(完整版)高考总复习-数学导数大题练习(详细答案)-

合集下载

高考数学专题:导数大题专练(含答案)

高考数学专题:导数大题专练(含答案)

高考数学专题:导数大题专练(含答案)一、解答题 1.已知函数()1e -=xx f x . (1)求()f x 极值点;(2)若()()4g x f x =-,证明:2x >时,()()f x g x >成立.2.对于正实数a ,b (a b >),我们熟知基本不等式:()()G a b A a b <,,,其中()G a b ,a ,b 的几何平均数,()2a bA a b +=,为a ,b 的算术平均数.现定义a ,b 的对数平均数:(),ln ln a bL a b a b-=-.(1)设1x >,求证:12ln x x x<-,并证明()()G a b L a b <,,;(2)若不等式()()(),,,G a b A a b m L a b +>⋅对任意正实数a ,b (a b >)恒成立,求正实数m 的取值范围.3.已知函数()e (ln 1)(R)ax f x x a =+∈,()f x '为()f x 的导数.(1)设函数()()eax f x g x '=,求()g x 的单调区间;(2)若()f x 有两个极值点,1212,()x x x x <,求实数a 的取值范围4.已知()2ex x af x -=.(1)若()f x 在3x =处取得极值,求()f x 的最小值; (2)若()1f x x ≤-对[)1,x ∞∈+恒成立,求a 的取值范围.5.函数()3e xf x ax =-,0a >.(1)讨论函数()f x 的极值点个数;(2)已知函数()g x 的定义域为[)0,∞+,且[)0,x ∞∀∈+满足()()()g x xg x xg x '+>.若[)00,x ∃∈+∞,满足不等式()()()22e 22e x x g x xg x --≤,且0x 是函数()f x 的极值点,求a 的取值范围. 6.已知()21e 2x f x k x =-.(1)若函数()f x 有两个极值点,求实数k 的取值范围;(2)证明:当n *∈N 时,()222221123123e 4e 1e n n n -+++⋅⋅⋅+<+. 7.已知函数()ln f x x =,()21g x x x =-+.(1)求函数()()()h x f x g x =-的单调区间;(2)若直线l 与函数()f x ,()g x 的图象都相切,求直线l 的条数.8.设函数()()2()ln 1f x x a x x =++-,其中R a ∈.(1)1a =时,求曲线()y f x =在点()()1,1f 处的切线方程; (2)讨论函数()f x 极值点的个数,并说明理由; (3)若()0,0x f x ∀>成立,求a 的取值范围. 9.已知函数()e (1)()x f x a x a -=++∈R . (1)当1a =时,求函数()y f x =的极值;(2)若函数()()ln e g x f x x =-+-在[1,)+∞有唯一的零点,求实数a 的取值范围. 10.已知函数2()e 1x f x ax x =---. (1)当1a =-时,讨论()f x 的单调性; (2)当0x ≥时,321()22f x x ax ≥-恒成立,求实数a 的取值范围.【参考答案】一、解答题1.(1)极大值点为2x =,无极小值点; (2)证明见解析. 【解析】 【分析】(1)利用导数求出函数的单调区间即得解;(2)令()()()()4e 31e e xx x x F x f x g x --=-=-,利用导数求出函数()F x 的最小值即得证. (1)解:由题意,得()2e xxf x -'=, 令()0f x '>,得2x <;()0f x '<,得2x >; 列表如下:所以f x 极大值点为2x =,无极小值点. (2)证明:()()()4e 34e x x g xf x -=-=,令()()()()4e 31e e xx x x F x f x g x --=-=-, ∴()()()()42442e ee 22e e e xxx x x x x F x +----'=-=.当2x >时,20x -<,24x >,从而42e e 0x -<,∴()0F x '>,()F x 在()2,+∞上是增函数,∴()()221120e e F x F >=-=. ∴当2x >时,()()f x g x >成立. 2.(1)证明见解析 (2)02m <≤ 【解析】 【分析】(1)令()11ln 2f x x x x ⎛⎫=-- ⎪⎝⎭,利用导数证明当1x >时,()0fx <,即可得到12ln x x x<-. 用分析法证明()()G a b L a b <,,.(2)把题意转化为1112ln a a b m a b b -⎛⎫⋅+ ⎪⎝⎭恒成立.令)1t t =>,即为1ln 01t m t t -⋅-<+恒成立.令()()1ln 11t g t m t t t -=⋅->+,分2m >和02m <≤两种情况求出正实数m 的取值范围. (1)令()11ln 2f x x x x ⎛⎫=-- ⎪⎝⎭,定义域为()0,+∞.则()()222221111212222x x x f x x x x x ---'=--==-. 所以当1x >时,()0f x '<,()f x 在()1,+∞上单调递减. 又()10f =,所以当1x >时,()0f x <.所以当1x >时,11ln 2x x x ⎛⎫<- ⎪⎝⎭,即12ln x x x<-.(*)要证()()G a b L a b <,,ln ln a ba b--,只需证ln a b<令)1t t =>,则由(*),得12ln t t t <-.所以()()G a b L a b <,,.(2)由()()(),,,G a b A a b m L a b +<⋅恒成立,得ln ln 2a b a b m a b -+⋅-恒成立,即1112ln aa b m a b b-⎛⎫⋅<+ ⎪⎝⎭恒成立.令)1t t =>,由()221112ln 2t m t t t -⋅<++恒成立,得()1112ln 2t m t t -⋅<+恒成立. 所以1ln 01t m t t -⋅-<+恒成立. 令()()1ln 11t g t m t t t -=⋅->+,则 ()()()()()()222222121121111mt t t m t g t m t t t t t t-+-+--'=⋅-==++⋅+⋅. (注:()10g =) i.当0∆>,即2m >时,易知方程()22110t m t -+--=有一根1t 大于1,一根2t 小于1,所以()g t 在()11,t 上单调递增.所以()()110g t g >=,不符合题意. ii.当02m <≤时,有()()()222214110mt t t t t -+≤-+=--<, 所以()0g t '<,从而()g t 在()1,+∞上单调递减. 故当1t >时,恒有()()10g t g <=,符合题意. 综上可知,正实数m 的取值范围为02m <≤. 【点睛】导数的应用主要有:(1)利用导函数几何意义求切线方程;(2)利用导数研究原函数的单调性,求极值(最值); (3)利用导数求参数的取值范围.3.(1)当0a <时,()g x 的减区间为(0,)+∞,无增区间;当0a >时,()g x 的减区间为1(0,)a,增区间为1(,)a +∞ (2)2(e ,).+∞ 【解析】 【分析】(1)依题意,()f x 的定义域为(0,)+∞,且()1()ln e ax f x g x a x a x'==++,则21()ax g x x -'=,再对a 进行分类讨论即可得到答案. (2)因为()f x 有两个极值点,所以()g x 有两个零点.由(1)知0a <时不合题意;当0a >时,min 1()()(21)g x g a na a==-,接下来对a 进行讨论即可得到答案. (1)依题意,()f x 的定义域为(0,)+∞,e()e (ln 1)ax axf x a x x'=++,则()1()ln e ax f x g x a x a x'==++,则21().ax g x x -'=①当0a <时,()0g x '<在,()0x ∈+∞上恒成立,()g x 单调递减;②当0a >时,令()0g x '=得,1x a =,所以,当1(0,)x a∈时,()0g x '<,()g x 递减; 当1(,)x a ∈+∞时,()0g x '>,()g x 递增;综上,当0a <时,()g x 的减区间为(0,)+∞,无增区间; 当0a >时,()g x 的减区间为1(0,)a ,增区间为1(,).a+∞ (2)因为()f x 有两个极值点,所以()g x 有两个零点, 由(1)知0a <时不合;当0a >时,min 1()()(21).g x g a na a==-当20e a <<时,1()()0g x g a>>,()g x 没有零点,不合题意;当2e a =时,1()0g a =,()g x 有一个零点1a ,不合题意;当2e a >时,1()0g a<,21()(12ln )g a a a a=+-,设()12ln a a a ϕ=+-,2e a >,则2()10a aϕ'=->,所以22()(e )e 30a ϕϕ>=->,即21()0g a >,所以存在1211(,)x a a∈,使得1()0g x =; 又因为1()e 0eg =>,所以存在211(,)ex a ∈,使得2()0.g x =()f x 的值变化情况如下表:2e a >()f x 综上,a 的取值范围是2(e ,).+∞ 4.(1)2e - (2)[)1,+∞ 【解析】 【分析】(1)先求得函数的导函数,然后利用极值的必要条件求得a 的值,进而判定导数的正负区间,得到函数的单调性,然后结合左右两端的极限值与极小值,求得函数的最小值;(2)分离参数得到2(1)e x a x x ≥--对于任意[)1,x ∞∈+恒成立.构造函数,利用导数求得不等号右侧的最大值,进而根据不等式恒成立的意义得到实数a 的取值范围. (1)∵()2ex x af x -=,∴()()()2222e e 2e e x xxx x x a x x a f x ⋅--⋅--'==-, ∵()f x 在3x =处取得极值,()2332330e af -⨯-'=-=,∴3a =, ∴()23e x x f x -=,()223(1)(3)e e x xx x x x f x --+-'=-=-,当1x <-时,()’0f x <;当13x 时,()’0f x >;当3x >时,()’0f x <. ∴()f x 在(],1-∞-上单调递减,在[]1,3-上单调递增,在[)3,+∞上单调递减. 又∵当3x >时,()0f x >,()12e 0f -=-<, ∴()f x 的最小值为2e -. (2)由已知得221(1)e ex x x ax a x x -≤-⇔≥--对于任意[)1,x ∞∈+恒成立.令2()(1)e x g x x x =--,则()2e (2e )x x g x x x x '=-=-,在1≥x 时,()(2e )0x g x x '=-<,所以函数()g x 在1≥x 时上单调递减, 所以max ()(1)1g x g ==, 所以a 的取值范围是[)1,+∞. 5.(1)答案见解析(2)2e e ,123⎛⎤ ⎥⎝⎦【解析】 【分析】(1)求出()'f x ,由()0f x '=知0x ≠,分离参数得2e3xa x =,引入函数2e ()3x G x x=,由()G x 的导数确定单调性与极值,可作出函数的大致图象,结合图象分类讨论得出零点个数,根据极值定义得极值点个数; (2)令()()exxg x h x =,求导后得()h x 是增函数,不等式()()()22e 22e x x g x xg x --≤,整理得()()()222eexxx g x xg x ---≤,即()()2h x h x -≤,由单调性得x 的范围,从而得出0x 的范围,结合极值点的要求得0[1,2)x ∈,然后由(1)的函数()G x 的性质得a 的范围. (1)()3e x f x ax =-,则()23e x f x ax '=-,函数的极值点为导函数的变号零点,显然0x =不是()0f x '=的解,当0x ≠时,令()2e 3xG x x=,则()2431e 2e e 233x x x x x x G x x x⋅-⋅-'=⋅=⋅, 故()G x 的单调性如表格所示:则极小值为()e 212G =,可得函数()G x 的大致图象如图,故当2e 0,12a ⎛⎤∈ ⎥⎝⎦时,2e 3xa x =有两个解12,x x (120x x <<),在1x 两侧()'f x 的符号相等,在2x 两侧,()'f x 不变号,()f x 有1个极值点;当2e ,12a ⎛⎫∈+∞ ⎪⎝⎭时,2e 3xa x =有三个解123,,x x x ,在这三个解两侧()'f x 均变号,()f x 有3个极值点. (2) 令()()e x xg xh x =,则()()()()1e xx g x xg x h x '-+'=, 因为[)0,x ∞∀∈+满足()()()g x xg x xg x '+>,故()()()10x g x xg x '-+>, 则()0h x '>,故函数()h x 是一个在定义域上单调递增的函数;又[)00,x ∃∈+∞,满足不等式()()()22e 22e x x g x xg x --≤,整理得()()()222e e x xx g x xg x ---≤,即()()2h x h x -≤,结合定义域有0,20,2,x x x x ≥⎧⎪-≥⎨⎪-≤⎩故0x 的取值范围是[]1,2,又0x 是函数()f x 的极值点,即函数()f x 的变号零点,∴02x ≠,由(1)知,函数()G x 在区间[)1,2上单调递减,故2e e ,123a ⎛⎤∈ ⎥⎝⎦.【点睛】本题考查用导数确定函数的极值点,研究不等式恒成立问题,解题关系是问题的转化,极值点的个数问题转化为方程的根的个数,再转化为函数图象交点个数.不等式问题通过引入函数,利用函数单调性化简得出参数范围,本题属于困难题,对学生的逻辑思维能力,运算求解能力要求较高. 6.(1)1(0,)e(2)证明见解析 【解析】 【分析】(1)求解导函数,再构造新函数,求导,判断单调性,求解极值,分类讨论1e k ≥与10e <<k 两种情况;(2)由(1)知,1e e x x ≤,可证2121(1)e (1)n n n n -++≤,由21111(1)(1)1n n n n n <=-+++,可得2111(1)e 1n n n n n -≤-++,从而利用裂项相消法求和可证明()222221123123e 4e 1e n nn -+++⋅⋅⋅+<+.(1)由21()e 2x f x k x =-,得()e e ()ex xx x f x k x k '=-=-. 设()e x xg x =,则1()ex x g x -'=,当1x <时,()0g x '>,()g x 是增函数;当1x >时,()0g x '<,()g x 是减函数.又(1)0g '=,∴max 1()()(1)eg x g x g ===极大.设1e λ≥,当1ln x λ<-时,11111ln ln ()ln e x x g x e λλλλλ--=<=-<-.由于(0)0g =,所以()g x 在区间(,0)-∞上的值域是(,0)-∞.又0x >时,()0>g x ,所以当0k ≤时,直线y k =与曲线()y g x =有且只有一个交点,即()'f x 只有一个零点,不合题意,舍.当1ek ≥时,()0f x '≥,()f x 在R 上是增函数,不合题意,舍.当10e<<k 时,若1x ≤,由(1)可知,直线y k =与曲线()y g x =有一个交点.下面证明若1x >,直线y k =与曲线()y g x =有一个交点.由于()g x 是区间(1,)+∞上的减函数,所以需要证明()g x 在区间(1,)+∞上的值域为1(0,)e ,即对21(0,)eλ∀∈,都存在01x >,使得020()g x λ<<.构造函数2()e x h x x =-,则()e 2x h x x '=-,∴当ln 2x >时,()'()20xh x e =->',()h x '在区间(ln2,)+∞上是增函数,∴当1x >时,()(1)e 20h x h ''>=->,即()h x 是区间[1,)+∞的增函数,∴1x >时,()(1)e 10h x h >=->,此时2e x x >.设210e λ<<,当21x λ>时,0()e x x g x <=<221x x xλ=<,∴当10e<<k 时,直线y k =与曲线()y g x =有两个交点,即()'f x 有两个零点.设这两零点分别为1x ,212()x x x <,则1201x x <<<,不等式()0f x '>的解集为12(,)(,)x x -∞+∞,不等式()0f x '<的解集为12(,)x x .所以1x 为函数()f x 的极大值点,2x 为函数()f x 的极小值点. 综上所述,实数k 的取值范围是1(0,)e. (2)证明:由(1)知,1e ex x ≤,∴对*n N ∀∈,2121(1)e (1)n n n n -++≤.∵211(1)(1)n n n <=++111n n -+, ∴2111(1)1n n n e n n -<-++,∴22222112311111111(1)()()()123e 4e (1)e 2233411n n n n n n -++++<-+-+-++-=-+++, 所以,222221123123e 4e(1)e n nn -++++<+.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用. 7.(1)在()0,1上单调递增,在()1,+∞上单调递减 (2)两条 【解析】 【分析】(1)求出函数的导函数,再解关于导函数的不等式,即可求出函数的单调区间;(2)设直线l 分别与函数()f x ,()g x 的图象相切于点()11,ln A x x ,()2222,1B x x x -+,依题意可得()()12AB f x g x k '='=,即可得到方程组,整理得()211211ln 204x x x ++-=,令()()221ln 24x F x x x +=+-,利用导数说明函数的单调性,利用零点存在性定理判断零点的个数,即可得解; (1)解:由题设,()()()2ln 1h x f x g x x x x =-=-+-,定义域为()0,∞+,则()()()221112121x x x x h x x x x x+---'=-+=-=- 当01x <<时,()0h x '>;当1x >时,()0h x '<,所以()h x 在()0,1上单调递增,在()1,+∞上单调递减.(2)解:因为()ln f x x =,()21g x x x =-+,所以()1f x x'=,()21g x x '=-,设直线l 分别与函数()f x ,()g x 的图象相切于点()11,ln A x x ,()2222,1B x x x -+ 则()()12AB f x g x k '='=,即21222112ln 1121x x x x x x x -+-=-=- 由2122112ln 11x x x x x x -+-=-,得2121221ln 1x x x x x x -=-+- 即2212211ln 1x x x x x -=-+-,即221221ln 20xx x x x -++-=由21121x x =-,得12112x x x +=,代入上式,得211112111111ln 20222x x x x x x x ⎛⎫+++-++-= ⎪⎝⎭即()211211ln 204x x x++-=,则()()2221117ln 2ln 4244x F x x x x x x +=+-=++- 设()()()()223332111112102222x x x x F x x x x x x x +---='=--=> 当01x <<时,()0F x '<;当1x >时,()0F x '>,所以()F x 在()0,1上单调递减,在()1,+∞上单调递增.因为()()min 110F x F ==-<,()()()222222441e 1e e ln e 204e4eF ++=+-=>,则()F x 在()1,+∞上仅有一个零点.因为()24242e e 7e 4e 7e 2024424F ---=-++-=+>,则()F x 在()0,1上仅有一个零点. 所以()F x 在()0,∞+上有两个零点,故与函数()f x ,()g x 的图象都相切的直线l 有两条.8.(1)322ln230x y -+-=(2)当0a <时,函数()f x 有一个极值点; 当809a ≤≤时,函数()f x 无极值点; 当89a >时,函数()f x 有两个极值点. (3)0,1 【解析】【分析】(1)将1a =代入函数()f x 中,得出函数()f x 的解析式,进而可以求出切点坐标,再利用导数的几何意义及点斜式即可求解;(2)根据已知条件,对a 进行分类讨论,利用导数法求函数极值的步骤及函数极值的定义即可求解;(3)根据()0,0x f x ∀>成立,转化为()min 0,0x f x ∀>即可,再利用第(2)的结论即可求解. (1)当1a =时,()2()ln 1f x x x x =++-()()21ln 1111ln 2f =++-=,所以切点为()1,ln2,()()11321,12111112f x x k f x ''=+-∴==+⨯-=++, 所以曲线()y f x =在点()()1,1f 处的切线的斜率为()312k f ='=, 所以曲线()y f x =在点()1,ln2处的切线的斜率切线方程为()3ln212y x -=-,即322ln230x y -+-= (2)由题意知函数()f x 的定义域为()1,-+∞,()()21212111ax ax a f x a x x x +-+=+-='++,令()()221,1,g x ax ax a x =+-+∈-+∞,(i )当0a =时,()10f x '=>,函数()f x 在()1,-+∞单调递增,无极值点 (ii )当0a >时,()Δ98a a =-,①当809a <≤时,()()Δ0,0,0g x f x '≤≥≥, 所以函数()f x 在()1,-+∞单调递增,无极值点; ②当89a >时,Δ0>,设方程2210ax ax a +-+=两根1212,,x x x x ==此时12x x <()121211111,,,110,12444x x x x g x +=-∴---=>-<<∴<->()()121,,,x x x ∴∈-+∞时,()()0,0g x f x '>>,函数()f x 单调递增;()12,x x x ∈时,()()0,0g x f x '<<,函数()f x 单调递减.∴函数有两个极值点;③当0a <时,()Δ980a a =->,设方程2210ax ax a +-+=两根1212,,x x x x ==此时12x x >()12110,1x g x -=>∴-<<()11,x x ∴∈-时,()()0,0g x f x '>>,函数()f x 单调递增; ()1,x x ∈+∞时,()()0,0g x f x '<<,函数()f x 单调递减.∴函数有一个极值点;综上所述:当0a <时,函数()f x 有一个极值点; 当809a ≤≤时,函数()f x 无极值点; 当89a >时,函数()f x 有两个极值点. (3)由()0,0x f x ∀>成立等价于()min 0,0x f x ∀>≥即可. ①当809a ≤≤时,函数()f x 在()0,+∞上单调递增,()()00,0,f x =∴∈+∞时,()0f x >,符合题意;②当819a <≤时,由()00g >,得20x ≤,∴函数()f x 在()0,+∞上单调递增,又()()00,0,f x =∴∈+∞时,()0f x >,符合题意; ③当1a >时,由()00<g ,得20x >()20,x x ∴∈时, ()f x 单调递减,()()200,0,f x x =∴∈时,()0f x <时,不合题意;④当0a <时,设()()ln 1h x x x =-+,()0,x ∈+∞,时,()()110,11x h x h x x x =-=>∴+'+在()0,+∞上单调递增. ∴当()0,x ∞∈+时,()()00h x h >=,即()ln 1x x +<,可得()()()221f x x a x x ax a x <+-=+-,当11x a>-时,()210ax a x +-<,此时()0f x <,不合题意.综上,a 的取值范围是0,1.【点睛】解决此题的关键是第一问利用导数的几何意义及点斜式即可,第二问主要是对参数进行分类讨论,再结合利用导数法求函数的极值的步骤即可,第三问主要将恒成立问题转化为最值问题再结合第二问的结论即可求解. 9.(1)()f x 的极小值为2,无极大值; (2)(,e 1]-∞+ 【解析】 【分析】(1)当1a =时,求导分析()f x 的单调性,即可得出答案.(2)由题意可得()()ln e e ln e(1)x g x f x x ax a x x =-+-=-++-,求导得()g x ',从而可推出()g x '在(1,)+∞单调递增,(1)e 1g a '=+-,分两种情况讨论:①当e 10a +-,②当e 10a +-<,分析()g x 的单调性,即可得出答案.(1)当1a =时,()(1)xf x e x -=++,1()1xxxe f x e e --+'=-+=,令1e 0x -+>,得0x >, 令1e 0x -+<,得0x <,则()f x 单调递增区间为(0,)+∞,单调递减区间为(,0)-∞, ∴()f x 存在极小值为()02f =,无极大值; (2)()()ln e e (1)ln e e ln e(1)x x g x f x x a x x ax a x x =-+-=+-++-=-++-,则1()xg x e a x'=-+,令1()xh x e a x =-+,则221()x x e h x x -'=,由1x >得,21x >,210x x e ->,则()0h x '>,故()g x '在(1,)+∞单调递增,(1)e 1g a '=+-,①当e 10a +-,即e 1a +时,即(1,)x ∈+∞时,()0g x '>, ∴()g x 在(1,)+∞上单调递增,又(1)0g =, ∴当1x >时,函数()g x 没有零点, ②当e 10a +-<,即e 1a >+时, 由e e (1)x y x x =->,得e e 0x y '=->, ∴e e x x >,∴11()e e xg x a x a x x '=+->+-,e ee 0e e a a g a a a⎛⎫'>⋅+-=> ⎪⎝⎭,又∵e 1e ea >=,∴存在01,e a x ⎛⎫∈ ⎪⎝⎭,使得()00g x '=,当()01,x x ∈时,()0g x '<,()g x 单调递减, 又∵(1)0g =,∴当0(]1,x x ∈时,()0g x <,在()01,x 内,函数()g x 没有零点, 又∵()0,x x ∈+∞时,()0g x '>, ∴()g x 单调递增,又∵22e )e 1(ln e a a g a a a a a +-+>-=-+, 令2()e 1(1)>x k x x x =-+,()()e 2x s x k x x '==-,()e 2e 20x s x '=->->,∴()k x '在(1,)+∞上单调递增, 又∵(1)0k '>,∴1x >时,()0k x '>,()k x 在(1,)+∞上单调递增, ∴()(1)0k a k >>, ∴()0g a >, 又∵0eaa x >>, ∴由零点的存在定理可知存在()()101,,0x x a g x ∈=, ∴在()0,x a 内,函数()g x 有且只有1个零点, 综上所述,实数a 的取值范围是(,e 1]-∞+.10.(1)()f x 在()0+∞,上单调递增,在()0-∞,上单调递减; (2)274e a -≥【解析】 【分析】(1)直接求导,先确定导数的单调性及零点,即可确定()f x 的单调性;(2)当0x =时, a R ∈,当0x >时,参变分离得3211e 2xx x a x ++-≥,构造函数()h x 求导得()321e 2()21xx x h x x x ⎛⎫⎪⎝⎭'--=--,再构造函数21e 12()x m x x x ---=确定()h x 单调性后,即可求出实数a 的取值范围.(1)当1a =-时,2()e 1x f x x x =+--,()e 21x f x x '=+-,易得()'f x 在R 上递增,又(0)0f '=,故当()0x ∈+∞,时,()0f x '>,()f x 单调递增;故当(),0x ∈-∞时,()0f x '<,()f x 单调递减,所以()f x 在()0+∞,上单调递增,在()0-∞,上单调递减; (2)当0x =时,不等式321()22f x x ax ≥-恒成立,可得a R ∈;当0x >时,由2321e 122xax x x ax ---≥-恒成立可得3211e 2x x x a x++-≥恒成立, 设3211e 2()xx x h x x++-=,则()4223333111e 222(2)1e e 22x x xh x x x x x x x x x x x⎛⎫⎛⎫+-⋅-⋅+'+=--+-- ⎪ ⎪⎝⎭⎭=⎝()()()33322211e 22e 1222x x x x x x x x x x x x ⎛⎫ ⎪⎝⎭=⎛⎫-+-+----- ⎪⎝⎭=-, 可设21e 12()x m x x x ---=,可得e 1()x x m x =--',设e 1,e 1()()x x k x k x x '-=--=,由0x >,可得()0k x '>恒成立,可得()k x 在()0+∞,递增,即()m x '在()0+∞,递增,所以()(0)0m x m ''>=,即()0m x '>恒成立,即()m x 在()0+∞,递增, 所以()(0)0m x m >=,再令()0h x '=,可得2x =,当02x <<时,()0h x '>,()h x 在()0,2上递增,当2x >时,()0h x '<,()h x 在()2,+∞递减,所以2max7e ()(2)4h x h -==,所以274e a -≥;综上可得274e a -≥. 【点睛】本题关键点在于参变分离构造函数求导后,通过因式分解将导数变为()321e 2()21xx x h x x x ⎛⎫⎪⎝⎭'--=--,再把分子的因式构造成函数21e 12()x m x x x ---=,确定()(0)0m x m >=后,即得()h x '的正负,进而求解.。

高三数学:2024届高考数学导数大题精选30题(解析版)(共31页)

高三数学:2024届高考数学导数大题精选30题(解析版)(共31页)

2024届新高考数学导数大题精选30题1(2024·安徽·二模)已知函数f (x )=x 2-10x +3f (1)ln x .(1)求函数f (x )在点(1,f (1))处的切线方程;(2)求f (x )的单调区间和极值.【答案】(1)y =4x -13;(2)递增区间为(0,2),(3,+∞),递减区间为2,3 ,极大值-16+12ln2,极小值-21+12ln3.【分析】(1)求出函数f (x )的导数,赋值求得f (1),再利用导数的几何意义求出切线方程.(2)由(1)的信息,求出函数f (x )的导数,利用导数求出单调区间及极值.【详解】(1)函数f (x )=x 2-10x +3f (1)ln x ,求导得f(x )=2x -10+3f (1)x,则f (1)=-8+3f (1),解得f (1)=4,于是f (x )=x 2-10x +12ln x ,f (1)=-9,所以所求切线方程为:y +9=4(x -1),即y =4x -13.(2)由(1)知,函数f (x )=x 2-10x +12ln x ,定义域为(0,+∞),求导得f (x )=2x -10+12x =2(x -2)(x -3)x,当0<x <2或x >3时,f (x )>0,当2<x <3时,f (x )<0,因此函数f (x )在(0,2),(3,+∞)上单调递增,在(2,3)上单调递减,当x =2时,f (x )取得极大值f (2)=-16+12ln2,当x =3时,f (x )取得极小值f (3)=-21+12ln3,所以函数f (x )的递增区间为(0,2),(3,+∞),递减区间为(2,3),极大值-16+12ln2,极小值-21+12ln3.2(2024·江苏南京·二模)已知函数f (x )=x 2-ax +ae x,其中a ∈R .(1)当a =0时,求曲线y =f (x )在(1,f (1))处的切线方程;(2)当a >0时,若f (x )在区间[0,a ]上的最小值为1e,求a 的值.【答案】(1)x -ey =0(2)a =1【分析】(1)由a =0,分别求出f (1)及f (1),即可写出切线方程;(2)计算出f (x ),令f (x )=0,解得x =2或x =a ,分类讨论a 的范围,得出f (x )的单调性,由f (x )在区间[0,a ]上的最小值为1e,列出方程求解即可.【详解】(1)当a =0时,f (x )=x 2e x ,则f (1)=1e ,f (x )=2x -x 2ex,所以f (1)=1e ,所以曲线y =f (x )在(1,f (1))处的切线方程为:y -1e =1e(x -1),即x -ey =0.(2)f(x )=-x 2+(a +2)x -2a e x =-(x -2)(x -a )ex,令f (x )=0,解得x =2或x =a ,当0<a <2时,x ∈[0,a ]时,f (x )≤0,则f (x )在[0,a ]上单调递减,所以f (x )min =f (a )=a ea =1e ,则a =1,符合题意;当a >2时,x ∈[0,2]时,f (x )≤0,则f (x )在[0,2]上单调递减,x ∈(2,a ]时,f (x )>0,则f (x )在(2,a ]上单调递增,所以f (x )min =f (2)=4-a e2=1e ,则a =4-e <2,不合题意;当a =2时,x ∈[0,2]时,f (x )≤0,则f (x )在[0,2]上单调递减,所以f (x )min =f (2)==2e 2≠1e ,不合题意;综上,a =1.3(2024·浙江绍兴·模拟预测)已知f x =ae x -x ,g x =cos x . (1)讨论f x 的单调性.(2)若∃x 0使得f x 0 =g x 0 ,求参数a 的取值范围.【答案】(1)当a ≤0时,f x 在-∞,+∞ 上单调递减;当a >0时,f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增.(2)-∞,1【分析】(1)对f x =ae x -x 求导数,然后分类讨论即可;(2)直接对a >1和a ≤1分类讨论,即可得到结果.【详解】(1)由f x =ae x -x ,知f x =ae x -1.当a ≤0时,有f x =ae x -1≤0-1=-1<0,所以f x 在-∞,+∞ 上单调递减;当a >0时,对x <-ln a 有f x =ae x -1<ae -ln a -1=1-1=0,对x >-ln a 有f x =ae x -1>ae -ln a -1=1-1=0,所以f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增.综上,当a ≤0时,f x 在-∞,+∞ 上单调递减;当a >0时,f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增.(2)当a >1时,由(1)的结论,知f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增,所以对任意的x 都有f x ≥f -ln a =ae -ln a +ln a =1+ln a >1+ln1=1≥cos x =g x ,故f x >g x 恒成立,这表明此时条件不满足;当a ≤1时,设h x =ae x -x -cos x ,由于h -a -1 =ae -a -1+a +1-cos -a -1 ≥ae-a -1+a ≥-a e-a -1+a =a 1-e-a -1≥a 1-e 0=0,h 0 =ae 0-0-cos0=a -1≤0,故由零点存在定理,知一定存在x 0∈-a -1,0 ,使得h x 0 =0,故f x 0 -g x 0 =ae x 0-x 0-cos x 0=h x 0 =0,从而f x 0 =g x 0 ,这表明此时条件满足.综上,a 的取值范围是-∞,1 .4(2024·福建漳州·一模)已知函数f x =a ln x -x +a ,a ∈R 且a ≠0.(1)证明:曲线y =f x 在点1,f 1 处的切线方程过坐标原点.(2)讨论函数f x 的单调性.【答案】(1)证明见解析(2)答案见解析【分析】(1)先利用导数的几何意义求得f x 在1,f 1 处的切线方程,从而得证;(2)分类讨论a <0与a >0,利用导数与函数的单调性即可得解.【详解】(1)因为f x =a ln x -x +a x >0 ,所以f (x )=a x -1=a -xx,则f (1)=a ln1-1+a =a -1,f (1)=a -1,所以f x 在1,f 1 处的切线方程为:y -(a -1)=(a -1)(x -1),当x =0时,y -(a -1)=(a -1)(0-1)=-(a -1),故y =0,所以曲线y =f (x )在点1,f 1 处切线的方程过坐标原点.(2)由(1)得f (x )=ax -1=a -xx,当a<0时,a-x<0,则f x <0,故f(x)单调递减;当a>0时,令f (x)=0则x=a,当0<x<a时,f (x)>0,f(x)单调递增;当x>a时,f (x)<0,f(x)单调递减;综上:当a<0时,f(x)在(0,+∞)上单调递减;当a>0时,f(x)在(0,a)上单调递增,在(a,+∞)上单调递减.5(2024·山东·二模)已知函数f x =a2xe x-x-ln x.(1)当a=1e时,求f x 的单调区间;(2)当a>0时,f x ≥2-a,求a的取值范围.【答案】(1)f x 的减区间为0,1,增区间为1,+∞(2)a≥1【分析】(1)当a=1e时,f x =xe x-1-x-ln x,x>0,求导得f x =x+1xxe x-1-1,令g x =xe x-1-1,求g x 确定g x 的单调性与取值,从而确定f x 的零点,得函数的单调区间;(2)求f x ,确定函数的单调性,从而确定函数f x 的最值,即可得a的取值范围.【详解】(1)当a=1e时,f x =xe x-1-x-ln x,x>0,则f x =x+1e x-1-1-1x=x+1xxe x-1-1,设g x =xe x-1-1,则g x =x+1e x-1>0恒成立,又g1 =e0-1=0,所以当x∈0,1时,f x <0,f x 单调递减,当x∈1,+∞时,f x >0,f x 单调递增,所以f x 的减区间为0,1,增区间为1,+∞;(2)f x =a2x+1e x-1-1x=x+1xa2xe x-1,设h x =a2xe x-1,则h x =a2x+1e x>0,所以h x 在0,+∞上单调递增,又h0 =-1<0,h1a2=e1a2-1>0,所以存在x0∈0,1 a2,使得h x0 =0,即a2x0e x0-1=0,当x∈0,x0时,f x <0,f x 单调递减,当x∈x0,+∞时,f x >0,f x 单调递增,当x=x0时,f x 取得极小值,也是最小值,所以f x ≥f x0=a2x0e x0-x0-ln x0=1-ln x0e x0=1+2ln a,所以1+2ln a≥2-a,即a+2ln a-1≥0,设F a =a+2ln a-1,易知F a 单调递增,且F1 =0,所以F a ≥F1 ,解得a≥1,综上,a≥1.6(2024·山东·一模)已知函数f(x)=ln x+12a(x-1)2.(1)当a=-12时,求函数f(x)的单调区间;(2)若函数g(x)=f(x)-2x+1有两个极值点x1,x2,且g(x1)+g(x2)≥-1-32a,求a的取值范围.【答案】(1)增区间(0,2),减区间(2,+∞)(2)[1,+∞)【分析】(1)将a=-12代入求导,然后确定单调性即可;(2)求导,根据导函数有两个根写出韦达定理,代入g(x1)+g(x2)≥-1-32a,构造函数,求导,研究函数性质进而求出a的取值范围.【详解】(1)当a=-12时,f(x)=ln x-14(x-1)2,x>0,则f (x)=1x-12(x-1)=-(x-2)(x+1)2x,当x∈(0,2),f (x)>0,f(x)单调递增,当x∈(2,+∞),f (x)<0,f(x)单调递减,所以f(x)的单调递增区间是(0,2),单调递减区间是(2,+∞);(2)g(x)=f(x)-2x+1=ln x+12a(x-1)2-2x+1,所以g (x)=1x+a(x-1)-2=ax2-(a+2)x+1x,设φ(x)=ax2-(a+2)x+1,令φ(x)=0,由于g(x)有两个极值点x1,x2,所以Δ=(a+2)2-4a=a2+4>0x1+x2=a+2a>0x1x2=1a>0,解得a>0.由x1+x2=a+2a,x1x2=1a,得g x1+g x2=ln x1+12a x1-12-2x1+1+ln x2+12a x2-12-2x2+1=ln x1x2+12a x1+x22-2x1x2-2x1+x2+2-2x1+x2+2=ln1a +12a a+2a2-2a-2⋅a+2a+2-2⋅a+2a+2=ln1a +a2-2a-1≥-1-32a,即ln a-12a-1a≤0,令m(a)=ln a-12a-1a,则m (a)=1a-12-12a2=-(a-1)22a2≤0,所以m(a)在(0,+∞)上单调递减,且m(1)=0,所以a≥1,故a的取值范围是[1,+∞).7(2024·湖北·二模)求解下列问题,(1)若kx-1≥ln x恒成立,求实数k的最小值;(2)已知a,b为正实数,x∈0,1,求函数g x =ax+1-xb-a x⋅b1-x的极值.【答案】(1)1(2)答案见解析【分析】(1)求导,然后分k≤0和k>0讨论,确定单调性,进而得最值;(2)先发现g0 =g1 =0,当a=b时,g x =0,当0<x<1,a≠b时,取ab=t,L x =tx+1-x-t x,求导,研究单调性,进而求出最值得答案.【详解】(1)记f x =kx-1-ln x x>0,则需使f x ≥0恒成立,∴f x =k-1xx>0,当k≤0时,f x <0恒成立,则f x 在(0,+∞)上单调递减,且在x>1时,f x <0,不符合题意,舍去;当k >0时.令f x =0,解得x =1k,则f x 在0,1k 上单调递减,在1k ,+∞ 上单调递增,所以f x min =f 1k =-ln 1k=ln k ,要使kx -1≥ln x 恒成立,只要ln k ≥0即可,解得k ≥1,所以k 的最小值为1;(2)g (x )=ax +(1-x )b -a x ⋅b 1-x ,x ∈[0,1],a >0,b >0,易知g 0 =g 1 =0,当a =b 时,g x =ax +a -ax -a =0,此时函数无极值;当0<x <1,a ≠b 时,g (x )=ax +(1-x )b -b ⋅a b x =b a b x +1-x -a b x,取ab=t ,t >0,t ≠1,L x =tx +1-x -t x ,t >0,t ≠1,x ∈0,1 ,则L x =t -1-t x ln t ,当t >1时,由L x ≥0得x ≤ln t -1ln tln t,由(1)知t -1≥ln t ,当t >1时,t -1ln t>1,因为x -1≥ln x ,所以1x -1≥ln 1x ,所以ln x ≥1-1x ,即x >0,当t >1时,ln t >1-1t,所以t >t -1ln t ,则ln t >ln t -1ln t >0,所以ln t -1ln tln t<1,即L x 在0,ln t -1ln t ln t 上单调递增,在ln t -1ln tln t,1单调递减.所以函数g x 极大=gln t -1lntln t,t =ab,a ≠b ,当0<t <1时,同理有ln t -1lntln t∈0,1 ,由Lx ≥0得x ≤ln t -1lntln t,即(x )在0,ln t -1lntln t上单调递增,在ln t -1lntln t,1上单调递减.所以函数g x 极大=gln t -1lntln t,t =a b,a ≠b ,综上可知,当a =b 时,函数g x 没有极值;当a ≠b 时,函数g x 有唯一的极大值g ln t -1lntln t,其中t =ab,没有极小值.【点睛】关键点点睛:取ab=t ,将两个参数的问题转化为一个参数的问题,进而求导解答问题.8(2024·湖北武汉·模拟预测)函数f (x )=tan x +sin x -92x ,-π2<x <π2,g (x )=sin n x -x n cos x ,x ∈0,π2,n ∈N +.(1)求函数f (x )的极值;(2)若g (x )>0恒成立,求n 的最大值.【答案】(1)极小值为f π3 =3(3-π)2,极大值为f -π3 =3(π-3)2;(2)3.【分析】(1)判断函数f (x )为奇函数,利用导数求出f (x )在区间0,π2上的极值,利用奇偶性即可求得定义域上的极值.(2)利用导数证明当n =1时,g (x )>0恒成立,当n >1时,等价变形不等式并构造函数F (x )=x -sin x cos 1nx,0<x <π2,利用导数并按导数为负为正确定n 的取值范围,进而确定不等式恒成立与否得解.【详解】(1)函数f (x )=tan x +sin x -92x ,-π2<x <π2,f (-x )=tan (-x )+sin (-x )-92(-x )=-f (x ),即函数f (x )为奇函数,其图象关于原点对称,当0<x <π2时,f (x )=sin x cos x +sin x -92x ,求导得:f(x )=1cos 2x +cos x -92=2cos 3x -9cos 2x +22cos 2x =(2cos x -1)(cos x -2-6)(cos x -2+6)2cos 2x,由于cos x ∈(0,1),由f (x )>0,得0<cos x <12,解得π3<x <π2,由f (x )<0,得12<cos x <1,解得0<x <π3,即f (x )在0,π3 上单调递减,在π3,π2上单调递增,因此函数f (x )在0,π2 上有极小值f π3 =3(3-π)2,从而f (x )在-π2,π2 上的极小值为f π3 =3(3-π)2,极大值为f -π3 =3(π-3)2.(2)当n =1时,g (x )>0恒成立,即sin x -x cos x >0恒成立,亦即tan x >x 恒成立,令h (x )=tan x -x ,x ∈0,π2 ,求导得h (x )=1cos 2x -1=1-cos 2x cos 2x=tan 2x >0,则函数h (x )在0,π2上为增函数,有h (x )>h (0)=0,因此tan x -x >0恒成立;当n >1时,g (x )>0恒成立,即不等式sin xn cos x>x 恒成立,令F (x )=x -sin x cos 1n x ,0<x <π2,求导得:F (x )=1-cos x ⋅cos 1nx -1n⋅cos1n-1x ⋅(-sin x )⋅sin xcos 2nx=1-cos1+n nx +1n⋅sin 2x ⋅cos1-n nxcos 2nx=1-cos 2x +1n ⋅sin 2xcos n +1nx =cosn +1nx -cos 2x -1n (1-cos 2x )cos n +1nx =cosn +1nx -1n -n -1ncos 2x cosn +1nx令G (x )=cos n +1nx -1n -n -1n cos 2x ,求导得则G (x )=n +1n cos 1nx ⋅(-sin x )-n -1n⋅2cos x ⋅(-sin x )=sin x n (2n -2)cos x -(n +1)cos 1n x =2n -2n ⋅sin x cos x -n +12n -2cos 1n x=2n -2n ⋅sin x ⋅cos 1n x cos n -1n x -n +12n -2,由n >1,x ∈0,π2 ,得2n -2n⋅sin x ⋅cos 1nx >0,当n +12n -2≥1时,即n ≤3时,G (x )<0,则函数G (x )在0,π2上单调递减,则有G (x )<G (0)=0,即F (x )<0,因此函数F (x )在0,π2 上单调递减,有F (x )<F (0)=0,即g (x )>0,当n +12n -2<1时,即n >3时,存在一个x 0∈0,π2 ,使得cos n -1n x 0=n +12n -2,且当x ∈(0,x 0)时,G (x )>0,即G (x )在(0,x 0)上单调递增,且G (x )>G (0)=0,则F (x )>0,于是F (x )在(0,x 0)上单调递增,因此F (x )>F (0)=0,即sin xn cos x<x ,与g (x )>0矛盾,所以n 的最大值为3.【点睛】方法点睛:对于利用导数研究不等式的恒成立与有解问题的求解策略:①通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;②利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.③根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.9(2024·湖北·模拟预测)已知函数f x =ax 2-x +ln x +1 ,a ∈R ,(1)若对定义域内任意非零实数x 1,x 2,均有f x 1 f x 2x 1x 2>0,求a ;(2)记t n =1+12+⋅⋅⋅+1n ,证明:t n -56<ln n +1 <t n .【答案】(1)a =12(2)证明见解析【分析】(1)求导可得f 0 =0,再分a ≤0与a >0两种情况分析原函数的单调性,当a >0时分析极值点的正负与原函数的正负区间,从而确定a 的值;(2)由(1)问的结论可知,1n -12n2<ln 1n +1 <1n ,再累加结合放缩方法证明即可.【详解】(1)f x 的定义域为-1,+∞ ,且f 0 =0;f x =2ax -1+1x +1=2ax -x x +1=x 2a -1x +1,因此f 0 =0;i.a ≤0时,2a -1x +1<0,则此时令f x >0有x ∈-1,0 ,令f x <0有x ∈0,+∞ ,则f x 在-1,0 上单调递增,0,+∞ 上单调递减,又f 0 =0,于是f x ≤0,此时令x 1x 2<0,有f x 1 f x 2x 1x 2<0,不符合题意;ii .a >0时,f x 有零点0和x 0=12a-1,若x 0<0,即a >12,此时令f x <0有x ∈x 0,0 ,f x 在x 0,0 上单调递减,又f 0 =0,则f x 0 >0,令x 1>0,x 2=x 0,有f x 1 f x 2x 1x 2<0,不符合题意;若x 0>0,即0<a <12,此时令f x <0有x ∈0,x 0 ,f x 在0,x 0 上单调递减,又f 0 =0,则f x 0 <0,令-1<x 1<0,x 2=x 0,有f x 1 f x 2x 1x 2<0,不符合题意;若x 0=0,即a =12,此时fx =x 2x +1>0,f x 在-1,+∞ 上单调递增,又f 0 =0,则x >0时f x >0,x <0时f x <0;则x ≠0时f x x >0,也即对x 1x 2≠0,f x 1 f x 2x 1x 2>0,综上,a =12(2)证:由(1)问的结论可知,a =0时,f x =-x +ln x +1 ≤0;且a =12时x >0,f x =12x 2-x +ln x +1 >0;则x>0时,x-12x2<ln x+1<x,令x=1n,有1n-12n2<ln1n+1<1n,即1n-12n2<ln n+1-ln n<1n,于是1n-1-12n-12<ln n-ln n-1<1n-11-12<ln2<1将上述n个式子相加,t n-121+122+⋅⋅⋅+1n2<ln n+1<t n;欲证t n-56<ln n+1<t n,只需证t n-56<t n-121+122+⋅⋅⋅+1n2,只需证1+122+⋅⋅⋅+1n2<53;因为1n2=44n2<44n2-1=212n-1-12n+1,所以1+122+⋅⋅⋅+1n2<1+213-15+15-17+⋅⋅⋅+12n-1-12n+1=53-22n+1<53,得证:于是得证t n-56<ln n+1<t n.【点睛】方法点睛:(1)此题考导数与函数的综合应用,找到合适的分类标准,设极值点,并确定函数正负区间是解此题的关键;(2)对累加结构的不等式证明,一般需要应用前问的结论,取特定参数值,得出不等式累加证明,遇到不能累加的数列结构,需要进行放缩证明.10(2024·湖南·一模)已知函数f x =sin x-ax⋅cos x,a∈R.(1)当a=1时,求函数f x 在x=π2处的切线方程;(2)x∈0,π2时;(ⅰ)若f x +sin2x>0,求a的取值范围;(ⅱ)证明:sin2x⋅tan x>x3.【答案】(1)πx-2y+2-π22=0.(2)(ⅰ)a≤3(ⅱ)证明见解析【分析】(1)令a=1时,利用导数的几何意义求出斜率,进行计算求出切线方程即可.(2)(ⅰ)设g(x)=2sin x+tan x-ax,x∈0,π2,由g x >0得a≤3,再证明此时满足g x >0.(ⅱ)根据(ⅰ)结论判断出F x =sin2x⋅tan x-x3在0,π2上单调递增,∴F(x)>F(0)=0,即sin2x tan x >x3.【详解】(1)当a=1时,f(x)=sin x-x⋅cos x,f (x)=cos x-(cos x-x⋅sin x)=x⋅sin x,fπ2=π2,fπ2=1.所以切线方程为:y-1=π2x-π2,即πx-2y+2-π22=0.(2)(ⅰ)f(x)+sin2x=sin x-ax⋅cos x+sin2x>0,即tan x-ax+2sin x>0,x∈0,π2,设g(x)=2sin x+tan x-ax,x∈0,π2,g (x )=2cos x +1cos 2x -a =1cos 2x(2cos 3x -a cos 2x +1).又∵g (0)=0,g (0)=3-a ,∴g (0)=3-a ≥0是g (x )>0的一个必要条件,即a ≤3.下证a ≤3时,满足g (x )=2sin x +tan x -ax >0,x ∈0,π2,又g (x )≥1cos 2x(2cos 3x -3cos 2x +1),设(t )=2t 3-3t 2+1,t ∈(0,1),h (t )=6t 2-6t =6t (t -1)<0,h (t )在(0,1)上单调递减,所以h (t )>h (1)=0,又x ∈0,π2 ,cos x ∈(0,1),∴g (x )>0,即g (x )在0,π2 单调递增.∴x ∈0,π2时,g (x )>g (0)=0;下面证明a >3时不满足g (x )=2sin x +tan x -ax >0,x ∈0,π2,,g (x )=2cos x +1cos 2x-a ,令h (x )=g (x )=2cos x +1cos 2x -a ,则h (x )=-2sin x +2sin x cos 3x =2sin x 1cos 3x-1,∵x ∈0,π2 ,∴sin x >0,1cos 3x-1>0,∴h (x )>0,∴h (x )=g (x )在0,π2为增函数,令x 0满足x 0∈0,π2,cos x 0=1a ,则g x 0 =2cos x 0+1cos 2x 0-a =2cos x 0+a -a >0,又g (0)=3-a <0,∴∃x 1∈0,x 0 ,使得g x 1 =0,当x ∈0,x 1 时,g (x )<g x 1 =0,∴此时g (x )在0,x 1 为减函数,∴当x ∈0,x 1 时,g (x )<g (0)=0,∴a >3时,不满足g (x )≥0恒成立.综上a ≤3.(ⅱ)设F (x )=sin 2x ⋅tan x -x 3,x ∈0,π2 ,F (x )=2sin x ⋅cos x ⋅tan x +sin 2x ⋅1cos 2x-3x 2=2sin 2x +tan 2x -3x 2=2(sin x -x )2+(tan x -x )2+2(2sin x +tan x )x -2x 2-x 2-3x 2.由(ⅰ)知2sin x +tan x >3x ,∴F (x )>0+0+2x ⋅3x -6x 2=0,,F x 在0,π2上单调递增,∴F (x )>F (0)=0,即sin 2x tan x >x 3.【点睛】关键点点睛:本题考查导数,解题关键是进行必要性探路,然后证明充分性,得到所要求的参数范围即可.11(2024·全国·模拟预测)已知函数f (x )=ln (1+x )-11+x.(1)求曲线y =f (x )在(0,f (0))处的切线方程;(2)若x ∈(-1,π),讨论曲线y =f (x )与曲线y =-2cos x 的交点个数.【答案】(1)y =32x -1;(2)2.【分析】(1)求导,即可根据点斜式求解方程,(2)求导,分类讨论求解函数的单调性,结合零点存在性定理,即可根据函数的单调性,结合最值求解.【详解】(1)依题意,f x =11+x +121+x 32,故f 0 =32,而f 0 =-1,故所求切线方程为y +1=32x ,即y =32x -1.(2)令ln 1+x -11+x =-2cos x ,故ln 1+x +2cos x -11+x=0,令g x =ln 1+x +2cos x -11+x ,g x =11+x -2sin x +121+x -32,令h x =g x =11+x -2sin x +121+x -32,hx =-11+x2-2cos x -341+x -52.①当x ∈-1,π2时,cos x ≥0,1+x 2>0,1+x-52>0,∴h x <0,∴h x 在-1,π2上为减函数,即gx 在-1,π2 上为减函数,又g 0 =1+12>0,g1 =12-2sin1+12⋅2-32<12-2⋅sin1+12<1-2×12=0,∴g x 在0,1 上有唯一的零点,设为x 0,即g x 0 =00<x 0<1 .∴g x 在-1,x 0 上为增函数,在x 0,π2上为减函数.又g 0 =2-1>0,g -π4 =ln 1-π4 +2cos -π4 -11-π4=ln 1-π4+2-11-π4<0,g π2=ln 1+π2 -11+π2>0,∴g x 在-1,x 0 上有且只有一个零点,在x 0,π2上无零点;②当x ∈π2,5π6 时,g x <11+x -1+121+x-32<0,g x 单调递减,又g π2 >0,g 5π6 =ln 1+5π6 -3-1+5π6-12<ln4-3<0,∴g x 在π2,5π6内恰有一零点;③当x ∈5π6,π 时,hx =-11+x2-2cos x -341+x -52为增函数,∴hx =h 5π6 =-11+5π62+1-34⋅1+5π6-52>0,∴g x 单调递增,又g π >0,g 5π6 <0,所以存在唯一x 0∈5π6,π ,g x 0 =0,当x ∈5π6,x 0 时,g x <0,g x 递减;当x ∈x 0,π 时,g x >0,g x 递增,g x ≤max g 5π6 ,g π <0,∴g x 在5π6,π内无零点.综上所述,曲线y =f x 与曲线y =-2cos x 的交点个数为2.【点睛】方法点睛:本题考查了导数的综合运用,求某点处的切线方程较为简单,利用导数求单调性时,如果求导后的正负不容易辨别,往往可以将导函数的一部分抽离出来,构造新的函数,利用导数研究其单调性,进而可判断原函数的单调性.在证明不等式时,常采用两种思路:求直接求最值和等价转化.无论是那种方式,都要敢于构造函数,构造有效的函数往往是解题的关键.12(2024·广东佛山·二模)已知f x =-12e 2x +4e x -ax -5.(1)当a =3时,求f x 的单调区间;(2)若f x 有两个极值点x 1,x 2,证明:f x 1 +f x 2 +x 1+x 2<0.【答案】(1)答案见解析(2)证明见解析【分析】(1)求导后,借助导数的正负即可得原函数的单调性;(2)借助换元法,令t =e x ,t 1=e x 1,t 2=e x 2,可得t 1、t 2是方程t 2-4t +a =0的两个正根,借助韦达定理可得t 1+t 2=4,t 1t 2=a ,即可用t 1、t 2表示f x 1 +f x 2 +x 1+x 2,进而用a 表示f x 1 +f x 2 +x 1+x 2,构造相关函数后借助导数研究其最大值即可得.【详解】(1)当a =3时,f x =-12e 2x +4e x -3x -5,f x =-e 2x +4e x -3=-e x -1 e x -3 ,则当e x ∈0,1 ∪3,+∞ ,即x ∈-∞,0 ∪ln3,+∞ 时,f x <0,当e x ∈1,3 ,即x ∈0,ln3 时,f x >0,故f x 的单调递减区间为-∞,0 、ln3,+∞ ,单调递增区间为0,ln3 ;(2)f x =-e 2x +4e x -a ,令t =e x ,即f x =-t 2+4t -a ,令t 1=e x 1,t 2=e x 2,则t 1、t 2是方程t 2-4t +a =0的两个正根,则Δ=-4 2-4a =16-4a >0,即a <4,有t 1+t 2=4,t 1t 2=a >0,即0<a <4,则f x 1 +f x 2 +x 1+x 2=-12e 2x 1+4e x 1-ax 1-5-12e 2x2+4e x 2-ax 2-5+x 1+x 2=-12t 21+t 22 +4t 1+t 2 -a -1 ln t 1+ln t 2 -10=-12t 1+t 2 2-2t 1t 2 +4t 1+t 2 -a -1 ln t 1t 2-10=-1216-2a +16-a -1 ln a -10=a -a -1 ln a -2,要证f x 1 +f x 2 +x 1+x 2<0,即证a -a -1 ln a -2<00<a <4 ,令g x =x -x -1 ln x -20<x <4 ,则g x =1-ln x +x -1x =1x-ln x ,令h x =1x -ln x 0<x <4 ,则h x =-1x 2-1x <0,则g x 在0,4 上单调递减,又g 1 =11-ln1=1,g 2 =12-ln2<0,故存在x 0∈1,2 ,使g x 0 =1x 0-ln x 0=0,即1x 0=ln x 0,则当x ∈0,x 0 时,g x >0,当x ∈x 0,4 时,g x <0,故g x 在0,x 0 上单调递增,g x 在x 0,4 上单调递减,则g x ≤g x 0 =x 0-x 0-1 ln x 0-2=x 0-x 0-1 ×1x 0-2=x 0+1x 0-3,又x 0∈1,2 ,则x 0+1x 0∈2,52 ,故g x 0 =x 0+1x 0-3<0,即g x <0,即f x 1 +f x 2 +x 1+x 2<0.【点睛】关键点点睛:本题关键点在于借助换元法,令t =e x ,t 1=e x 1,t 2=e x 2,从而可结合韦达定理得t 1、t 2的关系,即可用a 表示f x 1 +f x 2 +x 1+x 2,构造相关函数后借助导数研究其最大值即可得.13(2024·广东广州·模拟预测)已知函数f x =x e x -kx ,k ∈R .(1)当k =0时,求函数f x 的极值;(2)若函数f x 在0,+∞ 上仅有两个零点,求实数k 的取值范围.【答案】(1)极小值为-1e,无极大值(2)e ,+∞【分析】(1)求出导函数,然后列表求出函数的单调区间,根据极值定义即可求解;(2)把原函数有两个零点转化为g x =e x -kx 在0,+∞ 上仅有两个零点,分类讨论,利用导数研究函数的单调性,列不等式求解即可.【详解】(1)当k =0时,f x =xe x (x ∈R ),所以f x =1+x e x ,令f x =0,则x =-1,x -∞,-1-1-1,+∞f x -0+f x单调递减极小值单调递增所以f (x )min =f -1 =-e -1=-1e,所以f x 的极小值为-1e,无极大值.(2)函数f x =x e x -kx 在0,+∞ 上仅有两个零点,令g x =e x -kx ,则问题等价于g x 在0,+∞ 上仅有两个零点,易知g x =e x -k ,因为x ∈0,+∞ ,所以e x >1.①当k ∈-∞,1 时,g x >0在0,+∞ 上恒成立,所以g x 在0,+∞ 上单调递增,所以g x >g 0 =1,所以g x 在0,+∞ 上没有零点,不符合题意;②当k ∈1,+∞ 时,令g x =0,得x =ln k ,所以在0,ln k 上,g x <0,在ln k ,+∞ 上,g x >0,所以g x 在0,ln k 上单调递减,在(ln k ,+∞)上单调递增,所以g x 的最小值为g ln k =k -k ⋅ln k .因为g x 在0,+∞ 上有两个零点,所以g ln k =k -k ⋅ln k <0,所以k >e.因为g 0 =1>0,g ln k 2 =k 2-k ⋅ln k 2=k k -2ln k ,令h x =x -2ln x ,则h x =1-2x =x -2x,所以在0,2 上,h x <0,在2,+∞ 上,h x >0,所以h x 在0,2 上单调递减,在2,+∞ 上单调递增,所以h x ≥2-2ln2=ln e 2-ln4>0,所以g ln k 2 =k k -2ln k >0,所以当k >e 时,g x 在0,ln k 和(ln k ,+∞)内各有一个零点,即当k >e 时,g x 在0,+∞ 上仅有两个零点.综上,实数k 的取值范围是e ,+∞ .【点睛】方法点睛:求解函数单调区间的步骤:(1)确定f x 的定义域.(2)计算导数f x .(3)求出f x =0的根.(4)用f x =0的根将f x 的定义域分成若干个区间,判断这若干个区间内f x 的符号,进而确定f x 的单调区间.f x >0,则f x 在对应区间上单调递增,对应区间为增区间;f x <0,则f x 在对应区间上单调递减,对应区间为减区间.如果导函数含有参数,那么需要对参数进行分类讨论,分类讨论要做到不重不漏.14(2024·江苏南通·二模)已知函数f x =ln x -ax ,g x =2ax,a ≠0.(1)求函数f x 的单调区间;(2)若a >0且f x ≤g x 恒成立,求a 的最小值.【答案】(1)答案见解析(2)2e 3.【分析】(1)求导后,利用导数与函数单调性的关系,对a >0与a <0分类讨论即可得;(2)结合函数的单调性求出函数的最值,即可得解.【详解】(1)f x =1x -a =1-axx(a ≠0),当a <0时,由于x >0,所以f x >0恒成立,从而f x 在0,+∞ 上递增;当a >0时,0<x <1a ,f x >0;x >1a ,fx <0,从而f x 在0,1a 上递增,在1a,+∞ 递减;综上,当a <0时,f x 的单调递增区间为0,+∞ ,没有单调递减区间;当a >0时,f x 的单调递增区间为0,1a ,单调递减区间为1a ,+∞ .(2)令h x =f x -g x =ln x -ax -2ax,要使f x ≤g x 恒成立,只要使h x ≤0恒成立,也只要使h x max ≤0.h x =1x -a +2ax 2=-ax +1 ax -2 ax 2,由于a >0,x >0,所以ax +1>0恒成立,当0<x <2a 时,h x >0,当2a<x <+∞时,h x <0,所以h x max =h 2a =ln 2a -3≤0,解得:a ≥2e 3,所以a 的最小值为2e3.15(2024·山东济南·二模)已知函数f x =ax 2-ln x -1,g x =xe x -ax 2a ∈R .(1)讨论f x 的单调性;(2)证明:f x +g x ≥x .【答案】(1)答案见详解(2)证明见详解【分析】(1)求导可得fx =2ax 2-1x,分a ≤0和a >0两种情况,结合导函数的符号判断原函数单调性;(2)构建F x =f x +g x -x ,x >0,h x =e x -1x,x >0,根据单调性以及零点存在性定理分析h x 的零点和符号,进而可得F x 的单调性和最值,结合零点代换分析证明.【详解】(1)由题意可得:f x 的定义域为0,+∞ ,fx =2ax -1x =2ax 2-1x,当a ≤0时,则2ax 2-1<0在0,+∞ 上恒成立,可知f x 在0,+∞ 上单调递减;当a >0时,令f x >0,解得x >12a;令f x <0,解得0<x <12a;可知f x 在0,12a 上单调递减,在12a,+∞ 上单调递增;综上所述:当a ≤0时,f x 在0,+∞ 上单调递减;当a >0时,f x 在0,12a 上单调递减,在12a,+∞ 上单调递增.(2)构建F x =f x +g x -x =xe x -ln x -x -1,x >0,则F x =x +1 e x -1x -1=x +1 e x -1x,由x >0可知x +1>0,构建h x =e x -1x ,x >0,因为y =e x ,y =-1x在0,+∞ 上单调递增,则h x 在0,+∞ 上单调递增,且h 12=e -20,h 1 =e -1 0,可知h x 在0,+∞ 上存在唯一零点x 0∈12,1 ,当0<x <x 0,则h x <0,即Fx <0;当x >x 0,则h x >0,即F x >0;可知F x 在0,x 0 上单调递减,在x 0,+∞ 上单调递增,则F x ≥F x 0 =x 0e x 0-ln x 0-x 0-1,又因为e x 0-1x 0=0,则e x 0=1x 0,x 0=e -x 0,x 0∈12,1 ,可得F x 0 =x 0×1x 0-ln e -x-x 0-1=0,即F x ≥0,所以f x +g x ≥x .16(2024·福建·模拟预测)已知函数f (x )=a ln x -bx 在1,f 1 处的切线在y 轴上的截距为-2.(1)求a 的值;(2)若f x 有且仅有两个零点,求b 的取值范围.【答案】(1)2(2)b ∈0,2e 【分析】(1)借助导数的几何意义计算即可得;(2)借助函数与方程的关系,可将f x 有且仅有两个零点转化为方程b =2ln xx有两个根,构造对应函数并借助导数研究单调性及值域即可得.【详解】(1)f (x )=ax-b ,f 1 =a -b ,f (1)=a ×0-b =-b ,则函数f (x )=a ln x -bx 在1,f 1 处的切线为:y +b =a -b x -1 ,即y =a -b x -a ,令x =0,则有y =-a =-2,即a =2;(2)由a =2,即f (x )=2ln x -bx ,若f x 有且仅有两个零点,则方程2ln x-bx=0有两个根,即方程b=2ln xx有两个根,令g x =2ln xx,则gx =21-ln xx2,则当x∈0,e时,g x >0,则当x∈e,+∞时,g x <0,故g x 在0,e上单调递增,在e,+∞上单调递减,故g x ≤g e =2ln ee=2e,又x→0时,g x →-∞,x→+∞时,g x →0,故当b∈0,2 e时,方程b=2ln x x有两个根,即f x 有且仅有两个零点.17(2024·浙江杭州·二模)已知函数f x =a ln x+2-12x2a∈R.(1)讨论函数f x 的单调性;(2)若函数f x 有两个极值点,(ⅰ)求实数a的取值范围;(ⅱ)证明:函数f x 有且只有一个零点.【答案】(1)答案见解析;(2)(ⅰ)-1<a<0;(ⅱ)证明见解析【分析】(1)求出函数的导函数,再分a≤-1、-1<a<0、a≥0三种情况,分别求出函数的单调区间;(2)(ⅰ)由(1)直接解得;(ⅱ)结合函数的最值与零点存在性定理证明即可.【详解】(1)函数f x =a ln x+2-12x2a∈R的定义域为-2,+∞,且f x =ax+2-x=-x+12+a+1x+2,当a≤-1时,f x ≤0恒成立,所以f x 在-2,+∞单调递减;当-1<a<0时,令f x =0,即-x+12+a+1=0,解得x1=-a+1-1,x2=a+1-1,因为-1<a<0,所以0<a+1<1,则-2<-a+1-1<-1,所以当x∈-2,-a+1-1时f x <0,当x∈-a+1-1,a+1-1时f x >0,当x∈a+1-1,+∞时f x <0,所以f x 在-2,-a+1-1上单调递减,在-a+1-1,a+1-1上单调递增,在a+1-1,+∞上单调递减;当a≥0时,此时-a+1-1≤-2,所以x∈-2,a+1-1时f x >0,当x∈a+1-1,+∞时f x <0,所以f x 在-2,a+1-1上单调递增,在a+1-1,+∞上单调递减.综上可得:当a≤-1时f x 在-2,+∞单调递减;当-1<a<0时f x 在-2,-a+1-1上单调递减,在-a+1-1,a+1-1上单调递增,在a+1-1,+∞上单调递减;当a≥0时f x 在-2,a+1-1上单调递增,在a+1-1,+∞上单调递减.(2)(ⅰ)由(1)可知-1<a<0.(ⅱ)由(1)f x 在-2,-a+1-1上单调递减,在-a+1-1,a+1-1上单调递增,在a+1-1,+∞上单调递减,所以f x 在x=a+1-1处取得极大值,在x=-a+1-1处取得极小值,又-1<a<0,所以0<a+1<1,则1<a+1+1<2,又f x极大值=f a+1-1=a ln a+1+1-12a+1-12<0,又f-a+1-1<f a+1-1<0,所以f x 在-a+1-1,+∞上没有零点,又-1<a<0,则4a<-4,则0<e4a<e-4,-2<e4a-2<e-4-2,则0<e 4a-22<4,所以f e 4a-2=4-12e4a-22>0,所以f x 在-2,-a+1-1上存在一个零点,综上可得函数f x 有且只有一个零点.18(2024·河北沧州·模拟预测)已知函数f(x)=ln x-ax+1,a∈R.(1)讨论f x 的单调性;(2)若∀x>0,f x ≤xe2x-2ax恒成立,求实数a的取值范围.【答案】(1)答案见解析(2)-∞,2.【分析】(1)利用导数分类讨论判断函数f x 的单调性,即可求解;(2)先利用导数证明不等式e x≥x+1,分离变量可得a≤e2x-ln x+1x恒成立,进而e 2x-ln x+1x≥2x+ln x+1-(ln x+1)x=2,即可求解.【详解】(1)函数f x =ln x-ax+1,a∈R的定义域为0,+∞,且f (x)=1x-a.当a≤0时,∀x∈0,+∞,f (x)=1x-a≥0恒成立,此时f x 在区间0,+∞上单调递增;当a>0时,令f (x)=1x-a=1-axx=0,解得x=1a,当x∈0,1 a时,f x >0,f x 在区间0,1a上单调递增,当x∈1a,+∞时,f x <0,f x 在区间1a,+∞上单调递减.综上所述,当a≤0时,f x 在区间0,+∞上单调递增;当a>0时,f x 在区间0,1 a上单调递增,在区间1a,+∞上单调递减.(2)设g x =e x-x-1,则g x =e x-1,在区间(-∞,0)上,g x <0,g x 单调递减,在区间0,+∞上,g x >0,g x 单调递增,所以g x ≥g0 =e0-0-1=0,所以e x≥x+1(当且仅当x=0时等号成立).依题意,∀x>0,f x ≤xe2x-2ax恒成立,即a≤e2x-ln x+1x恒成立,而e2x-ln x+1x=xe2x-(ln x+1)x=e2x+ln x-(ln x+1)x≥2x+ln x+1-(ln x+1)x=2,当且仅当2x+ln x=0时等号成立.因为函数h x =2x+ln x在0,+∞上单调递增,h1e=2e-1<0,h(1)=2>0,所以存在x0∈1e,1,使得2x0+ln x0=0成立.所以a ≤e 2x -ln x +1xmin =2,即a 的取值范围是-∞,2 .【点睛】方法点睛:利用导数证明不等式的恒成立问题的求解策略:形如f x ≥g x 的恒成立的求解策略:1、构造函数法:令F x =f x -g x ,利用导数求得函数F x 的单调性与最小值,只需F x min ≥0恒成立即可;2、参数分离法:转化为a ≥φx 或a ≤φx 恒成立,即a ≥φx max 或a ≤φx min 恒成立,只需利用导数求得函数φx 的单调性与最值即可;3,数形结合法:结合函数y =f x 的图象在y =g x 的图象的上方(或下方),进而得到不等式恒成立.19(2024·广东·二模)已知f x =12ax 2+1-2a x -2ln x ,a >0.(1)求f x 的单调区间;(2)函数f x 的图象上是否存在两点A x 1,y 1 ,B x 2,y 2 (其中x 1≠x 2),使得直线AB 与函数f x 的图象在x 0=x 1+x22处的切线平行?若存在,请求出直线AB ;若不存在,请说明理由.【答案】(1)f (x )在(0,2)上单调递减,在(2,+∞)上单调递增.(2)不存在,理由见解析【分析】(1)求出导函数,根据导函数的正负来确定函数的单调区间;(2)求出直线AB 的斜率,再求出f (x 0),从而得到x 1,x 2的等式,再进行换元和求导,即可解出答案.【详解】(1)由题可得f(x )=ax +1-2a -2x =ax 2+(1-2a )x -2x =(ax +1)(x -2)x(x >0)因为a >0,所以ax +1>0,所以当x ∈(0,2)时,f (x )<0,f (x )在(0,2)上单调递减,当x ∈(2,+∞)时,f (x )>0,f (x )在(2,+∞)上单调递增.综上,f (x )在(0,2)上单调递减,在(2,+∞)上单调递增.(2)由题意得,斜率k =y 2-y 1x 2-x 1=12ax 22+(1-2a )x 2-2ln x 2 -12ax 21+(1-2a )x 1-2ln x 1 x 2-x 1=12a (x 22-x 21)+(1-2a )(x 2-x 1)-2ln x 2x 1x 2-x 1=a 2(x 1+x 2)+1-2a -2ln x2x 1x 2-x 1,f x 1+x 22 =a (x 1+x 2)2+1-2a -4x 1+x 2,由k =f x 1+x22 得,ln x2x 1x 2-x 1=2x 1+x 2,即ln x 2x 1=2(x 2-x 1)x 1+x 2,即ln x 2x 1-2x2x 1-1 x 2x1+1=0令t =x 2x 1,不妨设x 2>x 1,则t >1,记g (t )=ln t -2(t -1)t +1=ln t +4t +1-2(t >1)所以g(t )=1t -4t +1 2=t -1 2t t +1 2>0,所以g (t )在(1,+∞)上是增函数,所以g (t )>g (1)=0,所以方程g (t )=0无解,则满足条件的两点A ,B 不存在.20(2024·广东深圳·二模)已知函数f x =ax +1 e x ,f x 是f x 的导函数,且f x -f x =2e x .(1)若曲线y =f x 在x =0处的切线为y =kx +b ,求k ,b 的值;(2)在(1)的条件下,证明:f x ≥kx +b .【答案】(1)k =3,b =1;(2)证明见解析.【分析】(1)根据题意,求导可得a 的值,再由导数意义可求切线,得到答案;(2)设函数g x =2x +1 e x -3x -1,利用导数研究函数g (x )的单调性从而求出最小值大于0,可得证.【详解】(1)因为f x =ax +1 e x ,所以f x =ax +a +1 e x ,因为f x -f x =2e x ,所以a =2.则曲线y =f (x )在点x =0处的切线斜率为f 0 =3.又因为f 0 =1,所以曲线y =f (x )在点x =0处的切线方程为y =3x +1,即得k =3,b =1.(2)设函数g x =2x +1 e x -3x -1,x ∈R ,则g x =2x +3 e x -3,设h x =g x ,则h x =e x 2x +5 ,所以,当x >-52时,h x >0,g x 单调递增.又因为g0 =0,所以,x >0时,g x >0,g x 单调递增;-52<x <0时,g x <0,g x 单调递减.又当x ≤-52时,g x =2x +3 e x -3<0,综上g x 在-∞,0 上单调递减,在0,+∞ 上单调递增,所以当x =0时,g x 取得最小值g 0 =0,即2x +1 e x -3x -1≥0,所以,当x ∈R 时,f x ≥3x +1.21(2024·辽宁·二模)已知函数f x =ax 2-ax -ln x .(1)若曲线y =f x 在x =1处的切线方程为y =mx +2,求实数a ,m 的值;(2)若对于任意x ≥1,f x +ax ≥a 恒成立,求实数a 的取值范围.【答案】(1)a =-1,m =-2(2)12,+∞ 【分析】(1)根据导数几何意义和切线方程,可直接构造方程组求得结果;(2)构造函数g x =ax 2-ln x -a x ≥1 ,将问题转化为g x ≥0恒成立;求导后,分别在a ≤0、a ≥12和0<a <12的情况下,结合单调性和最值求得符合题意的范围.【详解】(1)∵f x =2ax -a -1x,∴f 1 =2a -a -1=a -1,∵y =f x 在x =1处的切线为y =mx +2,∴f 1 =a -1=mf 1 =0=m +2 ,解得:a =-1,m =-2.(2)由f x +ax ≥a 得:ax 2-ln x -a ≥0,令g x =ax 2-ln x -a x ≥1 ,则当x ≥1时,g x ≥0恒成立;。

高考总复习-数学导数大题练习(详细答案)-

高考总复习-数学导数大题练习(详细答案)-

1.已知函数dx b a c bx ax x f +--++=)23()(23的图象如图所示. (I )求d c ,的值; (II )若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数)(x f 的解析式;(III )在(II )的条件下,函数)(x f y =与m x x f y ++'=5)(31的图象有三个不同的交点,求m 的取值范围. 2.已知函数)(3ln )(R a ax x a x f ∈--=.(I )求函数)(x f 的单调区间;(II )函数)(x f 的图象的在4=x 处切线的斜率为,23若函数]2)('[31)(23mx f x x x g ++=在区间(1,3)上不是单调函数,求m 的取值范围.3.已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值.(I )求实数a 的取值范围; (II )若方程9)32()(2+-=a x f 恰好有两个不同的根,求)(x f 的解析式;(III )对于(II )中的函数)(x f ,对任意R∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f .4.已知常数0>a ,e 为自然对数的底数,函数x e x f x-=)(,x a x x g ln )(2-=.(I )写出)(x f 的单调递增区间,并证明a e a>;(II )讨论函数)(x g y =在区间),1(a e 上零点的个数.5.已知函数()ln(1)(1)1f x x k x =---+. (I )当1k=时,求函数()f x 的最大值;(II )若函数()f x 没有零点,求实数k 的取值范围;6.已知2x =是函数2()(23)xf x x ax a e=+--的一个极值点(⋅⋅⋅=718.2e ). (I )求实数a 的值; (II )求函数()f x 在]3,23[∈x 的最大值和最小值.7.已知函数)0,(,ln )2(4)(2≠∈-+-=a R a x a x x x f(I )当a=18时,求函数)(x f 的单调区间;(II )求函数)(x f 在区间],[2e e 上的最小值.8.已知函数()(6)ln f x x x a x =-+在(2,)x ∈+∞上不具有...单调性. (I )求实数a 的取值范围; (II )若()f x '是()f x 的导函数,设22()()6g x f x x '=+-,试证明:对任意两个不相等正数12x x 、,不等式121238|()()|||27g x g x x x ->-恒成立. 9.已知函数.1,ln )1(21)(2>-+-=a x a ax x x f (I )讨论函数)(x f 的单调性;(II )证明:若.1)()(,),,0(,,521212121->--≠+∞∈<x x x f x f x x x x a 有则对任意 10.已知函数21()ln ,()(1),12f x x a xg x a x a =+=+≠-.(I )若函数(),()f x g x 在区间[1,3]上都是单调函数且它们的单调性相同,求实数a 的取值范围;(II )若(1,]( 2.71828)a e e ∈=L ,设()()()F x f x g x =-,求证:当12,[1,]x x a ∈时,不等式12|()()|1F x F x -<成立.11.设曲线C :()ln f x x ex =-( 2.71828e =⋅⋅⋅),()f x '表示()f x 导函数.(I )求函数()f x 的极值;(II )对于曲线C 上的不同两点11(,)A x y ,22(,)B x y ,12x x <,求证:存在唯一的0x 12(,)x x ∈,使直线AB 的斜率等于0()f x '.12.定义),0(,,)1(),(+∞∈+=y x x y x F y ,(I )令函数22()(3,log (24))f x F x x =-+,写出函数()f x 的定义域;(II )令函数322()(1,log (1))g x F x ax bx =+++的图象为曲线C ,若存在实数b 使得曲线C 在)14(00-<<-x x 处有斜率为-8的切线,求实数a 的取值范围; III )当,*x y ∈N 且x y <时,求证(,)(,)F x y F y x >.答案1.解:函数)(x f 的导函数为b ac bx ax x f 2323)(2'--++= …………(2分) (I )由图可知 函数)(x f 的图象过点(0,3),且0)1('=f 得⎩⎨⎧==⇒⎩⎨⎧=--++=03023233c d b a c b a d …………(4分) (II )依题意3)2('-=f 且5)2(=f⎩⎨⎧=+--+-=--+534648323412b a b a b a b a 解得6,1-==b a 所以396)(23++-=x x x x f …………(8分)(III)9123)(2+-='x x x f .可转化为:()m x x x x x x +++-=++-534396223有三个不等实根,即:()m x x x x g-+-=8723与x 轴有三个交点;42381432--=+-='x x x x x g ,x⎪⎭⎫ ⎝⎛∞-32, 32⎪⎭⎫ ⎝⎛432,4()∞+,4()x g '+-+()x g增 极大值 减 极小值 增()m g m g --=-=⎪⎭⎫ ⎝⎛164,276832. …………(10分) 当且仅当()01640276832<--=>-=⎪⎭⎫ ⎝⎛m g m g 且时,有三个交点, 故而,276816<<-m 为所求. …………(12分) 2.解:(I ))0()1()('>-=x xx a x f(2分)当(][)+∞>,1,1,0)(,0减区间为的单调增区间为时x f a当[)(];1,0,,1)(,0减区间为的单调增区间为时+∞<x f a当a=1时,)(x f 不是单调函数(5分)(II)32ln 2)(,22343)4('-+-=-==-=x x x f a a f 得2)4()(',2)22(31)(223-++=∴-++=∴x m x x g x x m x x g (6分) 2)0(',)3,1()(-=g x g 且上不是单调函数在区间Θ⎩⎨⎧><∴.0)3(',0)1('g g (8分)⎪⎩⎪⎨⎧>-<∴,319,3m m (10分))3,319(--∈m(12分)3.解(I ),23)(,00)0(2b ax x x f c f ++='=⇒=320)1(--=⇒='a b f),323)(1()32(23)(2++-=+-+='∴a x x a ax x x f由33210)(+-==⇒='a x x x f 或,因为当1=x 时取得极大值, 所以31332-<⇒>+-a a ,所以)3,(:--∞的取值范围是a ;依题意得:9)32()32(27622+-=++a a a ,解得:9-=a 所以函数)(x f 的解析式是:x x x x f 159)(23+-= (III )对任意的实数βα,都有,2sin 22,2sin 22≤≤-≤≤-βα在区间[-2,2]有: 230368)2(,7)1(,7430368)2(=+-==-=---=-f f f,7)1()(=f x f 的最大值是7430368)2()(-=---=-f x f 的最小值是函数]2,2[)(-在区间x f 上的最大值与最小值的差等于81,所以81|)sin 2()sin 2(|≤-βαf f .4.解:(I )01)(≥-='xe xf ,得)(x f 的单调递增区间是),0(+∞, …………(2分) ∵0>a ,∴1)0()(=>f a f ,∴a a e a>+>1,即a e a >. …………(4分)(II )xax a x x a x x g )22)(22(22)(-+=-=',由0)(='x g ,得22a x =,列表当22ax =时,函数)(x g y =取极小值)2ln 1(2)22(aa a g -=,无极大值. 由(I )a e a >,∵⎪⎩⎪⎨⎧>>22a a e e a a ,∴22a e a>,∴22a ea>1)1(>=g ,0))(()(22>-+=-=a e a e a e e g a a a a …………(8分)(i )当122≤a,即20≤<a 时,函数)(x g y =在区间),1(a e 不存在零点(ii )当122>a,即2>a 时 若0)2ln 1(2>-aa ,即e a 22<<时,函数)(x g y =在区间),1(ae 不存在零点 若0)2ln 1(2=-a a ,即e a 2=时,函数)(x g y =在区间),1(a e 存在一个零点e x =;若0)2ln 1(2<-a a ,即e a 2>时,函数)(x g y =在区间),1(a e 存在两个零点; 综上所述,)(x g y =在(1,)ae 上,我们有结论:当02ae <<时,函数()f x 无零点;当2a e = 时,函数()f x 有一个零点; 当2a e >时,函数()f x 有两个零点.5.解:(I )当1k=时,2()1xf x x -'=- )(x f 定义域为(1,+∞),令()0,2f x x '==得, ∵当(1,2),x ∈时()0f x '>,当(2,),x ∈+∞时()0f x '<, ∴()(1,2)f x 在内是增函数,(2,)+∞在上是减函数∴当2x =时,()f x 取最大值(2)0f = (II )①当0k ≤时,函数ln(1)y x =-图象与函数(1)1y k x =--图象有公共点,∴函数()f x 有零点,不合要求;②当0k >时,1()11()111k k x k kx k f x k x x x +-+-'=-==---- ………………(6分)令1()0,k f x x k +'==得,∵1(1,),()0,k x f x k +'∈>时1(1,),()0x f x k'∈++∞<时,x )22,0(a22a ),22(+∞a)(x g ' - 0+ )(x g单调递减极小值单调递增。

导数复习导数大题练习(含详解答案)

导数复习导数大题练习(含详解答案)

1、函数f(*)=(2*2―k*+k)·e -*(Ⅰ)当k 为何值时,)(x f 无极值;(Ⅱ)试确定实数k 的值,使)(x f 的极小值为0 2、函数()ln f x ax x =+()a ∈R .(Ⅰ)假设2a =,求曲线()y f x =在1x =处切线的斜率;(Ⅱ)求()f x 的单调区间;〔Ⅲ〕设2()22g x x x =-+,假设对任意1(0,)x ∈+∞,均存在[]20,1x ∈,使得12()()f x g x <,求a 的取值围. 3、设函数()1x f x x ae -=-。

〔I 〕求函数()f x 单调区间; 〔II 〕假设()0R f x x ≤∈对恒成立,求a 的取值围;〔III 〕对任意n 的个正整数1212,,nn a a a a a a A n++⋅⋅⋅⋅⋅⋅=记〔1〕求证:()11,2,i a iAa e i n A-≤=⋅⋅⋅〔2〕求证:A ≥4、函数b x x a x a x f +++-=23213)(,其中,a b ∈R . 〔Ⅰ〕假设曲线)(x f y =在点))2(,2(f P 处的切线方程为45-=x y ,求函数)(x f 的解析式; 〔Ⅱ〕当0>a 时,讨论函数)(x f 的单调性. 5、函数2()(21)(R x f x ax x e a -=-+⋅∈,e 为自然对数的底数).(I)当时,求函数()f x 的极值;(Ⅱ)假设函数()f x 在[-1,1]上单调递减,求a 的取值围. 6、函数2()(33)x f x x x e =-+⋅,设2t >-,(2),()f m f t n -==.〔Ⅰ〕试确定t 的取值围,使得函数()f x 在[]2,t -上为单调函数;〔Ⅱ〕试判断,m n 的大小并说明理由;〔Ⅲ〕求证:对于任意的2t >-,总存在0(2,)x t ∈-,满足0'20()2(1)3x f x t e =-,并确定这样的0x 的个数.7、函数2()ln (2)f x x ax a x =-+-.〔Ⅰ〕假设()f x 在1x =处取得极值,求a 的值;〔Ⅱ〕求函数()y f x =在2[,]a a 上的最大值. 8、函数221()()ln 2f x ax x x ax x =--+.()a ∈R . 〔I 〕当0a =时,求曲线()y f x =在(e,(e))f 处的切线方程〔e 2.718...=〕; 〔II 〕求函数()f x 的单调区间.9、函数()(1)e (0)xa f x x x=->,其中e 为自然对数的底数.〔Ⅰ〕当2a =时,求曲线()y f x =在(1,(1))f 处的切线与坐标轴围成的面积;〔Ⅱ〕假设函数()f x 存在一个极大值点和一个极小值点,且极大值与极小值的积为5e ,求a 的值.10、函数36)2(23)(23-++-=x x a ax x f . 〔1〕当1=a 时,求函数)(x f 的极小值;〔2〕试讨论曲线)(x f y =与x 轴的公共点的个数。

高中数学高三导数大题精选(附详细解答)

高中数学高三导数大题精选(附详细解答)

高中数学高三导数大题精选一、选择题1.函数的单调递增区间是()A.(0,+∞)B.(-3,1)C.(1,+∞)D.(0,1)2.如图是定义在(a,b)上的函数f(x)的导函数的图象,则函数f(x)的极值点的个数为A.2B.3C.4D.53.曲线在点(0,2))处的切线方程为().A.y=2B.y=x+2C.y=2x+2D.y=-2x+24.函数在处有极值10,则点(a ,b)为()A.(3,-3)B.(-4,11)C.(3,-3)或(-4,11)D.不存在5.函数f(x)=x(ex-1)+ln x的图象在点(1,f(1))处的切线方程是( ) A.y=2ex-e-1B.y=2ex-e+1C.y=2ex+e-1D.y=2ex+e+16.已知函数f(x)的导函数f′(x)的图象如图所示,那么函数f(x)的图象最有可能的是()A. B.C. D.7.已知x=2 是函数的极小值点,那么函数f(x)的极大值为()A.15B.16C.17D.188.已知函数y=f(x)是R上的可导函数,当x≠0时,有,则函数的零点个数是()A. 0B. 1C. 2D. 39.若函数f(x)=在(0,2)内单调递减,则实数a的取值范围为A.a=3 B.a≤3C.a≥3 D.0<a<310.函数的导数是A. B.C. D.二、填空题11.已知函数,则过点可以作出________条图象的切线三、解答题12.设函数,.(1)当时,函数取得极值,求的值;(2)当时,求函数在区间[1,2]上的最大值;(3)当时,关于的方程有唯一实数解,求实数的值.13.已知函数(1)若x=2为的极值点,求实数a的值;(2)若在上为增函数,求实数a的取值范围;(3)当时,方程有实根,求实数b的最大14.求下列函数的导数(1)(2)(3)15.已知函数.若函数在处有极值-4.(1)求的单调递减区间;(2)求函数在上的最大值和最小值.参考答案一、选择题1、【答案】D解:函数的定义域为,且,解不等式,即,由于,解得.因此,函数的单调递增区间为,故选:D.2、【答案】B3、【答案】C4、【答案】B解:,则,解得或,当时,,此时在定义域上为增函数,无极值,舍去.当,,为极小值点.5、【答案】A解:f(1)=e-1,f′(x)=ex(1+x)+-1,f′(1)=2e,∴在点(1,f(1))处的切线方程为y-(e-1)=2e(x-1),即为y=2ex-e-1.6、【答案】A7、【答案】D8、【答案】B9、【答案】C10、【答案】B二、填空题11、【答案】2解:设切点的坐标为:,,因此切线方程为:,把的坐标代入切线方程中,化简得:或,所以过点可以作出二条的切线.故答案为:2三、解答题12、13、【答案】(1)解:因为x= 2为f(x)的极值点,所以即,解得:a=0又当a = 0时,,从而x=2为f(x)的极值点成立.(2)解:∵f(x)在区间[3,+∞)上为增函数,∴在区间[3,+∞)上恒成立.①当a = 0时,在[3,+∞)上恒成立,所以f (x)在[3,+∞)上为增函数,故a = 0符合题意.②当a≠0时,由函数f (x)的定义域可知,必须有2ax + 1 > 0对x≥3恒成立,故只能a > 0,所以在区间[3,+∞)上恒成立令,其对称轴为∵a > 0,∴,从而g (x)≥0在[3,+∞)上恒成立,只要g (3)≥0即可,由,解得:∵a > 0,∴.综上所述,a的取值范围为[0,](3)解:时,方程可化为,.问题转化为在(0,+∞)上有解令,则当0 < x < 1时,,∴h (x)在(0,1)上为增函数当x > 1时,,∴h (x)在(1,+∞)上为减函数故h (x)≤h (1) = 0,而x > 0,故即实数b的最大值是0.14、15、解:(1)∵,∴,依题意有即,解得∴,由,得,∴函数单调递减区间由知∴,令,解得.当变化时,的变化情况如下表:由上表知,函数在上单调递减,在上单调递增.故可得又.∴综上可得函数在上的最大值和最小值分别为和.。

高考数学专题:导数大题专练附答案

高考数学专题:导数大题专练附答案

高考数学专题:导数大题专练附答案一、解答题 1.已知函数()()2ln 0f x a x ax a =+-> (1)求()f x 的最大值(2)若()0f x ≤恒成立,求a 的值 2.已知函数()ln f x ax x =+ (1)讨论()f x 的单调区间;(2)设()2xg x =,若对任意的[]11,100x ∈,存在[]20,1x ∈,使()()12f x g x <成立,求实数a 的取值范围.3.已知函数()1ln f x ax x =--,a R ∈. (1)讨论函数()f x 在区间()1,e 的极值;(2)若函数()f x 在1x =处取得极值,对()0,x ∀∈+∞,()2f x bx ≥-恒成立,求实数b 的取值范围.4.对于正实数a ,b (a b >),我们熟知基本不等式:()()G a b A a b <,,,其中()G a b ,a ,b 的几何平均数,()2a bA a b +=,为a ,b 的算术平均数.现定义a ,b 的对数平均数:(),ln ln a bL a b a b-=-.(1)设1x >,求证:12ln x x x<-,并证明()()G a b L a b <,,;(2)若不等式()()(),,,G a b A a b m L a b +>⋅对任意正实数a ,b (a b >)恒成立,求正实数m 的取值范围. 5.已知函数()f x 满足()21bf x ax =-,0a ≠,()11f =,()02f '=-. (1)求函数()f x 的表达式;(2)若0a <,数列{}n a 满足123a =,11n n a f a +⎛⎫= ⎪⎝⎭,设11n nb a =-,*n N ∈,求数列{}n b 的通项公式.6.已知函数()ln .f x x x ax a =-+(1)若1≥x 时,()0f x ≥恒成立,求a 的取值范围;(2)当1a =,01b <<时,方程()f x b =有两个不相等的实数根12,x x ,求证:12 1.x x < 7.已知函数()()1ln f x x x =+ (1)求函数()f x 的单调区间和极值;(2)若m Z ∈,()()1m x f x -<对任意的()1,x ∈+∞恒成立,求m 的最大值. 8.已知函数()ln 2=-f x ax x x .(1)若()f x 在1x =处取得极值,求()f x 的单调区间; (2)若函数2()()2=-+f x h x x x有1个零点,求a 的取值范围. 9.已知函数()()()2e 1,e 2.718xf x m x m R =-+∈≈.(1)选择下列两个条件之一:①12m =;②1m =,判断()f x 在区间()0,∞+上是否存在极小值点,并说明理由;(2)已知0m >,设函数()()()1ln g x f x mx mx =-+.若()g x 在区间()0,∞+上存在零点,求实数m 的取值范围.10.设函数()223ln 1f x a x ax x =+-+,其中0a >.(1)求()f x 的单调区间;(2)若()y f x =的图象与x 轴没有公共点,求a 的取值范围.【参考答案】一、解答题1.(1)22ln 2ln 2a a --+ (2)2a = 【解析】 【分析】(1)求导求解单调性即可求出最值;(2)要使()0f x ≤成立必须()22ln 2ln 20a a a ϕ=--+≤,求单调性求解即可. (1)因为()()2ln 0f x a x ax a =+->,所以()()20axf x a x-'=>, 由()0f x '>得20x a<<;()0f x '<得2x a>;所以()f x 在20,a ⎛⎫ ⎪⎝⎭上单调递增,在2,a ⎛⎫+∞ ⎪⎝⎭上单调递减,故()222ln 2ln 2maxf x f a a a ⎛⎫==--+ ⎪⎝⎭,即()()22ln 2ln 20a a a a ϕ=--+>. (2)要使()0f x ≤成立必须()22ln 2ln 20a a a ϕ=--+≤, 因为()2a a aϕ-'=,所以当02a <<,()0a ϕ'<;当2a >时,()0a ϕ'>. 所以()a ϕ在()0,2上单调递减,在()2,+∞上单调递增. 所以()()20min a ϕϕ==,所以满足条件的a 只有2,即2a =. 【点睛】用导数求函数的单调区间或判断函数的单调性问题时应注意如下几方面: (1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域; (2)不能随意将函数的2个独立的单调递增(或递减)区间写成并集形式; (3)利用导数解决含参函数的单调性问题时,一般将其转化为不等式恒成立问题,解题过程中要注意分类讨论和数形结合思想的应用. 2.(1)答案见解析 (2)31a e ≤-【解析】 【分析】(1)由()()110ax f x a x xx+=+=>',按0a ≥,0a <进行分类讨论求解; (2)由已知,转化为()()max max f x g x <,由已知得()()max 12g x g ==,由此能求出实数a 的取值范围. (1)()(]110ax f x a x x x+'=+=>, ①当0a ≥时,由于0x >,故10ax +>,()0f x '>, 所以()f x 的单调递增区间为()0,∞+;②当0a <时,由()0f x '=,得1x a=-,在区间10,a ⎛⎫- ⎪⎝⎭上()0f x '>,在区间1,a∞⎛⎫-+ ⎪⎝⎭上()0f x '<,所以,函数()f x 的单调递增区间为10,a ⎛⎫- ⎪⎝⎭,单调递减区间为1,a∞⎛⎫-+ ⎪⎝⎭;(2)由题目知,只需要()()max max f x g x <即可又因为()()max 12g x g ==,所以只需要()max 2f x <即可()max 2f x <即等价于()2f x <恒成立,由变量分离可知2ln xa x-<,[]1,100x ∈,令()2ln xh x x -=,下面求()h x 的最小值, 令()23ln xh x x-+'=,所以()0h x '=得3x e =, 所以()h x 在31,e ⎡⎤⎣⎦为减函数,3,100e ⎡⎤⎣⎦为增函数, 所以()()33min 1h x h e e -==,所以31a e ≤-. 3.(1)答案见解析 (2)211e b ≤-【解析】 【分析】(1)先讨论()f x 的单调性再确定()f x 在()1,e 上的极值(2)利用极值点处的导数为求出1a =,代入恒成立的不等式中,用分离参数法求b 的取值范围 (1)在区间()0,∞+上, ()11ax f x a xx-'=-=, 当0a ≤时, ()0f x '<恒成立, ()f x 在区间()1,e 上单调递减, 则()f x 在区间()1,e 上无极值; 当0a >时,令()0f x '=得1x a=,在区间10,a ⎛⎫⎪⎝⎭上,()0f x '<,函数()f x 单调递减,在区间1,a ⎛⎫+∞ ⎪⎝⎭上,()0f x '>,函数()f x 单调递增.若11e a <<,即11e a<<,则()f x 在区间()1,e 上极小值1ln f a a ⎛⎫= ⎪⎝⎭若1a ≥或10ea <≤,即11a≤或1e a≥,则()f x 在区间()1,e 上无极值 (2)因为函数()f x 在1x =处取得极值,所以()10f '=,解得1a =,经检验可知满足题意 由已知()2f x bx ≥-,即1ln 2x x bx --≥-, 即1ln 1+xb xx-≥对()0,x ∀∈+∞恒成立, 令()1ln 1x g x xx =+-,则()22211ln ln 2x x g x x x x-='---=, 当()20,e x ∈时,()0g x '<;当()2e ,x ∈+∞时,()0g x '>所以()g x 在()20,e 上单调递减,在()2e ,+∞上单调递增,所以()()22min 1e 1e g x g ==-, 即211e b ≤-. 4.(1)证明见解析 (2)02m <≤ 【解析】 【分析】(1)令()11ln 2f x x x x ⎛⎫=-- ⎪⎝⎭,利用导数证明当1x >时,()0f x <,即可得到12ln x x x<-. 用分析法证明()()G a b L a b <,,.(2)把题意转化为1112ln a a b m a b b -⎛⎫⋅+ ⎪⎝⎭恒成立.令)1t t =>,即为1ln 01t m t t -⋅-<+恒成立.令()()1ln 11t g t m t t t -=⋅->+,分2m >和02m <≤两种情况求出正实数m 的取值范围. (1)令()11ln 2f x x x x ⎛⎫=-- ⎪⎝⎭,定义域为()0,+∞. 则()()222221111212222x x x f x x x x x ---'=--==-. 所以当1x >时,()0f x '<,()f x 在()1,+∞上单调递减. 又()10f =,所以当1x >时,()0f x <.所以当1x >时,11ln 2x x x ⎛⎫<- ⎪⎝⎭,即12ln x x x<-.(*)要证()()G a b L a b <,,ln ln a ba b--,只需证ln a b <令)1t t =>,则由(*),得12ln t t t <-.所以()()G a b L a b <,,.(2)由()()(),,,G a b A a b m L a b +<⋅恒成立,得ln ln 2a b a b m a b -+⋅-恒成立,即1112ln a a b m a b b-⎛⎫⋅<+ ⎪⎝⎭恒成立.令)1t t =>,由()221112ln 2t m t t t -⋅<++恒成立,得()1112ln 2t m t t -⋅<+恒成立. 所以1ln 01t m t t -⋅-<+恒成立. 令()()1ln 11t g t m t t t -=⋅->+,则 ()()()()()()222222121121111mt t t m t g t m t t t t t t-+-+--'=⋅-==++⋅+⋅. (注:()10g =) i.当0∆>,即2m >时,易知方程()22110t m t -+--=有一根1t 大于1,一根2t 小于1,所以()g t 在()11,t 上单调递增.所以()()110g t g >=,不符合题意. ii.当02m <≤时,有()()()222214110mt t t t t -+≤-+=--<, 所以()0g t '<,从而()g t 在()1,+∞上单调递减. 故当1t >时,恒有()()10g t g <=,符合题意. 综上可知,正实数m 的取值范围为02m <≤. 【点睛】导数的应用主要有:(1)利用导函数几何意义求切线方程;(2)利用导数研究原函数的单调性,求极值(最值); (3)利用导数求参数的取值范围. 5.(1)2()1f x x =+或1()21f x x =-;(2)12n nb =. 【解析】 【分析】(1)求出导函数,然后列方程组求得,a b ,得函数解析式; (2)由(1)得2()1f x x =+,求出{}n a 的递推关系,从而得出{}n b 的递推式,得其为等比数列,从而易得通项公式. (1)由题意22()(1)ab f x ax '=--,所以2(1)11(0)22b f a f ab ⎧==⎪-⎨⎪=-=-⎩',解得11a b =-⎧⎨=-⎩或212a b =⎧⎪⎨=⎪⎩,所以2()1f x x =+或1()21f x x =-;(2)0a <,则2()1f x x =+, 11n n a f a +⎛⎫= ⎪⎝⎭22111n n n a a a ==++,11111222n n n n a a a a ++==+,11111(1)2n n a a +-=-, 11n n b a =-,则112n n b b +=,又111112b a =-=,所以{}n b 是等比数列,1111()222n n nb -=⨯=. 6.(1)(,1].-∞ (2)证明见解析 【解析】 【分析】(1)1x ≥,()0ln 0a f x x a x ≥⇔-+≥,设()ln (1)ag x x a x x=-+≥,求导得221()a x ag x x x x-'=-=,分1a ≤与1a >两类讨论,即可求得a 的取值范围;(2)当1a =时,方程()f xb =有两个不相等的实数根1x ,2x ,不妨设12x x <,则1201x x <<<,要证121x x ⋅<,只需证2111x x <<,而12()()f x f x =,只需证明111()()f x f x <,再构造函数,设1()()()(01)F x f x f x x=-<<,通过求导分析即可证得结论成立. (1)1x ≥,()0f x ∴≥,即ln 0ax a x-+≥, 设()ln (1)ag x x a x x=-+≥,221()a x ag x x x x -'=-=,当1a ≤时,()0g x '≥, ()g x ∴在[1,)+∞上单调递增,()(1)0g x g ∴≥=,满足条件;当1a >时,令()0g x '=,得x a =,当1x a <≤时,()0g x '<;当x a >时,()0g x '>,()g x ∴在区间[1,]a 上单调递减,在区间[,)a +∞上单调递增,min ()()ln 1g x g a a a ∴==-+,()(1)0g a g ∴<=,与已知矛盾.综上所述,a 的取值范围是(,1].-∞ (2)证明:当1a =时,()ln f x x '=,则()f x 在区间(0,1]上单调递减,在区间[1,)+∞上单调递增,由方程()f x b =有两个不相等的实数根12,x x , 不妨设12x x <,则1201x x <<<,要证121x x ⋅<,只需证2111x x <<,()f x 在区间[1,)+∞上单调递增,只需证121()()f x f x < 又()()12f x f x =,∴只需证明111()()f x f x <,设1()()()(01)F x f x f x x =-<<,则22211()ln ln ln 0x F x x x x x x-'=-=>,()F x ∴在区间(0,1)上单调递增,()(1)0F x F ∴<=,1()()0f x f x∴-<,即111()()f x f x <成立, ∴原不等式成立,即121x x ⋅<成立.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用. 7.(1)递增区间为2(e ,)-+∞,递减区间为2(0,e )-,极小值为2e --,没有极大值 (2)3 【解析】 【分析】(1)由导数分析单调性后求解 (2)参变分离后,转化为最值问题求解 (1)函数()()1ln f x x x =+的定义域为(0,)+∞, 由()=ln 2f x x '+,令()=0f x '可得2e x -=,当2(0,)e x -∈时,()0f x '<,函数()()1ln f x x x =+在2(0,e )-上单调递减, 当2(e ,)x -∈+∞时,()0f x '>,函数()()1ln f x x x =+在2(e ,)-+∞上单调递增, ∴ 函数()()1ln f x x x =+的递增区间为2(e ,)-+∞,递减区间为2(0,e )-,函数()()1ln f x x x =+在2e x -=时取极小值,极小值为2e --,函数()()1ln f x x x =+没有极大值 (2)当()1,x ∈+∞时,不等式()()1m x f x -<可化为ln 1x x xm x +<-,设ln ()1x x xg x x +=-,由已知可得[]min ()g x m <, 又()()()22ln 2(1)ln 2'ln 11()x x x x g x x x x x x +---==----, 令()ln 2(1)h x x x x =-->,则1'()10h x x=->,∴ ()ln 2h x x x =--在()1,+∞上为增函数,又(3)1ln30h =-<,(4)2ln 40h =->, ∴ 存在0(3,4)x ∈,使得0()0h x =,即002ln x x -= 当()01,x x ∈时,()0g x '<,函数ln ()1x x xg x x +=-在0(1,)x 上单调递减, 当0(,)x x ∈+∞时,()0g x '>,函数ln ()1x x xg x x +=-在0(,)x +∞上单调递增, ∴ []20000000min 00ln ()=()==11x x x x x g x g x x x x +-=--, ∴ 0m x <, ∴ m 的最大值为3.8.(1)单调减区间为(0,1),单调增区间为(1,)+∞ (2)0a < 或2e a = 【解析】 【分析】(1)求导,因为函数()f x 再1x =处取得极值,所以f '(1)0=,解得a ,进而可得函数()f x 的解析式,再求导,分析函数()f x 的单调性.(2)分类讨论,利用导数判断函数的单调性,根据函数的零点个数,确定函数的最值情况,从而求得答案. (1)()ln 2,(0)f x ax x x x =->,()ln 2f x a x a '=+-,因为函数()f x 在1x =处取得极值, 所以(1)ln120f a a '=+-=, 所以2a =,所以()2ln 2f x x x x =-,()2ln f x x '=,故当01x <<时,所以()0f x '<,函数单调递减, 当 1x >时,()0f x '>,函数单调递增,所以函数()f x 在1x =处取得极小值,所以实数a 的值为2, 函数()f x 的单调减区间为(0,1),单调增区间为(1,)+∞. (2)当0a = 时,22()()2f x h x x x x=-+=-,而0x > ,此时函数无零点,不合题意; 当0a <时,22()()2ln f x h x x a x x x =-+=-,()20,(0)ah x x x x'=-<> , 函数2()ln h x a x x =-单调递减,作出函数2ln ,y a x y x == 的大致图象如图:此时在2ln ,y a x y x ==的图象在(0,1) 内有一个交点,即2()ln h x a x x =-在(0,1)有一个零点;当0a >时,22()2,(0)a a x h x x x x x-'=-=>, 当02a x <<时,22()0a x h x x-'=>,函数2()ln h x a x x =-递增, 当2a x >时,22()0a x h x x-'=<,函数2()ln h x a x x =-递减, 故2max ()()ln ()222a a ah x h a ==- , 作出函数2()ln h x a x x =-的大致图象如图此时要使函数2()()2=-+f x h x x x 有1个零点,需使得2max ()()022a ah x a ==, 即022a aa =,解得2e a = , 综合上述,可知求a 的取值范围为0a < 或2e a = . 【点睛】本题考查了利用导数求函数的单调区间以及函数零点问题,解答时要明确函数的单调性以及极值和导数之间的关系,解答的关键是分类讨论,利用导数判断函数单调性,确定函数零点有一个的处理方法.9.(1)选择①不存在,理由见解析;选择②存在,理由见解析(2)[)1,+∞【解析】【分析】(1)若选择①,则()1x f x e x '=--,令()1x q x e x =--,由于()q x '在R 上单调递增,且()00f '=,从而可求出求出()f x '的单调区间,进而可求出()f x '的最小值非负,则()f x 无极值;若选择②,则()22x f x e x '=--,令()22x n x e x =--,由()n x '在R 上单调递增,且()ln 20n '=,可得()f x '的单调区间,从而得其最小值小于0 ,进而可判断函数的极值,(2)令()0g x =,则可得()()()1ln 1ln ln 0x x mx e x mx e x mx mx----+=--=⎡⎤⎣⎦,令()ln t x mx =-,即转化为10t e t --=有解,构造函数()1t h t e t -=-,由导数可得()1t h t e t -=-由唯一零点1t =,从而将问题转化为()1ln x mx =-在()0,∞+有解,即1ln ln m x x +=-,再构造函数()ln l x x x =-,利用导数求出函数的值域可得1ln m +的范围,从而可求出实数m 的取值范围(1)若选择①12m =,则()()2112x f x e x =-+,则()1x f x e x '=--. 令()1x q x e x =--,则()1x q x e '=-,由()q x '单调递增,且()00q '=,得()0q x '>在()0,∞+上恒成立,所以()f x '在()0,∞+上单调递增, 所以当()0,x ∈+∞时,()()00f x f ''>=,则()f x 在()0,∞+上单调递增,不存在极小值点.若选择②1m =,则()()21x f x e x =-+,则()22x f x e x '=--.令()22x n x e x =--,则()2x n x e '=-,()n x '单调递增,且()ln 20n '=,所以()f x '在()0,ln 2上单调递减,()ln 2,+∞上单调递增.又()ln 22ln 20f '=-<,()2260f e '=->,所以存在()0ln 2,2x ∈,满足()00f x '=.则()f x 在()00,x 上单调递减,在()0,x +∞上单调递增,所以()f x 存在极小值点0x .(2)令()0g x =,则()12ln 0x e mx mx mx --+=.又0mx >,所以()()()()()11ln 1ln ln ln ln 0x x x mx mx e e x mx x mx e x mx mx e-----+=-+=--=⎡⎤⎣⎦. 令()ln t x mx =-,即可转化为10t e t --=有解.设()1t h t e t -=-,则由()110t h t e -'=-<可得1t <,则()h t 在(),1t ∈-∞上单调递减,在()1,t ∈+∞上单调递增.又()10h =,所以()1t h t e t -=-有唯一的零点1t =.若()g x 在区间()0,∞+上存在零点,则()1ln x mx =-在()0,∞+有解.整理得. 设()ln l x x x =-,由()11l x x '=-,知()l x 在()0,1x ∈上单调递减,在()1,x ∈+∞上单调递增,又当0x +→时,()l x →+∞,则()()11l x l ≥=,所以1ln 1m +≥,得1m ≥.故实数m 的取值范围是[)1,+∞.【点睛】关键点点睛:此题考查导数的应用,考查利用导数解决零点问题,解题的关键是由()0g x =可得()()ln 1ln 0x mx e x mx ----=⎡⎤⎣⎦,令()ln t x mx =-,将问题转化为10t e t --=有解,构造()1t h t e t -=-利用导数讨论其解的情况即可,考查数学转化思想和计算能力,属于较难题10.(1)在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增 (2)1,e ⎛⎫+∞ ⎪⎝⎭ 【解析】【分析】(1)求导,根据定义域和a 的范围,讨论导数符号可得单调区间; (2)由(1)中单调性可得函数最小值,由最小值大于0可解.(1)函数()f x 的定义域为()0+∞,, ()()()222231323'2ax ax a x ax f x a x a x x x +-+-=+-== 由于0a >且()0x ∈+∞,,所以230ax +>,令()'0f x =,解得1x a=, 当10x a ⎛⎫∈ ⎪⎝⎭,,()'0f x <,函数()f x 单调递减, 当1x a ⎛⎫∈+∞ ⎪⎝⎭,,()'0f x >,函数()f x 单调递增, ()f x ∴在10a ⎛⎫ ⎪⎝⎭,上单调递减,在1a ⎛⎫+∞ ⎪⎝⎭,上单调递增.(2)要使()y f x =的图像与x 轴没有公共点,所以只需min ()0f x >即可,由(1)知min 111()113ln 133ln 33ln 0f x f a a a a ⎛⎫==+-+=-=+> ⎪⎝⎭, 解得1e >a ,即a 的取值范围为1(,)e +∞。

(完整版)高考导数专题(含详细解答)

(完整版)高考导数专题(含详细解答)

导数及其应用导数的运算1. 几种常有的函数导数:①、 c( c 为常数); ②、( x n )( n R ); ③、 (sin x) = ;④、 (cos x) =;⑤、( a x ); ⑥、 ( ex); ⑦、 (log a x ) ; ⑧、 (ln x ).2. 求导数的四则运算法规:(u v)u v ; (uv) u vu'u v ' uv 'u ( v0 ) 注:① u, v 必定是可导函数 .uv ; (u)vuvvvv 223. 复合函数的求导法规:f x ( ( x))f (u) ? ( x) 或 y xy u ? u x一、求曲线的切线(导数几何意义)导数几何意义: f (x 0 ) 表示函数 y f (x) 在点 ( x 0 , f (x 0 ) )处切线 L 的斜率;函数 y f (x) 在点 ( x 0 , f (x 0 ) )处切线 L 方程为 y f (x 0 )f (x 0 )(x x 0 )1. 曲线在点 处的切线方程为( )。

A:B:C:D:答案详解 B 正确率 : 69%, 易错项 : C解析 :本题主要观察导数的几何意义、导数的计算以及直线方程的求解。

对 求导得,代入 得 即为切线的斜率, 切点为,因此切线方程为即。

故本题正确答案为B 。

2.3. 设函数f ( x) g( x) x2,曲线 y g(x) 在点 (1,g(1)) 处的切线方程为 y 2x 1,则曲线 y f ( x) 在点 (1, f (1))处切线的斜率为( )A .41C.21B . D .4 24. 已知函数 f ( x) 在R上满足 f ( x) 2 f (2 x) x28x 8,则曲线y f (x) 在点 (1, f (1)) 处的切线方程是()A . y2x 1 B. y x C. y3x 2 D. y2x 3变式二:5. 在平面直角坐标系xoy 中,点P在曲线C : y x310 x 3 上,且在第二象限内,已知曲线 C 在点 P 处的切线的斜率为 2,则点 P 的坐标为.6. 设曲线 yx n 1 (n N * ) 在点( 1,1)处的切线与 x 轴的交点的横坐标为 x n ,令 a n lg x n ,则 a 1 a 2 L a 99 的值为.7. 已知点 P 在曲线 y=4 上, 为曲线在点 P 处的切线的倾斜角,则的取值范围是e x1, 3]D 、 [ 3,A 、 [0, )B 、 [, ) C 、 ( )44 22 4 4变式三:8. 已知直线y =x+ 1 与曲线y ln( x a) 相切,则α的值为( )A . 1 B. 2 C. - 1 D. - 29. 若存在过点 (1,0)的直线与曲线 yx 3 和 y ax 2 15 x 9 都相切,则 a 等于4( )A . 1或 -25B . 1或21C . 7 或 - 25D .7或 76444 6441 110. 若曲线 yx 2 在点 a, a 2 处的切线与两个坐标围成的三角形的面积为18,则 aA 、64B 、 32C 、 16D 、811. (本小题满分 13 分) 设 f ( x)ae x 1b( a 0) . ( I )求 f ( x) 在 [0, ) 上的最小值;ae x3x ;求 a,b 的值 .( II )设曲线 yf ( x) 在点 (2, f (2)) 的切线方程为 y212. 若曲线 f x ax2Inx 存在垂直于y轴的切线,则实数 a 的取值范围是.二、求单调性或单调区间1、利用导数判断函数单调性的方法:设函数y f (x) 在某个区间 D 内可导,若是 f ( x) >0,则y f (x) 在区间D上为增函数;若是 f ( x) <0,则y f (x) 在区间 D 上为减函数;若是 f ( x) =0恒成立,则y f (x) 在区间 D 上为常数 .2、利用导数求函数单调区间的方法:不等式 f ( x) >0的解集与函数y f (x) 定义域的交集,就是y f ( x) 的增区间;不等式 f ( x) <0的解集与函数y f (x) 定义域的交集,就是y f (x) 的减区间 .1、函数f (x) ( x 3)e x的单调递加区间是( )A . ( ,2) B. (0,3) C. (1,4) D . (2, )2. 函数f (x)x315x233x 6 的单调减区间为.3. 已知函数,,谈论的单调性。

(完整版)数学导数练习(高考题含答案),推荐文档

(完整版)数学导数练习(高考题含答案),推荐文档
(Ⅰ)当 a=1,b=2 时,求曲线 y=f(x)在点(2,f(2))处的切线方程; (Ⅱ)设 x1,x2 是 f(x)的两个极值点,x3 是 f(x)的一个零点,且 x3≠x1,x3≠x2.
证明:存在实数 x4,使得 x1,x2,x3,x4 按某种顺序排列后构成等差数列,并求 x4. (4)解 : (Ⅰ)解:当 a=1,b=2 时,
当 x (, 2 3) 时 f (x) 0, f (x) 在 (, 2 3) 单调增加; 当 x (2 3, 2 3) 时 f (x) 0, f (x) 在 (2 3, 2 3) 单调减少; 当 x (2 3, ) 时 f (x) 0, f (x) 在 (2 3, ) 单调增加;
所以曲线 y f (x)在 (1, f (I)) 处的切线方程为 3x--2y=0 .
2a (II)解:令 f '(x) 0 ,解得 x1 0, x2 3 .
2a 当 0 ,即 a≤0 时, f (x) 在[0,2]上单调递增,从而
3
fmax f (2) 8 4a .
2a 当 2 时,即 a≥3 时, f (x) 在[0,2]上单调递减,从而
(2)解 :
3、
已知函数 f (x) ax3 x2 bx (其中常数 a,b∈R), g(x) f (x) f (x) 是奇函数.
(Ⅰ)求 f (x) 的表达式;
(Ⅱ)讨论 g(x) 的单调性,并求 g(x) 在区间[1,2]上的最大值和最小值.
(3)解 :
4、
已知函数 f(x)=( x -a)²(x-b)(a,b∈R,a<b).
2
(Ⅰ)若 a=1,求曲线 y=f(x)在点(2,f(2))处的切线方程;
11 (Ⅱ)若在区间 , 上,f(x)>0 恒成立,求 a 的取值范围.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(I)讨论函数 f ( x) 的单调性;
(II )证明:若 a 5,则对任意 x1, x2
(0,
), x1
x 2 ,有
f ( x1 ) x1
f (x2 ) x2
1.
10.已知函数 f ( x) 1 x2 a ln x, g( x) ( a 1)x , a 1. 2
(I)若函数 f ( x ), g( x) 在区间 [1,3] 上都是单调函数且它们的单调性相 同,求实数 a 的取值范围;
x3 6 x 2 9 x 3 x 2 4 x 3 5x m 有三个不等实
根,即: g x x3 7 x 2 8 x m 与 x 轴有三个交点;
g x 3x2 14x 8 3x 2 x 4 ,
2
x
, 3
2
3
2
,4 3
4
4,
gx +
0
-
0
+
gx

极大值 减
极小值 增
g 2 68 m, g 4 16 m .
0b 1)(3x
2a 3 2a 3),
由 f ( x) 0
大值,
x 1或 x
2a 3 ,因为当 x
3
2a 3
所以
1a
3
3 ,所以
a的取值范围是 : ( , 3) ;
1 时取得极
x ( ,1)
f ( x)
+
1
2a 3
(1,
)
3
2a 3 3
2a 3
(
,)
3
0
-
0
-
极小值
f ( x)
递增
极大值 a2
递减
a
(II )①当 k 0时 ,函数 y ln( x
象有公共点,
∴函数 f ( x) 有零点,不合要求;
1) 图象与函数 y
k( x 1) 1图


k 0时

所以 f ' ( x) 2x 4 设 g (x) 2x 2 4x
2a x
2a
2x 2 4x 2 a , x
当 a 0时,有 △=16+4×2 ( 2 a ) 8a 0 ,
d3
3a 2b c 3a
…( 4 分)
(II )依题意 f ' (2)
2b 0
3 且 f (2)
c0
5
数为 ………
12a 4b 3a 2b 3 8a 4b 6a 4b 3 5
解得 a 1, b 6
所以 f ( x) x 3 6 x2 9 x 3
………… (8 分)
( III ) f ( x) 3 x2 12 x 9 . 可 转 化 为 :
k1

f ( x) 0, 得 x

k
k1
1
∵ x (1, )时, f (x) 0, x (1 ,
k
k

)时, f ( x) 0
1
1
∴ f ( x) 在(1,1 ) 内是增函数, 在[1 ,
k
k
) 上是减函数,
1 ∴ f ( x) 的最大值是 f (1 )
k
ln k ,
∵函数 f ( x) 没有零点,∴ ln k 0 , k 1 ,

3 27
……… (10 分)
1
陈先槟
2 当且仅当 g
3
个交点,
68 m 0且g 4 27
16 m 0 时,有三
故而, 16
m
68
为所求.
27
分)
…………( 12
a(1 x)
2.解:(I) f ' ( x)
( x 0)
x
(2 分)
当 a 0时, f ( x)的单调增区间为 0,1 , 减区间为 1,
( II )若 a (1, e] (e 2.71828L ) ,设 F ( x) f ( x) g( x) ,求证:当
x1, x2 [1,a] 时,不等式 | F (x1) F (x2 ) | 1 成立.
11.设曲线 C : f ( x) ln x ex ( e 2.71828 ), f (x) 表 示 f ( x) 导函数.
的取值范围.
1 f (x) 5x 3
m的
2.已知函数 f ( x) a ln x ax 3( a R) .
(I)求函数 f ( x) 的单调区间;
( II ) 函 数 f ( x ) 的 图 象 的 在 x
4 处切线的斜率为 3, 若函数 2
g( x) 1 x3 3
范围.
x2[ f ' ( x)
m ] 在区间( 1,3)上不是单调函数,求 m 的取值 2
f ( 2) 8 36 30 f ( x)的最大值是 f (1)
74, f (1) 7,
7, f ( 2)
8 36 30 2 5.解:(I )当 k 1 时, f ( x)
2
2x x1
陈先槟
f (x ) 定义域为( 1,+ ),令 f ( x) 0, 得 x 2 ,
∵当
综上所述,函数 f ( x) 的单调增区间是( 4, +∞),单调减区间是 (0,4]
a
a
若 (1 ln )
2
2
在两个零点;
综上所述, y
0 ,即 a 2e 时,函数 y g( x) 在区间 (1, ea ) 存 g( x) 在 (1,ea ) 上,我们有结论:
当 0 a 2e时,函数 f ( x) 无零点;
当 a 2e 时,函数 f ( x) 有一个零点;
当 a 2e 时,函数 f ( x) 有两个零点.
R ,求证:
| f (2sin ) f (2 sin ) | 81.
f (x) e x 4.已知常数 a 0 , e 为自然对数的底数,函数
x ,
g(x) x2 aln x .
(I )写出 f ( x) 的单调递增区间,并证明 ea a ;
(II )讨论函数 y g (x) 在区间 (1, ea ) 上零点的个数.
此时 g( x) 0 ,所以 f '( x) 0 , f (x ) 在 [ e, e2 ] 上单调递增,
f ( x) 1 k 1 k kx
x1
x1
……… (6 分)
1k
k(x
)
k
x1
………
所以 f ( x)min f (e) e2 4e 2 a 当 a 0 时,△ =16 4 2(2 a ) 8a 0 , 令 f '(x) 0 , 即 2x2 4x 2 a 0 , 解 得
x (1,2)时, f ( x) 0 ,当 x (2, )时, f (x) 0 ,
(Ⅱ)在 x [e,e 2] 时, f ( x) x 2 4 x (2 a ) ln x
∴ f ( x) 在(1,2) 内是增函数, 在 (2, ) 上是减函数
∴当 x 2 时, f ( x) 取最大值 f (2) 0
f (x ) min f ( e2 ) e4 4e 2 4 2a .
6. 解:( I)由 f ( x) ( x2 ax 2a 3)ex 可得
(I )求实数 a 的取值范围;
(II )若 f (x) 是 f ( x) 的导函数, 设 g( x)
2 f ( x) 6 x2 ,试证明:
对任意两个不相等正数 立.
x1、 x2 ,不等式 | g( x1 ) g(x2) | 38 | x1 x2 | 恒成
27
9.已知函数 f (x ) 1 x 2 ax (a 1) ln x, a 1. 2
(0, ) , ………… (2 分) ∵ a 0 , ∴ f (a) f (0) 1 , ∴ ea a 1 a , 即 ea a . ………… (4 分)
a 2( x (II ) g((5x分) ) 2x x
2a
得x
,列表
2
2a )( x
2 x
2a )
2 ,由 g ( x) 0 ,
当x 4)x 2
2a 时 , 函 数 y g(x) 取 极 小 值
III )当 x, y N * 且 x y 时,求证 F ( x, y) F ( y, x) .
答案
1.解 :函数
f ( x) 的 导 函
f ' ( x) 3ax 2 2bx c 3a 2b ………… (2 分)
(I)由图可知 函数 f ( x) 的图象过点( 0, 3),且 f ' (1) 0

d3
当 a 0时, f ( x)的单调增区间为 1, ,减区间为 0,1 ;
当 a=1 时, f ( x) 不是单调函数

II

f ' ( 4)
3a 3 得a 42
2, f ( x)
2ln x 2x 3
g( x)
1 x3
m (
2)x 2
2 x,
g'( x)
x2
(m
3
2
(6 分)
g( x)在区间 (1,3)上不是单调函数 ,且 g ' (0) 2
6 (2a
3) 2
27
递增
(II )由下表:
a
依题意得:
6 (2a
3) 2
27
( 2a 3)2 ,解得: a 9
9
所以函数 f ( x) 的解析式是: f ( x) x3 9x2 15x
(III )对任意的实数 , 都有
2 2 sin 2, 2 2 sin 2,
在区间 [-2 , 2]有:
g ( x) -
2 7.已知函数 f (x ) x2 4x (2 a )ln x,( a R,a 0) (I)当 a=18 时,求函数 f ( x) 的单调区间; (II)求函数 f ( x) 在区间 [ e, e2 ] 上的最小值.
相关文档
最新文档