所以a≥ln.(15分)3.(2018浙江“七彩阳光”联盟期中,20)已知函数f(x)=+alnx(a>0).(1)若曲线y=f(x)在点P(1,f(1))处的切线与直线y=-x平行,求函数y=f(x)的单调区间;(2)若对任意x∈(0,+∞),都有f(x)>0成立,试求实数a的取值范围;(3)记g(x)=f(x)+2x-b(b∈R),当a=1时,函数g(x)在区间[e-1,e]上有两个零点,求实数b的取值范围.解析(1)直线y=-x的斜率为-1.函数f(x)的定义域为(0,+∞),f'(x)=-+,所以f'(1)=-3+a=-1,解得a=2,(3分)所以f(x)=+2lnx,f'(x)=.由f'(x)>0,得x>;由f'(x)<0,得0<x<,所以f(x)的单调递减区间为,单调递增区间为.(5分)(2)f'(x)=-+=(a>0),由f'(x)>0,得x>,由f'(x)<0,得0<x<,所以f(x)的单调递减区间为,单调递增区间为,当x=时,f(x)取极小值,也是最小值,即f(x)min=f,(7分)∵对任意x∈(0,+∞),都有f(x)>0成立,∴f>0,即a+aln>0,(9分)又a>0,∴ln>-1,得0<a<3e.∴实数a的取值范围为(0,3e).(10分)(3)当a=1时,g(x)=+lnx+2x-b(x>0),g'(x)==,由g'(x)>0,得x>1,由g'(x)<0,得0<x<1.所以g(x)的单调递减区间为(0,1),单调递增区间为(1,+∞),则x=1时,g(x)取得极小值g(1).(12分)因为函数g(x)在区间[e-1,e]上有两个零点,所以得∵-=e--2>0,∴5<b≤2e++1.所以b的取值范围是.(15分)4.(2017浙江宁波二模(5月),20)设函数f(x)=x2-ax-lnx,a∈R.(1)若函数f(x)的图象在x=1处的切线斜率为1,求实数a的值;(2)当a≥-1时,记f(x)的极小值为H,求H的最大值.解析(1)f'(x)=(x>0),由题知,f'(1)=1,解得a=0.(2)令f'(x0)=0,则2-ax0-1=0,解得x0=,且2-1=ax0.可知f(x)在(0,x0)上递减,在(x0,+∞)上递增,则H=f(x)极小值=f(x0)=-ax0-lnx0=-+1-lnx0.记g(a)=(a≥-1),当a≥0时,g(a)为增函数;当-1≤a<0时,g(a)=,此时g(a)为增函数,故x0≥g(-1)=.设y=-x2+1-lnx.易知,函数y=-x2+1-lnx在上为减函数,所以H的最大值为+ln2.5.(2017浙江高考模拟训练冲刺卷一,20)已知函数f(x)=2alnx+x2-(a+2)x,a∈R.(1)当a=时,求曲线y=f(x)在点M(1,f(1))处的切线方程;(2)求函数f(x)在区间[1,2]上的最大值.解析(1)当a=时,f(x)=lnx+x2-x,所以f(1)=-2.又f'(x)=+x-,所以f'(1)=-.由点斜式得所求切线方程为y=-x-.(2)f'(x)=+x-(a+2)==,因为x∈[1,2],所以有①当a≥2时,函数f(x)在区间[1,2]上为增函数.此时f(x)max=f(2)=2aln2-2a-2.②当1≤a<2时,函数f(x)在区间[1,a]上为增函数,在区间[a,2]上为减函数.此时f(x)max=f(a)=2alna-a2-2a.③当a<1时,函数f(x)在区间[1,2]上为减函数.此时f(x)max=f(1)=-a-.故函数f(x)在区间[1,2]上的最大值为f(x)max=6.(2017浙江高考模拟训练冲刺卷四,20)已知函数f(x)=lnx-+1.(1)求曲线y=f(x)在点(1,f(1))处的切线方程;(2)当x∈(0,1)时,函数g(x)=af(x)-x2在x=m处取得极大值,求实数a的取值范围.解析(1)由f'(x)=+,得f'(1)=3.又f(1)=-1,∴曲线y=f(x)在点(1,f(1))处的切线方程为y=3x-4.(2)g(x)=a-x2,∴g'(x)=+-x=-(x>0),∵g(x)在x=m处取得极大值,∴g'(m)=0,∴m3-2am-4a=0,即a=(0<m<1),设h(m)=(0<m<1),则h'(m)==>0.∴h(m)在(0,1)上单调递增,∴0<a<.C组2016—2018年模拟·方法题组方法1导数运算的解题策略1.求下列函数的导数:(1)y=x;(2)y=1+sin cos;(3)y=xsinx+;(4)y=-2x.解析(1)因为y=x+2+,所以y'=1-.(2)因为y=1+sin cos=1+sinx,所以y'=cosx.(3)y'=(xsinx)'+()'=sinx+xcosx+.(4)y'='-(2x)'=-2x ln2=-2x ln2.方法2导数的几何意义的解题策略2.(2017浙江镇海中学模拟卷一,20)已知函数f(x)=x3+3ax2.(1)判断函数f(x)的单调性;(2)若过点(1,0)可作曲线y=f(x)的三条切线,求a的取值范围.解析(1)f'(x)=3x2+6ax=3x(x+2a),所以当a=0时,f'(x)≥0恒成立,因此f(x)在(-∞,+∞)上单调递增;当a<0时,f(x)在(-∞,0)上单调递增,在(0,-2a)上单调递减,在(-2a,+∞)上单调递增;当a>0时,f(x)在(-∞,-2a)上单调递增,在(-2a,0)上单调递减,在(0,+∞)上单调递增.(2)设切点坐标为(t,f(t)),则过该点的切线方程为y-f(t)=f'(t)(x-t).易知该直线经过点(1,0),则有-f(t)=f'(t)(1-t),即t[2t2+(3a-3)t-6a]=0,由题可知,上述方程有三个互不相等的实根,即2t2+(3a-3)t-6a=0有两个互不相等的非零实根,所以有解得所以a的取值范围是(-∞,-3)∪∪(0,+∞).3.(2017浙江镇海中学模拟卷四,20)已知函数f(x)=ax2-lnx(其中a为正常数).(1)当a=时,求曲线y=f(x)在点(2,f(2))处的切线方程;(2)试求函数f(x)在[1,2]上的最小值.解析(1)当a=时,f(x)=x2-lnx,则f'(x)=x-=,所以f'(2)=,且f(2)=2-ln2,因此曲线y=f(x)在点(2,f(2))处的切线方程为y-(2-ln2)=(x-2),即y=x-(1+ln2).(6分)(2)f'(x)=2ax-=,其中x>0,因此,f(x)在上单调递减,在上单调递增.(8分)当≤1,即a≥时,f(x)在[1,2]上单调递增,所以f(x)min=f(1)=a;(10分)当≥2,即0<a≤时,f(x)在[1,2]上单调递减,所以f(x)min=f(2)=4a-ln2;(12分)当1<<2,即<a<时,f(x)在上单调递减,在上单调递增,所以f(x)min=f=+ln(2a).(14分)综上,f(x)min= (15分)。
高考数学总复习 第二章 函数、导数及其应用 课时作业9 理(含解析)新人教A版-新人教A版高三全册数

课时作业9 对数与对数函数1.(2019·某某某某统考)函数f (x )=1ln3x +1的定义域是( B )A.⎝ ⎛⎭⎪⎫-13,+∞B.⎝ ⎛⎭⎪⎫-13,0∪(0,+∞)C.⎣⎢⎡⎭⎪⎫-13,+∞ D .[0,+∞)解析:由⎩⎪⎨⎪⎧3x +1>0,ln 3x +1≠0,解得x >-13且x ≠0,故选B.2.(2019·某某某某模拟)设a =60.4,b =log 0.40.5,c =log 80.4,则a ,b ,c 的大小关系是( B )A .a <b <cB .c <b <aC .c <a <bD .b <c <a解析:∵a =60.4>1,b =log 0.40.5∈(0,1),c =log 80.4<0,∴a >b >c .故选B. 3.已知lg a ,lg b 是方程2x 2-4x +1=0的两个实根,则lg(ab )·⎝ ⎛⎭⎪⎫lg a b 2=( B )A .2B .4C .6D .8解析:由已知,得lg a +lg b =2,即lg(ab )=2. 又lg a ·lg b =12,所以lg(ab )·⎝ ⎛⎭⎪⎫lg a b2=2(lg a -lg b )2=2[(lg a +lg b )2-4lg a ·lg b ]=2×⎝⎛⎭⎪⎫22-4×12=2×2=4,故选B.4.若函数y =a -a x(a >0,a ≠1)的定义域和值域都是[0,1],则log a 37+log a 1123=( D )A .1B .2C .3D .4解析:若a >1,则y =a -a x在[0,1]上单调递减,则⎩⎨⎧a -a =0,a -1=1,解得a =2,此时,log a 37+log a 1123=log 216=4;若0<a <1,则y =a -a x在[0,1]上单调递增,则⎩⎨⎧a -a =1,a -1=0,无解,故选D.5.(2019·某某省际名校联考)已知f (x )满足对∀x ∈R ,f (-x )+f (x )=0,且当x ≤0时,f (x )=1ex +k (k 为常数),则f (ln5)的值为( B )A .4B .-4C .6D .-6解析:易知函数f (x )是奇函数,故f (0)=1e 0+k =1+k =0,即k =-1,所以f (ln5)=-f (-ln5)=-(e ln5-1)=-4.6.(2019·某某某某南雄模拟)函数f (x )=x a满足f (2)=4,那么函数g (x )=|log a (x +1)|的图象大致为( C )解析:∵f (2)=4,∴2a=4,解得a =2,∴g (x )=|log 2(x +1)|=⎩⎪⎨⎪⎧log 2x +1,x ≥0,-log 2x +1,-1<x <0,∴当x ≥0时,函数g (x )单调递增,且g (0)=0;当-1<x <0时,函数g (x )单调递减,故选C.7.已知函数f (x )=e x+2(x <0)与g (x )=ln(x +a )+2的图象上存在关于y 轴对称的点,则实数a 的取值X 围是( A )A .(-∞,e)B .(0,e)C .(e ,+∞)D .(-∞,1)解析:由题意知,方程f (-x )-g (x )=0在(0,+∞)上有解,即e -x-ln(x +a )=0在(0,+∞)上有解,即函数y =e -x与y =ln(x +a )的图象在(0,+∞)上有交点,则ln a <1,即0<a <e ,则a 的取值X 围是(0,e),当a ≤0时,y =e -x与y =ln(x +a )的图象总有交点,故a 的取值X 围是(-∞,e),故选A.8.(2019·某某省级名校模拟)已知函数f (x )=(e x-e-x)x ,f (log 5x )+f (log 15x )≤2f (1),则x 的取值X 围是( C )A.⎣⎢⎡⎦⎥⎤15,1 B .[1,5]C.⎣⎢⎡⎦⎥⎤15,5D.⎝⎛⎦⎥⎤-∞,15∪[5,+∞) 解析:∵f (x )=(e x-e -x)x ,∴f (-x )=-x (e -x -e x )=(e x -e -x)x =f (x ), ∴函数f (x )是偶函数.∵f ′(x )=(e x -e -x )+x (e x +e -x)>0在(0,+∞)上恒成立. ∴函数f (x )在(0,+∞)上单调递增. ∵f (log 5x )+f (log 15 x )≤2f (1), ∴2f (log 5x )≤2f (1),即f (log 5x )≤f (1), ∴|log 5x |≤1,∴15≤x ≤5.故选C.9.函数f (x )=log 2x ·log2(2x )的最小值为-14.解析:依题意得f (x )=12log 2x ·(2+2log 2x )=(log 2x )2+log 2x =⎝⎛⎭⎪⎫log 2x +122-14≥-14,当且仅当log 2x =-12,即x =22时等号成立,因此函数f (x )的最小值为-14.10.(2019·某某质检)已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则nm=9__.解析:f (x )=|log 3x |=⎩⎪⎨⎪⎧-log 3x ,0<x <1,log 3x ,x ≥1,所以f (x )在(0,1)上单调递减,在(1,+∞)上单调递增, 由0<m <n 且f (m )=f (n ), 可得⎩⎪⎨⎪⎧0<m <1,n >1,log 3n =-log 3m ,则⎩⎪⎨⎪⎧0<m <1,n >1,mn =1,所以0<m 2<m <1,则f (x )在[m 2,1)上单调递减,在(1,n ]上单调递增,所以f (m 2)>f (m )=f (n ),则f (x )在[m 2,n ]上的最大值为f (m 2)=-log 3m 2=2,解得m =13,则n =3,所以nm=9. 11.设f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2. (1)求a 的值及f (x )的定义域;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,32上的最大值.解:(1)∵f (1)=2,∴log a 4=2(a >0,a ≠1),∴a =2.由⎩⎪⎨⎪⎧1+x >0,3-x >0,得-1<x <3,∴函数f (x )的定义域为(-1,3). (2)f (x )=log 2(1+x )+log 2(3-x )=log 2[(1+x )(3-x )]=log 2[-(x -1)2+4], ∴当x ∈(-1,1]时,f (x )是增函数; 当x ∈(1,3)时,f (x )是减函数,故函数f (x )在⎣⎢⎡⎦⎥⎤0,32上的最大值是f (1)=log 24=2.12.已知函数f (x )=log a (a 2x+t ),其中a >0且a ≠1. (1)当a =2时,若f (x )<x 无解,求t 的取值X 围;(2)若存在实数m ,n (m <n ),使得x ∈[m ,n ]时,函数f (x )的值域也为[m ,n ],求t 的取值X 围.解:(1)∵log 2(22x+t )<x =log 22x,∴22x+t <2x 无解,等价于22x +t ≥2x恒成立, 即t ≥-22x+2x=g (x )恒成立, 即t ≥g (x )max ,∵g (x )=-22x +2x=-⎝⎛⎭⎪⎫2x -122+14,∴当2x=12,即x =-1时,g (x )取得最大值14,∴t ≥14,故t 的取值X 围是⎣⎢⎡⎭⎪⎫14,+∞. (2)由题意知f (x )=log a (a 2x+t )在[m ,n ]上是单调增函数,∴⎩⎪⎨⎪⎧f m =m ,f n =n ,即⎩⎪⎨⎪⎧a 2m +t =a m,a 2n +t =a n,问题等价于关于k 的方程a 2k-a k+t =0有两个不相等的实根,令a k=u >0,则问题等价于关于u 的二次方程u 2-u +t =0在u ∈(0,+∞)上有两个不相等的实根,即⎩⎪⎨⎪⎧ u 1+u 2>0,u 1·u 2>0,Δ>0,即⎩⎪⎨⎪⎧t >0,t <14,得0<t <14.∴t 的取值X 围为⎝ ⎛⎭⎪⎫0,14.13.已知f (x )是定义在(0,+∞)上的函数.对任意两个不相等的正数x 1,x 2,都有x 2f x 1-x 1f x 2x 1-x 2>0,记a =f 30.230.2,b =f 0.320.32,c =f log 25log 25,则( B ) A .a <b <c B .b <a <c C .c <a <bD .c <b <a解析:已知f (x )是定义在(0,+∞)上的函数, 对任意两个不相等的正数x 1,x 2, 都有x 2f x 1-x 1f x 2x 1-x 2>0,故x 1-x 2与x 2f (x 1)-x 1f (x 2)同号, 则x 1-x 2与x 2f x 1-x 1f x 2x 1x 2⎝ ⎛⎭⎪⎫即f x 1x 1-f x 2x 2同号, ∴函数y =f xx是(0,+∞)上的增函数, ∵1<30.2<2,0<0.32<1,log 25>2, ∴0.32<30.2<log 25,∴b <a <c ,故选B.14.设f (x )是定义在R 上的偶函数,且f (2+x )=f (2-x ),当x ∈[-2,0]时,f (x )=⎝⎛⎭⎪⎫22x-1,若在区间(-2,6)内关于x 的方程f (x )-log a (x +2)=0(a >0且a ≠1)恰有4个不同的实数根,则实数a 的取值X 围是( D )A.⎝ ⎛⎭⎪⎫14,1B .(1,4)C .(1,8)D .(8,+∞)解析:依题意得f (x +2)=f (-(2-x ))=f (x -2),即f (x +4)=f (x ),则函数f (x )是以4为周期的函数,结合题意画出函数f (x )在x ∈(-2,6)上的图象与函数y =log a (x +2)的图象,结合图象分析可知.要使f (x )与y =log a (x +2)的图象有4个不同的交点,则有⎩⎪⎨⎪⎧a >1,log a 6+2<1,由此解得a >8,即a 的取值X 围是(8,+∞).15.(2019·某某某某模拟)已知函数f (x )=ln(x +x 2+1),g (x )=f (x )+2 017,下列命题:①f (x )的定义域为(-∞,+∞); ②f (x )是奇函数;③f (x )在(-∞,+∞)上单调递增;④若实数a ,b 满足f (a )+f (b -1)=0,则a +b =1;⑤设函数g (x )在[-2 017,2 017]上的最大值为M ,最小值为m ,则M +m =2 017. 其中真命题的序号是①②③④__.(写出所有真命题的序号) 解析:对于①,∵x 2+1>x 2=|x |≥-x , ∴x 2+1+x >0,∴f (x )的定义域为R ,∴①正确.对于②,f (x )+f (-x )=ln(x +x 2+1)+ln(-x +-x2+1)=ln[(x 2+1)-x 2]=ln1=0.∴f (x )是奇函数,∴②正确. 对于③,令u (x )=x +x 2+1, 则u (x )在[0,+∞)上单调递增. 当x ∈(-∞,0]时,u (x )=x +x 2+1=1x 2+1-x,而y =x 2+1-x 在(-∞,0]上单调递减,且x 2+1-x >0.∴u (x )=1x 2+1-x在(-∞,0]上单调递增,又u (0)=1,∴u (x )在R 上单调递增,∴f (x )=ln(x +x 2+1)在R 上单调递增,∴③正确. 对于④,∵f (x )是奇函数,而f (a )+f (b -1)=0,∴a +(b -1)=0, ∴a +b =1,∴④正确.对于⑤,f (x )=g (x )-2 017是奇函数,当x ∈[-2 017,2 017]时,f (x )max =M -2 017,f (x )min =m -2 017, ∴(M -2 017)+(m -2 017)=0, ∴M +m =4 034,∴⑤不正确. 16.已知函数f (x )=lnx +1x -1. (1)求函数f (x )的定义域,并判断函数f (x )的奇偶性; (2)对于x ∈[2,6],f (x )=lnx +1x -1>ln mx -17-x恒成立,某某数m 的取值X 围.解:(1)由x +1x -1>0,解得x <-1或x >1, ∴函数f (x )的定义域为(-∞,-1)∪(1,+∞), 当x ∈(-∞,-1)∪(1,+∞)时,f (-x )=ln-x +1-x -1=ln x -1x +1=ln ⎝ ⎛⎭⎪⎫x +1x -1-1=-ln x +1x -1=-f (x ).∴f (x )=lnx +1x -1是奇函数. (2)由于x ∈[2,6]时,f (x )=lnx +1x -1>ln mx -17-x恒成立, ∴x +1x -1>mx -17-x>0, ∵x ∈[2,6],∴0<m <(x +1)(7-x )在x ∈[2,6]上恒成立. 令g (x )=(x +1)(7-x )=-(x -3)2+16,x ∈[2,6],由二次函数的性质可知,x ∈[2,3]时函数g (x )单调递增,x ∈[3,6]时函数g (x )单调递减, 即x ∈[2,6]时,g (x )min =g (6)=7, ∴0<m <7.故实数m 的取值X 围为(0,7).。
2019高考数学【全国I】卷试卷解析(2)

D. A=1+ 1 2A
此时,不满足条件 k 2 ,退出循环,输出 A 的值为 1 , 2+ 1 2+ 1 2
观察 A 的取值规律可知图中空白框中应填入 A = 1 . 2+ A
9.记 Sn 为等差数列{an}的前 n 项和.已知 S4 = 0,a5 = 5,则( )
A. an = 2n - 5
【答案】A
分, 2R = 2 + 2 + 2 = 6 ,即 R = 6 , \V = 4 pR3 = 4 p ´ 6 6 = 6p ,故选 D.
2
3
38
二、填空题: 本题共 4 小题,每小题 5 分,共 20 分。
13.曲线 y = 3(x2 + x)ex在点 (0, 0)处的切线方程为
.
【答案】 3x - y = 0
B. an = 3n -10
C. Sn = 2n2 - 8n
D.
Sn
=
1 2
n2
ቤተ መጻሕፍቲ ባይዱ
-
2n
【考点】等差数列通项公式及其前 n 项和基本公式
【解析】
⎧ ⎪ ⎨ ⎪ ⎩
S4
= 4a1 +
a5 = a1
d 2
+
´4´3 =
4d = 5
0
,解得% a1
d
= -3
,∴
=2
an
=
2n
- 5 ,故选
A.
10.已知椭圆 C 的焦点为 F1( -1, 0),F2(1, 0),过 F2 的直线与 C 交于 A,B 两点.若
由椭圆的定义有 2a = BF1 + BF2 = 4n ,\ AF1 = 2a - AF2 = 2n .
专题04 导数及其应用(解答题)

专题04 导数及其应用(解答题)1.【2019年高考全国Ⅰ卷文数】已知函数f (x )=2sin x -x cos x -x ,f ′(x )为f (x )的导数.(1)证明:f ′(x )在区间(0,π)存在唯一零点; (2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围. 【答案】(1)见解析;(2)(],0a ∈-∞.【解析】(1)设()()g x f x '=,则()cos sin 1,()cos g x x x x g x x x '=+-=.当π(0,)2x ∈时,()0g x '>;当π,π2x ⎛⎫∈ ⎪⎝⎭时,()0g x '<,所以()g x 在π(0,)2单调递增,在π,π2⎛⎫⎪⎝⎭单调递减. 又π(0)0,0,(π)22g g g ⎛⎫=>=-⎪⎝⎭,故()g x 在(0,π)存在唯一零点. 所以()f x '在(0,π)存在唯一零点.(2)由题设知(π)π,(π)0f a f =…,可得a ≤0.由(1)知,()f x '在(0,π)只有一个零点,设为0x ,且当()00,x x ∈时,()0f x '>;当()0,πx x ∈时,()0f x '<,所以()f x 在()00,x 单调递增,在()0,πx 单调递减.又(0)0,(π)0f f ==,所以,当[0,π]x ∈时,()0f x …. 又当0,[0,π]a x ∈…时,ax ≤0,故()f x ax …. 因此,a 的取值范围是(,0]-∞.【名师点睛】本题考查利用导数讨论函数零点个数、根据恒成立的不等式求解参数范围的问题.对于此类端点值恰为恒成立不等式取等的值的问题,通常采用构造函数的方式,将问题转变成函数最值与零之间的比较,进而通过导函数的正负来确定所构造函数的单调性,从而得到最值.2.【2019年高考全国Ⅱ卷文数】已知函数()(1)ln 1f x x x x =---.证明:(1)()f x 存在唯一的极值点;(2)()=0f x 有且仅有两个实根,且两个实根互为倒数.【答案】(1)见解析;(2)见解析.【解析】(1)()f x 的定义域为(0,+∞).11()ln 1ln x f x x x x x-'=+-=-. 因为ln y x =单调递增,1y x=单调递减,所以()f x '单调递增,又(1)10f '=-<,1ln 41(2)ln 2022f -'=-=>,故存在唯一0(1,2)x ∈,使得()00f x '=.又当0x x <时,()0f x '<,()f x 单调递减;当0x x >时,()0f x '>,()f x 单调递增. 因此,()f x 存在唯一的极值点.(2)由(1)知()0(1)2f x f <=-,又()22e e 30f =->,所以()0f x =在()0,x +∞内存在唯一根x α=.由01x α>>得011x α<<.又1111()1ln 10f f αααααα⎛⎫⎛⎫=---==⎪ ⎪⎝⎭⎝⎭,故1α是()0f x =在()00,x 的唯一根. 综上,()0f x =有且仅有两个实根,且两个实根互为倒数.【名师点睛】本题主要考查导数的应用,通常需要对函数求导,用导数的方法研究函数的单调性、极值,以及函数零点的问题,属于常考题型.3.【2019年高考天津文数】设函数()ln (1)e x f x x a x =--,其中a ∈R .(Ⅰ)若a ≤0,讨论()f x 的单调性; (Ⅱ)若10ea <<, (i )证明()f x 恰有两个零点;(ii )设0x 为()f x 的极值点,1x 为()f x 的零点,且10x x >,证明0132x x ->. 【答案】(Ⅰ)()f x 在(0,)+∞内单调递增.;(Ⅱ)(i )见解析;(ii )见解析. 【解析】(Ⅰ)解:由已知,()f x 的定义域为(0,)+∞,且211e ()e (1)e x x xf ax x a a x x x-⎡⎤=-+-=⎣'⎦. 因此当a ≤0时,21e 0x ax ->,从而()0f x '>,所以()f x 在(0,)+∞内单调递增.(Ⅱ)证明:(i )由(Ⅰ)知21e ()xax f x x-'=.令2()1e x g x ax =-,由10e a <<, 可知()g x 在(0,)+∞内单调递减,又(1)1e 0g a =->,且221111ln 1ln 1ln 0g a a a a a ⎛⎫⎛⎫⎛⎫=-=-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故()0g x =在(0,)+∞内有唯一解,从而()0f x '=在(0,)+∞内有唯一解,不妨设为0x ,则011l n x a<<.当()00,x x ∈时,()0()()0g x g x f x x x'=>=,所以()f x 在()00,x 内单调递增;当()0,x x ∈+∞时,()0()()0g x g x f x x x'=<=,所以()f x 在()0,x +∞内单调递减,因此0x 是()f x 的唯一极值点.令()ln 1h x x x =-+,则当1x >时,1()10h'x x=-<,故()h x 在(1,)+∞内单调递减,从而当1x >时,()(1)0h x h <=,所以ln 1x x <-.从而ln 1111111ln ln ln ln 1e ln ln ln 1ln 0a f a h a a a a a a ⎛⎫⎛⎫⎛⎫=--=-+=< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,又因为()0(1)0f x f >=,所以()f x 在0(,)x +∞内有唯一零点.又()f x 在()00,x 内有唯一零点1,从而,()f x 在(0,)+∞内恰有两个零点.(ii )由题意,()()010,0,f x f x '=⎧⎪⎨=⎪⎩即()012011e 1,ln e ,1x x ax x a x ⎧=⎪⎨=-⎪⎩从而1011201ln e x x x x x --=,即102011ln e 1x x x x x -=-.因为当1x >时,ln 1x x <-,又101x x >>,故()102012011e 1x x x x x x --<=-,两边取对数,得1020ln e ln x x x -<,于是()10002ln 21x x x x -<<-,整理得0132x x ->.【名师点睛】本小题主要考查导数的运算、不等式证明、运用导数研究函数的性质等基础知识和方法.考查函数思想、化归与转化思想.考查综合分析问题和解决问题的能力. 4.【2019年高考全国Ⅲ卷文数】已知函数32()22f x x ax =-+.(1)讨论()f x 的单调性;(2)当0<a <3时,记()f x 在区间[0,1]的最大值为M ,最小值为m ,求M m -的取值范围. 【答案】(1)见详解;(2)8[,2)27. 【解析】(1)2()622(3)f x x ax x x a '=-=-. 令()0f x '=,得x =0或3ax =. 若a >0,则当(,0),3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,()0f x '>;当0,3a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在(,0),,3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在0,3a ⎛⎫⎪⎝⎭单调递减;若a =0,()f x 在(,)-∞+∞单调递增;若a <0,则当,(0,)3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,()0f x '>;当,03a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在,,(0,)3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在,03a ⎛⎫⎪⎝⎭单调递减.(2)当03a <<时,由(1)知,()f x 在0,3a ⎛⎫ ⎪⎝⎭单调递减,在,13a ⎛⎫ ⎪⎝⎭单调递增,所以()f x 在[0,1]的最小值为32327a a f ⎛⎫=-+ ⎪⎝⎭,最大值为(0)=2f 或(1)=4f a -.于是 3227a m =-+,4,02,2,2 3.a a M a -<<⎧=⎨≤<⎩所以332,02,27,2 3.27a a a M m a a ⎧-+<<⎪⎪-=⎨⎪≤<⎪⎩当02a <<时,可知3227a a -+单调递减,所以M m -的取值范围是8,227⎛⎫⎪⎝⎭. 当23a ≤<时,327a 单调递增,所以M m -的取值范围是8[,1)27.综上,M m -的取值范围是8[,2)27. 【名师点睛】这是一道常规的导数题目,难度比往年降低了不少.考查函数的单调性,最大值、最小值的计算.5.【2019年高考北京文数】已知函数321()4f x x x x =-+. (Ⅰ)求曲线()y f x =的斜率为1的切线方程; (Ⅱ)当[2,4]x ∈-时,求证:6()x f x x -≤≤;(Ⅲ)设()|()()|()F x f x x a a =-+∈R ,记()F x 在区间[2,4]-上的最大值为M (a ),当M (a )最小时,求a 的值.【答案】(Ⅰ)y x =与6427y x =-;(Ⅱ)见解析;(Ⅲ)3a =-. 【解析】(Ⅰ)由321()4f x x x x =-+得23()214f x x x '=-+.令()1f x '=,即232114x x -+=,得0x =或83x =.又(0)0f =,88()327f =,所以曲线()y f x =的斜率为1的切线方程是y x =与88273y x -=-,即y x =与6427y x =-.(Ⅱ)令()(),[2,4]g x f x x x =-∈-.由321()4g x x x =-得23()24g'x x x =-. 令()0g'x =得0x =或83x =.(),()g'x g x 的情况如下:x2-(2,0)-8(0,)3 838(,4)34()g'x+-+()g x6-6427-所以()g x 的最小值为6-,最大值为0. 故6()0g x -≤≤,即6()x f x x -≤≤. (Ⅲ)由(Ⅱ)知,当3a <-时,()(0)|(0)|3M F g a a a ≥=-=->; 当3a >-时,()(2)|(2)|63M F a g a a ≥-=--=+>; 当3a =-时,()3M a =. 综上,当()M a 最小时,3a =-.【名师点睛】本题主要考查利用导函数研究函数的切线方程,利用导函数证明不等式的方法,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.6.【2019年高考浙江】已知实数0a ≠,设函数()=ln 1,0.f x a x x x ++>(1)当34a =-时,求函数()f x 的单调区间; (2)对任意21[,)ex ∈+∞均有(),2x f x a ≤ 求a 的取值范围. 注:e=2.71828…为自然对数的底数.【答案】(1)()f x 的单调递增区间是()3,+∞,单调递减区间是()0,3;(2)20,4⎛⎤⎥ ⎝⎦. 【解析】(1)当34a =-时,3()ln 1,04f x x x x =-++>. 31(12)(211)()42141x x f 'x x x x x+-++=-+=++, 所以,函数()f x 的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由1(1)2f a≤,得204a <≤.当204a <≤时,()2x f x a ≤等价于2212ln 0x xx a a+--≥. 令1t a=,则22t ≥. 设2()212ln ,22g t t x t x x t =-+-≥,则211()(1)2ln xg t x t x x x+=-+--.(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭时,1122x+≤,则 ()(22)84212ln g t g x x x ≥=-+-.记1()4221ln ,7p x x x x x =-+-≥,则 2212121()11x x x x p'x x x x x x +--+=--=++(1)[1(221)]1(1)(12)x x x x x x x x -++-=++++.故x171(,1)71(1,)+∞()p'x-0 +()p x1()7p 单调递减极小值(1)p单调递增所以,()(1)0p x p ≥=.因此,()(22)2()0g t g p x ≥=≥. (ii )当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,12ln (1)()12x x x g t g x x ⎛⎫--++= ⎪ ⎪⎝⎭…. 令211()2ln (1),,e 7q x x x x x ⎡⎤=++∈⎢⎥⎣⎦ , 则ln 2()10x q'x x+=+>, 故()q x 在211,e 7⎡⎤⎢⎥⎣⎦上单调递增,所以1()7q x q ⎛⎫⎪⎝⎭….由(i )得,127127(1)07777q p p ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭. 所以,()<0q x .因此1()()102q x g t g x x⎛⎫+=-> ⎪ ⎪⎝⎭…. 由(i )(ii )知对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,[22,),()0t g t ∈+∞…, 即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()2x f x a …. 综上所述,所求a 的取值范围是20,4⎛⎤⎥ ⎝⎦.【名师点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.7.【2019年高考江苏】设函数()()()(),,,f x x a x b x c a b c =---∈R 、()f 'x 为f (x )的导函数. (1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和()f 'x 的零点均在集合{3,1,3}-中,求f (x )的极小值;(3)若0,01,1a b c =<=…,且f (x )的极大值为M ,求证:M ≤427. 【答案】(1)2a =;(2)见解析;(3)见解析.【解析】(1)因为a b c ==,所以3()()()()()f x x a x b x c x a =---=-. 因为(4)8f =,所以3(4)8a -=, 解得2a =. (2)因为b c =,所以2322()()()(2)(2)f x x a x b x a b x b a b x ab =--=-+++-, 从而2()3()3a b f 'x x b x +⎛⎫=--⎪⎝⎭.令()0f 'x =,得x b =或23a bx +=.因为2,,3a ba b +都在集合{3,1,3}-中,且a b ≠, 所以21,3,33a b a b +===-.此时2()(3)(3)f x x x =-+,()3(3)(1)f 'x x x =+-. 令()0f 'x =,得3x =-或1x =.列表如下:x (,3)-∞-3-(3,1)-1 (1,)+∞()f 'x + 0 – 0 + ()f x极大值极小值所以()f x 的极小值为2(1)(13)(13)32f =-+=-.(3)因为0,1a c ==,所以32()()(1)(1)f x x x b x x b x bx =--=-++,2()32(1)f 'x x b x b =-++.因为01b <≤,所以224(1)12(21)30b b b ∆=+-=-+>, 则()f 'x 有2个不同的零点,设为()1212,x x x x <.由()0f 'x =,得22121111,33b b b b b b x x +--+++-+==.列表如下:x 1(,)x -∞1x()12,x x2x2(,)x +∞()f 'x+ 0 – 0 + ()f x极大值极小值所以()f x 的极大值()1M f x =. 解法一:()321111(1)M f x x b x bx ==-++()221111211(1)[32(1)]3999b b x b b b x b x b x -+++⎛⎫=-++--+ ⎪⎝⎭()()23221(1)(1)2127927b b b b b b b --+++=++-+23(1)2(1)(1)2((1)1)272727b b b b b b +-+=-+-+(1)24272727b b +≤+≤.因此427M ≤. 解法二:因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-. 令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭. 令()0g'x =,得13x =.列表如下: x 1(0,)3131(,1)3()g'x + 0 – ()g x极大值所以当13x =时,()g x 取得极大值,且是最大值,故max 14()327g x g ⎛⎫== ⎪⎝⎭.所以当(0,1)x ∈时,4()()27f x g x ≤≤,因此427M ≤. 【名师点睛】本题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.8.【2018年高考全国Ⅲ卷文数】已知函数21()exax x f x +-=. (1)求曲线()y f x =在点(0,1)-处的切线方程; (2)证明:当1a ≥时,()e 0f x +≥. 【答案】(1)210x y --=;(2)见解析.【解析】(1)2(21)2()exax a x f x -+-+'=,(0)2f '=. 因此曲线()y f x =在点(0,1)-处的切线方程是210x y --=. (2)当1a ≥时,21()e (1e )e x x f x x x +-+≥+-+.令21()1ex g x x x +=+-+,则1()21ex g x x +'=++.当1x <-时,()0g x '<,()g x 单调递减;当1x >-时,()0g x '>,()g x 单调递增; 所以()g x (1)=0g ≥-.因此()e 0f x +≥.【名师点睛】本题考查函数与导数的综合应用,第一问由导数的几何意义可求出切线方程,第二问当1a ≥时,21()e (1e)e x x f x x x +-+≥+-+,令21()1e x g x x x +=+-+,求出()g x 的最小值即可证明.9.【2018年高考全国Ⅰ卷文数】已知函数()e ln 1xf x a x =--.(1)设2x =是()f x 的极值点,求a ,并求()f x 的单调区间; (2)证明:当1ea ≥时,()0f x ≥. 【答案】(1)在(0,2)单调递减,在(2,+∞)单调递增;(2)见解析.【解析】(1)f (x )的定义域为(0)+∞,,f ′(x )=a e x –1x. 由题设知,f ′(2)=0,所以a =212e. 从而f (x )=21e ln 12e x x --,f ′(x )=211e 2e x x-. 当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.所以f (x )在(0,2)单调递减,在(2,+∞)单调递增.(2)当a ≥1e 时,f (x )≥e ln 1exx --.设g (x )=e ln 1e x x --,则e 1()e x g x x'=-.当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0.所以x =1是g (x )的最小值点. 故当x >0时,g (x )≥g (1)=0. 因此,当1ea ≥时,()0f x ≥.【名师点睛】该题考查的是有关导数的应用问题,涉及的知识点有导数与极值、导数与最值、导数与函数的单调性的关系以及证明不等式问题,在解题的过程中,首先要确定函数的定义域,之后根据导数与极值的关系求得参数值,之后利用极值的特点,确定出函数的单调区间,第二问在求解的时候构造新函数,应用不等式的传递性证得结果. 10.【2018年高考全国Ⅱ卷文数】已知函数()()32113f x x a x x =-++. (1)若3a =,求()f x 的单调区间;(2)证明:()f x 只有一个零点.【答案】(1)在(–∞,323-),(323+,+∞)单调递增,在(323-,323+)单调递减;(2)见解析.【解析】(1)当a =3时,f (x )=3213333x x x ---,f ′(x )=263x x --. 令f ′(x )=0解得x =323-或x =323+.当x ∈(–∞,323-)∪(323+,+∞)时,f ′(x )>0; 当x ∈(323-,323+)时,f ′(x )<0.故f (x )在(–∞,323-),(323+,+∞)单调递增,在(323-,323+)单调递减.(2)由于210x x ++>,所以()0f x =等价于32301x a x x -=++.设()g x =3231x a x x -++,则g ′(x )=2222(23)(1)x x x x x ++++≥0,仅当x =0时g ′(x )=0, 所以g (x )在(–∞,+∞)单调递增.故g (x )至多有一个零点,从而f (x )至多有一个零点. 又f (3a –1)=22111626()0366a a a -+-=---<, f (3a +1)=103>,故f (x )有一个零点. 综上,f (x )只有一个零点.【名师点睛】(1)用导数求函数单调区间的步骤如下:①确定函数的定义域;②求导数;③由(或)解出相应的的取值范围,当时,在相应区间上是增函数;当时,在相应区间上是减增函数.(2)本题第二问重在考查零点存在性问题,解题的关键在于将问题转化为求证函数有唯一零点,可先证明其单调,再结合零点存在性定理进行论证.11.【2018年高考北京文数】设函数2()[(31)32]e x f x ax a x a =-+++.(Ⅰ)若曲线()y f x =在点(2,(2))f 处的切线斜率为0,求a ; (Ⅱ)若()f x 在1x =处取得极小值,求a 的取值范围. 【答案】(Ⅰ)12a =;(Ⅱ)(1,)+∞. 【解析】(Ⅰ)因为2()[(31)32]e xf x ax a x a =-+++, 所以2()[(1)1]e xf x ax a x '=-++.2(2)(21)e f a '=-,由题设知(2)0f '=,即2(21)e 0a -=,解得12a =. (Ⅱ)方法一:由(Ⅰ)得2()[(1)1]e (1)(1)e xxf x ax a x ax x '=-++=--. 若a >1,则当1(,1)x a∈时,()0f x '<; 当(1,)x ∈+∞时,()0f x '>. 所以()f x 在x =1处取得极小值.若1a ≤,则当(0,1)x ∈时,110ax x -≤-<, 所以()0f x '>.所以1不是()f x 的极小值点. 综上可知,a 的取值范围是(1,)+∞.方法二:()(1)(1)e xf x ax x '=--.(1)当a =0时,令()0f x '=得x =1.(),()f x f x '随x 的变化情况如下表:x(,1)-∞1 (1,)+∞()f x ' + 0 − ()f x↗极大值↘∴()f x 在x =1处取得极大值,不合题意. (2)当a >0时,令()0f x '=得121,1ax x ==. ①当12x x =,即a =1时,2()(1)e 0xf x x '=-≥, ∴()f x 在R 上单调递增, ∴()f x 无极值,不合题意.②当12x x >,即0<a <1时,(),()f x f x '随x 的变化情况如下表:x(,1)-∞1 1(1,)a1a1(,)a+∞ ()f x '+ 0 − 0 + ()f x↗极大值↘极小值↗∴()f x 在x =1处取得极大值,不合题意.③当12x x <,即a >1时,(),()f x f x '随x 的变化情况如下表:x1(,)a-∞1a1(,1)a1(1,)+∞()f x ' + 0 − 0 + ()f x↗极大值↘极小值↗∴()f x 在x =1处取得极小值,即a >1满足题意. (3)当a <0时,令()0f x '=得121,1ax x ==. (),()f x f x '随x 的变化情况如下表:x1(,)a-∞1a1(,1)a1(1,)+∞()f x '− 0 + 0 − ()f x↘极小值↗极大值↘∴()f x 在x =1处取得极大值,不合题意. 综上所述,a 的取值范围为(1,)+∞.【名师点睛】导数类问题是高考数学中的必考题,也是压轴题,主要考查的形式有以下四个:①考查导数的几何意义,涉及求曲线切线方程的问题;②利用导数证明函数的单调性或求单调区间问题;③利用导数求函数的极值、最值问题;④关于不等式的恒成立问题.解题时需要注意以下两个方面:①在求切线方程问题时,注意区别在某一点和过某一点解题步骤的不同;②在研究单调性及极值、最值问题时常会涉及分类讨论的思想,要做到不重不漏;③不等式的恒成立问题属于高考中的难点,要注意问题转换的等价性.12.【2018年高考天津文数】设函数123()=()()()f x x t x t x t ---,其中123,,t t t ∈R ,且123,,t t t 是公差为d 的等差数列.(I )若20,1,t d ==求曲线()y f x =在点(0,(0))f 处的切线方程; (II )若3d =,求()f x 的极值;(III )若曲线()y f x =与直线2()63y x t =---有三个互异的公共点,求d 的取值范围. 【答案】(I )x +y =0;(II )函数f (x )的极大值为63;函数f (x )的极小值为−63;(III )d 的取值范围为(,10)(10,)-∞-+∞.【解析】(Ⅰ)解:由已知,可得f (x )=x (x −1)(x +1)=x 3−x ,故()f x '=3x 2−1, 因此f (0)=0,(0)f '=−1,又因为曲线y =f (x )在点(0,f (0))处的切线方程为y −f (0)=(0)f '(x −0), 故所求切线方程为x +y =0. (Ⅱ)解:由已知可得f (x )=(x −t 2+3)(x −t 2)(x −t 2−3)=(x −t 2)3−9(x −t 2)=x 3−3t 2x 2+(3t 22−9)x −t 23+9t 2.故()f x '=3x 2−6t 2x +3t 22−9.令()f x '=0,解得x =t 2−3,或x =t 2+3. 当x 变化时,()f x ',f (x )的变化如下表:x(−∞,t 2−3)t 2−3 (t 2−3,t 2+3)t 2+3 (t 2+3,+∞)()f x '+ 0 − 0 + f (x )↗极大值↘极小值↗所以函数f (x )的极大值为f (t 2−3)=(−3)3−9×(−3)=63;函数f (x )的极小值为f (t 2+3)=(3)3− 9×(3)=−63.(Ⅲ)解:曲线y =f (x )与直线y =−(x −t 2)−63有三个互异的公共点等价于关于x 的方程(x −t 2+d )(x −t 2)(x −t 2 −d )+(x −t 2)+ 63=0有三个互异的实数解,令u =x −t 2,可得u 3+(1−d 2)u +63=0.设函数g (x )=x 3+(1−d 2)x +63,则曲线y =f (x )与直线y =−(x −t 2)−63有三个互异的公共点等价于函数y =g (x )有三个零点.()g'x =3x 3+(1−d 2).当d 2≤1时,()g'x ≥0,这时()g x 在R 上单调递增,不合题意.当d 2>1时,()g'x =0,解得x 1=213d --,x 2=213d -.易得,g (x )在(−∞,x 1)上单调递增,在[x 1,x 2]上单调递减,在(x 2,+∞)上单调递增. g (x )的极大值g (x 1)=g (213d --)=32223(1)639d -+>0. g (x )的极小值g (x 2)=g (213d -)=−32223(1)639d -+. 若g (x 2)≥0,由g (x )的单调性可知函数y =g (x )至多有两个零点,不合题意.若2()0,g x <即322(1)27d ->,也就是||10d >,此时2||d x >,(||)||630,g d d =+>且312||,(2||)6||2||636210630d x g d d d -<-=--+<-+<,从而由()g x 的单调性,可知函数()y g x =在区间1122(2||,),(,),(,||)d x x x x d -内各有一个零点,符合题意.所以,d 的取值范围是(,10)(10,)-∞-+∞.【名师点睛】本小题主要考查导数的运算、导数的几何意义、运用导数研究函数的性质等基础知识和方法,考查函数思想和分类讨论思想,考查综合分析问题和解决问题的能力. 13.【2018年高考浙江】已知函数f (x )=x −ln x .(Ⅰ)若f (x )在x =x 1,x 2(x 1≠x 2)处导数相等,证明:f (x 1)+f (x 2)>8−8ln2;(Ⅱ)若a ≤3−4ln2,证明:对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点. 【答案】(Ⅰ)见解析;(Ⅱ)见解析. 【解析】(Ⅰ)函数f (x )的导函数11()2f x xx '=-, 由12()()f x f x ''=得1212111122x x x x -=-, 因为12x x ≠,所以121112x x +=. 由基本不等式得4121212122x x x x x x =+≥. 因为12x x ≠,所以12256x x >. 由题意得12112212121()()ln ln ln()2f x f x x x x x x x x x +=-+-=-. 设1()ln 2g x x x =-, 则1()(4)4g x x x'=-, 所以x(0,16)16 (16,+∞)()g x ' −0 +()g x2−4ln2所以g (x )在[256,+∞)上单调递增, 故12()(256)88ln 2g x x g >=-, 即12()()88ln 2f x f x +>-. (Ⅱ)令m =()e a k -+,n =21()1a k++,则f (m )–km –a >|a |+k –k –a ≥0, f (n )–kn –a <1()a n k nn --≤||1()a n k n +-<0, 所以,存在x 0∈(m ,n )使f (x 0)=kx 0+a ,所以,对于任意的a ∈R 及k ∈(0,+∞),直线y =kx +a 与曲线y =f (x )有公共点. 由f (x )=kx +a 得ln x x a k x--=.设l (n )x ah xx x --=,则22ln )1)((12xx ag x x x a x h '=--+--+=, 其中2(n )l xg x x -=. 由(Ⅰ)可知g (x )≥g (16),又a ≤3–4ln2, 故–g (x )–1+a ≤–g (16)–1+a =–3+4ln2+a ≤0,所以h ′(x )≤0,即函数h (x )在(0,+∞)上单调递减,因此方程f (x )–kx –a =0至多1个实根. 综上,当a ≤3–4ln2时,对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点.【名师点睛】本题主要考查函数的单调性,导数的运算及其应用,同时考查逻辑思维能力和综合应用能力.14.【2018年高考江苏】某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.【答案】(1)矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ)平方米,sinθ的取值范围是[14,1];(2)当θ=π6时,能使甲、乙两种蔬菜的年总产值最大.【解析】(1)连结PO并延长交MN于H,则PH⊥MN,所以OH=10.过O作OE⊥BC于E,则OE∥MN,所以∠COE=θ,故OE=40cosθ,EC=40sinθ,则矩形ABCD的面积为2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ),△CDP的面积为12×2×40cosθ(40–40sinθ)=1600(cosθ–sinθcosθ).过N作GN⊥MN,分别交圆弧和OE的延长线于G和K,则GK=KN=10.令∠GOK=θ0,则sinθ0=14,θ0∈(0,π6).当θ∈[θ0,π2]时,才能作出满足条件的矩形ABCD,所以sinθ的取值范围是[14,1].答:矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ)平方米,sinθ的取值范围是[14,1].(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k,乙的单位面积的年产值为3k(k>0),则年总产值为4k×800(4sinθcosθ+cosθ)+3k×1600(cosθ–sinθcosθ)=8000k(sinθcosθ+cosθ),θ∈[θ0,π2 ].设f (θ)=sin θcos θ+cos θ,θ∈[θ0,π2], 则222()cos sin sin (2sin sin 1)(2sin 1)(sin 1)f θθθθθθθθ'=--=-+-=--+. 令()=0f θ',得θ=π6, 当θ∈(θ0,π6)时,()0f θ'>,所以f (θ)为增函数; 当θ∈(π6,π2)时,()0f θ'<,所以f (θ)为减函数, 因此,当θ=π6时,f (θ)取到最大值. 答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大. 【名师点睛】本小题主要考查三角函数的应用、用导数求最值等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.15.【2018年高考江苏】记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f xg x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”. (1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (2)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(3)已知函数2()f x x a =-+,e ()xb g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由. 【答案】(1)见解析;(2)e2;(3)见解析. 【解析】(1)函数f (x )=x ,g (x )=x 2+2x -2,则f ′(x )=1,g ′(x )=2x +2. 由f (x )=g (x )且f ′(x )= g ′(x ),得222122x x x x ⎧=+-⎨=+⎩,此方程组无解, 因此,f (x )与g (x )不存在“S ”点.(2)函数21f x ax =-(),()ln g x x =, 则12f x ax g x x'='=(),(). 设x 0为f (x )与g (x )的“S ”点,由f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),得200001ln 12ax x ax x ⎧-=⎪⎨=⎪⎩,即200201ln 21ax x ax ⎧-=⎪⎨=⎪⎩,(*) 得01ln 2x =-,即120e x -=,则1221e 22(e )a -==. 当e2a =时,120e x -=满足方程组(*),即0x 为f (x )与g (x )的“S ”点.因此,a 的值为e 2. (3)对任意a >0,设32()3h x x x ax a =--+.因为(0)0(1)1320h a h a a =>=--+=-<,,且h (x )的图象是不间断的,所以存在0x ∈(0,1),使得0()0h x =.令03002e (1)x x b x =-,则b >0.函数2e ()()xb f x x a g x x=-+=,,则2e (1)()2()x b x f x x g x x-'=-=′,. 由f (x )=g (x )且f ′(x )=g ′(x ),得22e e (1)2xx b x a x b x x x ⎧-+=⎪⎪⎨-⎪-=⎪⎩,即00320030202e e (1)2e (1)2e (1)x x xx x x a x x x x x x x ⎧-+=⋅⎪-⎪⎨-⎪-=⋅⎪-⎩,(**) 此时,0x 满足方程组(**),即0x 是函数f (x )与g (x )在区间(0,1)内的一个“S 点”. 因此,对任意a >0,存在b >0,使函数f (x )与g (x )在区间(0,+∞)内存在“S 点”.【名师点睛】本小题主要考查利用导数研究初等函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.16.【2017年高考全国Ⅰ卷文数】已知函数()f x =e x (e x −a )−a 2x .(1)讨论()f x 的单调性;(2)若()0f x ≥,求a 的取值范围.【答案】(1)当0a =时,)(x f 在(,)-∞+∞单调递增;当0a >时,()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增;当0a <时,()f x 在(,ln())2a -∞-单调递减,在(ln(),)2a-+∞单调递增;(2)34[2e ,1]-.【解析】(1)函数()f x 的定义域为(,)-∞+∞,22()2e e (2e )(e )xx x x f x a a a a '=--=+-,①若0a =,则2()e xf x =,在(,)-∞+∞单调递增. ②若0a >,则由()0f x '=得ln x a =.当(,ln )x a ∈-∞时,()0f x '<;当(ln ,)x a ∈+∞时,()0f x '>,故()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增.③若0a <,则由()0f x '=得ln()2a x =-.当(,ln())2a x ∈-∞-时,()0f x '<;当(ln(),)2a x ∈-+∞时,()0f x '>,故()f x 在(,ln())2a -∞-单调递减,在(ln(),)2a-+∞单调递增.(2)①若0a =,则2()e xf x =,所以()0f x ≥.②若0a >,则由(1)得,当ln x a =时,()f x 取得最小值,最小值为2(ln )ln f a a a =-.从而当且仅当2ln 0a a -≥,即1a ≤时,()0f x ≥.③若0a <,则由(1)得,当ln()2a x =-时,()f x 取得最小值,最小值为23(ln())[ln()]242a a f a -=--.从而当且仅当23[ln()]042aa --≥,即342e a ≥-时()0f x ≥.综上,a 的取值范围为34[2e ,1]-.【名师点睛】本题主要考查导数两大方面的应用:(1)函数单调性的讨论:运用导数知识来讨论函数单调性时,首先考虑函数的定义域,再求出()f x ',由()f x '的正负,得出函数()f x 的单调区间;(2)函数的最值(极值)的求法:由确认的单调区间,结合极值点的定义及自变量的取值范围,得出函数()f x 的极值或最值.17.【2017年高考全国Ⅱ卷文数】设函数2()(1)e x f x x =-.(1)讨论()f x 的单调性;(2)当0x ≥时,()1f x ax ≤+,求a 的取值范围.【答案】(1)在(,12)-∞--和(12,)-++∞单调递减,在(12,12)---+单调递增;(2)[1,)+∞. 【解析】(1)2()(12)e xf x x x '=--.令()0f x '=得121+2x x =--=-,.当(,12)x ∈-∞--时,()0f x '<;当(12,12)x ∈---+时,()0f x '>;当(12,)x ∈-++∞时,()0f x '<.所以()f x 在(,12)-∞--和(12,)-++∞单调递减,在(12,12)---+单调递增.(2)()(1+)(1)e x f x x x =-.当a ≥1时,设函数h (x )=(1−x )e x ,h ′(x )= −x e x<0(x >0),因此h (x )在[0,+∞)单调递减,而h (0)=1, 故h (x )≤1,所以f (x )=(x +1)h (x )≤x +1≤ax +1.当0<a <1时,设函数g (x )=e x −x −1,g ′(x )=e x−1>0(x >0),所以g (x )在[0,+∞)单调递增,而g (0)=0,故e x≥x +1.当0<x <1时,2()(1)(1)f x x x >-+,22(1)(1)1(1)x x ax x a x x -+--=---,取05412a x --=,则2000000(0,1),(1)(1)10,()1x x x ax f x ax ∈-+--=>+故.当0a ≤时,取051,2x -=则0(0,1),x ∈20000()(1)(1)11f x x x ax >-+=>+. 综上,a 的取值范围是[1,+∞).【名师点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.18.【2017年高考全国Ⅲ卷文数】已知函数()2(1)ln 2x ax a x f x =+++.(1)讨论()f x 的单调性; (2)当a ﹤0时,证明3()24f x a≤--.【答案】(1)当0≥a 时,)(x f 在),0(+∞单调递增;当0<a 时,)(x f 在)21,0(a-单调递增,在),21(+∞-a单调递减;(2)详见解析 【解析】(1)()f x 的定义域为(0,+),()()1211()221x a x f x a x a x x++'=+++=.若0a ≥,则当(0)x ∈+∞,时,()0f x '>,故()f x 在(0,+)单调递增. 若0a <,则当1(0,)2x a ∈-时,()0f x '>;当1()2x a ∈-+∞,时,()0f x '<.故()f x 在1(0,)2a-单调递增,在1()2a-+∞,单调递减. (2)由(1)知,当0a <时,()f x 在12x a=-取得最大值,最大值为 111()ln()1224f a a a-=---. 所以3()24f x a ≤--等价于113ln()12244a a a ---≤--,即11ln()1022a a-++≤. 设()ln 1g x x x =-+,则1()1g x x '=-.当(0,1)x ∈时,()0g x '>;当x ∈(1,+)时,()0g x '<.所以()g x 在(0,1)单调递增,在(1,+)单调递减.故当x =1时()g x 取得最大值,最大值为g (1)=0.所以当x >0时,()0g x ≤.从而当a <0时,11ln()1022a a -++≤,即3()24f x a≤--. 【名师点睛】利用导数证明不等式的常见类型及解题策略:(1)构造差函数()()()h x f x g x =-.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.19.【2017年高考浙江】已知函数f (x )=(x –21x -)e x -(12x ≥). (1)求f (x )的导函数;(2)求f (x )在区间1[+)2∞,上的取值范围.【答案】(1)(1)(212)e 1()()221x x x f x x x ----'=>-;(2)121[0,e ]2-.【解析】(1)因为1(21)121x x 'x --=--,(e )e x x'--=-, 所以1()(1)e (21)e 21x xf x x x x --'=-----(1)(212)e 1()221x x x x x ----=>-.(2)由(1)(212)e ()021x x x f x x ----'==-,解得1x =或52x =.因为x12(12,1) 1 (1,52) 52(52,+∞) ()f x '–0 +–f (x )121e 2-521e 2-又21()(211)e 02x f x x -=--≥, 所以f (x )在区间1[,)2+∞上的取值范围是121[0,e ]2-.【名师点睛】本题主要考查导数两大方面的应用:(一)函数单调性的讨论:运用导数知识来讨论函数单调性时,首先考虑函数的定义域,再求出()f'x ,由()f'x 的正负,得出函数()f x 的单调区间;(二)函数的最值(极值)的求法:由单调区间,结合极值点的定义及自变量的取值范围,得出函数()f x 的极值或最值.20.【2017年高考北京文数】已知函数()e cos x f x x x =-.(Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)求函数()f x 在区间π[0,]2上的最大值和最小值. 【答案】(Ⅰ)1y =;(Ⅱ)最大值为1;最小值为π2-. 【解析】(Ⅰ)因为()e cos x f x x x =-,所以()e (cos sin )1,(0)0xf x x x f ''=--=.又因为(0)1f =,所以曲线()y f x =在点(0,(0))f 处的切线方程为1y =.(Ⅱ)设()e (cos sin )1xh x x x =--,则()e (cos sin sin cos )2e sin xxh x x x x x x '=---=-.当π(0,)2x ∈时,()0h x '<, 所以()h x 在区间π[0,]2上单调递减.所以对任意π(0,]2x ∈有()(0)0h x h <=,即()0f x '<. 所以函数()f x 在区间π[0,]2上单调递减.因此()f x 在区间π[0,]2上的最大值为(0)1f =,最小值为ππ()22f =-. 【名师点睛】这道导数题并不难,比一般意义上的压轴题要简单很多,第二问比较有特点的是需要两次求导数,因为通过()f x '不能直接判断函数的单调性,所以需要再求一次导数,设()()h x f x '=,再求()h x ',一般这时就可求得函数()h x '的零点,或是()0h x '>(()0h x '<)恒成立,这样就能知道函数()h x 的单调性,再根据单调性求其最值,从而判断()y f x =的单调性,最后求得结果. 21.【2017年高考天津文数】设,a b ∈R ,||1a ≤.已知函数32()63(4)f x x x a a x b =---+,()e ()x g x f x =.(Ⅰ)求()f x 的单调区间;(Ⅱ)已知函数()y g x =和e x y =的图象在公共点(x 0,y 0)处有相同的切线,(i )求证:()f x 在0x x =处的导数等于0;(ii )若关于x 的不等式()e x g x ≤在区间00[1,1]x x -+上恒成立,求b 的取值范围.【答案】(Ⅰ)递增区间为(,)a -∞,(4,)a -+∞,递减区间为(),4a a -;(Ⅱ)(ⅰ)见解析,(ⅱ)[7],1-.【解析】(Ⅰ)由324()63()f x x a x x a b =--+-,可得2()3123()3()((44))f 'x x a x a a x x a -=---=--,令()0f 'x =,解得x a =或4x a =-.由||1a ≤,得4a a <-. 当x 变化时,()f 'x ,()f x 的变化情况如下表:x (,)a -∞ (),4a a - (4,)a -+∞()f 'x+-+()f x所以,()f x 的单调递增区间为(,)a -∞,(4,)a -+∞,单调递减区间为(),4a a -.(Ⅱ)(i )因为()e (()())xx x g'f f 'x =+,由题意知000()e ()e x x x x g g'⎧=⎪⎨=⎪⎩, 所以000000()e e e (()())ex x xx f f f x 'x x ⎧=⎪⎨+=⎪⎩,解得00()1()0f 'x x f =⎧⎨=⎩. 所以,()f x 在0x x =处的导数等于0.(ii )因为()e xg x ≤,00[11],x x x ∈-+,由e 0x >,可得()1f x ≤.又因为0()1f x =,0()0f 'x =,故0x 为()f x 的极大值点,由(Ⅰ)知0x a =. 另一方面,由于||1a ≤,故14a a +<-,由(Ⅰ)知()f x 在(,)1a a -内单调递增,在(),1a a +内单调递减, 故当0x a =时,()()1f f x a ≤=在[1,1]a a -+上恒成立,从而()e xg x ≤在00,[11]x x -+上恒成立.由32()63()14a a f a a a a b =---+=,得32261b a a =-+,11a -≤≤.令32()261t x x x =-+,[1,1]x ∈-,所以2()612t'x x x =-,令()0t'x =,解得2x =(舍去),或0x =. 因为(1)7t -=-,(1)3t =-,(0)1t =, 故()t x 的值域为[7],1-. 所以,b 的取值范围是[7],1-.【名师点睛】本题考查导数的应用,属于中档问题,第一问的关键是根据条件判断两个极值点的大小,从而避免讨论;第二问要注意切点是公共点,切点处的导数相等,求b 的取值范围的关键是得出0x a =,然后构造函数进行求解.22.【2017年高考山东文数】已知函数()3211,32f x x ax a =-∈R . (Ⅰ)当a =2时,求曲线()y f x =在点()()3,3f 处的切线方程;(Ⅱ)设函数()()()cos sin g x f x x a x x =+--,讨论()g x 的单调性并判断有无极值,有极值时求出极值.【答案】(Ⅰ)390x y --=,(Ⅱ)见解析.【解析】(Ⅰ)由题意2()f x x ax '=-,所以,当2a =时,(3)0f =,2()2f x x x '=-, 所以(3)3f '=,因此,曲线()y f x =在点(3,(3))f 处的切线方程是3(3)y x =-, 即390x y --=.(Ⅱ)因为()()()cos sin g x f x x a x x =+--, 所以()()cos ()sin cos g x f x x x a x x ''=+---,()()sin x x a x a x =--- ()(sin )x a x x =--,令()sin h x x x =-, 则()1cos 0h x x '=-≥, 所以()h x 在R 上单调递增, 因为(0)0h =,所以,当0x >时,()0h x >;当0x <时,()0h x <. (1)当0a <时,()()(sin )g x x a x x '=--,当(,)x a ∈-∞时,0x a -<,()0g x '>,()g x 单调递增; 当(,0)x a ∈时,0x a ->,()0g x '<,()g x 单调递减; 当(0,)x ∈+∞时,0x a ->,()0g x '>,()g x 单调递增. 所以当x a =时()g x 取到极大值,极大值是31()sin 6g a a a =--,当0x =时()g x 取到极小值,极小值是(0)g a =-. (2)当0a =时,()(sin )g x x x x '=-, 当(,)x ∈-∞+∞时,()0g x '≥,()g x 单调递增;所以()g x 在(,)-∞+∞上单调递增,()g x 无极大值也无极小值. (3)当0a >时,()()(sin )g x x a x x '=--,当(,0)x ∈-∞时,0x a -<,()0g x '>,()g x 单调递增; 当(0,)x a ∈时,0x a -<,()0g x '<,()g x 单调递减; 当(,)x a ∈+∞时,0x a ->,()0g x '>,()g x 单调递增. 所以当0x =时()g x 取到极大值,极大值是(0)g a =-; 当x a =时()g x 取到极小值,极小值是31()sin 6g a a a =--. 综上所述:当0a <时,函数()g x 在(,)a -∞和(0,)+∞上单调递增,在(,0)a 上单调递减,函数既有极大值,又有极小值,极大值是31()sin 6g a a a =--,极小值是(0)g a =-; 当0a =时,函数()g x 在(,)-∞+∞上单调递增,无极值;当0a >时,函数()g x 在(,0)-∞和(,)a +∞上单调递增,在(0,)a 上单调递减,函数既有极大值,又有极小值,极大值是(0)g a =-,极小值是31()sin 6g a a a =--. 【名师点睛】(1)求函数f (x )极值的步骤:①确定函数的定义域;②求导数f ′(x );③解方程f ′(x )=0,求出函数定义域内的所有根;④检验f ′(x )在f ′(x )=0的根x 0左右两侧值的符号,如果左正右负,那么f (x )在x 0处取极大值,如果左负右正,那么f (x )在x 0处取极小值.(2)若函数y =f (x )在区间(a ,b )内有极值,那么y =f (x )在(a ,b )内绝不是单调函数,即在某区间上单调函数没有极值.23.【2017年高考江苏】已知函数32()1(0,)f x x ax bx a b =+++>∈R 有极值,且导函数()'f x 的极值点是()f x 的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b 关于a 的函数关系式,并写出定义域; (2)证明:23>b a ;(3)若()f x ,()'f x 这两个函数的所有极值之和不小于72-,求a 的取值范围.。
2019年高考数学(理)真题汇编:专题03 导数及其应用

专题03 导数及其应用1、【2019高考全国Ⅲ理数】已知曲线e ln xy a x x =+在点(1,e)a 处的切线方程为2y x b =+,则( )A .e,1a b ==-B .e,1a b ==C .1e 1,a b -==D .1,e 1b a -==-2、【2019高考全国Ⅲ理数】设函数()sin()(0)5f x x ωωπ=+>,已知()f x 在[]0,2π有且仅有5个零点,下述四个结论: ①()f x 在(0,2)π有且仅有3个极大值点 ②()f x 在(0,2)π有且仅有2个极小值点 ③()f x 在(0,)10π单调递增 ④ω的取值范围是1229,510⎡⎫⎪⎢⎣⎭其中所有正确结论的编号是( ) A .①④B .②③C .①②③D .①③④3、【2019高考天津卷理数】已知R a ∈,设函数222,1()ln ,1x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()0f x ≥在R 上恒成立,则a 的取值范围为( ) A.[]0,1B.[]0,2C.[]0,eD.[]1,e4、【2019高考全国Ⅰ理数】曲线23()e xy x x =+在点(0,0)处的切线方程为_______. 5、【2019高考浙江卷】已知R a ∈,函数3()f x ax x =-,若存在R t ∈,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是____. 6、【2019高考江苏卷】在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线0x y +=的距离的最小值是__________7、【2019高考江苏卷】在平面直角坐标系xOy 中,点A 在曲线ln y x =上,且该曲线在点A 处的切线经过点(e,1)--(e 为自然对数的底数),则点A 的坐标是_________8、【2019高考北京卷理数】设函数f (x )=e x+a e −x(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________.9、【2019高考全国Ⅰ理数】已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明:1.()f x '在区间(1,)2π-存在唯一极大值点; 2.()f x 有且仅有2个零点.10、【2019高考全国Ⅱ理数】已知函数()11ln x f x x x -=-+.1.讨论()f x 的单调性,并证明()f x 有且仅有两个零点;2.设0x 是()f x 的一个零点,证明曲线ln y x =在点00l (,)n A x x 处的切线也是曲线exy =的切线.11、【2019高考全国Ⅲ理数】已知函数32()2f x x ax b =-+. 1.讨论()f x 的单调性;2.是否存在,a b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1?若存在,求出,a b 的所有值;若不存在,说明理由.12、【2019高考天津卷理数】设函数()e cos ,()xf x xg x =为()f x 的导函数.1.求()f x 的单调区间;2.当,42x ⎡⎤∈⎢⎥⎣π⎦π时,证明()()02f x g x x ⎛⎫π+-≥ ⎪⎝⎭;3.设n x 为函数()()1u x f x =-在区间2,242m m ⎛⎫+π+π ⎝π⎪⎭内的零点,其中N n ∈,证明20022sin cos n n n x x e x -ππ+-π<-.13、【2019高考浙江卷】已知实数0a ≠,设函数()=ln 0.f x a x x +>1.当34a =-时,求函数()f x 的单调区间;2.对任意21[,)e x ∈+∞均有()f x ≤ 求a 的取值范围. 注:e 2.71828=⋯为自然对数的底数.14、【2019高考江苏卷】设函数()()()(),,,R f x x a x b x c a b c =---∈、()f 'x 为()f x 的导函数.1.若a b c ==,(4)8f =,求a 的值;2.若,a b b c ≠=,且()f x 和'()f x 的零点均在集合{3,1,3}-中,求()f x 的极小值;3.若0,01,1a b c =<≤=,且()f x 的极大值为M ,求证:427M ≤. 15、【2019高考北京卷理数】已知函数321()4f x x x x =-+. (Ⅰ)求曲线()y f x =的斜率为1的切线方程; (Ⅱ)当[2,4]x ∈-时,求证:6()x f x x -≤≤;(Ⅲ)设()|()()|()F x f x x a a =-+∈R ,记()F x 在区间[2,4]-上的最大值为M (a ),当M (a )最小时,求a 的值.答案以及解析1答案及解析: 答案:D解析:详解:'ln 1,xy ae x =++1'|12x k y ae ===+= 1a e -∴=将(1,1)代入2y x b =+得21,1b b +==-,故选D .2答案及解析: 答案:D解析:()sin (0)5f x wx w π⎛⎫=+> ⎪⎝⎭,在[0,2]π有且仅有5个零点.02x ∴≤≤π,12555wx w ππ≤+≤π+,1229510w ≤<,④正确.如图213,,x x x 为极大值点为3个,①正确;极小值点为2个或3个.∴②不正确.当010x π<<时,5105w wx f πππ<+<+π,当2910w =时,2920491051001001002w +=+=<ππππππ. ∴③正确,故选D .3答案及解析: 答案:C解析:首先(0)0f ≥,即0a ≥, 当01a ≤≤时,2222()22()22(2)0f x x ax a x a a a a a a a =-+=-+-≥-=->,当1a <时,(1)10f =>,故当0a ≥时,2220x ax a -+≥在(,1]-∞上恒成立; 若ln 0x a x -≥在(1,)+∞上恒成立,即ln xa x≤在(1,)+∞上恒成立, 令()ln xg x x =,则2ln 1'()(ln )x g x x -=,易知x e =为函数()g x 在(1,)+∞唯一的极小值点、也是最小值点, 故max()()g x g e e ==,所以a e ≤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
−
1
2( 在区间 2nπ
+
π , 2nπ
4
+
π) 2
内的零点,
其中
n
∈
N,
证明
2nπ
+
π 2
−
xn
<
e−2nπ
.
sin x0 − cos x0
2019 · 天津卷文 20 设函数 f (x) = ln x − a (x − 1) ex, 其中a ∈ R.
(1) 若 a ⩽ 0, 讨论 f (x) 的单调性;
M (a) 最小时, 求 a 的值.
2019 · 天津卷理 20 设函数 f (x) = ex cos x, g(x) 为 f (x) 的导函数.
(1) (2)
求 当
f x
(x)[ ∈
的单调区间; π , π ] 时, 证明
f (x)
+
(π g(x)
−
) x
⩾
0;
(3)
设
xn
42 为函数
u(x)
=
f (x)
2019 · 全国新课标 III 卷文 20 已知函数 f (x) = 2x3 − ax2 + 2. (1) 讨论 f (x) 的单调性; (2) 当 0 < a < 3 时, 记 f (x) 在区间 [0,1] 的最大值为 M , 最小值为 m, 求 M − m 的取值范 围.
1
张龙刚整理
2019 年高考数学导数解答题
(1) 若 a = b = c, f (4) = 8, 求实数 a 的值;
(2) 若 a ̸= b, b = c, 函数 f (x), f ′ (x) 的零点均在集合 {−3,1,3} 中, 求 f (x) 的极小值; (3) 当 a = 0, 0 < b ⩽ 1, c = 1 时, 记 f (x) 的极大值为 M , 证明: M ⩽ 4 .
2019 年高考数学导数解答题
2019 年高考数学导数解答题
张龙刚整理
2019 · 全国新课标 I 卷理 20
已(1)知f ′函(x数) 在f 区(x间) =(s−in1x, π−)
ln (x + 1), f ′ (x) 为 存在唯一极大值点;
f
(x)
的导数.
证明:
2
(2)f (x) 有且仅有两个零点.
2019 · 全国新课标 II 卷文 21 已知函数 f (x) = (x − 1) ln x − x − 1. (1)f (x) 存在唯一极值点; (2)f (x) = 0 有且仅有两个实根, 且两个实根互为倒数.
2019 · 全国新课标 III 卷理 20 已知函数 f (x) = 2x3 − ax2 + b. (1) 讨论 f (x) 的单调性; (2) 是否存在 a, b, 使得 f (x) 在区间 [0,1] 的最小值为 −1, 最大值为 1? 若存在, 求出 a, b 的 所有值, 若不存在, 说明理由.
2
2019 · 全国新课标 I 卷文 20 已知函数 f (x) = 2 sin x − x cos x − x, f ′ (x) 为 f (x) 的导数. (1) 证明: f ′ (x) 在区间 (0,π) 存在唯一零点; (2) 若 x ∈ [0,π] 时, f (x) ⩾ ax, 求 a 的取值范围.
2019 · 北京卷理 19, 文 20 己知函数 f (x) = 1 x3 − x2 + x.
4 (1) 求曲线 y = f (x) 的斜率为 1 的切线方程;
(2) 当 x ∈ [−2,4] 时, 求证: x − 6 ⩽ f (x) ⩽ x;
(3) 设 F (x) = |f (x) − (x + a)| (a ∈ R), 记 F (x) 在区间 [−2,4] 上的最大值为 M (a). 当
2019 · 全国新课标 II 卷理 20
已知函数
f
(x)
=
ln
x
−
x x
+ −
1 1
.
(1) 讨论 f (x) 的单调性, 并证明 f (x) 有且仅有两个零点;
(2) 设 x0 是 f (x) 的一个零点, 证明曲线 y = ln x 在点 A (x0, ln x0) 处的切线也是曲线 y = ex 的切线.
27
2019 · 浙江卷 22
已知实数
a
̸=
0,
设函数
f
(x)
=
a ln x
+
√ x
+
1,
x
>
0.
(1) 当 a = − 3 , 求函数 f (x) 的单调区间;
4[
)
√
(2) 对任意 x ∈
1 e2 , +∞
均有 f (x) ⩽ x , 求 a 的取值范围. 2a
注:e = 2.71828 · · · 为自然对数的底数.
(2)
若
0
<
a
<
1 e
,
(i) 证明 f (x) 恰有两个零点;
(ii) 设 x0 为 f (x) 的极值点, x1 为 f (x) 的零点, 且 x1 > x0, 证明 3x0 − x1 > 2.
2019 · 江苏卷 19 已知函数 f (x) = (x − a) (x − b) (x − c), f ′ (x) 为 f (x) 的导函数.