高考数学——导数大题精选
导数21 大题(其他、中档、中上、未)-2022年全国一卷新高考数学题型细分汇编

导数——大题——其他中下:1.(2022年湖北宜昌夷陵中学J39)青岛胶东国际机场的显著特点之一是弯曲曲线的运用,衡量曲线弯曲程度的重要指标是曲率.曲线的曲率定义如下:若()f x ¢是()f x 的导函数,()f x ''是()f x ¢的导函数,则曲线()y f x =在点()(),x f x 处的曲率()()()3221f x K f x ''=⎡⎤⎦'+⎣.已知函数()()()ln cos 10,0x f x ae x b x a b =---≥>,若0a =,则曲线()y f x =在点()()1,1f 处的曲率为22.(1)求b ;(2)若函数()f x 存在零点,求a 的取值范围;(①)(3)已知1.098ln 3 1.099<<,0.048 1.050e <,0.0450.956e -<,证明:1.14ln π 1.15<<.(求导,中下;第二问,未;)导数——大题——其他中档:1.(2022年广东肇庆J36)已知函数()()ax f x axe a b x =++,()(1)ln g x x x =+.(1)当1a b =-=时,证明:当,()0x ∈+∞时,()()f x g x >;(②)(2)若对(0,)∀∈+∞x ,都[1,0]b ∃∈-,使()()f x g x ≥恒成立,求实数a 的取值范围.(切线放缩,比较大小,中档;第二问,未;)导数——大题——中档、中上、未:1.(2022年河北演练二J40)已知函数(1)ln (),()|ln |1x xf xg x x x -==+.(1)若()()(1,1)f m g n m n =>>,证明:m n >;(③)(2)设函数()(1)ln (1)F x x x a x =--+,若()0F x =有两个不同的实数根12,x x ,且12x x <,证明:221eax x >⋅.(中档,未;第二问,未;)2.(2022年湖北荆州中学J19)已知函数f (x )=e x -e -x -a sin x ,其中e 是自然对数的底数.(1)当x >0,f (x )>0,求a 的取值范围;(④)(2)当x >1时,求证:12x x e e x x ---+>sin sin(ln )x x -.(中档,未;第二问,未;)3.(2022年湖北荆门四校J21)已知函数3()ln()4f x ax x ax=++(其中实数0a >)的最小值为5,(1)求实数a 的值;(⑤)(2)若不等式()(4)5f x k x ≥++恒成立,求实数k 的取值范围.(中上,未;第二问,未;)4.(2022年湖北襄阳五中J23)已知函数()()e ln ln 1(0)x af x x a a x-=-++>(e 是自然对数的底数).(1)当1a =时,试判断()f x 在()1,+∞上极值点的个数;(⑥)(2)当1e 1a >-时,求证:对任意1x >,()1f x a >.(中档,未;第二问,未;)2.(2022年河北衡水中学J15)已知函数(),n f x nx x x R =-∈,其中*,2n N n ∈≥.(Ⅰ)讨论()f x 的单调性;(⑦)(Ⅱ)设曲线()y f x =与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为()y g x =,求证:对于任意的正实数x ,都有()()f x g x ≤;(中上,未;第二问,未;)(Ⅲ)若关于x 的方程()=a(a )f x 为实数有两个正实根12x x ,,求证:21-21ax x n<+-1.(2022年湖南师大附中J11)已知函数()()()1ln 1f x x x a x =+--.(⑧)(1)若1a =,比较(log 10f 与()5log 9f 的大小;(2)讨论函数()f x 的零点个数.(中档,未;第二问,未;)1.(2022年江苏江阴J61)已知函数()e (1ln )x f x m x =+,其中m >0,f '(x )为f (x )的导函数,设()()ex f x h x '=,且5()2h x ≥恒成立.(1)求m 的取值范围;(⑨)(中档,未;第二问,未;)(2)设函数f (x )的零点为x 0,函数f '(x )的极小值点为x 1,求证:x 0>x 1.1.(2022年山东枣庄一模J60)已知函数()()e sin xf x x a x a =-∈R .(1)若[]0,πx ∀∈,()0f x ≥,求a 的取值范围;(⑩)(2)当59a ≥-时,试讨论()f x 在()0,2π内零点的个数,并说明理由.(中档,未;第二问,未;)①【答案】(1)1;(2)10,e⎡⎤⎢⎥⎣⎦;(3)证明见解析.【解析】【分析】(1)将0a =代入并计算()1f ,()f x '',根据曲率直接计算即可.(2)等价转化为()ln cos 1xx x a e+-=有根,然后令()()ln cos 1xx x g x e+-=并研究其性质,最后进行判断可得结果.(3)依据(2)条件可知1ln 1x x e-+≤,然后根据π3113π,π3ln 1ln 13πe e -+<+<判断即可.【详解】(1)当0a =时,()()ln cos 1f x x b x =---,()1f b =-.()()1sin 1f x b x x '=-+-,()()21cos 1f x b x x''=+-.∴()f x 在()1,b -处的曲率为3212122b k b +==⇒=.(2)()()()ln cos 1ln cos 10x xx x f x ae x x a e +-=---=⇒=令()ln 1h x x x =+-,则()111x h x x x-'=-=当()0,1∈x 时,()0h x '>,当()1,∈+∞x 时,()0h x '<所以函数()h x 在()0,1单调递增,在()1,+¥单调递减,所以()(1)0h x h ≤=,则ln 1x x +≤又令()x x m x e =,则()1'xxm x e -=当()0,1∈x 时,()0m x '>,当()1,∈+∞x 时,()0m x '<所以函数()m x 在()0,1单调递增,在()1,+¥单调递减所以()1(1)m x m e≤=令()()ln cos 1xx x g x e+-=,∴()ln 11x x x x g x e e e+≤≤≤,当且仅当1x =时取“=”,显然,当1a e>时,()f x 无零点.当10a e ≤≤时,()11g a e =≥,111cos 110ee g a e e ⎛⎫-+- ⎪⎛⎫⎝⎭=<≤ ⎪⎝⎭∴存在1,1x e ⎛⎫∈ ⎪⎝⎭使()0g x a =,符合题意.综上:实数a 的取值范围为10,e ⎡⎤⎢⎥⎣⎦.(3)由(2)知ln 11xx e e+≤,∴1ln 1x x e -+≤(当且仅当1x =时取“=”)∴π10.0483πln 13e e -+<<,∴0.048ln π1ln 3 1.0501 1.099 1.15e <-+<-+<又∵310.045π3ln 1πe e -+<<,∴0.045ln πln 31 1.09810.956 1.14e ->+->+->综上:1.14ln π 1.15<<.【点睛】关键点点睛:第(1)问关键在于求导;第(2)问关键在于等价转化的使用以及常用不等式(ln 1x x +≤)的使用以及放缩法;第(3)问在于利用第(2)问的条件ln 11xx e e+≤进行比较.②【答案】(1)证明见解析;(2)1,e∞⎡⎫+⎪⎢⎣⎭.③【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)由()()(1,1)f m g n m n =>>,列出m 与n 的关系式,利用指数对数的运算性质进行化简与放缩即可证明;(2)把()0F x =化成()f x a =的形式,根据导数确定()f x 的单调性与极值,画出简图,确定12,x x 与1的大小关系,利用(1)的结论,可以得到12,x x 与e a 的关系,进而可证得结论.【小问1详解】证明:由()()(1,1)f m g n m n =>>,得(1)ln |ln |ln 1m mn n m -==+,则有(1)ln 1121ln 1111e(e)m m m m m m m m m n mmm ----++++====<,所以m n >;【小问2详解】证明:令()(1)ln (1)0(0)F x x x a x x =--+=>,化简可得(1)ln 1x xa x -=+,即()f x a =,2212ln 2ln 1()(1)(1)(1)x x x x x f x x x x x +--'=+=+++,令1()2ln g x x x x=+-,221()10x x xg =++>',所以()g x 在()0,∞+上单调递增且(1)0g =,则()g x 即()0f x '<时()0,1x ∈,()0f x '>时()1,x ∈+∞,可得()f x 在()0,1上单调递减,在()1,+∞单调递增,且有(1)0f =,由下图可知,1201x x <<<,0a >,又2222(1)ln ()ln e ln e =(e )1a a a x x f x a g x -====+,即22()=(e )(1,e 1)a a f x g x >>,由(1)可得2e ax >⋅⋅⋅①,又由1()f x a =得1111111111(1)ln (1)ln 1(()ln e ln e =(e )111a a a x x x x f f x a g x x x --======++,即1111((e )(1,e 1)a a f g x x >>,由(1)可得11e a x >⋅⋅⋅②,①②相乘可得221e a x x >,即221e a x x >⋅.【点睛】函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.④22.【答案】解:(1)由题意可知f '(x )=e x +e -x -a cos x ,①当0<a ≤2时,由-1≤cos x ≤1可知-2≤-a ≤a cos x ≤a ≤2,又因为e x +e -x ≥2恒成立,所以f '(x )=e x +e -x -a cos x ≥0恒成立,所以y =f (x )在[0,+∞)上恒为增函数.又f (0)=0,所以f (x )>0对x >0恒成立;②当a >2时,,且可知y =e x +e -x 与y =a cos x 必有一个交点,不妨设为x 0,所以y =f (x )在[0,x 0)上为减函数,在[x 0,+∞)为增函数,又f (0)=0,所以f (x 0)<0,与题意不符,故舍去.综合可知a 的取值范围是(0,2].(2),只需证,即证,即证e x -e -x -2sin x >e ln x -e -ln x -2sin (ln x ),即证f (x )>f (ln x )(此时a =2),由(1)问可知当0<a ≤2时y =f (x )在[0,+∞)上恒为增函数.所以即证x >ln x ,不妨令g (x )=x -ln x ,则所以y =g (x )在(0,1)递减,(1,+∞)递增.又因为g (x )min =g (1)=1>0所以g (x )=x -ln x >0恒成立,即x >ln x ,所以原结论得证.⑤【答案】(1)2;(2)(],4-∞-.【解析】【分析】(1)对()f x 求导,构造2()43(0)g x ax ax x =+->并由二次函数性质判断其零点0x 及区间符号,进而确定()f x 的单调性、极值,结合已知最值列方程得003ln2(41)6041x x ++-=+,再构造中间函数求零点,进而求a 的值;(2)令2(0)t x t =>问题转化为()0F t ≥对(0,)t ∈+∞恒成立,构造中间函数研究()F t 的最值,并判断单调性,最后可求k 的范围.【小问1详解】由题设,2243()(0)ax ax f x x ax +-'=>且0a >,令2()43(0)g x ax ax x =+->,则()g x 在(0,)+∞上递增且(0)30=-<g ,所以()0g x =有唯一正实根,记为0x ,则200430ax ax +-=.当00x x <<时,()0g x <即()0f x '<,()f x 单调递减,当0x x >时,()0>g x 即()0f x '>,()f x 单调递增,所以极小值也是最小值为00003()ln()45f x ax x ax =++=.又200430ax ax +-=,可得00341ax x =+,故003ln2(41)6041x x ++-=+,令3()ln26(1)h t t t t =+->,其中041t x =+,则121()20t h t t t-'=-+=>,所以()h t 在(1,)+∞上单调递增且(3)0h =,而3t =,即012x =,从而2a =.综上,实数a 的值为2.【小问2详解】由题意,3ln(2)502x kx x+--≥恒成立,令2(0)t x t =>.令3()ln 5(0)2kt F t t t t =+-->,则2226()2kt t F t t-+-'=,令2()26(0)t kt t t ϕ=-+->ⅰ、当0k ≥时,(1)202kF =--<,不合题意,舍去,ⅱ、当0k <时,()0t ϕ=有唯一的正实根,记为0t ,且200260t kt -=<,则0(0,3)t ∈且0312kt t -=当00t t <<时,()0t ϕ<,即()0F t '<,当0t t >时,()0t ϕ>,即()0F t '>所以()F t 在0(0,)t 单调递减,在0(,)t +∞上单调递增,则极小值也是最小值为00000036ln 5ln 62()kt t F t t t t +--+==-.要使()0F t ≥对(0,)t ∈+∞恒成立,则0()0F t ≥.令6()ln 6(03)m x x x x =+-<<,则26()0x m x x-'=<,即()m x 在(0,3)上递减,又(1)0m =,所以不等式()0m x ≥的解集为(]0,1,故001t <≤,又(]020062,0,1,k t t t -=+∈则k 的取值范围是(],4-∞-.【点睛】关键点点睛:(1)构造中间函数,并结合导数研究()f x 单调性、最值,根据已知求得参数间的函数关系及参数范围;(2)令2(0)t x t =>,根据已知确定隐零点0t 与参数k 的关系,并求出0t 的范围,进而求k 的范围.⑥【答案】(1)()f x 在()1,+∞上只有一个极值点,即唯一极小值点;(2)证明见解析【解析】【分析】(1)求出函数的导数,判断其正负,结合零点存在定理,判断函数的单调性,求得答案;(2)求出函数的导数,构造函数()=e 1x axh x x ---,判断其正负情况,确定函数单调性,进而确定函数的最小值()000ln ln 11(1)x a f x x -++-=,故可将原问题转化为对任意1x >,()001ln ln 111x a x a-++>-,再构造函数,利用其单调性即可证明结论.【小问1详解】当1a =时,()1e ln ln2x f x x x-=-+,则1122(1)(e )e (1)11()x x xx x x f x x x x ------'=-=,设1()=e1x x x x ϕ---,则11()e 11x x x ϕ-=---在()1,+∞上是增函数,当1x +→时,()x ϕ→-∞,(2)e 20ϕ=->,所以存在0(1,2)x ∈,使得0()0x ϕ=,当0(1,)x x ∈时,()0x ϕ<,则()0f x '<,即()f x 在0(1,)x 上单调递减,当0(,)x x ∈+∞时,()0x ϕ>,则()0f x '>,即()f x 在0(1,)x 上单调递增,所以()f x 在()1,+∞上只有一个极值点,即唯一极小值点;【小问2详解】证明:由22(1)(e )e (1)11()x a x a xx x x f x x xx ------'=-=,设()=e1x ax h x x ---,则1()e 11x ah x x -=---在()1,+∞上是增函数,当1x +→时,()h x →-∞,因为1e 1a >-,所以1(1)e 10h a a +=-->,所以存在0(1,1)x a ∈+,使得0000()e01x ax h x x -=-=-,当0(1,)x x ∈时,()0h x <,则()0f x '<,即()f x 在0(1,)x 上单调递减,当0(,)x x ∈+∞时,()0h x >,则()0f x '>,即()f x 在0(1,)x 上单调递增,故0x x =是函数()()e ln ln 1(0)x af x x a a x -=-++>的极小值点,也是最小值点,则()0000e ln l 1)n ()(x af x x f x a x --+=+≥,又因为000e1x ax x -=-,所以()000ln ln 11(1)x a f x x -++-=,即证:对任意1x >,()001ln ln 111x a x a-++>-,即证:对任意1x >,()001ln ln 111x a x a->-+-,设()ln 11g x x x =--,则()ln 11g x x x =--在()1,+∞上单调递减,因为0(1,1)x a ∈+,所以0()(1)g x g a >+,故()001ln ln 111x a x a->-+-,故对任意1x >,()1f x a>.【点睛】本题考查了利用导数判断函数的极值点的个数以及证明不等式成立的问题,综合性较强,要能熟练求导,利用导数判断函数的单调性以及求函数最值,解答的关键是根据函数或导数的特点,构造函数,进而结合零点存在定理判断导数正负,求得函数的最值,利用函数最值进而证明不等式成立.⑦【答案】(Ⅰ)当n 为奇数时,()f x 在(,1)-∞-,(1,)+∞上单调递减,在(1,1)-内单调递增;当n 为偶数时,()f x 在(,1)-∞-上单调递增,()f x 在(1,)+∞上单调递减.(Ⅱ)见解析;(Ⅲ)见解析.【详解】(Ⅰ)由()n f x nx x =-,可得,其中*n N ∈且2n ≥,下面分两种情况讨论:(1)当n 为奇数时:令()0f x '=,解得1x =或1x =-,当x 变化时,(),()f x f x '的变化情况如下表:x (,1)-∞-(1,1)-(1,)+∞()f x '-+-()f x所以,()f x 在(,1)-∞-,(1,)+∞上单调递减,在(1,1)-内单调递增.(2)当n 为偶数时,当()0f x '>,即1x <时,函数()f x 单调递增;当()0f x '<,即1x >时,函数()f x 单调递减.所以,()f x 在(,1)-∞-上单调递增,()f x 在(1,)+∞上单调递减.(Ⅱ)证明:设点P 的坐标为0(,0)x ,则110n x n -=,20()f x n n '=-,曲线()y f x =在点P 处的切线方程为()00()y f x x x =-',即()00()()g x f x x x '=-,令()()()F x f x g x =-,即,则0()()()F x f x f x -'''=由于1()n f x nx n -'=-+在()0,+∞上单调递减,故()F x '在()0,+∞上单调递减,又因为0()0F x '=,所以当0(0,)x x ∈时,0()0F x '>,当0(,)x x ∈+∞时,0()0F x '<,所以()F x 在0(0,)x 内单调递增,在0(,)x +∞内单调递减,所以对任意的正实数x 都有0()()0F x F x ≤=,即对任意的正实数x ,都有()()f x g x ≤.(Ⅲ)证明:不妨设12x x ≤,由(Ⅱ)知()()20()g x n nx x =--,设方程()g x a =的根为2x ',可得202.a x x n n '=+-,当2n ≥时,()g x 在(),-∞+∞上单调递减,又由(Ⅱ)知222()()(),g x f x a g x '≥==可得22x x '≤.类似的,设曲线()y f x =在原点处的切线方程为()y h x =,可得()h x nx =,当(0,)x ∈+∞,()()0n f x h x x -=-<,即对任意(0,)x ∈+∞,()().f x h x <设方程()h x a =的根为1x ',可得1a x n'=,因为()h x nx =在(),-∞+∞上单调递增,且111()()()h x a f x h x '==<,因此11x x '<.由此可得212101a x x x x x n''-<-=+-.因为2n ≥,所以11112(11)111n n n C n n ---=+≥+=+-=,故1102n n x -≥=,所以2121a x x n-<+-.【解析】1.导数的运算;2.导数的几何意义;3.利用导数研究函数性质、证明不等式.⑧【答案】(1)(()25log 10log 9f f >(2)当2a ≤时,()f x 有1个零点;当2a >时,()f x 有3个零点【解析】【分析】(1)利用导数判断函数()f x 在()1,+∞上的单调性,根据函数的单调性即可得出答案;(2)求出函数的导函数()f x ',再利用导数可求得()min 2f x a '=-,再分20a -≥和20a -<两种情况讨论,结合零点的存在性定理,从而可得出结论.【小问1详解】解:当1a =时,()()()1ln 1f x x x x =+--,()1ln 11ln x f x x x x x+'=+-=+,当1x >时,()0f x '>,所以()f x 在()1,+∞上单调递增,因为2445log 10log 10log 9log 91=>>>,所以(()25log 10log 9f f >;【小问2详解】解:()11ln ln 1x f x x a x a x x +'=+-=++-,令()1ln 1g x x a x =++-,则()()221110-'=-=>x g x x x x x,当01x <<时,()0g x '<,当1x >时,()0g x '>,所以函数()g x 在()0,1上递减,在()1,+∞上递增,所以()()min 12g x g a ==-,即()min 2f x a '=-,①若20a -≥,即2a ≤,则()0f x '≥,()f x 在()0,∞+上递增,因为()10f =,则1x =为()f x 的唯一零点;②若20a -<,即2a >,则()()min 10f x f ''=<,因为e 1a >,()1e 10e aaf '=+>,则()f x '在()1,+∞内仅有个零点,记为n ,因为0e 1a -<<,()e e 21a af a -'=-+设()e 21a h a a =-+,则当2a >时,()e 20ah a '=->,所以()h a 在()2,+∞内单调递增,从而()()22e 30h a h >=->,即()e 0af -'>,所以()f x 在()0,1内仅有一个零点,记为m ,于是,当()0,x m ∈或(),x n ∈+∞时,()0f x '>,当(),x m n ∈时,()0f x '<,所以函数()f x 在(),n +∞和()0,m 上递增,在(),m n 上递减,因为01m n <<<,()10f =,则()0f m >,()0f n <,故()f x 在(),m n 内有唯一零点,因为()()()e e 1e 12e 0aa a a f a a a ----=-+--=-<,则()f x 在()0,m 内有唯一零点,因为()()()e e 1e 120a a af a a a =+--=>,则()f x 在(),m +∞内有唯一零点,所以()f x 在()0,∞+内有3个零点.综上所述,当2a ≤时,()f x 有1个零点;当2a >时,()f x 有3个零点.【点睛】本题考查了利用导数求函数的单调区间及最值问题,考查了利用导数研究函数的零点的问题,考查了二次求导,考查了学生的数据分析能力及分类讨论思想,属于难题.⑨【答案】(1)3,2⎡⎫+∞⎪⎢⎣⎭(2)证明见解析【解析】【分析】(1)求导可得()'f x 解析式,即可得()h x 解析式,利用导数求得()h x 的单调区间和最小值,结合题意,即可得m 的范围.(2)求得()f x ''解析式,令22()1ln (0)m m t x m x x x x=++->,利用导数可得()t x 的单调性,根据零点存在性定理,可得存在21,12x ⎛⎫∈ ⎪⎝⎭,使得t (x 2)=0,进而可得f '(x )在x =x 2处取得极小值,即x 1=x 2,所以11211211ln 0,,12m m m x x x x ⎛⎫++-=∈ ⎪⎝⎭,令()1ln s x m x =+,分析可得s (x 1)<0,即可得证【小问1详解】由题设知()e (1ln )x m f x m x x'=++,则1ln (())0h m m x x x x ++>=,所以22(1)()m m m x h x x x x -'=-=当x >1时,h '(x )>0,则h (x )在区间(1,+∞)是增函数,当0<x <1时,h '(x )<0,则h (x )在区间(0,1)是减函数,所以h (x )min =h (1)=512m +≥,解得32m ≥,所以m 的取值范围为3,2⎡⎫+∞⎪⎢⎣⎭【小问2详解】222e 1ln e )n (1l x x m m m m m m x m x x x x x x f x ⎛⎫⎛⎫+++-=++- ⎪ ⎪⎝⎭⎝'=⎭'令22()1ln (0)m m t x m x x x x=++->则2322()m m m t x x x x '=-+=2233(1)1(22)0m x m x x x x ⎡⎤-+-+⎣⎦=>恒成立,所以t (x )在(0,+∞)单调递增.又1(1)10,1l 3ln 20n 2122t m t m ⎛⎫=+>=-≤- ⎪⎝⎭<,所以存在21,12x ⎛⎫∈ ⎪⎝⎭,使得t (x 2)=0,当x ∈(0,x 2)时,t '(x )<0,即f ''(x )<0,则f '(x )在(0,x 2)单调递减;当x ∈(x 2,+∞)时,t '(x )>0,即f ''(x )>0,则f '(x )在(x 2,+∞)单调递增;所以f '(x )在x =x 2处取得极小值.即x 1=x 2,所以t (x 1)=0,即11211211ln 0,,12m m m x x x x ⎛⎫++-=∈ ⎪⎝⎭,所以1122111(12)21ln 0m x m m m x x x x -+=-=<,令()1ln s x m x =+,则s (x )在(0,+∞)单调递增;所以s (x 1)<0因为f (x )的零点为x 0,则01ln 0m x +=,即s (x 0)=0所以s (x 1)<s (x 0),所以x 0>x 1【点睛】解题的关键是熟练掌握利用导数求函数单调区间,极(最)值的方法,并灵活应用,难点在于,需结合零点存在性定理,判断零点所在区间,再进行分析和求解,属中档题.⑩【答案】(1)(],1-∞(2)若591a -≤≤,()f x 在(0,2)π内无零点;若1a >,()f x 在(0,2)π内有且仅有1个零点,证明见解析.【解析】【分析】(1)求导,然后,分别讨论0a ≤,01a <≤和1a >时的单调性即可.(2)根据(1)的结论,分别讨论590a -≤≤,01a <≤和1a >时零点的个数.【小问1详解】'()(1)e cos x f x x a x=+-①若0a ≤,当[0,]x π∈时,0a -≥,sin 0x ≥,()e ()sin 0x f x x a x =+-≥,当且仅当0x =时取等号,可见,0a ≤符合题意.②若01a <≤,当[0,]2x π∈时,0'()(1)e cos 10f x x a x a ≥+-≥-≥;当,2x π⎛⎤∈π ⎥⎝⎦时,cos 0x <,'()(1)e (cos )0x f x x a x =++⋅->.可见,当[]0,x π∈时,'()0f x ≥,当且仅当1a =,且0x =时取等号.所以()f x 在[0,]π上单调递增,所以,()(0)0f x f ≥=.所以01a <≤符合题意.③若1a >,因为(1)e x y x =+在[]0,π上单调递增,cos y a x =-在[]0,π上单调递增,所以,'()(1)e cos x f x x a x =+-在[]0,π上单调递增,又'(0)10f a =-<,2'((1)e 022f πππ=+>,由零点存在定理及'()f x 的单调性,存在唯一的0(0,2x π∈,使得0'()0f x =.当0(0,)x x ∈时,0'()'()0f x f x <=,()f x 单调递减,所以,()(0)0f x f <=.可见,1a >不符合题意.综上,a 的取值范围是(],1-∞【小问2详解】①若590a -≤≤,由(1),(]0,x π∈时,()0f x >,()f x 在(]0,π内无零点.当(),2x ∈ππ时,1sin 0x -≤<,0sin 1x <-≤,sin a x a -≥,又由e x y x =单调递增,则33()e sin e 3e 593 2.7590.0490x f x x a x a ππ=->+>->⨯-=>.可见,若590a -≤≤,()f x 在(0,2)π内无零点.②若01a <≤,由(1),(]0,x π∈时,()0f x >,()f x 在(]0,π内无零点.当(,2)x ππ∈时,sin 0x ->,()e (sin )0x x f x x a x xe =+->>.可见,若01a <≤,()f x 在(0,2)π内无零点.③若1a >,由(1),存在唯一的00,2x π⎛⎫∈ ⎪⎝⎭,当0(0,)x x ∈时,0'()'()0f x f x <=.()f x 单调递减;当0(,)x x π∈时,0'()'()0f x f x >=,()f x 单调递增.又(0)0f =,所以0()(0)0f x f <=.又()e 0f πππ=>,由零点存在定理及()f x 的单调性,存在唯一的10(,)x x π∈,使得1()0f x =.可见,()f x 在(]0,π内存在唯一的零点.当(,2)x ππ∈时,sin 0,sin 0x a x <->,所以,()e sin e 0x x f x x a x x =->>,所以,()f x 在(,2)ππ内没有零点,可见,()f x 在(0,2)π有且仅有1个零点.综上所述,若591a -≤≤,()f x 在(0,2)π内无零点;若1a >,()f x 在(0,2)π内有且仅有1个零点.【点睛】关键点睛:通过导数讨论含参函数的单调性时,要对参数进行分类讨论,分类讨论时,要注意做到不重不漏;讨论含参函数的零点个数时,要利用零点存在定理来讨论零点个数,利用零点存在定理讨论零点个数时,要注意结合单调性讨论,属于难题。
高考导数大题30道

高考导数大题30道1.已知函数$f(x)=x+ax+b$的图像在点$P(1,0)$处的切线与直线$3x+y=$平行。
1) 求常数$a,b$的值;2) 求函数$f(x)$在区间$[t,+\infty)$上的最小值和最大值$(t>1)$。
2.已知函数$f(x)=-x+ax$,$a\in\mathbb{R}$。
1) 若$f(x)$在$[1,+\infty)$上为单调减函数,求$a$的取值范围;2) 若$a=1/2$,求$f(x)$在$[-3,0]$上的最大值和最小值。
3.设函数$f(x)=\dfrac{1}{2x}e^{2x}$。
1) 求函数$f(x)$的单调区间;2) 若当$x\in[-2,2]$时,不等式$f(x)<m$恒成立,求$m$的取值范围。
4.已知函数$f(x)=x-3x^3$及$y=f(x)$上一点$P(1,-2)$,过点$P$作直线$l$。
1) 求使直线$l$和$y=f(x)$相切且以$P$为切点的直线方程;2) 求使直线$l$和$y=f(x)$相切且切点异于$P$的直线方程$y=g(x)$。
5.已知函数$f(x)=x-3ax^{-1}$,$a\neq 3$。
1) 求$f(x)$的单调区间;2) 若$f(x)$在$x=-1$处取得极大值,直线$y=m$与$y=f(x)$的图像有三个不同的交点,求$m$的取值范围。
7.已知函数$f(x)=a\ln x-bx$图像上一点$P(2,f(2))$处的切线方程为$y=-3x+2\ln 2+2$。
Ⅰ) 求$a,b$的值;Ⅱ) 若方程$f(x)+m=0$在区间$[e,+\infty)$有两个不等实根,求$m$的取值范围(其中$e$为自然对数的底数)。
8.已知函数$f(x)=(a-x)\ln x$,$a\in\mathbb{R}$。
1) 当$a=1$时,求$f(x)$在区间$[1,e]$上的最大值和最小值;2) 若在区间$(1,+\infty)$上,函数$f(x)$的图像恒在直线$y=2ax$下方,求$a$的取值范围。
高三数学:2024届高考数学导数大题精选30题(解析版)(共31页)

2024届新高考数学导数大题精选30题1(2024·安徽·二模)已知函数f (x )=x 2-10x +3f (1)ln x .(1)求函数f (x )在点(1,f (1))处的切线方程;(2)求f (x )的单调区间和极值.【答案】(1)y =4x -13;(2)递增区间为(0,2),(3,+∞),递减区间为2,3 ,极大值-16+12ln2,极小值-21+12ln3.【分析】(1)求出函数f (x )的导数,赋值求得f (1),再利用导数的几何意义求出切线方程.(2)由(1)的信息,求出函数f (x )的导数,利用导数求出单调区间及极值.【详解】(1)函数f (x )=x 2-10x +3f (1)ln x ,求导得f(x )=2x -10+3f (1)x,则f (1)=-8+3f (1),解得f (1)=4,于是f (x )=x 2-10x +12ln x ,f (1)=-9,所以所求切线方程为:y +9=4(x -1),即y =4x -13.(2)由(1)知,函数f (x )=x 2-10x +12ln x ,定义域为(0,+∞),求导得f (x )=2x -10+12x =2(x -2)(x -3)x,当0<x <2或x >3时,f (x )>0,当2<x <3时,f (x )<0,因此函数f (x )在(0,2),(3,+∞)上单调递增,在(2,3)上单调递减,当x =2时,f (x )取得极大值f (2)=-16+12ln2,当x =3时,f (x )取得极小值f (3)=-21+12ln3,所以函数f (x )的递增区间为(0,2),(3,+∞),递减区间为(2,3),极大值-16+12ln2,极小值-21+12ln3.2(2024·江苏南京·二模)已知函数f (x )=x 2-ax +ae x,其中a ∈R .(1)当a =0时,求曲线y =f (x )在(1,f (1))处的切线方程;(2)当a >0时,若f (x )在区间[0,a ]上的最小值为1e,求a 的值.【答案】(1)x -ey =0(2)a =1【分析】(1)由a =0,分别求出f (1)及f (1),即可写出切线方程;(2)计算出f (x ),令f (x )=0,解得x =2或x =a ,分类讨论a 的范围,得出f (x )的单调性,由f (x )在区间[0,a ]上的最小值为1e,列出方程求解即可.【详解】(1)当a =0时,f (x )=x 2e x ,则f (1)=1e ,f (x )=2x -x 2ex,所以f (1)=1e ,所以曲线y =f (x )在(1,f (1))处的切线方程为:y -1e =1e(x -1),即x -ey =0.(2)f(x )=-x 2+(a +2)x -2a e x =-(x -2)(x -a )ex,令f (x )=0,解得x =2或x =a ,当0<a <2时,x ∈[0,a ]时,f (x )≤0,则f (x )在[0,a ]上单调递减,所以f (x )min =f (a )=a ea =1e ,则a =1,符合题意;当a >2时,x ∈[0,2]时,f (x )≤0,则f (x )在[0,2]上单调递减,x ∈(2,a ]时,f (x )>0,则f (x )在(2,a ]上单调递增,所以f (x )min =f (2)=4-a e2=1e ,则a =4-e <2,不合题意;当a =2时,x ∈[0,2]时,f (x )≤0,则f (x )在[0,2]上单调递减,所以f (x )min =f (2)==2e 2≠1e ,不合题意;综上,a =1.3(2024·浙江绍兴·模拟预测)已知f x =ae x -x ,g x =cos x . (1)讨论f x 的单调性.(2)若∃x 0使得f x 0 =g x 0 ,求参数a 的取值范围.【答案】(1)当a ≤0时,f x 在-∞,+∞ 上单调递减;当a >0时,f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增.(2)-∞,1【分析】(1)对f x =ae x -x 求导数,然后分类讨论即可;(2)直接对a >1和a ≤1分类讨论,即可得到结果.【详解】(1)由f x =ae x -x ,知f x =ae x -1.当a ≤0时,有f x =ae x -1≤0-1=-1<0,所以f x 在-∞,+∞ 上单调递减;当a >0时,对x <-ln a 有f x =ae x -1<ae -ln a -1=1-1=0,对x >-ln a 有f x =ae x -1>ae -ln a -1=1-1=0,所以f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增.综上,当a ≤0时,f x 在-∞,+∞ 上单调递减;当a >0时,f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增.(2)当a >1时,由(1)的结论,知f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增,所以对任意的x 都有f x ≥f -ln a =ae -ln a +ln a =1+ln a >1+ln1=1≥cos x =g x ,故f x >g x 恒成立,这表明此时条件不满足;当a ≤1时,设h x =ae x -x -cos x ,由于h -a -1 =ae -a -1+a +1-cos -a -1 ≥ae-a -1+a ≥-a e-a -1+a =a 1-e-a -1≥a 1-e 0=0,h 0 =ae 0-0-cos0=a -1≤0,故由零点存在定理,知一定存在x 0∈-a -1,0 ,使得h x 0 =0,故f x 0 -g x 0 =ae x 0-x 0-cos x 0=h x 0 =0,从而f x 0 =g x 0 ,这表明此时条件满足.综上,a 的取值范围是-∞,1 .4(2024·福建漳州·一模)已知函数f x =a ln x -x +a ,a ∈R 且a ≠0.(1)证明:曲线y =f x 在点1,f 1 处的切线方程过坐标原点.(2)讨论函数f x 的单调性.【答案】(1)证明见解析(2)答案见解析【分析】(1)先利用导数的几何意义求得f x 在1,f 1 处的切线方程,从而得证;(2)分类讨论a <0与a >0,利用导数与函数的单调性即可得解.【详解】(1)因为f x =a ln x -x +a x >0 ,所以f (x )=a x -1=a -xx,则f (1)=a ln1-1+a =a -1,f (1)=a -1,所以f x 在1,f 1 处的切线方程为:y -(a -1)=(a -1)(x -1),当x =0时,y -(a -1)=(a -1)(0-1)=-(a -1),故y =0,所以曲线y =f (x )在点1,f 1 处切线的方程过坐标原点.(2)由(1)得f (x )=ax -1=a -xx,当a<0时,a-x<0,则f x <0,故f(x)单调递减;当a>0时,令f (x)=0则x=a,当0<x<a时,f (x)>0,f(x)单调递增;当x>a时,f (x)<0,f(x)单调递减;综上:当a<0时,f(x)在(0,+∞)上单调递减;当a>0时,f(x)在(0,a)上单调递增,在(a,+∞)上单调递减.5(2024·山东·二模)已知函数f x =a2xe x-x-ln x.(1)当a=1e时,求f x 的单调区间;(2)当a>0时,f x ≥2-a,求a的取值范围.【答案】(1)f x 的减区间为0,1,增区间为1,+∞(2)a≥1【分析】(1)当a=1e时,f x =xe x-1-x-ln x,x>0,求导得f x =x+1xxe x-1-1,令g x =xe x-1-1,求g x 确定g x 的单调性与取值,从而确定f x 的零点,得函数的单调区间;(2)求f x ,确定函数的单调性,从而确定函数f x 的最值,即可得a的取值范围.【详解】(1)当a=1e时,f x =xe x-1-x-ln x,x>0,则f x =x+1e x-1-1-1x=x+1xxe x-1-1,设g x =xe x-1-1,则g x =x+1e x-1>0恒成立,又g1 =e0-1=0,所以当x∈0,1时,f x <0,f x 单调递减,当x∈1,+∞时,f x >0,f x 单调递增,所以f x 的减区间为0,1,增区间为1,+∞;(2)f x =a2x+1e x-1-1x=x+1xa2xe x-1,设h x =a2xe x-1,则h x =a2x+1e x>0,所以h x 在0,+∞上单调递增,又h0 =-1<0,h1a2=e1a2-1>0,所以存在x0∈0,1 a2,使得h x0 =0,即a2x0e x0-1=0,当x∈0,x0时,f x <0,f x 单调递减,当x∈x0,+∞时,f x >0,f x 单调递增,当x=x0时,f x 取得极小值,也是最小值,所以f x ≥f x0=a2x0e x0-x0-ln x0=1-ln x0e x0=1+2ln a,所以1+2ln a≥2-a,即a+2ln a-1≥0,设F a =a+2ln a-1,易知F a 单调递增,且F1 =0,所以F a ≥F1 ,解得a≥1,综上,a≥1.6(2024·山东·一模)已知函数f(x)=ln x+12a(x-1)2.(1)当a=-12时,求函数f(x)的单调区间;(2)若函数g(x)=f(x)-2x+1有两个极值点x1,x2,且g(x1)+g(x2)≥-1-32a,求a的取值范围.【答案】(1)增区间(0,2),减区间(2,+∞)(2)[1,+∞)【分析】(1)将a=-12代入求导,然后确定单调性即可;(2)求导,根据导函数有两个根写出韦达定理,代入g(x1)+g(x2)≥-1-32a,构造函数,求导,研究函数性质进而求出a的取值范围.【详解】(1)当a=-12时,f(x)=ln x-14(x-1)2,x>0,则f (x)=1x-12(x-1)=-(x-2)(x+1)2x,当x∈(0,2),f (x)>0,f(x)单调递增,当x∈(2,+∞),f (x)<0,f(x)单调递减,所以f(x)的单调递增区间是(0,2),单调递减区间是(2,+∞);(2)g(x)=f(x)-2x+1=ln x+12a(x-1)2-2x+1,所以g (x)=1x+a(x-1)-2=ax2-(a+2)x+1x,设φ(x)=ax2-(a+2)x+1,令φ(x)=0,由于g(x)有两个极值点x1,x2,所以Δ=(a+2)2-4a=a2+4>0x1+x2=a+2a>0x1x2=1a>0,解得a>0.由x1+x2=a+2a,x1x2=1a,得g x1+g x2=ln x1+12a x1-12-2x1+1+ln x2+12a x2-12-2x2+1=ln x1x2+12a x1+x22-2x1x2-2x1+x2+2-2x1+x2+2=ln1a +12a a+2a2-2a-2⋅a+2a+2-2⋅a+2a+2=ln1a +a2-2a-1≥-1-32a,即ln a-12a-1a≤0,令m(a)=ln a-12a-1a,则m (a)=1a-12-12a2=-(a-1)22a2≤0,所以m(a)在(0,+∞)上单调递减,且m(1)=0,所以a≥1,故a的取值范围是[1,+∞).7(2024·湖北·二模)求解下列问题,(1)若kx-1≥ln x恒成立,求实数k的最小值;(2)已知a,b为正实数,x∈0,1,求函数g x =ax+1-xb-a x⋅b1-x的极值.【答案】(1)1(2)答案见解析【分析】(1)求导,然后分k≤0和k>0讨论,确定单调性,进而得最值;(2)先发现g0 =g1 =0,当a=b时,g x =0,当0<x<1,a≠b时,取ab=t,L x =tx+1-x-t x,求导,研究单调性,进而求出最值得答案.【详解】(1)记f x =kx-1-ln x x>0,则需使f x ≥0恒成立,∴f x =k-1xx>0,当k≤0时,f x <0恒成立,则f x 在(0,+∞)上单调递减,且在x>1时,f x <0,不符合题意,舍去;当k >0时.令f x =0,解得x =1k,则f x 在0,1k 上单调递减,在1k ,+∞ 上单调递增,所以f x min =f 1k =-ln 1k=ln k ,要使kx -1≥ln x 恒成立,只要ln k ≥0即可,解得k ≥1,所以k 的最小值为1;(2)g (x )=ax +(1-x )b -a x ⋅b 1-x ,x ∈[0,1],a >0,b >0,易知g 0 =g 1 =0,当a =b 时,g x =ax +a -ax -a =0,此时函数无极值;当0<x <1,a ≠b 时,g (x )=ax +(1-x )b -b ⋅a b x =b a b x +1-x -a b x,取ab=t ,t >0,t ≠1,L x =tx +1-x -t x ,t >0,t ≠1,x ∈0,1 ,则L x =t -1-t x ln t ,当t >1时,由L x ≥0得x ≤ln t -1ln tln t,由(1)知t -1≥ln t ,当t >1时,t -1ln t>1,因为x -1≥ln x ,所以1x -1≥ln 1x ,所以ln x ≥1-1x ,即x >0,当t >1时,ln t >1-1t,所以t >t -1ln t ,则ln t >ln t -1ln t >0,所以ln t -1ln tln t<1,即L x 在0,ln t -1ln t ln t 上单调递增,在ln t -1ln tln t,1单调递减.所以函数g x 极大=gln t -1lntln t,t =ab,a ≠b ,当0<t <1时,同理有ln t -1lntln t∈0,1 ,由Lx ≥0得x ≤ln t -1lntln t,即(x )在0,ln t -1lntln t上单调递增,在ln t -1lntln t,1上单调递减.所以函数g x 极大=gln t -1lntln t,t =a b,a ≠b ,综上可知,当a =b 时,函数g x 没有极值;当a ≠b 时,函数g x 有唯一的极大值g ln t -1lntln t,其中t =ab,没有极小值.【点睛】关键点点睛:取ab=t ,将两个参数的问题转化为一个参数的问题,进而求导解答问题.8(2024·湖北武汉·模拟预测)函数f (x )=tan x +sin x -92x ,-π2<x <π2,g (x )=sin n x -x n cos x ,x ∈0,π2,n ∈N +.(1)求函数f (x )的极值;(2)若g (x )>0恒成立,求n 的最大值.【答案】(1)极小值为f π3 =3(3-π)2,极大值为f -π3 =3(π-3)2;(2)3.【分析】(1)判断函数f (x )为奇函数,利用导数求出f (x )在区间0,π2上的极值,利用奇偶性即可求得定义域上的极值.(2)利用导数证明当n =1时,g (x )>0恒成立,当n >1时,等价变形不等式并构造函数F (x )=x -sin x cos 1nx,0<x <π2,利用导数并按导数为负为正确定n 的取值范围,进而确定不等式恒成立与否得解.【详解】(1)函数f (x )=tan x +sin x -92x ,-π2<x <π2,f (-x )=tan (-x )+sin (-x )-92(-x )=-f (x ),即函数f (x )为奇函数,其图象关于原点对称,当0<x <π2时,f (x )=sin x cos x +sin x -92x ,求导得:f(x )=1cos 2x +cos x -92=2cos 3x -9cos 2x +22cos 2x =(2cos x -1)(cos x -2-6)(cos x -2+6)2cos 2x,由于cos x ∈(0,1),由f (x )>0,得0<cos x <12,解得π3<x <π2,由f (x )<0,得12<cos x <1,解得0<x <π3,即f (x )在0,π3 上单调递减,在π3,π2上单调递增,因此函数f (x )在0,π2 上有极小值f π3 =3(3-π)2,从而f (x )在-π2,π2 上的极小值为f π3 =3(3-π)2,极大值为f -π3 =3(π-3)2.(2)当n =1时,g (x )>0恒成立,即sin x -x cos x >0恒成立,亦即tan x >x 恒成立,令h (x )=tan x -x ,x ∈0,π2 ,求导得h (x )=1cos 2x -1=1-cos 2x cos 2x=tan 2x >0,则函数h (x )在0,π2上为增函数,有h (x )>h (0)=0,因此tan x -x >0恒成立;当n >1时,g (x )>0恒成立,即不等式sin xn cos x>x 恒成立,令F (x )=x -sin x cos 1n x ,0<x <π2,求导得:F (x )=1-cos x ⋅cos 1nx -1n⋅cos1n-1x ⋅(-sin x )⋅sin xcos 2nx=1-cos1+n nx +1n⋅sin 2x ⋅cos1-n nxcos 2nx=1-cos 2x +1n ⋅sin 2xcos n +1nx =cosn +1nx -cos 2x -1n (1-cos 2x )cos n +1nx =cosn +1nx -1n -n -1ncos 2x cosn +1nx令G (x )=cos n +1nx -1n -n -1n cos 2x ,求导得则G (x )=n +1n cos 1nx ⋅(-sin x )-n -1n⋅2cos x ⋅(-sin x )=sin x n (2n -2)cos x -(n +1)cos 1n x =2n -2n ⋅sin x cos x -n +12n -2cos 1n x=2n -2n ⋅sin x ⋅cos 1n x cos n -1n x -n +12n -2,由n >1,x ∈0,π2 ,得2n -2n⋅sin x ⋅cos 1nx >0,当n +12n -2≥1时,即n ≤3时,G (x )<0,则函数G (x )在0,π2上单调递减,则有G (x )<G (0)=0,即F (x )<0,因此函数F (x )在0,π2 上单调递减,有F (x )<F (0)=0,即g (x )>0,当n +12n -2<1时,即n >3时,存在一个x 0∈0,π2 ,使得cos n -1n x 0=n +12n -2,且当x ∈(0,x 0)时,G (x )>0,即G (x )在(0,x 0)上单调递增,且G (x )>G (0)=0,则F (x )>0,于是F (x )在(0,x 0)上单调递增,因此F (x )>F (0)=0,即sin xn cos x<x ,与g (x )>0矛盾,所以n 的最大值为3.【点睛】方法点睛:对于利用导数研究不等式的恒成立与有解问题的求解策略:①通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;②利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.③根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.9(2024·湖北·模拟预测)已知函数f x =ax 2-x +ln x +1 ,a ∈R ,(1)若对定义域内任意非零实数x 1,x 2,均有f x 1 f x 2x 1x 2>0,求a ;(2)记t n =1+12+⋅⋅⋅+1n ,证明:t n -56<ln n +1 <t n .【答案】(1)a =12(2)证明见解析【分析】(1)求导可得f 0 =0,再分a ≤0与a >0两种情况分析原函数的单调性,当a >0时分析极值点的正负与原函数的正负区间,从而确定a 的值;(2)由(1)问的结论可知,1n -12n2<ln 1n +1 <1n ,再累加结合放缩方法证明即可.【详解】(1)f x 的定义域为-1,+∞ ,且f 0 =0;f x =2ax -1+1x +1=2ax -x x +1=x 2a -1x +1,因此f 0 =0;i.a ≤0时,2a -1x +1<0,则此时令f x >0有x ∈-1,0 ,令f x <0有x ∈0,+∞ ,则f x 在-1,0 上单调递增,0,+∞ 上单调递减,又f 0 =0,于是f x ≤0,此时令x 1x 2<0,有f x 1 f x 2x 1x 2<0,不符合题意;ii .a >0时,f x 有零点0和x 0=12a-1,若x 0<0,即a >12,此时令f x <0有x ∈x 0,0 ,f x 在x 0,0 上单调递减,又f 0 =0,则f x 0 >0,令x 1>0,x 2=x 0,有f x 1 f x 2x 1x 2<0,不符合题意;若x 0>0,即0<a <12,此时令f x <0有x ∈0,x 0 ,f x 在0,x 0 上单调递减,又f 0 =0,则f x 0 <0,令-1<x 1<0,x 2=x 0,有f x 1 f x 2x 1x 2<0,不符合题意;若x 0=0,即a =12,此时fx =x 2x +1>0,f x 在-1,+∞ 上单调递增,又f 0 =0,则x >0时f x >0,x <0时f x <0;则x ≠0时f x x >0,也即对x 1x 2≠0,f x 1 f x 2x 1x 2>0,综上,a =12(2)证:由(1)问的结论可知,a =0时,f x =-x +ln x +1 ≤0;且a =12时x >0,f x =12x 2-x +ln x +1 >0;则x>0时,x-12x2<ln x+1<x,令x=1n,有1n-12n2<ln1n+1<1n,即1n-12n2<ln n+1-ln n<1n,于是1n-1-12n-12<ln n-ln n-1<1n-11-12<ln2<1将上述n个式子相加,t n-121+122+⋅⋅⋅+1n2<ln n+1<t n;欲证t n-56<ln n+1<t n,只需证t n-56<t n-121+122+⋅⋅⋅+1n2,只需证1+122+⋅⋅⋅+1n2<53;因为1n2=44n2<44n2-1=212n-1-12n+1,所以1+122+⋅⋅⋅+1n2<1+213-15+15-17+⋅⋅⋅+12n-1-12n+1=53-22n+1<53,得证:于是得证t n-56<ln n+1<t n.【点睛】方法点睛:(1)此题考导数与函数的综合应用,找到合适的分类标准,设极值点,并确定函数正负区间是解此题的关键;(2)对累加结构的不等式证明,一般需要应用前问的结论,取特定参数值,得出不等式累加证明,遇到不能累加的数列结构,需要进行放缩证明.10(2024·湖南·一模)已知函数f x =sin x-ax⋅cos x,a∈R.(1)当a=1时,求函数f x 在x=π2处的切线方程;(2)x∈0,π2时;(ⅰ)若f x +sin2x>0,求a的取值范围;(ⅱ)证明:sin2x⋅tan x>x3.【答案】(1)πx-2y+2-π22=0.(2)(ⅰ)a≤3(ⅱ)证明见解析【分析】(1)令a=1时,利用导数的几何意义求出斜率,进行计算求出切线方程即可.(2)(ⅰ)设g(x)=2sin x+tan x-ax,x∈0,π2,由g x >0得a≤3,再证明此时满足g x >0.(ⅱ)根据(ⅰ)结论判断出F x =sin2x⋅tan x-x3在0,π2上单调递增,∴F(x)>F(0)=0,即sin2x tan x >x3.【详解】(1)当a=1时,f(x)=sin x-x⋅cos x,f (x)=cos x-(cos x-x⋅sin x)=x⋅sin x,fπ2=π2,fπ2=1.所以切线方程为:y-1=π2x-π2,即πx-2y+2-π22=0.(2)(ⅰ)f(x)+sin2x=sin x-ax⋅cos x+sin2x>0,即tan x-ax+2sin x>0,x∈0,π2,设g(x)=2sin x+tan x-ax,x∈0,π2,g (x )=2cos x +1cos 2x -a =1cos 2x(2cos 3x -a cos 2x +1).又∵g (0)=0,g (0)=3-a ,∴g (0)=3-a ≥0是g (x )>0的一个必要条件,即a ≤3.下证a ≤3时,满足g (x )=2sin x +tan x -ax >0,x ∈0,π2,又g (x )≥1cos 2x(2cos 3x -3cos 2x +1),设(t )=2t 3-3t 2+1,t ∈(0,1),h (t )=6t 2-6t =6t (t -1)<0,h (t )在(0,1)上单调递减,所以h (t )>h (1)=0,又x ∈0,π2 ,cos x ∈(0,1),∴g (x )>0,即g (x )在0,π2 单调递增.∴x ∈0,π2时,g (x )>g (0)=0;下面证明a >3时不满足g (x )=2sin x +tan x -ax >0,x ∈0,π2,,g (x )=2cos x +1cos 2x-a ,令h (x )=g (x )=2cos x +1cos 2x -a ,则h (x )=-2sin x +2sin x cos 3x =2sin x 1cos 3x-1,∵x ∈0,π2 ,∴sin x >0,1cos 3x-1>0,∴h (x )>0,∴h (x )=g (x )在0,π2为增函数,令x 0满足x 0∈0,π2,cos x 0=1a ,则g x 0 =2cos x 0+1cos 2x 0-a =2cos x 0+a -a >0,又g (0)=3-a <0,∴∃x 1∈0,x 0 ,使得g x 1 =0,当x ∈0,x 1 时,g (x )<g x 1 =0,∴此时g (x )在0,x 1 为减函数,∴当x ∈0,x 1 时,g (x )<g (0)=0,∴a >3时,不满足g (x )≥0恒成立.综上a ≤3.(ⅱ)设F (x )=sin 2x ⋅tan x -x 3,x ∈0,π2 ,F (x )=2sin x ⋅cos x ⋅tan x +sin 2x ⋅1cos 2x-3x 2=2sin 2x +tan 2x -3x 2=2(sin x -x )2+(tan x -x )2+2(2sin x +tan x )x -2x 2-x 2-3x 2.由(ⅰ)知2sin x +tan x >3x ,∴F (x )>0+0+2x ⋅3x -6x 2=0,,F x 在0,π2上单调递增,∴F (x )>F (0)=0,即sin 2x tan x >x 3.【点睛】关键点点睛:本题考查导数,解题关键是进行必要性探路,然后证明充分性,得到所要求的参数范围即可.11(2024·全国·模拟预测)已知函数f (x )=ln (1+x )-11+x.(1)求曲线y =f (x )在(0,f (0))处的切线方程;(2)若x ∈(-1,π),讨论曲线y =f (x )与曲线y =-2cos x 的交点个数.【答案】(1)y =32x -1;(2)2.【分析】(1)求导,即可根据点斜式求解方程,(2)求导,分类讨论求解函数的单调性,结合零点存在性定理,即可根据函数的单调性,结合最值求解.【详解】(1)依题意,f x =11+x +121+x 32,故f 0 =32,而f 0 =-1,故所求切线方程为y +1=32x ,即y =32x -1.(2)令ln 1+x -11+x =-2cos x ,故ln 1+x +2cos x -11+x=0,令g x =ln 1+x +2cos x -11+x ,g x =11+x -2sin x +121+x -32,令h x =g x =11+x -2sin x +121+x -32,hx =-11+x2-2cos x -341+x -52.①当x ∈-1,π2时,cos x ≥0,1+x 2>0,1+x-52>0,∴h x <0,∴h x 在-1,π2上为减函数,即gx 在-1,π2 上为减函数,又g 0 =1+12>0,g1 =12-2sin1+12⋅2-32<12-2⋅sin1+12<1-2×12=0,∴g x 在0,1 上有唯一的零点,设为x 0,即g x 0 =00<x 0<1 .∴g x 在-1,x 0 上为增函数,在x 0,π2上为减函数.又g 0 =2-1>0,g -π4 =ln 1-π4 +2cos -π4 -11-π4=ln 1-π4+2-11-π4<0,g π2=ln 1+π2 -11+π2>0,∴g x 在-1,x 0 上有且只有一个零点,在x 0,π2上无零点;②当x ∈π2,5π6 时,g x <11+x -1+121+x-32<0,g x 单调递减,又g π2 >0,g 5π6 =ln 1+5π6 -3-1+5π6-12<ln4-3<0,∴g x 在π2,5π6内恰有一零点;③当x ∈5π6,π 时,hx =-11+x2-2cos x -341+x -52为增函数,∴hx =h 5π6 =-11+5π62+1-34⋅1+5π6-52>0,∴g x 单调递增,又g π >0,g 5π6 <0,所以存在唯一x 0∈5π6,π ,g x 0 =0,当x ∈5π6,x 0 时,g x <0,g x 递减;当x ∈x 0,π 时,g x >0,g x 递增,g x ≤max g 5π6 ,g π <0,∴g x 在5π6,π内无零点.综上所述,曲线y =f x 与曲线y =-2cos x 的交点个数为2.【点睛】方法点睛:本题考查了导数的综合运用,求某点处的切线方程较为简单,利用导数求单调性时,如果求导后的正负不容易辨别,往往可以将导函数的一部分抽离出来,构造新的函数,利用导数研究其单调性,进而可判断原函数的单调性.在证明不等式时,常采用两种思路:求直接求最值和等价转化.无论是那种方式,都要敢于构造函数,构造有效的函数往往是解题的关键.12(2024·广东佛山·二模)已知f x =-12e 2x +4e x -ax -5.(1)当a =3时,求f x 的单调区间;(2)若f x 有两个极值点x 1,x 2,证明:f x 1 +f x 2 +x 1+x 2<0.【答案】(1)答案见解析(2)证明见解析【分析】(1)求导后,借助导数的正负即可得原函数的单调性;(2)借助换元法,令t =e x ,t 1=e x 1,t 2=e x 2,可得t 1、t 2是方程t 2-4t +a =0的两个正根,借助韦达定理可得t 1+t 2=4,t 1t 2=a ,即可用t 1、t 2表示f x 1 +f x 2 +x 1+x 2,进而用a 表示f x 1 +f x 2 +x 1+x 2,构造相关函数后借助导数研究其最大值即可得.【详解】(1)当a =3时,f x =-12e 2x +4e x -3x -5,f x =-e 2x +4e x -3=-e x -1 e x -3 ,则当e x ∈0,1 ∪3,+∞ ,即x ∈-∞,0 ∪ln3,+∞ 时,f x <0,当e x ∈1,3 ,即x ∈0,ln3 时,f x >0,故f x 的单调递减区间为-∞,0 、ln3,+∞ ,单调递增区间为0,ln3 ;(2)f x =-e 2x +4e x -a ,令t =e x ,即f x =-t 2+4t -a ,令t 1=e x 1,t 2=e x 2,则t 1、t 2是方程t 2-4t +a =0的两个正根,则Δ=-4 2-4a =16-4a >0,即a <4,有t 1+t 2=4,t 1t 2=a >0,即0<a <4,则f x 1 +f x 2 +x 1+x 2=-12e 2x 1+4e x 1-ax 1-5-12e 2x2+4e x 2-ax 2-5+x 1+x 2=-12t 21+t 22 +4t 1+t 2 -a -1 ln t 1+ln t 2 -10=-12t 1+t 2 2-2t 1t 2 +4t 1+t 2 -a -1 ln t 1t 2-10=-1216-2a +16-a -1 ln a -10=a -a -1 ln a -2,要证f x 1 +f x 2 +x 1+x 2<0,即证a -a -1 ln a -2<00<a <4 ,令g x =x -x -1 ln x -20<x <4 ,则g x =1-ln x +x -1x =1x-ln x ,令h x =1x -ln x 0<x <4 ,则h x =-1x 2-1x <0,则g x 在0,4 上单调递减,又g 1 =11-ln1=1,g 2 =12-ln2<0,故存在x 0∈1,2 ,使g x 0 =1x 0-ln x 0=0,即1x 0=ln x 0,则当x ∈0,x 0 时,g x >0,当x ∈x 0,4 时,g x <0,故g x 在0,x 0 上单调递增,g x 在x 0,4 上单调递减,则g x ≤g x 0 =x 0-x 0-1 ln x 0-2=x 0-x 0-1 ×1x 0-2=x 0+1x 0-3,又x 0∈1,2 ,则x 0+1x 0∈2,52 ,故g x 0 =x 0+1x 0-3<0,即g x <0,即f x 1 +f x 2 +x 1+x 2<0.【点睛】关键点点睛:本题关键点在于借助换元法,令t =e x ,t 1=e x 1,t 2=e x 2,从而可结合韦达定理得t 1、t 2的关系,即可用a 表示f x 1 +f x 2 +x 1+x 2,构造相关函数后借助导数研究其最大值即可得.13(2024·广东广州·模拟预测)已知函数f x =x e x -kx ,k ∈R .(1)当k =0时,求函数f x 的极值;(2)若函数f x 在0,+∞ 上仅有两个零点,求实数k 的取值范围.【答案】(1)极小值为-1e,无极大值(2)e ,+∞【分析】(1)求出导函数,然后列表求出函数的单调区间,根据极值定义即可求解;(2)把原函数有两个零点转化为g x =e x -kx 在0,+∞ 上仅有两个零点,分类讨论,利用导数研究函数的单调性,列不等式求解即可.【详解】(1)当k =0时,f x =xe x (x ∈R ),所以f x =1+x e x ,令f x =0,则x =-1,x -∞,-1-1-1,+∞f x -0+f x单调递减极小值单调递增所以f (x )min =f -1 =-e -1=-1e,所以f x 的极小值为-1e,无极大值.(2)函数f x =x e x -kx 在0,+∞ 上仅有两个零点,令g x =e x -kx ,则问题等价于g x 在0,+∞ 上仅有两个零点,易知g x =e x -k ,因为x ∈0,+∞ ,所以e x >1.①当k ∈-∞,1 时,g x >0在0,+∞ 上恒成立,所以g x 在0,+∞ 上单调递增,所以g x >g 0 =1,所以g x 在0,+∞ 上没有零点,不符合题意;②当k ∈1,+∞ 时,令g x =0,得x =ln k ,所以在0,ln k 上,g x <0,在ln k ,+∞ 上,g x >0,所以g x 在0,ln k 上单调递减,在(ln k ,+∞)上单调递增,所以g x 的最小值为g ln k =k -k ⋅ln k .因为g x 在0,+∞ 上有两个零点,所以g ln k =k -k ⋅ln k <0,所以k >e.因为g 0 =1>0,g ln k 2 =k 2-k ⋅ln k 2=k k -2ln k ,令h x =x -2ln x ,则h x =1-2x =x -2x,所以在0,2 上,h x <0,在2,+∞ 上,h x >0,所以h x 在0,2 上单调递减,在2,+∞ 上单调递增,所以h x ≥2-2ln2=ln e 2-ln4>0,所以g ln k 2 =k k -2ln k >0,所以当k >e 时,g x 在0,ln k 和(ln k ,+∞)内各有一个零点,即当k >e 时,g x 在0,+∞ 上仅有两个零点.综上,实数k 的取值范围是e ,+∞ .【点睛】方法点睛:求解函数单调区间的步骤:(1)确定f x 的定义域.(2)计算导数f x .(3)求出f x =0的根.(4)用f x =0的根将f x 的定义域分成若干个区间,判断这若干个区间内f x 的符号,进而确定f x 的单调区间.f x >0,则f x 在对应区间上单调递增,对应区间为增区间;f x <0,则f x 在对应区间上单调递减,对应区间为减区间.如果导函数含有参数,那么需要对参数进行分类讨论,分类讨论要做到不重不漏.14(2024·江苏南通·二模)已知函数f x =ln x -ax ,g x =2ax,a ≠0.(1)求函数f x 的单调区间;(2)若a >0且f x ≤g x 恒成立,求a 的最小值.【答案】(1)答案见解析(2)2e 3.【分析】(1)求导后,利用导数与函数单调性的关系,对a >0与a <0分类讨论即可得;(2)结合函数的单调性求出函数的最值,即可得解.【详解】(1)f x =1x -a =1-axx(a ≠0),当a <0时,由于x >0,所以f x >0恒成立,从而f x 在0,+∞ 上递增;当a >0时,0<x <1a ,f x >0;x >1a ,fx <0,从而f x 在0,1a 上递增,在1a,+∞ 递减;综上,当a <0时,f x 的单调递增区间为0,+∞ ,没有单调递减区间;当a >0时,f x 的单调递增区间为0,1a ,单调递减区间为1a ,+∞ .(2)令h x =f x -g x =ln x -ax -2ax,要使f x ≤g x 恒成立,只要使h x ≤0恒成立,也只要使h x max ≤0.h x =1x -a +2ax 2=-ax +1 ax -2 ax 2,由于a >0,x >0,所以ax +1>0恒成立,当0<x <2a 时,h x >0,当2a<x <+∞时,h x <0,所以h x max =h 2a =ln 2a -3≤0,解得:a ≥2e 3,所以a 的最小值为2e3.15(2024·山东济南·二模)已知函数f x =ax 2-ln x -1,g x =xe x -ax 2a ∈R .(1)讨论f x 的单调性;(2)证明:f x +g x ≥x .【答案】(1)答案见详解(2)证明见详解【分析】(1)求导可得fx =2ax 2-1x,分a ≤0和a >0两种情况,结合导函数的符号判断原函数单调性;(2)构建F x =f x +g x -x ,x >0,h x =e x -1x,x >0,根据单调性以及零点存在性定理分析h x 的零点和符号,进而可得F x 的单调性和最值,结合零点代换分析证明.【详解】(1)由题意可得:f x 的定义域为0,+∞ ,fx =2ax -1x =2ax 2-1x,当a ≤0时,则2ax 2-1<0在0,+∞ 上恒成立,可知f x 在0,+∞ 上单调递减;当a >0时,令f x >0,解得x >12a;令f x <0,解得0<x <12a;可知f x 在0,12a 上单调递减,在12a,+∞ 上单调递增;综上所述:当a ≤0时,f x 在0,+∞ 上单调递减;当a >0时,f x 在0,12a 上单调递减,在12a,+∞ 上单调递增.(2)构建F x =f x +g x -x =xe x -ln x -x -1,x >0,则F x =x +1 e x -1x -1=x +1 e x -1x,由x >0可知x +1>0,构建h x =e x -1x ,x >0,因为y =e x ,y =-1x在0,+∞ 上单调递增,则h x 在0,+∞ 上单调递增,且h 12=e -20,h 1 =e -1 0,可知h x 在0,+∞ 上存在唯一零点x 0∈12,1 ,当0<x <x 0,则h x <0,即Fx <0;当x >x 0,则h x >0,即F x >0;可知F x 在0,x 0 上单调递减,在x 0,+∞ 上单调递增,则F x ≥F x 0 =x 0e x 0-ln x 0-x 0-1,又因为e x 0-1x 0=0,则e x 0=1x 0,x 0=e -x 0,x 0∈12,1 ,可得F x 0 =x 0×1x 0-ln e -x-x 0-1=0,即F x ≥0,所以f x +g x ≥x .16(2024·福建·模拟预测)已知函数f (x )=a ln x -bx 在1,f 1 处的切线在y 轴上的截距为-2.(1)求a 的值;(2)若f x 有且仅有两个零点,求b 的取值范围.【答案】(1)2(2)b ∈0,2e 【分析】(1)借助导数的几何意义计算即可得;(2)借助函数与方程的关系,可将f x 有且仅有两个零点转化为方程b =2ln xx有两个根,构造对应函数并借助导数研究单调性及值域即可得.【详解】(1)f (x )=ax-b ,f 1 =a -b ,f (1)=a ×0-b =-b ,则函数f (x )=a ln x -bx 在1,f 1 处的切线为:y +b =a -b x -1 ,即y =a -b x -a ,令x =0,则有y =-a =-2,即a =2;(2)由a =2,即f (x )=2ln x -bx ,若f x 有且仅有两个零点,则方程2ln x-bx=0有两个根,即方程b=2ln xx有两个根,令g x =2ln xx,则gx =21-ln xx2,则当x∈0,e时,g x >0,则当x∈e,+∞时,g x <0,故g x 在0,e上单调递增,在e,+∞上单调递减,故g x ≤g e =2ln ee=2e,又x→0时,g x →-∞,x→+∞时,g x →0,故当b∈0,2 e时,方程b=2ln x x有两个根,即f x 有且仅有两个零点.17(2024·浙江杭州·二模)已知函数f x =a ln x+2-12x2a∈R.(1)讨论函数f x 的单调性;(2)若函数f x 有两个极值点,(ⅰ)求实数a的取值范围;(ⅱ)证明:函数f x 有且只有一个零点.【答案】(1)答案见解析;(2)(ⅰ)-1<a<0;(ⅱ)证明见解析【分析】(1)求出函数的导函数,再分a≤-1、-1<a<0、a≥0三种情况,分别求出函数的单调区间;(2)(ⅰ)由(1)直接解得;(ⅱ)结合函数的最值与零点存在性定理证明即可.【详解】(1)函数f x =a ln x+2-12x2a∈R的定义域为-2,+∞,且f x =ax+2-x=-x+12+a+1x+2,当a≤-1时,f x ≤0恒成立,所以f x 在-2,+∞单调递减;当-1<a<0时,令f x =0,即-x+12+a+1=0,解得x1=-a+1-1,x2=a+1-1,因为-1<a<0,所以0<a+1<1,则-2<-a+1-1<-1,所以当x∈-2,-a+1-1时f x <0,当x∈-a+1-1,a+1-1时f x >0,当x∈a+1-1,+∞时f x <0,所以f x 在-2,-a+1-1上单调递减,在-a+1-1,a+1-1上单调递增,在a+1-1,+∞上单调递减;当a≥0时,此时-a+1-1≤-2,所以x∈-2,a+1-1时f x >0,当x∈a+1-1,+∞时f x <0,所以f x 在-2,a+1-1上单调递增,在a+1-1,+∞上单调递减.综上可得:当a≤-1时f x 在-2,+∞单调递减;当-1<a<0时f x 在-2,-a+1-1上单调递减,在-a+1-1,a+1-1上单调递增,在a+1-1,+∞上单调递减;当a≥0时f x 在-2,a+1-1上单调递增,在a+1-1,+∞上单调递减.(2)(ⅰ)由(1)可知-1<a<0.(ⅱ)由(1)f x 在-2,-a+1-1上单调递减,在-a+1-1,a+1-1上单调递增,在a+1-1,+∞上单调递减,所以f x 在x=a+1-1处取得极大值,在x=-a+1-1处取得极小值,又-1<a<0,所以0<a+1<1,则1<a+1+1<2,又f x极大值=f a+1-1=a ln a+1+1-12a+1-12<0,又f-a+1-1<f a+1-1<0,所以f x 在-a+1-1,+∞上没有零点,又-1<a<0,则4a<-4,则0<e4a<e-4,-2<e4a-2<e-4-2,则0<e 4a-22<4,所以f e 4a-2=4-12e4a-22>0,所以f x 在-2,-a+1-1上存在一个零点,综上可得函数f x 有且只有一个零点.18(2024·河北沧州·模拟预测)已知函数f(x)=ln x-ax+1,a∈R.(1)讨论f x 的单调性;(2)若∀x>0,f x ≤xe2x-2ax恒成立,求实数a的取值范围.【答案】(1)答案见解析(2)-∞,2.【分析】(1)利用导数分类讨论判断函数f x 的单调性,即可求解;(2)先利用导数证明不等式e x≥x+1,分离变量可得a≤e2x-ln x+1x恒成立,进而e 2x-ln x+1x≥2x+ln x+1-(ln x+1)x=2,即可求解.【详解】(1)函数f x =ln x-ax+1,a∈R的定义域为0,+∞,且f (x)=1x-a.当a≤0时,∀x∈0,+∞,f (x)=1x-a≥0恒成立,此时f x 在区间0,+∞上单调递增;当a>0时,令f (x)=1x-a=1-axx=0,解得x=1a,当x∈0,1 a时,f x >0,f x 在区间0,1a上单调递增,当x∈1a,+∞时,f x <0,f x 在区间1a,+∞上单调递减.综上所述,当a≤0时,f x 在区间0,+∞上单调递增;当a>0时,f x 在区间0,1 a上单调递增,在区间1a,+∞上单调递减.(2)设g x =e x-x-1,则g x =e x-1,在区间(-∞,0)上,g x <0,g x 单调递减,在区间0,+∞上,g x >0,g x 单调递增,所以g x ≥g0 =e0-0-1=0,所以e x≥x+1(当且仅当x=0时等号成立).依题意,∀x>0,f x ≤xe2x-2ax恒成立,即a≤e2x-ln x+1x恒成立,而e2x-ln x+1x=xe2x-(ln x+1)x=e2x+ln x-(ln x+1)x≥2x+ln x+1-(ln x+1)x=2,当且仅当2x+ln x=0时等号成立.因为函数h x =2x+ln x在0,+∞上单调递增,h1e=2e-1<0,h(1)=2>0,所以存在x0∈1e,1,使得2x0+ln x0=0成立.所以a ≤e 2x -ln x +1xmin =2,即a 的取值范围是-∞,2 .【点睛】方法点睛:利用导数证明不等式的恒成立问题的求解策略:形如f x ≥g x 的恒成立的求解策略:1、构造函数法:令F x =f x -g x ,利用导数求得函数F x 的单调性与最小值,只需F x min ≥0恒成立即可;2、参数分离法:转化为a ≥φx 或a ≤φx 恒成立,即a ≥φx max 或a ≤φx min 恒成立,只需利用导数求得函数φx 的单调性与最值即可;3,数形结合法:结合函数y =f x 的图象在y =g x 的图象的上方(或下方),进而得到不等式恒成立.19(2024·广东·二模)已知f x =12ax 2+1-2a x -2ln x ,a >0.(1)求f x 的单调区间;(2)函数f x 的图象上是否存在两点A x 1,y 1 ,B x 2,y 2 (其中x 1≠x 2),使得直线AB 与函数f x 的图象在x 0=x 1+x22处的切线平行?若存在,请求出直线AB ;若不存在,请说明理由.【答案】(1)f (x )在(0,2)上单调递减,在(2,+∞)上单调递增.(2)不存在,理由见解析【分析】(1)求出导函数,根据导函数的正负来确定函数的单调区间;(2)求出直线AB 的斜率,再求出f (x 0),从而得到x 1,x 2的等式,再进行换元和求导,即可解出答案.【详解】(1)由题可得f(x )=ax +1-2a -2x =ax 2+(1-2a )x -2x =(ax +1)(x -2)x(x >0)因为a >0,所以ax +1>0,所以当x ∈(0,2)时,f (x )<0,f (x )在(0,2)上单调递减,当x ∈(2,+∞)时,f (x )>0,f (x )在(2,+∞)上单调递增.综上,f (x )在(0,2)上单调递减,在(2,+∞)上单调递增.(2)由题意得,斜率k =y 2-y 1x 2-x 1=12ax 22+(1-2a )x 2-2ln x 2 -12ax 21+(1-2a )x 1-2ln x 1 x 2-x 1=12a (x 22-x 21)+(1-2a )(x 2-x 1)-2ln x 2x 1x 2-x 1=a 2(x 1+x 2)+1-2a -2ln x2x 1x 2-x 1,f x 1+x 22 =a (x 1+x 2)2+1-2a -4x 1+x 2,由k =f x 1+x22 得,ln x2x 1x 2-x 1=2x 1+x 2,即ln x 2x 1=2(x 2-x 1)x 1+x 2,即ln x 2x 1-2x2x 1-1 x 2x1+1=0令t =x 2x 1,不妨设x 2>x 1,则t >1,记g (t )=ln t -2(t -1)t +1=ln t +4t +1-2(t >1)所以g(t )=1t -4t +1 2=t -1 2t t +1 2>0,所以g (t )在(1,+∞)上是增函数,所以g (t )>g (1)=0,所以方程g (t )=0无解,则满足条件的两点A ,B 不存在.20(2024·广东深圳·二模)已知函数f x =ax +1 e x ,f x 是f x 的导函数,且f x -f x =2e x .(1)若曲线y =f x 在x =0处的切线为y =kx +b ,求k ,b 的值;(2)在(1)的条件下,证明:f x ≥kx +b .【答案】(1)k =3,b =1;(2)证明见解析.【分析】(1)根据题意,求导可得a 的值,再由导数意义可求切线,得到答案;(2)设函数g x =2x +1 e x -3x -1,利用导数研究函数g (x )的单调性从而求出最小值大于0,可得证.【详解】(1)因为f x =ax +1 e x ,所以f x =ax +a +1 e x ,因为f x -f x =2e x ,所以a =2.则曲线y =f (x )在点x =0处的切线斜率为f 0 =3.又因为f 0 =1,所以曲线y =f (x )在点x =0处的切线方程为y =3x +1,即得k =3,b =1.(2)设函数g x =2x +1 e x -3x -1,x ∈R ,则g x =2x +3 e x -3,设h x =g x ,则h x =e x 2x +5 ,所以,当x >-52时,h x >0,g x 单调递增.又因为g0 =0,所以,x >0时,g x >0,g x 单调递增;-52<x <0时,g x <0,g x 单调递减.又当x ≤-52时,g x =2x +3 e x -3<0,综上g x 在-∞,0 上单调递减,在0,+∞ 上单调递增,所以当x =0时,g x 取得最小值g 0 =0,即2x +1 e x -3x -1≥0,所以,当x ∈R 时,f x ≥3x +1.21(2024·辽宁·二模)已知函数f x =ax 2-ax -ln x .(1)若曲线y =f x 在x =1处的切线方程为y =mx +2,求实数a ,m 的值;(2)若对于任意x ≥1,f x +ax ≥a 恒成立,求实数a 的取值范围.【答案】(1)a =-1,m =-2(2)12,+∞ 【分析】(1)根据导数几何意义和切线方程,可直接构造方程组求得结果;(2)构造函数g x =ax 2-ln x -a x ≥1 ,将问题转化为g x ≥0恒成立;求导后,分别在a ≤0、a ≥12和0<a <12的情况下,结合单调性和最值求得符合题意的范围.【详解】(1)∵f x =2ax -a -1x,∴f 1 =2a -a -1=a -1,∵y =f x 在x =1处的切线为y =mx +2,∴f 1 =a -1=mf 1 =0=m +2 ,解得:a =-1,m =-2.(2)由f x +ax ≥a 得:ax 2-ln x -a ≥0,令g x =ax 2-ln x -a x ≥1 ,则当x ≥1时,g x ≥0恒成立;。
压轴高考数学复习导数大题精选10题附详细解答

高考压轴导数大题例1.已知函数3211()32f x x ax bx =++在区间[11)-,,(13],内各有一个极值点. (I )求24a b -的最大值;(II )当248a b -=时,设函数()y f x =在点(1(1))A f ,处的切线为l ,若l 在点A 处穿过函数()y f x =的图象(即动点在点A 附近沿曲线()y f x =运动,经过点A 时,从l 的一侧进入另一侧),求函数()f x 的表达式.例3已知函数()θθcos 163cos 3423+-=x x x f ,其中θ,R x ∈为参数,且πθ20≤≤.(1)当时0cos =θ,判断函数()x f 是否有极值;(2)要使函数()f x 的极小值大于零,求参数θ的取值范围;例4.已知函数32()f x ax bx cx =++在点0x 处取得极大值5,其导函数'()y f x =的图象经过点(1,0),(2,0).求:(Ⅰ)0x 的值;(Ⅱ),,a b c 的值.例5设3=x 是函数()()()R x e b ax x x f x ∈++=-32的一个极值点.(Ⅰ)求a 与b 的关系式(用a 表示b ),并求()x f 的单调区间;(Ⅱ)设0>a ,()x e a x g ⎪⎭⎫ ⎝⎛+=4252.若存在[]4,0,21∈εε使得()()121<-εεg f 成立, 求a 的取值范围例6已知函数321()(2)13f x ax bx b x =-+-+ 在1x x =处取得极大值,在2x x =处取得极小值,且12012x x <<<<.(1)证明0a >;(2)若z =a +2b ,求z 的取值范围。
1. 已知函数21()22f x ax x =+,()g x lnx =.(Ⅰ)如果函数()y f x =在[1,)+∞上是单调增函数,求a 的取值范围;(Ⅱ)是否存在实数0a >,使得方程()()(21)g x f x a x '=-+在区间1(,)e e 内有且只有两个不相等的实数根?若存在,请求出a 的取值范围;若不存在,请说明理由.2. 如果()0x f 是函数()x f 的一个极值,称点()()00,x f x 是函数()x f 的一个极值点.已知函数()()()00≠≠-=a x e b ax x f x a 且(1)若函数()x f 总存在有两个极值点B A ,,求b a ,所满足的关系;(2)若函数()x f 有两个极值点B A ,,且存在R a ∈,求B A ,在不等式1<x 表示的区域内时实数b 的范围.(3)若函数()x f 恰有一个极值点A ,且存在R a ∈,使A 在不等式⎩⎨⎧<<e y x 1表示的区域内,证明:10<≤b .3 已知函数3221()ln ,()3(,,R)32f x x x g x x ax bx c a b c ==-+-+∈.(1)若函数()()()h x f x g x ''=-是其定义域上的增函数,求实数a 的取值范围;(2)若()g x 是奇函数,且()g x 的极大值是3g ,求函数()g x 在区间[1,]m -上的最大值;(3)证明:当0x >时,12()1x f x e ex '>-+.4已知实数a 满足0<a ≤2,a ≠1,设函数f (x )=13x 3-12a +x 2+ax . (Ⅰ) 当a =2时,求f (x )的极小值;(Ⅱ) 若函数g (x )=x 3+bx 2-(2b +4)x +ln x (b ∈R )的极小值点与f (x )的极小值点相同.求证:g (x )的极大值小于等于5/4例1解(I )因为函数3211()32f x x ax bx =++在区间[11)-,,(13],内分别有一个极值点,所以2()f x x ax b '=++0=在[11)-,,(13],内分别有一个实根, 设两实根为12x x ,(12x x <),则2214x x a b -=-2104x x <-≤.于是2044a b <-,20416a b <-≤,且当11x =-,23x =,即2a =-,3b =-时等号成立.故24a b -的最大值是16. (II )解法一:由(1)1f a b '=++知()f x 在点(1(1))f ,处的切线l 的方程是(1)(1)(1)y f f x '-=-,即21(1)32y a b x a =++--, 因为切线l 在点(1())A f x ,处空过()y f x =的图象,所以21()()[(1)]32g x f x a b x a =-++--在1x =两边附近的函数值异号,则 1x =不是()g x 的极值点. 而()g x 321121(1)3232x ax bx a b x a =++-++++,且 22()(1)1(1)(1)g x x ax b a b x ax a x x a '=++-++=+--=-++.若11a ≠--,则1x =和1x a =--都是()g x 的极值点.所以11a =--,即2a =-,又由248a b -=,得1b =-,故321()3f x x x x =--. 解法二:同解法一得21()()[(1)]32g x f x a b x a =-++-- 2133(1)[(1)(2)]322a x x x a =-++-+. 因为切线l 在点(1(1))A f ,处穿过()y f x =的图象,所以()g x 在1x =两边附近的函数值异号,于是存在12m m ,(121m m <<). 当11m x <<时,()0g x <,当21x m <<时,()0g x >;或当11m x <<时,()0g x >,当21x m <<时,()0g x <.设233()1222a a h x x x ⎛⎫⎛⎫=++-+ ⎪ ⎪⎝⎭⎝⎭,则当11m x <<时,()0h x >,当21x m <<时,()0h x >;或当11m x <<时,()0h x <,当21x m <<时,()0h x <.由(1)0h =知1x =是()h x 的一个极值点,则3(1)21102a h =⨯++=, 所以2a =-,又由248a b -=,得1b =-,故321()3f x x x x =--.例3解(Ⅰ)当cos 0θ=时,3()4f x x =,则()f x 在(,)-∞+∞内是增函数,故无极值.(Ⅱ)2'()126cos f x x x θ=-,令'()0f x =,得12cos 0,2x x θ==. 由(Ⅰ),只需分下面两种情况讨论.①当cos 0θ>时,随x 的变化'()f x 的符号及()f x 的变化情况如下表: x(,0)-∞ 0 cos (0,)2θ cos 2θ cos (,)2θ+∞ '()f x + 0 - 0 + ()f x ↗ 极大值↘ 极小值 ↗因此,函数()f x 在2x =处取得极小值f()2,且3cos 13()cos 2416f θθθ=-+.要使cos ()02f θ>,必有213cos (cos )044θθ-->,可得30cos θ<<由于30cos θ≤≤3116226ππππθθ<<<<或. ②当时cos 0θ<,随x 的变化,'()f x 的符号及()f x 的变化情况如下表: xcos (,)2θ-∞ cos 2θ cos (,0)2θ 0 (0,)+∞ '()f x+ 0 - 0 + ()f x 极大值 极小值因此,函数()0f x x =在处取得极小值(0)f ,且3(0)cos .16f θ= 若(0)0f >,则cos 0θ>.矛盾.所以当cos 0θ<时,()f x 的极小值不会大于零.综上,要使函数()f x 在(,)-∞+∞内的极小值大于零,参数θ的取值范围为311(,)(,)6226ππππ⋃.例4解法一:(Ⅰ)由图像可知,在(),1-∞上()'0f x >,在()1,2上()'0f x <,在()2,+∞上()'0f x >,故()f x 在∞∞(-,1),(2,+)上递增,在(1,2)上递减, 因此()f x 在1x =处取得极大值,所以01x =(Ⅱ)'2()32,f x ax bx c =++由'''f f f (1)=0,(2)=0,(1)=5,得320,1240,5,a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩ 解得2,9,12.a b c ==-=解法二:(Ⅰ)同解法一(Ⅱ)设'2()(1)(2)32,f x m x x mx mx m =--=-+又'2()32,f x ax bx c =++所以3,,232m a b m c m ==-= 32|3()2,32m f x x mx mx =-+ 由(1)5f =,即325,32m m m -+=得6,m =所以2,9,12a b c ==-=例5解(Ⅰ)f `(x)=-[x 2+(a -2)x +b -a ]e 3-x ,由f `(3)=0,得 -[32+(a -2)3+b -a ]e 3-3=0,即得b =-3-2a ,则 f `(x)=[x 2+(a -2)x -3-2a -a ]e 3-x =-[x 2+(a -2)x -3-3a ]e 3-x =-(x -3)(x +a+1)e 3-x .令f `(x)=0,得x 1=3或x 2=-a -1,由于x =3是极值点,所以x+a+1≠0,那么a ≠-4.当a <-4时,x 2>3=x 1,则在区间(-∞,3)上,f `(x)<0, f (x)为减函数;在区间(3,―a ―1)上,f `(x)>0,f (x)为增函数;在区间(―a ―1,+∞)上,f `(x)<0,f (x)为减函数.当a >-4时,x 2<3=x 1,则在区间(-∞,―a ―1)上,f `(x)<0, f (x)为减函数;在区间(―a ―1,3)上,f `(x)>0,f (x)为增函数;在区间(3,+∞)上,f `(x)<0,f (x)为减函数.(Ⅱ)由(Ⅰ)知,当a >0时,f (x)在区间(0,3)上的单调递增,在区间(3,4)上单调递减,那么f (x)在区间[0,4]上的值域是[min(f (0),f (4) ),f (3)], 而f (0)=-(2a +3)e 3<0,f (4)=(2a +13)e -1>0,f (3)=a +6,那么f (x)在区间[0,4]上的值域是[-(2a +3)e 3,a +6].又225()()4x g x a e =+在区间[0,4]上是增函数,且它在区间[0,4]上的值域是[a 2+425,(a 2+425)e 4], 由于(a 2+425)-(a +6)=a 2-a +41=(21-a )2≥0,所以只须仅须(a 2+425)-(a +6)<1且a >0,解得0<a <23. 故a 的取值范围是(0,23).例6解(Ⅰ)由函数()f x 在1x x =处取得极大值,在2x x =处取得极小值,知12x x ,是()0f x '=的两个根.所以12()()()f x a x x x x '=--当1x x <时,()f x 为增函数,()0f x '>,由10x x -<,20x x -<得0a >.(Ⅱ)在题设下,12012x x <<<<等价于(0)0(1)0(2)0f f f '>⎧⎪'<⎨⎪'>⎩ 即202204420b a b b a b b ->⎧⎪-+-<⎨⎪-+->⎩.化简得203204520b a b a b ->⎧⎪-+<⎨⎪-+>⎩.此不等式组表示的区域为平面aOb 上三条直线:203204520b a b a b -=-+=-+=,,.所围成的ABC △的内部,其三个顶点分别为:46(22)(42)77A B C ⎛⎫ ⎪⎝⎭,,,,,. z 在这三点的值依次为16687,,. 所以z 的取值范围为1687⎛⎫ ⎪⎝⎭,. 1解:(Ⅰ)当0a =时,()2f x x =在[1,)+∞上是单调增函数,符合题意. 当0a >时,()y f x =的对称轴方程为2x a =-,由于()y f x =在[1,)+∞上是单调增函数, 所以21a -≤,解得2a ≤-或0a >,所以0a >. 当0a <时,不符合题意.综上,a 的取值范围是0a ≥.(Ⅱ)把方程()()(21)g x f x a x '=-+整理为2(21)lnx ax a x =+-+,即为方程2(12)0ax a x lnx +--=. b a 21 2 4 O 4677A ⎛⎫ ⎪⎝⎭,(42)C , (22)B ,设2()(12)H x ax a x lnx =+-- (0)x >, 原方程在区间(1,e e )内有且只有两个不相等的实数根, 即为函数()H x 在区间(1,e e )内有且只有两个零点.1()2(12)H x ax a x '=+--22(12)1(21)(1)ax a x ax x x x +--+-==令()0H x '=,因为0a >,解得1x =或12x a =-(舍)当(0,1)x ∈时, ()0H x '<, ()H x 是减函数;当(1,)x ∈+∞时, ()0H x '>,()H x 是增函数.()H x 在(1,e e )内有且只有两个不相等的零点, 只需min 1()0,()0,()0,H e H x H e ⎧>⎪⎪<⎨⎪>⎪⎩即2222212(12)10,(1)(12)10,(12)1(2)(1)0,a a a e a e e e e H a a a ae a e e e a e ⎧--++++=>⎪⎪⎪=+-=-<⎨⎪+--=-+->⎪⎪⎩ ∴22,211,1,2e e a e a e a e e ⎧+<⎪-⎪⎪>⎨⎪-⎪>-⎪⎩ 解得2121e e a e +<<-, 所以a 的取值范围是(21,21e e e +-) .2(1)x a x a e x a b ax e a x f ⋅--+⋅=))(()('2令()0f x '=得20x ax b -+= 240a b ∴-> 又 00a x ≠≠且204a b b ∴<≠且(2)20x ax b -+=在(1,1)-有两个不相等的实根. 即2401121010a b a a b a b ⎧∆=->⎪⎪-<<⎪⎨⎪++>⎪-+>⎪⎩ 得 22441b a a b ⎧>⎪<⎨⎪<-⎩110b b ∴-<<≠且(3)由①2()00f x x ax b '=⇒-+=(0)x ≠ ①当()220a xx ax b b f x a e x -+'==⋅⋅在x a =左右两边异号(,())a f a ∴是()y f x =的唯一的一个极值点 由题意知2110()a a e a b e e <<≠⎧⎨-<-<⎩且- 即 220111a a ⎧<<⎨-<<⎩ 即 201a <<存在这样的a 的满足题意 0b ∴=符合题意②当0b ≠时,240a b ∆=-=即24b a = 这里函数()y f x =唯一的一个极值点为(,())22a a f由题意12102()2a a a e b e e ⎧<≠⎪⎪⎨⎪-<-<⎪⎩且即 211222042a a e b e ⎧<<⎪⎨-<-<⎪⎩ 即 1122044b e b e <<⎧⎪⎨⎪-<<⎩01b ∴<<综上知:满足题意 b 的范围为[0,1)b ∈.3解:(1)()ln 1f x x '=+ ,2()23g x x ax b '=-+-,所以2()ln 231h x x x ax b =+-++, 由于()h x 是定义域内的增函数,故1()40x h x x a '=+-≥恒成立,即14x a x ≤+对0x ∀>恒成立,又144xx +≥(2x =时取等号),故(,4]a ∈-∞. (2)由()g x 是奇函数,则()()0g x g x +-=对0x ∀>恒成立,从而0a c ==, 所以323()3g x x bx =--,有2()23g x x b '=--. 由()g x 极大值为3g ,即3(0g '=,从而29b =-;因此32233()g x x x =--,即23323()22(g x x x x '=-+=--+, 所以函数()g x 在3(,-∞和3()+∞上是减函数,在33(上是增函数.由()0g x =,得1x =±或0x =,因此得到:当10m -<<时,最大值为(1)0g -=; 当30m ≤<32233()g m m m =-+; 当3m ≥时,最大值为343(g =.(3)问题等价于证明2()ln x xe ef x x x =>-对0x >恒成立;()ln 1f x x '=+,所以当1(0,)e x ∈时,()0f x '<,()f x 在1(0,)e 上单调减;当1(,)e x ∈+∞时,()0f x '>,()f x 在1(,)e+∞上单调增; 所以()f x 在(0,)+∞上最小值为1e -(当且仅当1e x =时取得) 设2()(0)x xe e m x x =->,则1()x x e m x -'=,得()m x 最大值1(1)e m =-(当且仅当1x =时取得), 又()f x 得最小值与()m x 的最大值不能同时取到,所以结论成立.4(Ⅰ) 解: 当a =2时,f ′(x )=x 2-3x +2=(x -1)(x -2).列表如下:x(-∞,1) 1 (1,2) 2 (2,+∞) f ′(x )+ 0 - 0 + f (x )单调递增 极大值 单调递减 极小值 单调递增所以,f (x )极小值为f (2)=23.(Ⅱ) 解:f ′(x )=x 2-(a +1)x +a =(x -1)(x -a ).g ′(x )=3x 2+2bx -(2b +4)+1x =2(1)[3(23)1]x x b x x -++-.令p (x )=3x 2+(2b +3)x -1,(1) 当 1<a ≤2时,f (x )的极小值点x =a ,则g (x )的极小值点也为x =a ,所以p (a )=0,即3a 2+(2b +3)a -1=0,即b =21332a a a --,此时g(x)极大值=g(1)=1+b-(2b+4)=-3-b=-3+23312a aa+-=313222aa--.由于1<a≤2,故313222aa--≤32⨯2-14-32=54.(2) 当0<a<1时,f (x)的极小值点x=1,则g(x)的极小值点为x=1,由于p(x)=0有一正一负两实根,不妨设x2<0<x1,所以0<x1<1,即p(1)=3+2b+3-1>0,故b>-52.此时g(x)的极大值点x=x1,有g(x1)=x13+bx12-(2b+4)x1+ln x1<1+bx12-(2b+4)x1=(x12-2x1)b-4x1+1(x12-2x1<0)<-52(x12-2x1)-4x1+1=-52x12+x1+1=-52(x1-15)2+1+110(0<x1<1)≤11 10<54.综上所述,g(x)的极大值小于等于54.。
高考数学专题:导数大题专练含答案

高考数学专题:导数大题专练含答案一、解答题1.已知函数()ln f x ax x =+ (1)讨论()f x 的单调区间;(2)设()2xg x =,若对任意的[]11,100x ∈,存在[]20,1x ∈,使()()12f x g x <成立,求实数a 的取值范围. 2.已知函数()ln f x x =.(1)当()()sin 1g x x =-,求函数()()()T x f x g x =+在()0,1的单调性; (2)()()12h x f x b x=+-有两个零点1x ,2x ,且12x x <,求证:121x x +>. 3.已知函数()21si cos n 2f x x x a x x =-++.(1)当1a =-时,求曲线()y f x =在点()()0,0f 处的切线方程; (2)若函数()f x 在3π0,4⎡⎤⎢⎥⎣⎦上单调递减,求a 的取值范围.4.已知a R ∈,函数()22e 2xax f x =+. (1)求曲线()y f x =在0x =处的切线方程 (2)若函数()f x 有两个极值点12,x x ,且1201x x ,(ⅰ)求a 的取值范围;(ⅱ)当9a <-时,证明:21x x <-<. (注: 2.71828e =…是自然对数的底数) 5.求下列函数的导数: (1)2cos x xy x -=; (2)()e 1cos 2x x y x =+-; (3)()3log 51y x =-.6.已知函数()322f x x ax bx =++-在2x =-时取得极值,且在点()()1,1f --处的切线的斜率为3- . (1)求()f x 的解析式;(2)若函数()y f x λ=-有三个零点,求实数λ的取值范围.7.已知函数()323f x x ax x =-+.(1)若3x =是()f x 的极值点,求()f x 在[]1,a 上的最大值和最小值;(2)若()f x 在[)1,+∞上是单调递增的,求实数a 的取值范围.8.2020年9月22日,中国政府在第七十五届联合国大会上提出:“中国将提高国家自主贡献力度,采取更加有力的政策和措施,二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和.”为了进一步了解普通大众对“碳中和”及相关举措的认识,某机构进行了一次问卷调查,部分结果如下:(1)根据所给数据,完成下面的22⨯列联表,并根据列联表,判断是否有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关?附:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.(2)经调查后,有关部门决定加大力度宣传“碳中和”及相关措施以便让节能减排的想法深入人心.经过一段时间后,计划先随机从社会上选10人进行调查,再根据检验结果决定后续的相关举措.设宣传后不了解“碳中和”的人概率都为()01p p <<,每个被调查的人之间相互独立.①记10人中恰有3人不了解“碳中和”的概率为()f p ,求()f p 的最大值点0p ; ②现对以上的10人进行有奖答题,以①中确定的0p 作为答错的概率p 的值.已知回答正确给价值a 元的礼品,回答错误给价值b 元的礼品,要准备的礼品大致为多少元?(用a ,b 表示即可)9.已知函数()ln 2f x x x ax =++在点()()1,1f 处的切线与直线220x y 相互垂直.(1)求实数a 的值;(2)求()f x 的单调区间和极值.10.已知函数()222(0)e xmx x f x m +-=>. (1)判断()f x 的单调性;(2)若对[]12,1,2x x ∀∈,不等式()()1224e f x f x -≤恒成立,求实数m 的取值范围.【参考答案】一、解答题1.(1)答案见解析 (2)31a e ≤-【解析】 【分析】(1)由()()110ax f x a x xx+=+=>',按0a ≥,0a <进行分类讨论求解; (2)由已知,转化为()()max max f x g x <,由已知得()()max 12g x g ==,由此能求出实数a 的取值范围. (1)()(]110ax f x a x x x+'=+=>, ①当0a ≥时,由于0x >,故10ax +>,()0f x '>, 所以()f x 的单调递增区间为()0,∞+;②当0a <时,由()0f x '=,得1x a=-,在区间10,a ⎛⎫- ⎪⎝⎭上()0f x '>,在区间1,a∞⎛⎫-+ ⎪⎝⎭上()0f x '<,所以,函数()f x 的单调递增区间为10,a ⎛⎫- ⎪⎝⎭,单调递减区间为1,a∞⎛⎫-+ ⎪⎝⎭;(2)由题目知,只需要()()max max f x g x <即可又因为()()max 12g x g ==,所以只需要()max 2f x <即可()max 2f x <即等价于()2f x <恒成立,由变量分离可知2ln xa x-<,[]1,100x ∈, 令()2ln xh x x -=,下面求()h x 的最小值, 令()23ln xh x x-+'=,所以()0h x '=得3x e =, 所以()h x 在31,e ⎡⎤⎣⎦为减函数,3,100e ⎡⎤⎣⎦为增函数,所以()()33min 1h x h e e -==,所以31a e ≤-. 2.(1)单调递增 (2)证明见解析 【解析】 【分析】(1)直接求导,判断出导数大于0,即可得到单调性;(2)直接由1x ,2x 是函数()1ln 2h x x b x =+-的两个零点得到1212122ln x xx x x x -=,分别解出1211212ln x xx x x -=,2121212ln xx x x x -=,再换元令12x t x =构造函数()12ln l t t t t=--,求导确定单调性即可求解. (1)由题意,函数()()sin 1ln T x x x =-+,则()()1cos 1T x x x'=--+,又∵()0,1x ∈,∴11x>,()()10,1,cos 11x x -∈-<,∴()0T x '>,∴()T x 在(0,1)上单调递增. (2)根据题意,()()1ln 02h x x b x x =+->, ∵1x ,2x 是函数()1ln 2h x x b x=+-的两个零点,∴111ln 02x b x +-=,221ln 02x b x +-=. 两式相减,可得122111ln22x x x x =-,即112221ln 2x x x x x x -=, ∴1212122ln x x x x x x -=,则1211212ln x x x x x -=,2121212ln xx x x x -=. 令12x t x =,()0,1t ∈,则1211112ln 2ln 2ln t t t t x x t t t---+=+=.记()12ln l t t t t =--,()0,1t ∈,则()()221t l t t-'=. 又∵()0,1t ∈,∴()0l t '>恒成立,∴()l t 在()0,1上单调递增,故()()1l t l <,即12ln 0t t t --<,即12ln t t t-<.因为ln 0t <,可得112ln t t t->,∴121x x +>.【点睛】本题关键点在于对双变量的处理,通过对111ln 02x b x +-=,221ln 02x b x +-=作差,化简得到1212122ln x x x x xx -=, 分别得到12,x x 后,换元令12x t x =,这样就转换为1个变量,再求导确定单调性即可求解. 3.(1)10y +=; (2)[)1,+∞. 【解析】 【分析】(1)将1a =-代入函数()f x 中,得出函数()f x 的解析式,进而可以求出切点坐标,再利用导数的几何意义及点斜式即可求解;(2)根据已知条件可以将问题转化为恒成立问题,进而转化为求函数的最值问题,利用导数法求函数的最值即可求解. (1)当1a =-时,()2cos 1sin 2f x x x x x =--+()2cos 10000sin 012f =⨯--+=-,所以切点为0,1,()1sin cos x f x x x '=-++,∴(0)01sin 0cos00f '=-++=,所以曲线()y f x =在点()()0,0f 处的切线的斜率为(0)0k f '==, 所以曲线()y f x =在点0,1处的切线的斜率切线方程为()()100y x --=⨯-,即10y +=.(2)由()21si cos n 2f x x x a x x =-++,得()s 1co i s n f x x a x x '=--+因为函数()f x 在3π0,4⎡⎤⎢⎥⎣⎦上单调递减,可得()0f x '≤对任意3π0,4x ⎡⎤∈⎢⎥⎣⎦恒成立, 设()()1c s os in g x f x x a x x '==--+,则()cos 1sin g x a x x '=--. 因为si (n 0)001cos00g a =--+=, 所以使()0f x '≤对任意3π0,4x ⎡⎤∈⎢⎥⎣⎦恒成立, 则至少满足()00g '≤,即10a -≤,解得1a ≥. 下证明当1a ≥时,()0f x '≤恒成立,因为3π0,4x ⎡⎤∈⎢⎥⎣⎦,所以sin 0x ≥, 因为1a ≥,所以()sin 1cos f x x x x '≤--+.记s ()cos n 1i h x x x x =--+,则π()1sin 14cos h x x x x ⎛⎫'=-=+ ⎝-⎪⎭.当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<;当π3π,24x ⎛⎫∈ ⎪⎝⎭时,()0h x '>. 所以函数()h x 在π0,2⎡⎫⎪⎢⎣⎭上单调递减,在π3π,24⎛⎤⎥⎝⎦上单调递增.因为ππ(),h h ⎛⎫==- ⎪⎝⎭33001044, 所以()h x 在3π0,4⎡⎤⎢⎥⎣⎦上的最大值为(0)0h =. 即()()1sin cos 0f x h x x x x '≤=--+≤在3π0,4⎡⎤⎢⎥⎣⎦上恒成立.所以a 的取值范围为[)1,+∞.4.(1)(21y x =-+(2)(ⅰ)22e ,-;(ⅱ)证明见解析【解析】 【分析】(1)由导数的几何意义即可求解;(2)(ⅰ)原问题等价于12,x xa =-的两根,且1201x x ,从而构造函数())0g x x =>,将问题转化为直线y a =-与函数()g x 的图象有两个交点,且交点的横坐标大于0小于1即可求解;(ⅱ)由1e x x +≤,利用放缩法可得()()1112210x ax f x '++-=,即1x 2114x <<,从而可证21x x -<()21e 011x x x x +<<<-,然后利用放缩法可得()()1201,21i i i ix ax f x i x +'⋅+->==-,即(()22201,2i i ax a x i -++++-=,最后构造二次函数()(222m x ax a x =-++++21x x ->而得证原不等式. (1)解:因为()22e x f x ax '=+所以()02f '=()01f =,所以曲线()y f x =在0x =处的切线方程为(21y x =-+; (2)解:(ⅰ)因为函数()f x 有两个极值点12,x x ,所以12,x x 是关于x 的方程()22e 0x f x ax =+'的两根,也是关于x的方程a =-的两正根, 设())0g x x =>,则()g x '=, 令())224e 2e 0x x h x x x =->,则()28e xh x x '=,当0x >时,()0h x '>,所以()h x 在()0,∞+上单调递增,又104h ⎛⎫= ⎪⎝⎭,所以,当104x <<时,()0h x <,()0g x '<;当14x >时,()0h x >,()0g x '>,所以函数()g x 在10,4⎛⎫⎪⎝⎭上单调递减,在1,4⎛⎫+∞ ⎪⎝⎭上单调递增,又因为1201x x ,所以()114g a g ⎛⎫<-<⎪⎝⎭,即22e a <-<- 所以a的取值范围是22e ,-;22e 9a <<-, 因为1e x x +≤,所以()()1112210x ax f x '++-=,所以()142a x +-,所以1x 2114x <<,所以211x x -<= 下面先证明不等式()21e 011x xx x+<<<-, 设()()2101e 1xx r x x x -=⋅<<+,则()()2222e 1x x r x x '=-+, 所以,当01x <<时,()0r x '<,()r x '在()0,1上单调递减, 所以,()()01r x r <=,所以不等式()21e 011x xx x+<<<-成立, 因为12,x x ,()1201x x <<<是()22e 0x f x ax '=+=的两个根,所以()()01,2i f x i '==,又()21e 011x xx x+<<<-,所以()()1201,21ii i ixax f x i x +'⋅+->==-,即(()22201,2i i ax a x i -++++-=,设函数()(222m x ax a x =-++++x t ==因为((()2224261620a a a ∆=+++-=+-+->,且()00m >,()10m >,102t <<, 所以函数()m x 有两个不同的零点,记为α,()βαβ<,且01t αβ<<<<,因为()22616212e 201ta tf t at at t+++'=+-⋅+-=<-,且()00f '>,()10f '>,所以1201x x ,因为()m x 在()0,t 上单调递减,且()()10m x m α>=,所以10x t α<<<; 因为()m x 在(),1t 上单调递增,且()()20m x m β>=,所以21t x β<<<; 所以1201x x αβ<<<<<,所以21x x βα->-,因为βα-=又()109a-<<<-,所以βα-> 所以21x x->综上,21x x <-< 【点睛】关键点点睛:本题(2)问(ii)小题证明的关键是,利用1e x x +≤,进行放缩可得1x 21x x -<;再利用()21e 011x xx x +<<<-,进行放缩可得()()1201,21ii i ixax f x i x +'⋅+->==-,从而构造二次函数()(222m x ax ax =-++++21x x ->5.(1)'y ()31sin 2cos x x xx --=;(2)'y ()e 1cos sin 2ln 2x xx x =+--;(3)'y ()551ln 3x =-⋅.【解析】 【分析】根据导数的运算法则,对(1)(2)(3)逐个求导,即可求得结果. (1)因为2cos x x y x -=,故'y ()()()243sin 12cos 1sin 2cos x x x x x x x x x x------==. (2)因为()e 1cos 2x x y x =+-,故'y ()e 1cos sin 2ln 2x xx x =+--.(3)因为()3log 51y x =-,故'y ()()155?51ln 351ln 3x x =⨯=--⋅. 6.(1)()3232f x x x =+-(2)()2,2- 【解析】 【分析】(1)由已知可得()()2013f f ⎧-=⎪⎨-=-''⎪⎩,可得出关于实数a 、b 的方程组,解出这两个未知数的值,即可得出函数()f x 的解析式;(2)分析可知,直线y λ=与函数()f x 的图象有3个交点,利用导数分析函数()f x 的单调性与极值,数形结合可得出实数λ的取值范围.(1)解:因为()322f x x ax bx =++-,则()232f x x ax b '=++,由题意可得()()212401323f a b f a b ⎧-=-+=⎪⎨-=-+=-''⎪⎩,解得30a b =⎧⎨=⎩,所以,()3232f x x x =+-.当3a =,0b =时,()236f x x x '=+,经检验可知,函数()f x 在2x =-处取得极值. 因此,()3232f x x x =+-.(2)解:问题等价于()f x λ=有三个不等的实数根,求λ的范围.由()2360f x x x '=+>,得2x <-或0x >,由()2360f x x x '=+<,得20x -<<,所以()f x 在(),2-∞-、()0,∞+上单调递增,在()2,0-上单调递减, 则函数()f x 的极大值为()22f -=,极小值为()02f =-,如下图所示:由图可知,当22λ-<<时,直线y λ=与函数()f x 的图象有3个交点, 因此,实数λ的取值范围是()2,2-. 7.(1)最大值为15,最小值为9- (2)3a ≤ 【解析】 【分析】(1)由()30f '=可求得实数a 的值,再利用函数的最值与导数的关系可求得函数()f x 在[]1,a 上的最大值和最小值;(2)分析可知()23230f x x ax '=-+≥对任意的1≥x 恒成立,利用参变量分离法结合基本不等式可求得实数a 的取值范围. (1)解:因为()323f x x ax x =-+,则()2323f x x ax =-+',则()33060f a '=-=,解得5a =,所以,()3253f x x x x =-+,则()()()23103313f x x x x x '=-+=--,列表如下:所以,min 39f x f ==-,因为11f =-,515f =,则max 515f x f ==. (2)解:由题意可得()23230f x x ax '=-+≥对任意的1≥x 恒成立,即312a x x⎛⎫≤+ ⎪⎝⎭,由基本不等式可得313322x x ⎛⎫+≥⨯ ⎪⎝⎭,当且仅当1x =时,等号成立,故3a ≤.8.(1)列联表见解析,没有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关; (2)①0310p =;②()73a b + 【解析】 【分析】(1)对满足条件的数据统计加和即可,然后根据给定的2K 计算公式,将计算结果与195%0.05-=所对应的k 值比较大小即可;(2)①利用独立重复试验与二项分布的特点,写出10人中恰有3人不了解“碳中和”的概率为()f p ,再利用导数求出最值点; ②利用独立重复试验的期望公式代入可求出答案. (1)由题中表格数据完成22⨯列联表如下:()22800125250150275800 3.463 3.841275525400400231K ⨯⨯-⨯==≈<⨯⨯⨯.故没有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关. (2)①由题得,()()733101f p C p p =-,()0,1p ∈, ∴()()()()()763236321010C 3171C 1310f p p p p p p p p ⎡⎤'=---=--⎣⎦. 令()0f p '=,得310p =,当30,10p ⎛⎫∈ ⎪⎝⎭时,()0f p '>; 当3,110p ⎛⎫∈⎪⎝⎭时,()0f p '<, ∴当30,10p ⎛⎫∈ ⎪⎝⎭时,()f p '单调选增;当3,110p ⎛⎫∈ ⎪⎝⎭时,()f p '单调递减, ∴()f p 的最大值点0310p =. ②本题求要准备的礼品大致为多少元,即求10个人礼品价值X 的数学期望. 由①知答错的概率为310, 则()33101731010E X a b a b ⎡⎤⎛⎫=-+=+ ⎪⎢⎥⎝⎭⎣⎦, 故要准备的礼品大致为73a b +元. 9.(1)3a =-;(2)增区间为()2e ,+∞,减区间为()20,e ,极小值22e -,无极大值.【解析】 【分析】(1)根据()1112f '⨯=-,代值计算即可求得参数值;(2)根据(1)中所求参数值,求得()f x ',利用导数的正负即可判断函数单调性和极值. (1)因为()ln 1f x x a '=++,在点()()1,1f 处的切线斜率为()11k f a '==+, 又()f x 在点()()1,1f 处的切线与直线220x y 相互垂直, 所以()1112f '⨯=-,解得3a =-. (2)由(1)得,()ln 2f x x '=-,()0,x ∈+∞,令()0f x '>,得2e x >,令()0f x '<,得20e x <<,即()f x 的增区间为()2e ,+∞,减区间为()20,e . 又()22222e e ln e 3e 22ef =-+=-,所以()f x 在2e x =处取得极小值22e -,无极大值. 【点睛】本题考查导数的几何意义,以及利用导数研究函数的单调性和极值,属综合中档题.10.(1)单调增区间为2,2m ⎛⎫- ⎪⎝⎭,单调减区间为[)2,,2,m ∞∞⎛⎤--+⎥⎝⎦ (2)20,4e ⎛⎤ ⎥-⎝⎦【解析】 【分析】(1)先对函数求导,然后由导数的正负可求出函数的单调区间, (2)由函数()f x 在[]1,2上为增函数,求出函数的最值,则()()max min 24e 2()()e m g m f x f x -+=-=,然后将问题转化为()224e 24e e m -+≥,从而可求出实数m 的取值范围. (1)()()()()221422(0)e e xxmx m x mx x f x m -+-+-+-=>'=令()0f x '=,解得2x m =-或2x =,且22m-< 当2,x m ∞⎛⎤∈-- ⎥⎝⎦时,()0f x '≤,当2,2x m ⎛⎫∈- ⎪⎝⎭时,()0f x '>,当[)2,x ∞∈+时,()0f x '≤即()f x 的单调增区间为2,2m ⎛⎫- ⎪⎝⎭,单调减区间为[)2,,2,m ∞∞⎛⎤--+⎥⎝⎦(2)由(1)知,当[]0,1,2m x >∈时,()0f x '>恒成立 所以()f x 在[]1,2上为增函数, 即()()max min242()2,()1e em mf x f f x f +====. ()()12f x f x -的最大值为()()max min 24e 2()()e m g m f x f x -+=-=()()1224e f x f x ⎡⎤≥-⎣⎦恒成立()224e 24e e m -+∴≥ 即24em ≤-, 又0m > 20,4e m ⎛⎤∴∈ ⎥-⎝⎦ 故m 的取值范围20,4e ⎛⎤ ⎥-⎝⎦。
高中数学导数经典20题附解析

导数经典20题目录导数经典20题 (1)一、【不等式恒成立-单变量】5道 (3)二、【不等式恒成立-双变量】5道 (13)三、【不等式证明】5道 (23)四、【零点问题】5道 (32)一、【不等式恒成立-单变量】【第01题】(2017•广东模拟)已知()ln a f x x x=+.(1)求()f x 的单调区间和极值;(2)若对任意0x >,均有()2ln ln x a x a −≤恒成立,求正数a 的取值范围.【分析】(1)求出函数的导数,通过讨论a 的范围求出函数的单调区间,从而求出函数的极值即可;(2)问题转化为2ln ln 1a a ≤+,求出a 的范围即可.【解答】解:(1)(0x >), ()221a x a f x x x x−′=−=(0x >), 当0a ≤时,()0f x ′>,在()0,+∞上递增,无极值;当0a >时,0x a <<时,()0f x ′<,在()0,a 上递减,x a >时,()0f x ′>,()f x 在(),a +∞上递增,()()ln 1f x f a a ==+极小值,无极大值.(2)若对任意0x >,均有恒成立,即对任意0x >,均有2ln ln a a x x≤+恒成立, 由(1)得:0a >时,()f x 的最小值是ln 1a +,故问题转化为:2ln ln 1a a ≤+,即ln 1a ≤,故0e a <≤.【点评】本题考查了函数的单调性、极值问题,考查导数的应用以及分类讨论思想,考查()ln a f x x x =+()f x ()f x ()2ln ln x a x a −≤转化思想,是一道中档题.一、【不等式恒成立-单变量】【第02题】(2019•西安一模)已知函数()()21e x f x x ax =−−(其中e 为自然对数的底数). (1)判断函数()f x 极值点的个数,并说明理由;(2)若对任意的0x >,()3e x f x x x +≥+,求a 的取值范围.【分析】(1)首先求得导函数,然后分类讨论确定函数的极值点的个数即可;(2)将原问题转化为恒成立的问题,然后分类讨论确定实数a 的取值范围即可.【解答】解:(1)()()e 2e 2x xf x x ax x a ′=−=− ,当0a ≤时,()f x 在(),0−∞上单调递减,在()0,+∞上单调递增,()f x 有1个极值点; 当102a <<时,()f x 在(),ln 2a −∞上单调递增,在()ln 2,0a 上单调递减,在()0,+∞上单调递增,()f a 有2个极值点; 当12a =时,()f x 在R 上单调递增,此时函数没有极值点; 当12a >时,()f x 在(),0−∞上单调递增,在()0,ln 2a 上单调递减,在()ln 2,a +∞上单调递增,()f a 有2个极值点. 综上,当12a =时,()f x 没有极值点;当0a ≤时,()f x 有1个极值点;当0a >且12a ≠时,()f x 有2个极值点.(2)由得32e 0x x x ax x −−−≥.当0x >时,2e 10x x ax −−−≥, 即2e 1x x a x−−≤对0x ∀>恒成立. 设()2e 1x x g x x−−=(0x >), ()3e x f x x x +≥+则()()()21e 1x x x g x x −−−′=,设()e 1x h x x =−−,则()e 1x h x ′=−,由0x >可知()0h x ′>,()h x 在()0,+∞上单调递增,()()00h x h >=,即e 1x x >+,()g x ∴在()0,1上单调递减,在()1,+∞上单调递增,()()1e 2g x g ∴≥=−,e 2a ∴≤−,故a 的取值范围是(],e 2−∞−.【点评】本题主要考查导数研究函数的极值点,导数研究不等式恒成立的方法,分类讨论的数学思想等知识,属于中等题.【第03题】(2017春•太仆寺旗校级期末)已知函数()ln f x x a x =−,()1a g x x+=−(a ∈R ). (1)若1a =,求函数()f x 的极小值;(2)设函数()()()h x f x g x =−,求函数()h x 的单调区间;(3)若在区间[]1,e 上存在一点0x ,使得()()00f x g x <成立,求a 的取值范围.【分析】(1)先求出其导函数,让其大于0求出增区间,小于0求出减区间即可得到函数的单调区间进而求出函数()f x 的极值;(2)先求出函数()h x 的导函数,分情况讨论让其大于0求出增区间,小于0求出减区间即可得到函数的单调区间;(3)先把()()00f x g x <成立转化为()00h x <,即函数()1ln a h x x a x x +=+−在[]1,e 上的最小值小于零;再结合(2)的结论分情况讨论求出其最小值即可求出a 的取值范围.【解答】解:(1)()f x 的定义域为()0,+∞,当1a =时,()ln f x x x =−,()111x f x x x −′=−=, x ()0,11 ()1,+∞ ()'f x− 0 + ()f x减 极小 增 所以()f x 在1x =处取得极小值1.(2)()1ln a h x x a x x +=+−, ()()()221111x x a a a h x x x x+−+ + ′=−−=, ①当10a +>时,即1a >−时,在()0,1a +上()0h x ′<,在()1,a ++∞上()0h x ′>, 所以()h x 在()0,1a +上单调递减,在()1,a ++∞上单调递增;②当10a +≤,即1a ≤−时,在()0,+∞上()0h x ′>,所以,函数()h x 在()0,+∞上单调递增.(3)在区间[]1,e 上存在一点0x ,使得()()00f x g x <成立,即在[]1,e 上存在一点0x ,使得()00h x <,即函数在[]1,e 上的最小值小于零. 由(2)可知,①当1e a +≥,即e 1a ≥−时,()h x 在[]1,e 上单调递减,所以()h x 的最小值为()e h ,由()1e e 0ea h a +=+−<可得2e 1e 1a +>−, 因为2e 1e 1+−e 1>−, 所以2e 1e 1a +>−; ②当11a +≤,即0a ≤时,()h x 在上单调递增,所以()h x 最小值为()1h ,由()1110h a =++<可得2a <−;③当11e a <+<,即0e 1a <<−时,可得()h x 最小值为()1h a +,因为()0ln 11a <+<,所以,()0ln 1a a a <+<,故()()12ln 12h a a a a +=+−+>,此时,()10h a +<不成立.综上可得,所求a 的范围是:或2a <−. 【点评】本题第一问考查利用导函数来研究函数的极值.在利用导函数来研究函数的极值时,分三步①求导函数,②求导函数为0的根,③判断根左右两侧的符号,若左正右负,原函数取极大值;若左负右正,原函数取极小值.()1ln a h x x a x x+=+−[]1,e 2e 1e 1a +>−【第04题】(2019•蚌埠一模)已知函数()()2ln f x a x x x =−−.(1)当1a =时,求函数()f x 的单调区间;(2)若()0f x ≥恒成立,求a 的值.【分析】(1)代入a 的值,求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)通过讨论x 的范围,问题转化为01x <<时,2ln x a x x ≤−,1x >时,2ln x a x x ≥−,令()g x =2ln x x x−,根据函数的最值求出a 的范围,取交集即可. 【解答】解:(1)1a =时,()2ln f x x x x −−,(0x >) 故()()()211121x x f x x x x+−′=−−=, 令()0f x ′>,解得:1x >,令()0f x ′<,解得:01x <<,故()f x 在()0,1递减,在()1,+∞递增.(2)若()0f x ≥恒成立,即()2ln a x x x −≥,①()0,1x ∈时,20x x −<,问题转化为2ln x a x x ≤−(()0,1x ∈),1x >时,20x x −>,问题转化为2ln x a x x ≥−(1x >), 令()g x =2ln x x x −, 则()()()22121ln x x x g x x x −−−′=−, 令()()121ln h x x x x =−−−,则()112ln h x x x ′=−+−,()2120x x xh ′=−−<′, 故()h x ′在()0,1和()1,+∞内都递减,()0,1x ∈时,()()10h x h ′′>=,故()h x 在()0,1递增,()()10h x h <=,故()0,1x ∈时,()0g x ′<,()g x 在()0,1递减,而1x →时,()1g x →,故()0,1x ∈时,()1g x >,故1a ≤,()1,x ∈+∞时,()()10h x h ′′<=,故()h x 在()0,1递减,()()10h x h <=, 故()1,x ∈+∞时,()0g x ′<,()g x 在()1,+∞递减,而1x →时,()1g x →,故()1,x ∈+∞时,()1g x >,故1a ≥,②1x =时,显然成立.综上:1a =.【点评】本题考查了函数的单调性,最值问题,考查导数的应用以及函数恒成立问题,考查转化思想,分类讨论思想,是一道综合题.【第05题】(2019•南昌一模)已知函数()()e ln x f x x x a =−++(e 为自然对数的底数,a 为常数,且1a ≤). (1)判断函数()f x 在区间()1,e 内是否存在极值点,并说明理由; (2)若当ln 2a =时,()f x k <(k ∈Z )恒成立,求整数k 的最小值. 【分析】(1)由题意结合导函数的符号考查函数是否存在极值点即可; (2)由题意结合导函数研究函数的单调性,据此讨论实数k 的最小值即可. 【解答】解:(1)()1e ln 1x f x x x a x ′=−++−,令()1ln 1g x x x a x=−++−,()1,e x ∈,则()()'e x f x g x =, ()2210x x g x x −+′=−<恒成立,所以()g x 在()1,e 上单调递减,所以()()110g x g a <=−≤,所以()'0f x =在()1,e 内无解. 所以函数()f x 在区间()1,e 内无极值点.(2)当ln 2a =时,()()e ln ln 2x f x x x =−++,定义域为()0,+∞,()1e ln ln 21x f x x x x ′=−++−,令()1ln ln 21h x x x x =−++−, 由(1)知,()h x 在()0,+∞上单调递减,又11022h => ,()1ln 210h =−<,所以存在11,12x∈,使得()10h x =,且当()10,x x ∈时,()0h x >,即()'0f x >,当()1,x x ∈+∞时,()0h x <,即()'0f x <.所以()f x 在()10,x 上单调递增,在()1,x +∞上单调递减, 所以()()()1111max e ln ln 2x f x f x x x ==−++. 由()10h x =得1111ln ln 210x x x −++−=,即1111ln ln 21x x x −+=−, 所以()1111e 1x f x x =−,11,12x∈ ,令()1e 1x r x x =− ,1,12x ∈ ,则()211e 10x r x x x′=−+> 恒成立, 所以()r x 在1,12上单调递增,所以()()1102r r x r <<= ,所以()max 0f x <,又因为1211e ln 2ln 2122f=−−+=>−,所以()max 10f x −<<,所以若()f x k <(k ∈Z )恒成立,则k 的最小值为0.【点评】本题主要考查导数研究函数的极值,导数研究函数的单调性,导数的综合运用等知识,属于中等题.二、【不等式恒成立-双变量】【第06题】(2019•广元模拟)已知函数()()ln 11xf x a x x=−++(a ∈R ),()2e mx g x x =(m ∈R ). (1)当1a =时,求函数()f x 的最大值;(2)若0a <,且对任意的1x ,[]20,2x ∈,()()121f x g x +≥恒成立,求实数m 的取值范围.【分析】(1)求出函数的导数,得到函数的单调区间,求出函数的最大值即可; (2)令()()1x f x ϕ=+,根据函数的单调性分别求出()x ϕ的最小值和()g x 的最大值,得到关于m 的不等式,解出即可.【解答】解:(1)函数()f x 的定义域为()1,−+∞, 当1a =时,()()()2211111xf x xx x −′=−=+++,∴当()1,0x ∈−时,()'0f x >,函数()f x 在()1,0−上单调递增, ∴当()0,x ∈+∞时,()'0f x <,函数()f x 在()0,+∞上单调递减, ()()max 00f x f ∴==.(2)令()()1x f x ϕ=+,因为“对任意的1x ,[]20,2x ∈,()()121f x g x +≥恒成立”, 所以对任意的1x ,[]20,2x ∈,()()min max x g x ϕ≥成立, 由于()()211ax a x x ϕ−−+′=+,当0a <时,对[]0,2x ∀∈有()'0x ϕ>,从而函数()x ϕ在[]0,2上单调递增, 所以()()min 01x ϕϕ==, ()()222e e 2e mx mx mx g x x x mmxx ′=+⋅=+,当0m =时,()2g x x =,x ∈[]0,2时,()()max 24g x g ==,显然不满足()max 1g x ≤,当0m ≠时,令()'0g x =得10x =,22x m=−, ①当22m−≥,即10m −≤≤时,在[]0,2上()0g x ′≥,所以()g x 在[]0,2上单调递增, 所以()()2max 24e m g x g ==,只需24e 1m ≤,得ln 2m ≤−,所以1ln 2m −≤≤−. ②当202m <−<,即1m <−时,在20,m − 上()0g x ′≥,()g x 单调递增,在2,2m−−上()0g x ′<,()g x 单调递减,所以()22max 24eg x g m m== , 只需2241e m ≤,得2e m ≤−,所以1m <−. ③当20m−<,即0m >时,显然在[]0,2上()0g x ′≥,()g x 单调递增, 所以()()2max 24e m g x g ==,24e 1m ≤不成立. 综上所述,m 的取值范围是(],ln 2−∞−.【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,属于难题.【第07题】(2019•濮阳一模)已知函数()ln b f x a x x =+(0a ≠). (1)当2b =时,讨论函数()f x 的单调性;(2)当0a b +=,0b >时,对任意1x ,21,e e x ∈,都有()()12e 2f x f x −≤−成立,求实数b 的取值范围.【分析】(1)通过讨论a 的范围,求出函数的单调区间即可;(2)原问题等价于()()max min e 2f x f x −≤−成立,可得()()min 11f x f ==,可得()()max e e b f x f b ==−+,即e e 10b b −−+≤,设()e e 1b b b ϕ=−−+(0b >),可得()b ϕ在()0,+∞单调递增,且()10ϕ=,即可得不等式e e 10b b −−+≤的解集.【解答】解:(1)函数()f x 的定义域为()0,+∞. 当2b =时,()2ln f x a x x =+,所以()22x a f x x+′=. ①当0a >时,()0f x ′>,所以函数()f x 在()0,+∞上单调递增.②当0a <时,令()0f x ′=,解得:x =当0x <<()0f x ′<,所以函数()f x 在 上单调递减;当x >()0f x ′>,所以函数()f x 在+∞上单调递增. 综上所述,当2b =,0a >时,函数()f x 在()0,+∞上单调递增;当2b =,0a <时,函数()f x 在 上单调递减,在 +∞上单调递增. (2) 对任意1x ,21,e e x∈,有()()12e 2f x f x −≤−成立,()()max min e 2f x f x ≤∴−−成立,0a b += ,0b >时,()ln b f x b x x =−+.()()11bb b x b f x bx x x−−′=−+=. 当01x <<时,()0f x ′<,当1x >时,()0f x ′>,()f x ∴在1,1e单调递减,在[]1,e 单调递增,()()min 11f x f ==,1e e bf b − =+ ,()e e b f b =−+, 设()()1e e e 2e b b g b f f b −=−=−−(0b >),()e e 20b b g b −′=+−>. ()g b ∴在()0,+∞递增,()()00g b g ∴>=,()1e e f f ∴>.可得()max f x =()e e b f b =−+,e 1e 2b b ∴−+−≤−,即e e 10b b −−+≤,设()e e 1b b b ϕ=−−+(0b >),()e 10b b ϕ′−>在()0,b ∈+∞恒成立.()b ϕ∴在()0,+∞单调递增,且()10ϕ=,∴不等式e e 10b b −−+≤的解集为(]0,1. ∴实数b 的取值范围为(]0,1.【点评】本题考查了导数的应用,考查了转化思想、运算能力,属于压轴题.【第08题】(2019•衡阳一模)已知()32342f x x ax x −=+(x ∈R ),且()f x 在区间[]1,1−上是增函数.(1)求实数a 的值组成的集合A ;(2)设函数()f x 的两个极值点为1x 、2x ,试问:是否存在实数m ,使得不等式21213m tm x x ++≥−对任意a A ∈及[]1,1t ∈−恒成立?若存在,求m 的取值范围;若不存在,请说明理由.【分析】(1)由()f x 在区间[]1,1−上是增函数.可得()24220f x ax x ′=+−≥在区间[]1,1−上恒成立.可得()10f ′−≥,()10f ′≥,即可得出. (2)函数()f x 的两个极值点为1x 、2x ,可得12x x a +=,122x x =−.()()1212121212322x x x x x x x x x x −−++≤−++==a A ∈,设()h a =[]1,1a ∈−,则()h a 是偶函数,且在[]0,1上单调递增,进而得出其最大值为7.()21213g t m tm x x ++≥−=对任意a A ∈及[]1,1t ∈−恒成立,可得()()1717g g −≥ ≥,解得m 范围即可得出.【解答】解:(1) ()f x 在区间[]1,1−上是增函数, ∴()24220f x ax x ′=+−≥在区间[]1,1−上恒成立.()14220f a ∴′−=−−≥,()14220f a ′=+−≥,解得11a −≤≤. []1,1A ∴=−.(2)函数()f x 的两个极值点为1x 、2x , ∴12x x a +=,122x x =−.∴()()1212121212322x x x x x x x x x x −−++≤−++==a A ∈ ,设()h a =[]1,1a ∈−,则()h a 是偶函数,且在[]0,1上单调递增.123x x ∴−的最大值为()17h =.设()2211g t m tm mt m ++=++=,[]1,1t ∈−,()123g t x x ≥−对任意a A ∈及[]1,1t ∈−恒成立,则()()1717g g −≥≥ ,解得3m ≤−或3m ≥. ∴存在实数3m ≤−或3m ≥,使得不等式21213m tm x x ++≥−对任意a A ∈及[]1,1t ∈−恒成立.【点评】本题考查了利用导数研究函数的单调性、方程与不等式的解法、转化方法、分类讨论方法,考查了推理能力与计算能力,属于难题.【第09题】(2018•呼和浩特一模)已知函数()ln f x x =,()212g x x bx =−(b 为常数). (1)当4b =时,讨论函数()()()h x f x g x =+的单调性;(2)2b ≥时,如果对于1x ∀,(]21,2x ∈,且12x x ≠,都有()()()()1212f x f x g x g x −<−成立,求实数b 的取值范围.【分析】(1)先求导,再根据导数和函数的单调性关系即可求出,(2)令()()()x f x g x ϕ=+,则问题等价于函数()x ϕ在区间(]1,2(1,2]上单调递减,即等价于()10x x b xϕ′=+−≤在区间(]1,2上恒成立,所以得1b x x ≥+,求出即可.【解答】解:(1)()21ln 2h x x x bx =+−的定义域为()0,+∞,当4b =时,()21ln 42h x x x x =+−,()2141'4x x h x x x x−+=+−=, 令()'0h x =,解得12x =−,22x =+(2x ∈时,()0h x ′<, 当(0,2x ∈或()2+∞时,()0h x ′>,所以,()h x 在(0,2和()2+∞单调递增;在(2单调递减. (2)因为()ln f x x =在区间(]1,2上单调递增, 当2b ≥时,()212g x x bx =−在区间(]1,2上单调递减, 不妨设12x x >,则()()()()1212f x f x g x g x −<−等价于()()()()1122f x g x f x g x +<+, 令()()()x f x g x ϕ=+,则问题等价于函数()x ϕ在区间(]1,2上单调递减, 即等价于()10x x b xϕ′=+−≤在区间(]1,2上恒成立, 所以得1b x x≥+在区间(]1,2上恒成立, 因为1y x x=+在(]1,2上单调递增, 所以max 15222y =+=,所以得5b≥.2【点评】本题考查了导数研究函数的单调性以及根据函数的增减性得到函数的最值,理解等价转化思想的运用,属于中档题.【第10题】(2018•邕宁区校级模拟)设函数()e xa f x x x=−,a ∈R 且0a ≠,e 为自然对数的底数. (1)求函数()f x y x=的单调区间; (2)若1ea =,当120x x <<时,不等式()()()211212m x x f x f x x x −−>恒成立,求实数m 的取值范围.【分析】(1)求出函数y 的导数y ′,利用导数判断函数y 的单调性与单调区间; (2)120x x <<时,()()()211212m x x f x f x x x −−>等价于()()1212m mf x f x x x −>−;构造函数()()mg x f x x=−,由()g x 在()0,+∞上为减函数,得出()0g x ′≤, 再利用构造函数求最值法求出m 的取值范围. 【解答】解:(1)函数()2e 1xf x a y x x==−, ()243e 2e 2e xx x a x a x x a y x x −⋅−⋅∴′==, ①当0a >时,由0y ′>得02x <<,由0y ′<得0x <或2x >; ②当0a <时,由0y ′>得0x <或2x >,由0y ′<得02x <<. 综上:①当0a >时,函数()f x y x=的增区间为()0,2,减区间为(),0−∞,()2,+∞; ②当0a <时,函数()f x y x=的增区间为(),0−∞,()2,+∞,减区间为()0,2. (2)当120x x <<时,()()()211212m x x f x f x x x −−>等价于()()1212m mf x f x x x −>−,即函数())e (e x m mg x f x x x x x=−=−−在()0,+∞上为减函数,则()()()1212221e 1e 10x x x x x m m g x x x x−−−−−+′=−+=≤, ()121e x m x x −∴≤−−;令()()121e x h x x x −=−−, 则()()11 e 2e 2x x h x x xx −−′=−=−,由()0h x ′=得ln 2e x =;当()0,ln 2e x ∈时,()0h x ′<,()h x 为减函数; 当()ln 2e,+x ∈∞时,()0h x ′>,()h x 为增函数.()h x ∴的最小值为()()()()22ln 2e 12ln 2e ln 2e 1e ln 2e 2ln 2ln 21ln 21h −=−−=−+=−−; 2ln 21m ∴≤−−,m ∴的取值范围是(22,ln 1 −−∞− .【点评】本题考查了利用导数研究函数的单调性与最值问题,也考查了不等式恒成立问题,是综合题.三、【不等式证明】【第11题】(2018新课标I)已知函数()e ln 1x f x a x =−−.(1)设2x =是()f x 的极值点,求a ,并求()f x 的单调区间; (2)证明:当1ea ≥时,()0f x ≥. 【分析】(1)推导出0x >,()1e x f x a x ′=−,由2x =是()f x 的极值点,解得212ea =,从而()21e ln 12exf x x =−−,进而()211e 2e x f x x ′=−,由此能求出()f x 的单调区间. (2)当1e a ≥时,()e ln 1e xf x x ≥−−,设()e ln 1e xg x x =−−,则()e 1e x g x x ′=−,由此利用导数性质能证明当1ea ≥时,()0f x ≥. 【解答】解:(1)∵函数()e ln 1x f x a x =−−. ∴0x >,()1e xf x a x′=−, ∵2x =是()f x 的极值点,∴()212e 02f a ′=−=,解得212ea =,∴()21e ln 12exf x x =−−,∴()211e 2e x f x x ′=−, 当02x <<时,()0f x ′<,当2x >时,()0f x ′>, ∴()f x 在()0,2单调递减,在()2,+∞单调递增.(2)证明:当1e a ≥时,()e ln 1e xf x x ≥−−,设()e ln 1e x g x x =−−,则()e 1e x g x x ′=−, 由()e 10e x g x x ′=−=,得1x =,当01x <<时,()0g x ′<, 当1x >时,()0g x ′>, ∴1x =是()g x 的最小值点,故当0x >时,()()10g x g ≥=, ∴当1ea ≥时,()0f x ≥. 【点评】本题考查函数的单调性、导数的运算及其应用,同时考查逻辑思维能力和综合应用能力,是中档题.【第12题】(2018新课标Ⅲ)已知函数()21e xax x f x +−=. (1)求曲线()y f x =在点()0,1−处的切线方程; (2)证明:当1a ≥时,()e 0f x +≥. 【分析】(1)()()()()2221e 1e e x xx ax ax x f x +−+−′=由()02f ′=,可得切线斜率2k =,即可得到切线方程. (2)可得()()()()()()2221e 1e 12ee x xxx ax ax x ax x f x +−+−+−′==−.可得()f x 在1,a−∞−,()2,+∞递减,在1,2a−递增,注意到1a ≥时,函数()21g x ax x =+−在()2,+∞单调递增,且()2410g a =+>.只需()min e f x ≥−,即可. 【解答】解:(1)()()()()()()2221e 1e 12e e x xxx ax ax x ax x f x +−+−+−′==−.∴()02f ′=,即曲线()y f x =在点()01−,处的切线斜率2k =, ∴曲线()y f x =在点()01−,处的切线方程方程为()12y x −−=. 即210x y −−=为所求.(2)证明:函数()f x 的定义域为:R , 可得()()()()()()2221e 1e 12e e x xxx ax ax x ax x f x +−+−+−′==−.令()0f x ′=,可得12x =,210x a=−<, 当1,x a∈−∞−时,()0f x ′<,当1,2x a ∈− 时,()0f x ′>,当()2,x ∈+∞时,()0f x ′<.∴()f x 在1,a−∞−,()2,+∞递减,在1,2a − 递增,注意到1a ≥时,函数()21g x ax x =+−在()2,+∞单调递增,且()2410g a =+>.函数()f x 的图象如下:∵1a ≥,∴(]10,1a∈,则11e e a f a−=−≥−, ∴()1min e e af x =−≥−, ∴当1a ≥时,()e 0f x +≥.【点评】本题考查了导数的几何意义,及利用导数求单调性、最值,考查了数形结合思想,属于中档题.【第13题】(2016新课标Ⅲ)设函数()ln 1f x x x =−+. (1)讨论()f x 的单调性; (2)证明当()1,x ∈+∞时,11ln x x x−<<; (3)设1c >,证明当()0,1x ∈时,()11x c x c +−>.【分析】(1)求出导数,由导数大于0,可得增区间;导数小于0,可得减区间,注意函数的定义域;(2)由题意可得即证ln 1ln x x x x <−<.运用(1)的单调性可得ln 1x x <−,设()ln 1F x x x x =−+,1x >,求出单调性,即可得到1ln x x x −<成立;(3)设()()11x G x c x c =+−−,求()G x 的二次导数,判断()G x ′的单调性,进而证明原不等式.【解答】解:(1)函数()ln 1f x x x =−+的导数为()11f x x′=−, 由()0f x ′>,可得01x <<;由()0f x ′<,可得1x >. 即有()f x 的增区间为()0,1;减区间为()1,+∞; (2)证明:当()1,x ∈+∞时,11ln x x x−<<,即为ln 1ln x x x x <−<. 由(1)可得()ln 1f x x x =−+在()1,+∞递减, 可得()()10f x f <=,即有ln 1x x <−;设()ln 1F x x x x =−+,1x >,()1ln 1ln F x x x ′=+−=, 当1x >时,()0F x ′>,可得()F x 递增,即有()()10F x F >=, 即有ln 1x x x >−,则原不等式成立; (3)证明:设()()11x G x c x c =+−−,则需要证明:当()0,1x ∈时,()0G x >(1c >);()1ln x G x c c c ′=−−,()()2ln 0x G x c c ′′=−<,∴()G x ′在()0,1单调递减,而()01ln G c c ′=−−,()11ln G c c c ′=−−, 由(1)中()f x 的单调性,可得()01ln 0G c c ′=−−>,由(2)可得()()11ln 1ln 10G c c c c c ′=−−=−−<,∴()0,1t ∃∈,使得0G t ′=(),即()0,x t ∈时,()0G x ′>,(),1x t ∈时,()0G x ′<; 即()G x 在()0,t 递增,在(),1t 递减; 又因为:()()010G G ==,∴()0,1x ∈时()0G x >成立,不等式得证; 即1c >,当()0,1x ∈时,()11x c x c +−>.【点评】本题考查导数的运用:求单调区间和极值、最值,考查不等式的证明,注意运用构造函数法,求出导数判断单调性,考查推理和运算能力,属于中档题.【第14题】(2015新课标I)设函数()2e ln x f x a x =−. (1)讨论()f x 的导函数()f x ′零点的个数; (2)证明:当0a >时,()22lnf x a a a≥+. 【分析】(1)先求导,在分类讨论,当0a ≤时,当0a >时,根据零点存在定理,即可求出;(2)设导函数()f x ′在()0,+∞上的唯一零点为0x ,根据函数()f x 的单调性得到函数的最小值()0f x ,只要最小值大于22ln a a a+,问题得以证明.【解答】解:(1)()2e ln x f x a x =−的定义域为()0,+∞, ∴()22e x xx af =′−. 当0a ≤时,()0f x ′>恒成立,故()f x ′没有零点, 当0a >时,∵2e x y =为单调递增,ay x=−单调递增, ∴()f x ′在()0,+∞单调递增, 又()0f a ′>,假设存在b 满足0ln2a b <<时,且14b <,()0f b ′<, 故当0a >时,导函数()f x ′存在唯一的零点;(2)由(1)知,可设导函数()f x ′在()0,+∞上的唯一零点为0x , 当()00,x x ∈时,()0f x ′<, 当()0,x x ∈+∞时,()0f x ′>,故f(x)在()00,x 单调递减,在()0,x +∞单调递增, 所欲当0x x =时,()f x 取得最小值,最小值为()0f x , 由于0202e 0x ax −=,所以()002a f x x =+02ax +2ln a a ≥2a +2ln a a. 故当0a >时,()22lnf x a a a≥+. 【点评】本题考查了导数和函数单调性的关系和最值的关系,以及函数的零点存在定理,属于中档题.【第15题】(2015安徽)设n ∗∈N ,n x 是曲线221n y x +=+在点()1,2处的切线与x 轴交点的横坐标. (1)求数列{}n x 的通项公式; (2)记2221321n n T x x x −= ,证明:14n T n≥. 【分析】(1)利用导数求切线方程求得切线直线并求得横坐标; (2)利用放缩法缩小式子的值从而达到所需要的式子成立.【解答】解:(1)2221'1'22n n y x n x ++=+=+()(),曲线221n y x +=+在点()1,2处的切线斜率为22n +,从而切线方程为()()2221y n x −=+−.令0y =,解得切线与x 轴的交点的横坐标为1111n n x n n =−=++;(2)证明:由题设和(1)中的计算结果可知:22213222211321242n n n n T x x x−− = =, 当1n =时,114T =, 当2n ≥时,因为()()()()2222212221211212212222n n n n n n n n n n n x −−−−−−−=>=== , 所以2112112234n T n n n − >××××= ;综上所述,可得对任意的n ∗∈N ,均有14n T n≥. 【点评】本题主要考查切线方程的求法和放缩法的应用,属基础题型.四、【零点问题】【第16题】(2018秋•龙岩期末)已知函数()()2ln 12f x x ax a x a =−−−+(a ∈R ). (1)讨论()f x 的单调性;(2)令函数()()()()22e 1ln 1x g x f x x a x −=+−+−−,若函数()g x 有且只有一个零点0x ,试判断0x 与3的大小,并说明理由.【分析】(1)由()222211a x x a f x x a x x +− ′−−−−(1x >),分212a +≤和212a +>两类分析函数的单调性;(2)函数()()()()()222e 1ln 1e ln 12x x g x f x x a x ax x a −−=+−+−−=−−−+,求其导函数,可得()21e 1x g x a x −′=−−−,令()()h x g x ′=,对()h x 求导,分析可得()g x ′在()1,+∞上有唯一零点1x ,结合已知可得01x x =,则()()0000g x g x ′ = = ,由此可得()()0200013e ln 1101x x x x −−−−+−=−, 令()()()213e ln 111x t x x x x −−−−+−−(1x >). 再利用导数判断其单调性,结合函数零点的判定可得03x <. 【解答】解:(1)()222211a x x a f x x a x x +− ′−−−−(1x >), 当212a +≤,即0a ≤时,()0f x ′>在()1,+∞上恒成立,()f x 在()1,+∞上单调递增; 当212a +>,即0a >时,若21,2a x + ∈ ,则()0f x ′<,若2,2a x + ∈+∞,则()0f x ′>, ∴()f x 在21,2a + 上单调递减,在2,2a ++∞上单调递增; (2)函数()()()()()222e 1ln 1e ln 12x x g x f x x a x ax x a −−=+−+−−=−−−+. 则()21e 1x g x a x −′=−−−,易知()g x ′在()1,+∞上单调递增,当1x >且1x →时,()g x ′→−∞,x →+∞,()g x ′→+∞, ∴()g x ′在()1,+∞上有唯一零点1x ,当()11,x x ∈时,()0g x ′<,当()1,x x ∈+∞时,()0g x ′>. ∴()()1min g x g x =,由已知函数()g x 有且只有一个零点0x ,则01x x =. ∴()()0000g x g x ′ = = ,即()0022001e 01e ln 120x x a x ax x a −− −−= − −−−+=, 消a 得,()000222000011e ln 1e 2e 011x x x x x x x −−−−−−−+−= −−, ()()0200013e ln 1101x x x x −−−−+−=−, 令()()()213e ln 111x t x x x x −−−−+−−(1x >). 则()()()2212e 1x t x x x −′=−+−. ∴()1,2x ∈时,()0t x ′>,()2,x ∈+∞时,()0t x ′<. ∴()t x 在()2,+∞上单调递减. ∵()210t =>,()13ln 202t =−+<, ∴()t x 在()2,3上有一个零点,在()3,+∞上无零点. 若()t x 在()1,2上有一个零点,则该零点必小于3. 综上,03x <.【点评】本题考查了利用导数研究函数的单调性,考查函数零点的判定,考查了推理能力与计算能力,属于难题.【第17题】(2019•大庆二模)已知函数()22ln f x x a x =−(a ∈R ). (1)当12a =时,点M 在函数()y f x =的图象上运动,直线2y x =−与函数()y f x =的图象不相交,求点M 到直线2y x =−距离的最小值; (2)讨论函数()f x 零点的个数,并说明理由.【分析】(1)首先写出函数的定义域,对函数求导,分析在什么情况下满足距离最小,构造等量关系式,求解,得到对应的点的坐标,之后应用点到直线的距离公式进行求解即可;(2)对函数求导,分情况讨论函数的单调性,依次得出函数零点的个数. 【解答】解:(1)()f x 的定义域为()0,+∞, 12a =时,()2ln f x x x =−,()12f x x x ′=−,令()1f x ′=,解得:1x =或12x =−,又()11f =,故图像上的点到直线20x y −−=的距离的最小值即为点()1,1M 到直线20x y −−=的距离,其距离d(2)由()0f x =,得22ln x a x =(0x >且1x ≠),设()2ln x g x x=(0x >且1x ≠),2y a =, 问题转化为讨论()y g x =的图象和2y a =的图象的交点个数问题, ()()22ln 1ln x x g x x−′=,(0x >且1x ≠),令()0g x ′=,解得x ,当01x <<或1x <<时,()0g x ′<,当x 时,()0g x ′>,故()g x 在()0,1,(递减,在)+∞递增,故()2e g x g =极小值,又01x <<时,()0g x <,当1x >时,()0g x >,故当20a <或22e a =即0a <或e a =时,直线2y a =与函数()y g x =的图象有1个交点, 当22e a >即e a >时,有2个交点, 当0e a ≤<时没有交点,故函数()f x 当0a <或e a =时1个零点,当0a <或e a =时2个零点,0e a ≤<时没有零点.【点评】该题考查的是有关应用导数研究函数的问题,涉及到的知识点有图象上的点到直线的距离的最小值的求解,导数的几何意义,应用导数研究函数的零点的问题,注意对分类讨论思想的应用,要做到不重不漏,属于较难题目.【第18题】(2018秋•周口期末)已知函数()22ln f x ax x =−(a ∈R ). (1)讨论函数()f x 的单调性; (2)当21e a =时,若函数()y f x =的两个零点分别为1x ,2x (12x x <),证明:()12ln ln 21x x +>+.【分析】(1)求函数的定义域和函数的导数,分0a ≤和0a >分类讨论函数的单调性即可;(2)欲证()12ln ln 21x x +>+,只需证122e x x +>,即证122e x x >−,只需证()()212e 0f x f x −>=,将()22e f x −表示出来化简整理并构造函数()()442ln 2ln 2e 1etg t t =−+−−,由函数()g t 的单调性即可证明. 【解答】解:(1)易知()f x 的定义域是()0,+∞,()()22122ax f x ax x x−′=−=, 当0a ≤时,()0f x ′<,()f x 在()0,+∞递减,当0a >时,令()0f x ′>,解得x >,故()f x 在 递减,在 +∞递增; (2)证明:当21ea =时,()222ln e x f x x =−,由(1)知()()min e 1f x f ==−,且()10,e x ∈,()2e,x ∈+∞,又由()2e 22ln 20f =−>知22e x <,即()2e,2e x ∈,故()22e 0,e x −∈,由()222222ln 0e x f x x =−=,得22222e ln x x =,故()()()()222222222e 42e 2ln 2e 42ln 2ln 2e eex x f x x x x −−=−−=−+−−,()2e,2e x ∈,令()()442ln 2ln 2e etg t t t =−+−−,()e,2e t ∈, 则()()()24e 0e 2e t g t t t −′=>−, 故()g t 在()e,2e 递增,故()()e 0g t g >=,即()()212e 0f x f x −>=, 又()f x 在()0,e 上单调递减,故212e x x −<,即()12ln ln 21x x +>+.【点评】本题考查了函数的单调性,极值问题,考查导数的应用以及分类讨论思想,转化思想考查不等式的证明,是一道综合题.(2018秋•咸阳期末)已知函数()221ln 2f x x a x =−(0a >). (1)讨论()f x 的单调性;(2)若()f x 在[]1,e 上没有零点,求a 的取值范围.【分析】(1)求出()f x ′,解不等式()0f x ′>,()0f x ′<,即可求出()f x 的单调区间; (2)用导数求出函数()f x 在区间[]1,e 上没有零点,只需在[]1,e 上()min 0f x >或()max 0f x <,分类讨论,根据导数和函数的最值得关系即可求出.【解答】解:(1)()222a x a f x x x x −′=−=(0x >), 令()0f x ′>,解得x a >;令()0f x ′<,解得0x a <<, ∴函数()f x 的单调增区间为(),a +∞,单调减区间为()0,a .(2)要使()f x 在[]1,e 上没有零点,只需在[]1,e 上()min 0f x >或()max 0f x <, 又()1102f =>,只需在区间[]1,e 上,()min 0f x >. ①当e a ≥时,()f x 在区间[]1,e 上单调递减,则()()22min 1e e 02f x f a ==−>,解得0a <<与e a ≥矛盾. ②当1e a <<时,()f x 在区间[)1,a 上单调递减,在区间(],e a 上单调递增, ()()()2min 112ln 02f x f a a a ==−>,解得0a <1a <③当01a <≤时,()f x 在区间[]1,e 上单调递增,()()min 10f x f =>,满足题意, 综上所述,实数a 的取值范围是:0a <<【点评】本题是导数在函数中的综合运用,考查运用导数求单调区间,求极值,求最值,考查分类讨论的思想方法,同时应注意在闭区间内只有一个极值,则一定为最值的结论的运用.(2018秋•芜湖期末)已知函数()2ln 1f x x a x =−−(a ∈R ). (1)求()f x 的极值点;(2)若函数()f x 在区间()0,1内无零点,求a 的取值范围.【分析】(1)求出函数的导数,通过讨论a 的范围,求出函数的单调区间,求出函数的极值点即可;(2)求出函数的导数,通过讨论a 的范围,求出函数的单调区间,从而确定是否存在零点,进而判断a 的范围.【解答】解:(1)()222a x a f x x x x −′=−=(0x >),当0a ≤时,()0f x ′>,()f x 在()0,+∞递增,当0a >时,令()0f x ′>,解得x >,故()f x 在 递减,在 +∞ 递增,故x =是极小值点,无极大值点; (2)()22x af x x −′=(01x <<), ∵01x <<,∴2022x <<,当0a ≤时,()0f x ′>,()f x 在()0,1递增, 故()()10f x f <=,函数无零点,符合题意; 当2a ≥时,()0f x ′<,()f x 在()0,1递减, 故()()10f x f >=,函数无零点,符合题意;当02a <<时,存在()00,1x =,使得()00f x ′=,故()f x 在 递减,在递增,又10e1a−<<,1e 0a f −> ,()10f f <=, 故()f x 在()0,1有零点,不合题意;综上,若函数()f x 在区间()0,1内无零点,则2a ≥或0a ≤.【点评】本题考查了函数的单调性,极值问题,考查导数的应用以及函数零点问题,考查分类讨论思想,转化思想,是一道综合题.。
高中导数经典例题精选全文完整版

可编辑修改精选全文完整版高中导数经典例题问题一 函数的单调性和导数的关系 例1、求下列函数的单调区间 (1)x x x f ln 23)(2-= (2)x e x x f -⋅=2)((3)xx x f 1)(+=变式1、已知31292)(23-+-=x x x x f ,试确定)(x f 的单调区间.变式2、设函数)0(19)(23<--+=a x ax x x f ,若曲线)(x f y =的斜率最小的切线与直线612=+y x 平行,求:(1)a 的值;(2)求函数)(x f 的单调区间.例2、设函数aax x e x f ++=22)(,其中a 为实数.(1)若)(x f 的定义域为R ,求a 的取值范围. (2)当)(x f 的定义域为R ,求)(x f 的单调递减区间.例3、已知函数R a x ax x x f ∈+++=,1)(23(1)讨论函数)(x f 的单调区间; (2)设函数)(x f 在区间)31,32(--内是减函数,求a 的取值范围.变式1、若函数1)1(2131)(23+-+-=x a ax x x f 在区间(1,4)内为减函数,在区间(6,+∞)上为增函数,求函数a 的取值范围.问题二 函数的单调性与导数的关系的应用例4、(1)函数),0()0,(,sin ππ⋃-∈=x xxy 的图像可能是( )(2)设函数)(x f 在定义域内可导,)(x f y =的图像如图所示,则导函数)('x f y =的图像可能为( )变式1、设)('x f 是函数)(x f 的导函数,将)(x f y =与)('x f y =的图像画在同一个直角坐标系中,其中不可能正确的是( )例5、当20π<<x ,求证:x x x 2tan sin >+.变式1、已知1>x ,证明不等式:)1ln(x x +>。
直击2024年高考——高三数学导数题型专练(全国版)

导数题型专练【利用公式和四则运算求导】 【例1】下列求导运算正确的是( ) A.⎝⎛⎭⎫1ln x ′=-1x ln 2x B .(x 2e x )′=2x +e x C.⎣⎡⎦⎤cos ⎝⎛⎭⎫2x -π3′=-sin ⎝⎛⎭⎫2x -π3 D.⎝⎛⎭⎫x -1x ′=1+1x 2 【答案】 AD【解析】 ⎝⎛⎭⎫1ln x ′=-1ln 2x ·(ln x )′=-1x ln 2x , 故A 正确;(x 2e x )′=(x 2+2x )e x ,故B 错误;⎣⎡⎦⎤cos ⎝⎛⎭⎫2x -π3′=-2sin ⎝⎛⎭⎫2x -π3,故C 错误;⎝⎛⎭⎫x -1x ′=1+1x 2,故D 正确.【复合函数求导】 【例2】设函数,若,则.【答案】 1; 【解析】 函数, , ,,解得, 故答案为:.【根据导数构造抽象函数】 【例3】已知可导函数的导函数为,若对任意的,都有,且为奇函数,则不等式的解集为( ).A.B.C.D.【答案】 A; 【解析】 设,由,得:,故函数在递减,由为奇函数,得, ∴,即,∵不等式,∴,即, 结合函数的单调性得:, 故不等式的解集是.故选.【求在某点处的切线方程】【例4】曲线y =2x -1x +2在点(-1,-3)处的切线方程为__________.【答案】 5x -y +2=0【解析】 y ′=⎝ ⎛⎭⎪⎫2x -1x +2′=2(x +2)-(2x -1)(x +2)2=5(x +2)2,所以y ′|x =-1=5(-1+2)2=5,所以切线方程为y +3=5(x +1),即5x -y +2=0.【求过某点处的切线方程】【例5】y =2x 2+8过点P(1,2)的切线方程是( ). A. y =−4x +6B. y =12x −10C. y =−4x +6或y =12x −10D. y =4x +6或y =12x −10【答案】 C;【解析】 设切点坐标为(x 0 ,2x 02+8),y ′=4x ,∴切线斜率k =4x 0,则2x 02+8−2x 0−1=4x 0,解得x 0=−1或3,∴所求切线方程为y =−4x +6或y =12x −10.【根据切线求参数问题】【例6】直线y =kx +1与曲线f (x )=a ln x +b 相切于点P (1,2),则2a +b 等于( ) A .4 B .3C .2D .1【答案】 A【解析】 ∵直线y =kx +1与曲线f (x )=a ln x +b 相切于点P (1,2), 将P (1,2)代入y =kx +1, 可得k +1=2,解得k =1, ∵ f (x )=a ln x +b ,∴ f ′(x )=ax , 由f ′(1)=a1=1,解得a =1,可得f (x )=ln x +b , ∵P (1,2)在曲线f (x )=ln x +b 上, ∴f (1)=ln 1+b =2,解得b =2,故2a +b =2+2=4.【例7】过定点P (1,e)作曲线y =a e x (a >0)的切线,恰有2条,则实数a 的取值范围是________. 【答案】 (1,+∞)【解析】 由y ′=a e x ,若切点为(x 0,0e x a ), 则切线方程的斜率k =0'|x x y ==0e x a >0,∴切线方程为y =0e x a (x -x 0+1), 又P (1,e)在切线上, ∴0e x a (2-x 0)=e ,即ea =0e x (2-x 0)有两个不同的解,令φ(x )=e x (2-x ), ∴φ′(x )=(1-x )e x ,当x ∈(-∞,1)时,φ′(x )>0; 当x ∈(1,+∞)时,φ′(x )<0,∴φ(x )在(-∞,1)上单调递增,在(1,+∞)上单调递减, ∴φ(x )max =φ(1)=e , 又x →-∞时,φ(x )→0; x →+∞时,φ(x )→-∞, ∴0<ea <e ,解得a >1,即实数a 的取值范围是(1,+∞).【两曲线的公切线】【例8】已知函数f (x )=x ln x ,g (x )=x 2+ax (a ∈R ),直线l 与f (x )的图象相切于点A (1,0),若直线l 与g (x )的图象也相切,则a 等于( ) A .0 B .-1 C .3 D .-1或3【答案】 D【解析】 由f (x )=x ln x 求导得f ′(x )=1+ln x ,则f ′(1)=1+ln 1=1,于是得函数f (x )在点A (1,0)处的切线l 的方程为y =x -1,因为直线l 与g (x )的图象也相切,则方程组⎩⎪⎨⎪⎧y =x -1,g x =x 2+ax ,有唯一解,即关于x 的一元二次方程x 2+(a -1)x +1=0有两个相等的实数根, 因此Δ=(a -1)2-4=0,解得a =-1或a =3, 所以a =-1或a =3.【利用导数确定函数图象】 【例9】已知函数,则的图象大致为( ).A. B.C. D.【答案】A;【解析】令,则,由,得,即函数在上单调递增,由得,即函数在上单调递减,所以当时,函数有最小值,,于是对任意的,有,故排除、,因为函数在上单调递减,则函数在上单调递增,故排除.故选.【利用导数求具体函数的单调性】【例10】函数f(x)=x2-2ln x的单调递减区间是()A.(0,1) B.(1,+∞)C.(-∞,1) D.(-1,1)【答案】A【解析】∵f′(x)=2x-2 x=2(x+1)(x-1)x(x>0),令f′(x)=0,得x=1,∴当x∈(0,1)时,f′(x)<0,f(x)单调递减;当x∈(1,+∞)时,f′(x)>0,f(x)单调递增.【例11】若函数f(x)=ln x+1e x,则函数f(x)的单调递减区间为________.【答案】(1,+∞)【解析】f(x)的定义域为(0,+∞),f′(x)=1x-ln x-1e x,令φ(x)=1x-ln x-1(x>0),φ′(x)=-1x2-1x<0,φ(x)在(0,+∞)上单调递减,且φ(1)=0,∴当x∈(0,1)时,φ(x)>0,当x∈(1,+∞)时,φ(x)<0,∴f(x)在(0,1)上单调递增,在(1,+∞)上单调递减.【利用导数求含参函数的单调性】【例12】已知函数.讨论的单调性.【答案】当时,增区间为,无减区间;当时,增区间为,减区间为.【解析】函数的定义域为:,,①当时,恒成立,在上单调递增,无减区间;②当时,令,解得,∴增区间为,减区间为综上:当时,增区间为,无减区间;当时,增区间为,减区间为.【例13】已知函数是自然对数的底数).讨论的单调性.【答案】 当时,在上单调递减; 当时,在上单调递减,在上单调递增. 【解析】,当时,,在上单调递减; 当时,由得,所以在上单调递减;由得,所以在上单调递增.综上,当时,在上单调递减;当时,在上单调递减,在上单调递增.【导数解决单调性的应用-比较大小】【例14】已知函数f (x )=x sin x ,x ∈R ,则f ⎝⎛⎭⎫π5,f (1),f ⎝⎛⎭⎫-π3的大小关系为( ) A .f ⎝⎛⎭⎫-π3>f (1)>f ⎝⎛⎭⎫π5 B .f (1)>f ⎝⎛⎭⎫-π3>f ⎝⎛⎭⎫π5 C .f ⎝⎛⎭⎫π5>f (1)>f ⎝⎛⎭⎫-π3 D .f ⎝⎛⎭⎫-π3>f ⎝⎛⎭⎫π5>f (1) 【答案】 A【解析】 因为f (x )=x sin x ,所以f (-x )=(-x )·sin(-x )=x sin x =f (x ),所以函数f (x )是偶函数,所以f ⎝⎛⎭⎫-π3=f ⎝⎛⎭⎫π3.又当x ∈⎝⎛⎭⎫0,π2时,f ′(x )=sin x +x cos x >0,所以函数f (x )在⎝⎛⎭⎫0,π2上单调递增,所以f ⎝⎛⎭⎫π5<f (1)<f ⎝⎛⎭⎫π3,即f ⎝⎛⎭⎫-π3>f (1)>f ⎝⎛⎭⎫π5.【导数解决单调性的应用-解不等式】【例15】已知函数f (x )=e x -e -x -2x +1,则不等式f (2x -3)>1的解集为________.【答案】 ⎝⎛⎭⎫32,+∞【解析】 f (x )=e x -e -x -2x +1,定义域为R , f ′(x )=e x +e -x -2≥2e x ·e -x -2=0,当且仅当x =0时取“=”, ∴f (x )在R 上单调递增, 又f (0)=1,∴原不等式可化为f (2x -3)>f (0), 即2x -3>0,解得x >32, ∴原不等式的解集为⎝⎛⎭⎫32,+∞.【导数解决单调性的应用-求参数范围】【例16】已知函数f (x )=12x 2+2ax -ln x ,若f (x )在区间⎣⎡⎦⎤13,2上单调递增,则实数a 的取值范围为________. 【答案】 ⎣⎡⎭⎫43,+∞ 【解析】 由题意知f ′(x )=x +2a -1x ≥0在⎣⎡⎦⎤13,2上恒成立, 即2a ≥-x +1x 在⎣⎡⎦⎤13,2上恒成立, ∵⎝⎛⎭⎫-x +1x max =83, ∴2a ≥83,即a ≥43.【根据函数图象判断极值】【例17】设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(x -1)f ′(x )的图象如图所示,则下列结论中正确的是( )A.函数f(x)有极大值f(-3)和f(3)B.函数f(x)有极小值f(-3)和f(3) C.函数f(x)有极小值f(3)和极大值f(-3)D.函数f(x)有极小值f(-3)和极大值f(3)【答案】D【解析】由题图知,当x∈(-∞,-3)时,y>0,x-1<0⇒f′(x)<0,f(x)单调递减;当x∈(-3,1)时,y<0,x-1<0⇒f′(x)>0,f(x)单调递增;当x∈(1,3)时,y>0,x-1>0⇒f′(x)>0,f(x)单调递增;当x∈(3,+∞)时,y<0,x-1>0⇒f′(x)<0,f(x)单调递减.所以函数有极小值f(-3)和极大值f(3).【利用导数求函数的极值】【例18】已知函数,其中.求函数的极值.【答案】当时,在单调递减,无极值,当时,在单调递增,上单调递减.∴有极大值.【解析】,,令得,,当时,在单调递减,无极值,当时,在单调递增,上单调递减.∴有极大值.【例19】已知函数.判断函数的极值点的个数,并说明理由.【答案】当时,函数有一个极值点;当或时,函数有两个极值点,当时,函数无极值点.【解析】因为,所以.()当时,有,令,得.当变化时,和的变化情况如下:所以当时,函数只有一个极值点.()当时,令,得,.①当时,.当变化时,和的变化情况如下:所以当时,函数有两个极值点.②当时,恒成立,所以在上单调递增,所以当时,函数无极值点.③当时,,当变化时,和的变化情况如下:所以当时,函数有两个极值点,综上,当时,函数有一个极值点;当或时,函数有两个极值点,当时,函数无极值点.【已知极值(点)求参数】【例20】函数f (x )=x 3+ax 2+bx +a 2在x =1处取得极值10,则a +b 等于()A .-7B .0C .-7或0D .-15或6【答案】 A【解析】 由题意知,函数f (x )=x 3+ax 2+bx +a 2,可得f ′(x )=3x 2+2ax +b ,因为f (x )在x =1处取得极值10,可得⎩⎪⎨⎪⎧ f ′(1)=3+2a +b =0,f (1)=1+a +b +a 2=10,解得⎩⎪⎨⎪⎧ a =4,b =-11,或⎩⎪⎨⎪⎧a =-3,b =3,检验知,当a =-3,b =3时,可得f ′(x )=3x 2-6x +3=3(x -1)2≥0,此时函数f (x )单调递增,函数无极值点,不符合题意;当a =4,b =-11时,可得f ′(x )=3x 2+8x -11=(3x +11)(x -1),当x <-113或x >1时,f ′(x )>0,f (x )单调递增;当-113<x <1时,f ′(x )<0,f (x )单调递减,当x =1时,函数f (x )取得极小值,符合题意.所以a +b =-7.【利用导数求函数的最值】【例21】函数的最小值为 . 【答案】 ; 【解析】 当时,,,此时单调递减,此时.当时,,, 当时,,单调递减, 时,,单调递增, ∴此时,∵,∴的最小值为. 【例22】已知函数g (x )=a ln x +x 2-(a +2)x (a ∈R ).(1)若a =1,求g (x )在区间[1,e]上的最大值;(2)求g (x )在区间[1,e]上的最小值h (a ).【答案】(1) e 2-3e +1;(2) h (a )=⎩⎪⎨⎪⎧ -a -1,a ≤2,a ln a 2-14a 2-a ,2<a <2e ,(1-e )a +e 2-2e ,a ≥2e.【解析】 (1)∵a =1,∴g (x )=ln x +x 2-3x ,∴g ′(x )=1x +2x -3=(2x -1)(x -1)x, ∵x ∈[1,e],∴g ′(x )≥0,∴g (x )在[1,e]上单调递增,∴g (x )max =g (e)=e 2-3e +1.(2)g (x )的定义域为(0,+∞),g ′(x )=a x +2x -(a +2)=2x 2-(a +2)x +a x=(2x -a )(x -1)x. ①当a 2≤1,即a ≤2时,g (x )在[1,e]上单调递增,h (a )=g (1)=-a -1;②当1<a 2<e ,即2<a <2e 时,g (x )在⎣⎡⎭⎫1,a 2上单调递减,在⎝⎛⎦⎤a 2,e 上单调递增,h (a )=g ⎝⎛⎭⎫a 2=a ln a 2-14a 2-a ;③当a 2≥e ,即a ≥2e 时,g (x )在[1,e]上单调递减,h (a )=g (e)=(1-e)a +e 2-2e.综上,h (a )=⎩⎪⎨⎪⎧ -a -1,a ≤2,a ln a 2-14a 2-a ,2<a <2e ,(1-e )a +e 2-2e ,a ≥2e.【数形结合法研究函数零点】【例23】已知函数f (x )=e x -a (x +2).(1)当a =1时,讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.【解析】 (1)当a =1时,f (x )=e x -(x +2),f ′(x )=e x -1,令f ′(x )<0,解得x <0,令f ′(x )>0,解得x >0,所以f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增.(2)令f (x )=0,得e x =a (x +2),即1a =x +2e x ,所以函数y =1a 的图象与函数φ(x )=x +2e x 的图象有两个交点,φ′(x )=-x -1e x ,当x ∈(-∞,-1)时,φ′(x )>0;当x ∈(-1,+∞)时,φ′(x )<0,所以φ(x )在(-∞,-1)上单调递增,在(-1,+∞)上单调递减,所以φ(x )max =φ(-1)=e ,且x →-∞时,φ(x )→-∞;x →+∞时,φ(x )→0,所以0<1a <e ,解得a >1e .所以a 的取值范围是⎝⎛⎭⎫1e ,+∞.【利用函数性质研究函数零点】【例24】已知函数f (x )=x -a ln x (a >0).(1)求函数f (x )的单调区间;(2)求函数g (x )=12x 2-ax -f (x )的零点个数.【解析】 (1)函数f (x )的定义域为(0,+∞),由f (x )=x -a ln x 可得f ′(x )=1-a x =x -a x ,由f ′(x )>0可得x >a ;由f ′(x )<0可得0<x <a ,所以f (x )的单调递减区间为(0,a ),单调递增区间为(a ,+∞).(2)由g (x )=12x 2-ax -x +a ln x=12x 2-(a +1)x +a ln x ,可得g ′(x )=x -(a +1)+a x令g ′(x )=0可得x =1或x =a ,因为g (1)=12-a -1=-a -12<0,g (2a +3)=12(2a +3)2-(a +1)(2a +3)+a ln(2a +3)=a +a ln(2a +3)+32>0,当a >1时,g (x )在(1,a )上单调递减,所以g (1)>g (a ),所以g (a )<0,所以g (x )有一个零点,当a =1时,g (x )在(0,+∞)上单调递增,所以g (x )有一个零点,当0<a <1时,g (x )在(0,a )上单调递增,在(a ,1)上单调递减,在(1,+∞)上单调递增,此时g (a )=12a 2-(a +1)a +a ln a=-12a 2-a +a ln a <0,g (x )只有一个零点,综上所述,g (x )在(0,+∞)上只有一个零点.【导数构造问题】【例25】已知定义在R 上的函数f (x ),其导函数为f ′(x ),当x >0时,f ′(x )-f (x )x >0,若a=2f (1),b =f (2),c =4f ⎝⎛⎭⎫12,则a ,b ,c 的大小关系是( )A .c <b <aB .c <a <bC .b <a <cD .a <b <c 【答案】 B【解析】 构造函数g (x )=f (x )x (x >0),得g ′(x )=xf ′(x )-f (x )x 2=1x ⎣⎡⎦⎤f ′(x )-f (x )x , 由题知当x >0时,f ′(x )-f (x )x >0,所以g ′(x )>0,故g (x )在(0,+∞)上单调递增,所以f (2)2>f (1)1>f ⎝⎛⎭⎫1212,即f (2)>2f (1)>4f ⎝⎛⎭⎫12,即b >a >c .【例26】(多选)已知f (x )是定义在(-∞,+∞)上的函数,导函数f ′(x )满足f ′(x )<f (x )对于x ∈R 恒成立,则( )A .f (2)<e 2f (0)B .f (2)>e 2f (0)C .e 2f (-1)>f (1)D .e 2f (-1)<f (1)【答案】 AC【解析】 构造F (x )=f (x )e x ,则F ′(x )=e x f ′(x )-e x f (x )e 2x =f ′(x )-f (x )e x,导函数f ′(x )满足f ′(x )<f (x ),则F ′(x )<0,F (x )在R 上单调递减,根据单调性可知A ,C 选项正确.【例27】(多选)定义在⎝⎛⎭⎫0,π2上的函数f (x ),已知f ′(x )是它的导函数,且恒有cos x ·f ′(x )+sin x ·f (x )<0成立,则有( )A .f ⎝⎛⎭⎫π6>2f ⎝⎛⎭⎫π4 B.3f ⎝⎛⎭⎫π6>f ⎝⎛⎭⎫π3 C .f ⎝⎛⎭⎫π6>3f ⎝⎛⎭⎫π3 D.2f ⎝⎛⎭⎫π6>3f ⎝⎛⎭⎫π4 【答案】 CD【解析】 构造函数g (x )=f (x )cos x ⎝⎛⎭⎫0<x <π2. 则g ′(x )=f ′(x )cos x +f (x )sin x (cos x )2<0,即函数g (x )在⎝⎛⎭⎫0,π2上单调递减, 所以g ⎝⎛⎭⎫π6>g ⎝⎛⎭⎫π3,所以f ⎝⎛⎭⎫π6>3f ⎝⎛⎭⎫π3, 同理g ⎝⎛⎭⎫π6>g ⎝⎛⎭⎫π4, 即2f ⎝⎛⎭⎫π6>3f ⎝⎛⎭⎫π4.【同构法导数构造】【例28】若存在x ,y ∈(0,+∞)使得x ln(2ax )+y =x ln y ,则实数a 的最大值为( ) A.1eB.12eC.13eD.2e【答案】 B【解析】 由x ln(2ax )+y =x ln y ,得ln(2a )=ln y x -y x ,令t =y x >0,g (t )=ln t -t ,则g ′(t )=1t -1=1-t t ,当0<t <1时,g ′(t )>0,当t >1时,g ′(t )<0,所以g (t )在(0,1)上单调递增,在(1,+∞)上单调递减,所以当t =1时,g (t )取得极大值即最大值g (1)=-1,因为当t →0时,g (t )→-∞,所以g (t )∈(-∞,-1],所以ln 2a ≤-1,所以0<a ≤12e ,所以实数a 的最大值为12e .【分参法解决恒成立问题】【例29】已知函数f (x )=(x -2)e x -12ax 2+ax (a ∈R ).(1)当a =0时,求曲线y =f (x )在点(0,f (0))处的切线方程;(2)当x ≥2时,f (x )≥0恒成立,求a 的取值范围.【解析】(1)当a =0时,f (x )=(x -2)e x ,f (0)=(0-2)e 0=-2,f ′(x )=(x -1)e x ,k =f ′(0)=(0-1)e 0=-1,所以切线方程为y +2=-(x -0),即x +y +2=0.(2)方法一 当x ≥2时,f (x )≥0恒成立,等价于当x ≥2时,(x -2)e x -12ax 2+ax ≥0恒成立.即⎝⎛⎭⎫12x 2-x a ≤(x -2)e x 在[2,+∞)上恒成立.当x =2时,0·a ≤0,所以a ∈R .当x >2时,12x 2-x >0,所以a ≤(x -2)e x 12x 2-x=2e x x 恒成立. 设g (x )=2e x x ,则g ′(x )=2(x -1)e x x 2, 因为x >2,所以g ′(x )>0,所以g (x )在区间(2,+∞)上单调递增.所以g (x )>g (2)=e 2,所以a ≤e 2.综上所述,a 的取值范围是(-∞,e 2].【整体法解决恒成立问题】【例30】已知函数f (x )=e x -1-ax +ln x (a ∈R ). (1)若函数f (x )在x =1处的切线与直线3x -y =0平行,求a 的值;(2)若不等式f (x )≥ln x -a +1对一切x ∈[1,+∞)恒成立,求实数a 的取值范围.【解析】(1)f ′(x )=e x -1-a +1x ,∴f ′(1)=2-a =3,∴a =-1,经检验a =-1满足题意,∴a =-1,(2)f (x )≥ln x -a +1可化为e x -1-ax +a -1≥0,x >0,令φ(x )=e x -1-ax +a -1,则当x ∈[1,+∞)时,φ(x )min ≥0,∵φ′(x )=e x -1-a ,①当a ≤1e 时,φ′(x )>0,∴φ(x )在[1,+∞)上单调递增,∴φ(x )min =φ(1)=1-a +a -1=0≥0恒成立,∴a ≤1e 符合题意.②当a >1e 时,令φ′(x )=0,得x =ln a +1.当x ∈(0,ln a +1)时,φ′(x )<0,当x ∈(ln a +1,+∞)时,φ′(x )>0,∴φ(x )在(0,ln a +1)上单调递减,在(ln a +1,+∞)上单调递增.当ln a +1≤1,即1e <a ≤1时,φ(x )在[1,+∞)上单调递增,φ(x )min =φ(1)=0≥0恒成立,∴1e <a ≤1符合题意.当ln a +1>1,即a >1时,φ(x )在[1,ln a +1)上单调递减,在(ln a +1,+∞)上单调递增, ∴φ(x )min =φ(ln a +1)<φ(1)=0与φ(x )≥0矛盾.故a >1不符合题意.综上,实数a 的取值范围为(-∞,1].【双变量的恒(能)成立问题】【例31】设f (x )=a x +x ln x ,g (x )=x 3-x 2-3.(1)如果存在x 1,x 2∈[0,2],使得g (x 1)-g (x 2)≥M 成立,求满足上述条件的最大整数M ;(2)如果对于任意的s ,t ∈⎣⎡⎦⎤12,2,都有f (s )≥g (t )成立,求实数a 的取值范围. 解 (1)存在x 1,x 2∈[0,2],使得g (x 1)-g (x 2)≥M 成立,等价于[g (x 1)-g (x 2)]max ≥M 成立. g ′(x )=3x 2-2x =x (3x -2),令g ′(x )=0,得x =0或x =23,∵g ⎝⎛⎭⎫23=-8527, 又g (0)=-3,g (2)=1, ∴当x ∈[0,2]时,g (x )max =g (2)=1,g (x )min =g ⎝⎛⎭⎫23=-8527, ∴M ≤1-⎝⎛⎭⎫-8527=11227, ∴满足条件的最大整数M 为4.(2)对任意的s ,t ∈⎣⎡⎦⎤12,2有f (s )≥g (t ),则f (x )min ≥g (x )max .由(1)知当x ∈⎣⎡⎦⎤12,2时,g (x )max =g (2)=1, ∴当x ∈⎣⎡⎦⎤12,2时,f (x )=a x +x ln x ≥1恒成立, 即a ≥x -x 2ln x 恒成立.令h (x )=x -x 2ln x ,x ∈⎣⎡⎦⎤12,2,∴h ′(x )=1-2x ln x -x , 令φ(x )=1-2x ln x -x , ∴φ′(x )=-3-2ln x <0,h ′(x )在⎣⎡⎦⎤12,2上单调递减,又h ′(1)=0,∴当x ∈⎣⎡⎦⎤12,1时,h ′(x )≥0, 当x ∈[1,2]时,h ′(x )≤0,∴h (x )在⎣⎡⎦⎤12,1上单调递增,在[1,2]上单调递减,∴h (x )max =h (1)=1,故a ≥1.∴实数a 的取值范围是[1,+∞).【利用导数证明不等式】【例32】已知函数g (x )=x 3+ax 2.(1)若函数g (x )在[1,3]上为单调函数,求a 的取值范围;(2)已知a >-1,x >0,求证:g (x )>x 2ln x .(1)解 由题意知,函数g (x )=x 3+ax 2,则g ′(x )=3x 2+2ax ,若g (x )在[1,3]上单调递增,则g ′(x )=3x 2+2ax ≥0在[1,3]上恒成立,则a ≥-32;若g (x )在[1,3]上单调递减,则g ′(x )=3x 2+2ax ≤0在[1,3]上恒成立,则a ≤-92.所以a 的取值范围是⎝⎛⎦⎤-∞,-92∪⎣⎡⎭⎫-32,+∞. (2)证明 由题意得,要证g (x )>x 2ln x ,x >0,即证x 3+ax 2>x 2ln x ,即证x +a >ln x ,令u (x )=x +a -ln x ,x >0,可得u ′(x )=1-1x =x -1x ,x >0,当0<x <1时,u ′(x )<0,函数u (x )单调递减;当x >1时,u ′(x )>0,函数u (x )单调递增.所以u (x )≥u (1)=1+a ,因为a >-1,所以u (x )>0,故当a >-1时,对于任意x >0,g (x )>x 2ln x .【例33】已知函数f (x )=a ln x +x .(1)讨论f (x )的单调性;(2)当a =1时,证明:xf (x )<e x .(1)解 f (x )的定义域为(0,+∞),f ′(x )=a x +1=x +a x .当a ≥0时,f ′(x )>0,所以f (x )在(0,+∞)上单调递增.当a <0时,若x ∈(-a ,+∞),则f ′(x )>0;若x ∈(0,-a ),则f ′(x )<0.所以f (x )在(-a ,+∞)上单调递增,在(0,-a )上单调递减.综上所述,当a ≥0时,f (x )在(0,+∞)上单调递增;当a <0时,f (x )在(-a ,+∞)上单调递增,在(0,-a )上单调递减.(2)证明 当a =1时,要证xf (x )<e x ,即证x 2+x ln x <e x ,即证1+ln x x <e x x 2.令函数g (x )=1+ln x x ,则g ′(x )=1-ln x x 2.令g ′(x )>0,得x ∈(0,e);令g ′(x )<0,得x ∈(e ,+∞).所以g (x )在(0,e)上单调递增,在(e ,+∞)上单调递减,所以g (x )max =g (e)=1+1e ,令函数h (x )=e x x 2,则h ′(x )=e x (x -2)x 3.当x ∈(0,2)时,h ′(x )<0;当x ∈(2,+∞)时,h ′(x )>0.所以h (x )在(0,2)上单调递减,在(2,+∞)上单调递增,所以h (x )min =h (2)=e 24.因为e 24-⎝⎛⎭⎫1+1e >0,所以h (x )min >g (x )max ,即1+ln x x <e x x 2,从而xf (x )<e x 得证.【例34】已知函数f (x )=e x .(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)当x >-2时,求证:f (x )>ln(x +2).(1)解 由f (x )=e x ,得f (0)=1,f ′(x )=e x ,则f ′(0)=1,即曲线y =f (x )在点(0,f (0))处的切线方程为y -1=x -0,所以所求切线方程为x -y +1=0.(2)证明 设g (x )=f (x )-(x +1)=e x -x -1(x >-2),则g ′(x )=e x -1,当-2<x <0时,g ′(x )<0;当x >0时,g ′(x )>0,即g (x )在(-2,0)上单调递减,在(0,+∞)上单调递增,于是当x =0时,g (x )min =g (0)=0,因此f (x )≥x +1(当且仅当x =0时取等号),令h (x )=x +1-ln(x +2)(x >-2),则h ′(x )=1-1x +2=x +1x +2, 则当-2<x <-1时,h ′(x )<0,当x >-1时,h ′(x )>0,即有h (x )在(-2,-1)上单调递减,在(-1,+∞)上单调递增,于是当x =-1时,h (x )min =h (-1)=0,因此x +1≥ln(x +2)(当且仅当x =-1时取等号),所以当x >-2时,f (x )>ln(x +2).【隐零点问题】【例35】已知函数f (x )=ln x -ax (a ∈R ).(1)讨论函数f (x )的单调性;(2)证明不等式e x -2-ax >f (x )恒成立. 【解析】 (1) f ′(x )=1x -a =1-ax x (x >0),当a ≤0时,f ′(x )>0,所以f (x )在(0,+∞)上单调递增;当a >0时,令f ′(x )=0,得x =1a ,所以当x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0,f (x )单调递增; 当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0,f (x )单调递减.综上所述,当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝⎛⎭⎫0,1a 上单调递增, 在⎝⎛⎭⎫1a ,+∞上单调递减.(2)设函数φ(x )=e x -2-ln x (x >0),则φ′(x )=e x -2-1x ,可知φ′(x )在(0,+∞)上单调递增.又由φ′(1)<0,φ′(2)>0知,φ′(x )=0在(0,+∞)上有唯一实数根x 0,且1<x 0<2, 则φ′(x 0)=02ex −-1x 0=0, 即02e x −=1x 0. 当x ∈(0,x 0)时,φ′(x )<0,φ(x )单调递减;当x ∈(x 0,+∞)时,φ′(x )>0,φ(x )单调递增,所以φ(x )≥φ(x 0)=02ex −-ln x 0, 结合02e x −=1x 0, 知x 0-2=-ln x 0,所以φ(x )≥φ(x 0)=1x 0+x 0-2=x 20-2x 0+1x 0=(x 0-1)2x 0>0, 则φ(x )=e x -2-ln x >0,即不等式e x -2-ax >f (x )恒成立.【极值点偏移问题】【例36】已知函数f (x )=a e x -x ,a ∈R .若f (x )有两个不同的零点x 1,x 2.证明:x 1+x 2>2.【解析】由f (x )=a e x -x =0,得x e x -a =0,令g (x )=x e x -a ,则g ′(x )=1-x e x ,由g ′(x )=1-x e x >0,得x <1;由g ′(x )=1-x e x <0,得x >1.所以g (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减,由于x 1,x 2是方程g (x )=0的实根,不妨设x 1<1<x 2,方法一 (对称化构造函数法)要证x 1+x 2>2, 只要证x 2>2-x 1>1.由于g (x )在(1,+∞)上单调递减,故只要证g (x 2)<g (2-x 1), 由于g (x 1)=g (x 2)=0,故只要证g (x 1)<g (2-x 1),令H (x )=g (x )-g (2-x )=x e x -2-x e 2-x (x <1), 则H ′(x )=1-x e x -1-x e 2-x =(e 2-x -e x )(1-x )e 2, 因为x <1,所以1-x >0,2-x >x ,所以e 2-x >e x ,即e 2-x -e x >0,所以H ′(x )>0,所以H (x )在(-∞,1)上单调递增. 所以H (x 1)<H (1)=0,即有g (x 1)<g (2-x 1)成立,所以x 1+x 2>2.方法二 (比值代换法)设0<x 1<1<x 2,由g (x 1)=g (x 2),得1212e e x x x x −−=,等式两边取对数得ln x 1-x 1=ln x 2-x 2.令t =x 2x 1>1,则x 2=tx 1,代入上式得ln x 1-x 1=ln t +ln x 1-tx 1,得x 1=ln t t -1,x 2=t ln t t -1. 所以x 1+x 2=(t +1)ln t t -1>2⇔ln t -2(t -1)t +1>0, 设g (t )=ln t -2(t -1)t +1(t >1),所以g ′(t )=1t -2(t +1)-2(t -1)(t +1)2=(t -1)2t (t +1)2>0, 所以当t >1时,g (t )单调递增, 所以g (t )>g (1)=0,所以ln t -2(t -1)t +1>0,故x 1+x 2>2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学——导数大题精选
6.已知两曲线ax x y +=3
和c bx x y ++=2都经过点P (1,2),且在点P 处有公切线,试求a,b,c 值。
例2 求下列函数的导数:
(1)y=(2x 2-1)(3x+1) (2)x x y sin 2
= (3))1ln(2x x y ++= (4)1
1-+=x x e e y (5)x x x x y sin cos ++= (6)x x x y cos sin 2cos -=
1.设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值. (Ⅰ)求a 、b 的值;
(Ⅱ)若对于任意的[03]x ∈,,都有2()f x c <成立,求c 的取值范围
2.设a ≥0,f (x )=x -1-ln 2 x +2a ln x (x >0).
(Ⅰ)令F (x )=xf '(x ),讨论F (x )在(0.+∞)内的单调性并求极值; (Ⅱ)求证:当x >1时,恒有x >ln 2x -2a ln x +1.
3.设函数22()21(0)f x tx t x t x t =++-∈>R ,.
(Ⅰ)求()f x 的最小值()h t ;
(Ⅱ)若()2h t t m <-+对(02)t ∈,恒成立,求实数m 的取值范围
4.设函数2()ln(23)f x x x =++
(Ⅰ)讨论()f x 的单调性;
(Ⅱ)求()f x 在区间3144⎡⎤-⎢⎥⎣⎦
,的最大值和最小值 6.已知函数2221()()1
ax a f x x x -+=∈+R ,其中a ∈R . (Ⅰ)当1a =时,求曲线()y f x =在点(2(2))f ,处的切线方程; (Ⅱ)当0a ≠时,求函数()f x 的单调区间与极值.
7.已知函数c bx x ax x f -+=44ln )((x>0)在x = 1处取得极值c --3,其中a,b,c 为常数。
(1)试确定a,b 的值;
(2)讨论函数f(x)的单调区间;
(3)若对任意x>0,不等式22)(c x f -≥恒成立,求c 的取值范围。
15.(福建卷)已知函数f (x )=-x 2+8x,g (x )=6ln x+m
(Ⅰ)求f (x )在区间[t ,t +1]上的最大值h (t );
(Ⅱ)是否存在实数m ,使得y =f (x )的图象与y =g (x )的图象有且只有三个不同的交点?若存在,求出m 的取值范围;,若不存在,说明理由。
26.(全国卷I )设a 为实数,函数()()
3221f x x ax a x =-+-在(),0-∞和()1,+∞都是增函数,求a 的取值范围。
29.(山东卷)设函数f(x)= 3223(1)1, 1.x a x a --+≥其中
(Ⅰ)求f(x)的单调区间;
(Ⅱ) 讨论f(x)的极值.
11. (全国卷Ⅱ)已知a≥ 0 ,函数f(x) = ( 2x -2ax )x e
(1) 当X 为何值时,f(x)取得最小值?证明你的结论;
(2) 设 f(x)在[ -1,1]上是单调函数,求a 的取值范围. 13. ( 全国卷II )已知函数()2472x f x x
-=-,[]01x ∈, (Ⅰ)求()f x 的单调区间和值域;
(Ⅱ)设1a ≥,函数()[]22
3201g x x a x a x =--∈,,,若对于任意[]101x ∈,,总存在[]001x ∈,,使得()()01g x f x =成立,求a 的取值范围
16.(福建卷)已知函数b
x ax x f +-=26)(的图象在点M (-1,f (-1))处的切线方程为x +2y+5=0. (Ⅰ)求函数y=f (x )的解析式;
(Ⅱ)求函数y=f (x )的单调区间.
21. (山东卷)已知1x =是函数32
()3(1)1f x mx m x nx =-+++的一个极值点,其中
,,0m n R m ∈<,
(I )求m 与n 的关系式;
(II )求()f x 的单调区间;
(III )当[]1,1x ∈-时,函数()y f x =的图象上任意一点的切线斜率恒大于3m ,求m 的取值范围.
23. (重庆卷)已知a ∈R ,讨论函数f (x )=e x (x 2+ax +a +1)的极值点的个数。
例4.(05全国卷Ⅱ)设a 为实数,函数.)(23a x x x x f +--= (Ⅰ)求)(x f 的极值.
(Ⅱ)当a 在什么范围内取值时,曲线x x f y 与)(=轴仅有一个交点.
(海南理 21)
设函数2()ln()f x x a x =++
(I )若当1x =-时,()f x 取得极值,求a 的值,并讨论()f x 的单调性; (II )若()f x 存在极值,求a 的取值范围,并证明所有极值之和大于e ln 2.
(全国二理 22)
已知函数3()f x x x =-.
(1)求曲线()y f x =在点(())M t f t ,处的切线方程;
(2)设0a >,如果过点()a b ,可作曲线()y f x =的三条切线,证明:()a b f a -<<.
11.(全国II )设函数f (x )=(x +1)ln(x +1),若对所有的x ≥0,都有f (x )≥ax 成立,求实数a 的取值范围.
例3.(1)曲线C :32y ax bx cx d =+++在(0,1)点处的切线为1:1l y x =+ 在(3,4)点处的切线为2:210l y x =-+,求曲线C 的方程;
(2)求曲线3:2S y x x =-的过点(1,1)A 的切线方程
5.(2004年高考全国卷Ⅱ理科(22))已知函数f(x )=ln(1+x )-x ,g(x )=x ln x .
(Ⅰ)求函数f(x)的最大值;
(Ⅱ)设0<a <b,证明0<g(a )+g(b)-2g(
2
b a +)<(b-a)ln2.
例6.求证下列不等式 (1))
1(2)1ln(22
2x x x x x x +-<+<- ),0(∞+∈x (2)πx
x 2sin > )2,0(π
∈x
(3)x x x x -<-tan sin )2,0(π
∈x。