示波管及工作原理

合集下载

简述示波管工作原理

简述示波管工作原理

简述示波管工作原理
示波管,也被称为阴极射线管(CRT),是一种用于生成电子图像的电子器件。

它广泛应用于电视、计算机显示器、雷达示波器等领域。

示波管工作原理基于电子枪、偏转系统、聚焦系统、输入信号和同步系统等多个部分协同作用。

1.电子枪
电子枪是示波管的核心部分,它位于管子的颈部,负责产生电子束打到屏幕上的荧光物质上,形成电子图像。

电子枪主要包括灯丝、阴极、控制极和阳极等部分。

当灯丝通电后,阴极发射出电子,这些电子在阳极的高电压作用下加速飞出,形成高速电子束打到屏幕上的荧光物质上。

2.偏转系统
偏转系统是示波管的重要组成部分,它主要由垂直和水平两对线圈组成。

偏转系统的任务是控制电子束在屏幕上的扫描路径。

在垂直和水平线圈的控制下,电子束会按照特定的路径在屏幕上进行扫描。

3.聚焦系统
聚焦系统的作用是调整电子束的形状和大小,使电子束能够精确地打到荧光物质上,从而形成清晰、精细的图像。

聚焦系统通常由透镜和线圈组成,通过调节透镜的位置和线圈的电流来改变电子束的形状和大小。

4.输入信号
示波管的输入信号可以是电压、电流或其他电信号。

这些信号会被转换为电子束打到屏幕上的位置。

在示波管中,输入信号通常通过一个耦合电容或一个电感分压器将其转换为合适的电压水平,然后加到垂直和水平放大器上进行放大,从而控制电子束在屏幕上的位置。

5.同步系统
同步系统是示波管中不可或缺的一部分,它主要由一个或多个同步信号发生器组成。

同步系统的任务是确保电子束在屏幕上扫描的每一个瞬间与输入信号相对应。

示波管的原理

示波管的原理

第17课时 示波管的原理知识内容:一、示波管的结构及原理:1、用途:观察电信号随时间变化的情况。

2、结构:由_________、____________和____________组成,管内抽成真空。

如图所示。

电子枪:产生高速高速飞行的一束电子;偏转电极:使粒子左右偏转和上下偏转;荧光屏:显示粒子打在屏上的位置。

3、工作原理:(1)在X X '和Y Y '都不加电压,电子从极板小孔射出后做匀速直线运动,打在屏中央,产生一个亮斑。

(如上图)(2)在X X '上不加电压,只在Y Y '上加电压,电子在Y Y '电场中偏转,出电场后沿直线运动,亮斑在Y Y '方向偏转y ',22l L l y y +='; 所以:)2(20L l d mv qUl y +='; 有:U y ∝' ; 改变加在Y Y '上电压,亮斑在竖直位置也改变。

若t U U m ωs i n=,则t y y m ωs i n '=',亮斑沿Y Y '上下移动,U 变化 很快,亮斑移动很快,看起来是一条亮线。

(3)如果只在X X '上加电压,亮斑在水平方向发生偏移,U 变化,亮斑沿水平变化, U x ∝', 加上如图的扫描电压:亮斑从一侧匀速运动到另一侧,又迅速返回原处, 又匀速扫到另一侧。

若扫描电压变化很快,亮斑看起来为一条亮线。

(4)通常在电极Y Y '上加要研究的信号电压,在X X '上加扫描电压,如果它们周期相同,荧光屏上就显示出信号电压随时间变化的曲线。

二、课堂练习:1、某示波器在XX ′、YY ′不加偏转电压时光斑位于屏幕中心,现给其加如图所示偏转电 压,则在光屏上将会看到下列哪个图形(圆为荧光屏,虚线为光屏坐标)()2、如图所示是一个说明示波管工作原理的示意图,电子经电压 U 1加速后以速度0v 垂直进入偏转电场,离开电场时的偏转量 是h 。

示波管的原理和应用

示波管的原理和应用

示例波管的原理和应用1. 示波管的原理示波管是一种用于显示电信号波形的电子器件。

它根据电子束的扫描和偏转方式,可以显示出电信号的幅度、频率和时间等信息。

示波管的原理基于电子束在电场和磁场的作用下发生偏转和扫描,从而在荧光屏上形成波形。

1.1 热阴极电子发射示波管的基本原理之一是利用热阴极产生电子发射。

热阴极通电后,由于阴极丝受热,阴极表面所包含的电子获得足够的能量,克服阴极表面的束缚力而被发射出来。

1.2 电子束的偏转和扫描示波管中,电子束通过电场和磁场的作用实现偏转并完成扫描。

在水平方向上,通过施加电压使电子束水平偏转,从而在荧光屏上显示出时间的变化;在垂直方向上,通过施加垂直偏转电压使电子束垂直偏转,从而在荧光屏上显示出电信号的幅度。

1.3 荧光屏的显示荧光屏是示波管屏幕的一部分,它能够发光。

当电子束扫描到荧光屏上时,被激发的荧光屏发出可见光,形成波形图案。

2. 示波管的应用示波管在电子领域有着广泛的应用,以下是几个常见的应用场景:2.1 电路故障排除示波管能够显示电路信号的波形,因此在电路故障排除过程中非常有用。

通过观察示波管上的波形图案,可以判断故障出现的位置和原因,从而快速修复电路故障。

2.2 波形显示和分析示波管可以用于观察和分析各种电信号的波形特征,包括电压波形、频率波形、脉冲波形等。

这对于电子工程师来说非常重要,可以帮助他们设计和调试电路。

2.3 数据采集和记录示波管可以与数据采集设备配合使用,实现对电信号的实时采集和记录。

这在科学实验、工业监测等领域具有重要意义,可以帮助人们收集并分析大量的数据。

2.4 示教和演示示波管是电子教学和演示中常用的工具之一。

通过示波管的实时波形显示,可以直观地展示电信号的特征。

这对于教学和演示过程中的讲解和理解非常有帮助。

2.5 音频和视频设备调试示波管在音频和视频设备调试中也有广泛应用。

通过观察示波管上的波形,可以确保音频和视频信号传输的准确性和稳定性,帮助工程师完成设备调试和优化。

示波管原理高中物理

示波管原理高中物理

示波管原理高中物理示波管是一种用来显示电压变化的仪器,它在物理实验和电子技术中有着广泛的应用。

在高中物理学习中,我们也需要了解示波管的原理和工作原理。

本文将对示波管的原理进行详细介绍,希望能够帮助大家更好地理解这一知识点。

首先,我们需要了解示波管的基本结构。

示波管主要由电子枪、偏转系统和荧光屏组成。

电子枪产生的电子束通过偏转系统控制在荧光屏上显示出波形。

电子枪中的热阴极产生电子,经过加速电场加速后,进入聚焦系统进行聚焦,最后由偏转系统控制电子束在荧光屏上形成图像。

其次,我们来了解一下示波管的工作原理。

当示波管接收到电压信号时,电子束受到偏转系统的控制,在荧光屏上显示出相应的波形。

偏转系统可以控制电子束的水平和垂直方向的偏转,从而实现对电压信号波形的显示。

荧光屏上的荧光物质可以发光,将电子束轰击后产生亮点,形成波形图像。

了解了示波管的基本结构和工作原理后,我们可以进一步了解示波管的应用。

示波管可以用来显示各种不同形式的电压信号波形,例如正弦波、方波、三角波等。

通过示波管,我们可以直观地观察到电压信号的变化情况,对信号的频率、幅值、相位等进行测量和分析。

示波管还可以用来观察电路中的故障,帮助工程师进行故障诊断和维修。

在学习示波管的过程中,我们还需要了解一些示波管的参数和特性。

例如,示波管的灵敏度、带宽、扫描速度等参数都会影响到示波管的显示效果和测量精度。

了解这些参数和特性,可以帮助我们更好地选择和使用示波管,提高测量的准确性和可靠性。

总的来说,示波管作为一种重要的电子测量仪器,在物理学习和电子技术领域有着广泛的应用。

通过了解示波管的基本结构、工作原理、应用和特性,我们可以更好地理解电压信号的显示和测量,提高实验和工程实践中的测量和分析能力。

希望通过本文的介绍,大家能够对示波管有一个更深入的了解,为今后的学习和工作打下坚实的基础。

感谢大家的阅读!。

示波管的工作原理

示波管的工作原理

示波管的工作原理
示波管是一种用于显示电信号波形的仪器,它的工作原理是基于阴极射线管(CRT)的原理。

CRT是一种真空管,主要构成包括阴极、聚焦极、加速极、偏转极和荧光屏等部分。

首先,阴极受到加热而发射出电子。

这些电子经过加速极的加速,形成高速电子流。

同时,聚焦极对电子进行聚焦,使其形成一束细而密集的电子束。

接下来,电子束经过偏转极的不同偏转电压作用,可以在水平方向和垂直方向上进行精确的偏转。

通过改变偏转电压的大小和极性,可以使电子束定位在荧光屏的不同位置上。

最后,当电子束击中荧光屏时,荧光屏上的荧光物质受到电子束的激发而发光,形成一个可见的亮点或亮线。

通过控制偏转极的电压,可以在荧光屏上绘制出需要显示的波形。

可调节偏转极的电压和频率,可以实现示波管对不同频率和振幅的电信号进行显示。

此外,示波管还可以实现不同的显示方式,如单次扫描、持续扫描和外偏扫描等,以满足不同应用的需求。

总之,示波管通过利用电子束在荧光屏上的扫描显示原理,实现了对电信号波形的可视化显示。

它广泛应用于电子测量、电路故障诊断等领域。

示波管工作原理

示波管工作原理

示波管工作原理
示波管是一种电子管,由阴极、阳极和控制栅极组成。

它通过电子束在荧光屏上做定向扫描,实现对电压波形的显示。

示波管工作原理如下:
1. 阳极电压:示波管内阳极电压较高,通常为数百伏特,以加速电子,使其具有足够的能量穿过阴极孔。

2. 阴极发射电子:阴极受到加热,在高温下发射电子。

发射出的电子会尽量往阳极方向运动。

3. 聚焦电极:示波管内部有一个或多个聚焦电极,通过调整聚焦电极的电压,可以控制电子束的聚焦程度,使其呈现尖锐的扫描轨迹。

4. 垂直偏转:示波管的垂直偏转是通过控制栅极的电压来实现的。

通过改变栅极电压,可以在荧光屏上实现电子束的上下位移,从而显示不同的电压信号。

5. 水平偏转:示波管的水平偏转是通过外部电压源提供的周期性方波信号来实现的。

水平偏转电压控制电子束在水平方向上的位移速度,从而显示时间序列。

6. 荧光屏:电子束撞击荧光屏时,会引起荧光屏上的荧光粉发光,形成一条亮丝,亮丝的位置和亮度与输入的电压信号相关。

通过控制垂直和水平偏转电压,示波管可以呈现出输入信号的波形图像,用于观察和分析电压的变化。

示波管的原理与应用

示波管的原理与应用
3.1
示波管可以用来测量各种信号的幅值、频率、相位等参数。通过连接外部信号源到示波管的输入端,可以将信号的波形图案显示在荧光屏上,从而方便地进行测量和分析。
3.2
在电子设备维修过程中,示波管可以帮助工程师快速定位和排除故障。通过观察电路中各个节点的波形变化,可以判断故障发生的位置和原因,从而进行修复。
3.3
在通信系统中,示波管常用于信号调制和解调过程的显示与分析。通过观察和分析波形变化,可以评估通信系统的性能和稳定性,提高通信质量。
3.4
示波管在科学研究中也有广泛的应用。例如,在物理学实验中,示波管可以用来观察电路中的震动现象、波动现象等,从而帮助研究人员探索自然规律。
4.
示波管作为一种重要的电子仪器,在各个领域中发挥着重要的作用。本文介绍了示波管的工作原理和几个典型的应用案例,希望对读者对示波管有更深入的了解。
示例管的原理与应用
1.
示波管作为一种重要的电子仪器,广泛应用于电子测量、信号处理、波形显示等领域。本文将介绍示波管的工作原理以及其电子枪、偏转系统、荧光屏等部分组成。下面将分别介绍其工作原理。
2.1
示波管的电子枪由阴极、聚束极和阳极组成。阴极发射的电子经过聚束极的聚束作用后,形成一个电子束。
2.2
偏转系统是控制电子束在荧光屏上的位置的部分。它由偏转板和偏转电压控制器组成。通过调节偏转电压,可以实现对电子束在荧光屏上的位置进行控制。
2.3
荧光屏是示波管中的显示部分,其内部涂有荧光物质。当电子束击中荧光屏时,荧光物质会发光,从而形成波形图案。
3.
示波管作为一种重要的电子测量仪器,广泛应用于各个领域,下面将介绍几个典型的应用案例。

第一章 5 课时2 示波管原理 带电粒子在电场中的加速和偏转

第一章 5 课时2 示波管原理 带电粒子在电场中的加速和偏转

课时2示波管原理带电粒子在电场中的加速和偏转[学习目标] 1.知道示波管的主要构造和工作原理.2.了解带电粒子在电场中只受电场力作用时的两种典型运动.一、示波管原理1.示波管(阴极射线管)的构造(如图1所示).图12.电子在阴极射线管中运动的三个阶段(1)加速:电子在阴极和阳极之间形成的电场中受电场力,电场力做正功,其动能增大,阳极和阴极间电压越高,电子穿过阳极小孔时获得的速度越大.(2)偏转:电子在水平平行金属板间的匀强电场中所受电场力方向与水平初速度垂直,因此电子在水平方向做匀速直线运动,在竖直方向做初速度为零的匀加速运动.偏转电极所加电压越大,电子飞出电场时的偏转角度就越大.(3)匀速直线运动:电子射出电场后,不再受电场力作用,保持偏转角度不变,做匀速直线运动,直到打在荧光屏上,显示出荧光亮点.二、实验观察:带电粒子在电场中的偏转1.实验室里的示波管的构造如图2所示,示波管中有水平和竖直两个方向上的两对偏转电极.图22.工作原理(1)若在两对偏转电极上所加电压为零,则电子束将打在O点产生亮斑.(2)若只在偏转电极Y1、Y2上加一稳定电压,则电子束将沿y方向发生偏转.(3)若只在偏转电极X1、X2上加一稳定电压,则电子束将沿x方向发生偏转.(4)若在偏转电极X 1、X 2和Y 1、Y 2上均加了一定的电压,则亮斑既偏离y 轴又偏离x 轴. (5)若加在X 1、X 2上的电压随时间按图3甲所示的规律周期性地变化,在Y 1、Y 2上的电压随时间以正弦函数变化,则示波器显示的图形如图乙所示.图31.判断下列说法的正误.(1)带电粒子(不计重力)在电场中由静止释放时,一定做匀加速直线运动.( × ) (2)对带电粒子在电场中的运动,从受力的角度来看,遵循牛顿运动定律;从做功的角度来看,遵循能量守恒定律.( √ )(3)动能定理能分析匀强电场中的直线运动问题,不能分析非匀强电场中的直线运动问题.( × )(4)带电粒子在匀强电场中偏转时,加速度不变,粒子的运动是匀变速曲线运动.( √ ) (5)示波管电子枪的作用是产生高速飞行的电子束,偏转电极的作用是使电子束偏转,打在荧光屏不同位置.( √ )(6)若只在示波管Y 1、Y 2上加电压,且UY 1Y 2>0,则电子向Y 2方向偏转.( × )2.如图4所示,M 和N 是匀强电场中的两个等势面,相距为d ,电势差为U ,一质量为m (不计重力)、电荷量为-q 的粒子,以速度v 0通过等势面M 射入两等势面之间,则该粒子穿过等势面N 的速度应是________.图4答案v 02+2qU m解析 由动能定理有:qU =12m v 2-12m v 02,解得v =v 02+2qUm.一、示波管的原理1.示波管主要由电子枪(由发射电子的灯丝、加速电极组成)、偏转电极(由一对X偏转电极和一对Y偏转电极组成)和荧光屏组成.2.扫描电压:XX′偏转电极接入的是由仪器自身产生的锯齿形电压.3.示波管工作原理:被加热的灯丝发射出热电子,电子经加速电场加速后,以很大的速度进入偏转电场,如果在Y偏转电极上加一个信号电压,在X偏转电极上加一扫描电压,在荧光屏上就会出现按Y偏转电压规律变化的可视图像.例1(多选)示波管的构造如图5所示.如果在荧光屏上P点出现亮斑,那么示波管中的()图5A.极板X应带正电B.极板X′应带正电C.极板Y应带正电D.极板Y′应带正电答案AC解析根据亮斑的位置,电子偏向XY区间,说明电子受到电场力作用发生了偏转,因此极板X、极板Y均应带正电.二、带电粒子的加速如图6所示,平行金属板间的距离为d,电势差为U.一质量为m、带电荷量为q的α粒子,在电场力的作用下由静止开始从正极板A向负极板B运动.图6(1)比较α粒子所受电场力和重力的大小,说明重力能否忽略不计(α粒子质量是质子质量的4倍,即m=4×1.67×10-27 kg,电荷量是质子的2倍).(2)α粒子的加速度是多大(结果用字母表示)?在电场中做何种运动?(3)计算粒子到达负极板时的速度大小.(结果用字母表示,尝试用不同的方法求解)(4)若上述电场是非匀强电场,粒子经过电压为U的电场加速,(3)中方法与结果是否成立?为什么?答案 (1)α粒子所受电场力大、重力小;因重力远小于电场力,故可以忽略重力. (2)α粒子的加速度为a =qUmd .在电场中做初速度为零的匀加速直线运动.(3)方法1 利用动能定理求解. 由动能定理可知qU =12m v 2v =2qUm. 方法2 利用牛顿运动定律结合运动学公式求解. 设粒子到达负极板时所用时间为t ,则 d =12at 2 v =at a =qU md 联立解得v =2qUm. (4)方法1成立.因为动能定理对任意电场都适用; 方法2不成立.因为粒子的运动不是匀变速直线运动.1.带电粒子的分类及受力特点(1)电子、质子、α粒子、离子等基本粒子,一般都不考虑重力.(2)质量较大的微粒:带电小球、带电油滴、带电颗粒等,除有说明或有明确的暗示外,处理问题时一般都不能忽略重力.2.分析带电粒子在电场力作用下做匀变速运动的两种方法 (1)利用牛顿第二定律F =ma 和运动学公式,只适用于匀强电场. (2)利用动能定理:qU =12m v 2-12m v 02,适用于任意电场.例2 (2019·盐城市第三中学期中)如图7所示,在A 板附近有一电子由静止开始向B 板运动,则关于电子到达B 板时的速率,下列解释正确的是( )图7A .两板间距离越大,加速的时间越长,则获得的速率越大B .两板间距离越小,加速的时间就越长,则获得的速率越大C .获得的速率大小与两板间的距离无关,仅与加速电压U 有关D .两板间距离越小,加速的时间越短,则获得的速率越小 答案 C解析 根据动能定理有,qU =12m v 2,解得v =2qUm,可知获得的速率与加速电压有关,与板间距离d 无关,由于板间电压U 不变,故获得的速率不变,C 正确;由牛顿第二定律可知,qE =ma ,而E =U d ,故a =qE m =qU md ,电子在两板间做匀加速直线运动,故有d =12at 2=qUt 22md ,可得t =d 2mqU,可知两板间距离越小,加速时间越短,综合以上分析可知,A 、B 、D 错误.三、带电粒子的偏转如图8所示,带电粒子以初速度v 0垂直于电场线方向射入两平行板间的匀强电场中.图8设带电粒子的电荷量为-q 、质量为m (不计重力),平行板长为L ,两板间距离为d ,电势差为U .(1)①你认为带电粒子的运动同哪种运动类似,这种运动的研究方法是什么? ②带电粒子在电场中的运动可以分解为哪两种运动? (2)如图9所示,求射出电场的带电粒子在电场中运动的时间t .图9(3)求粒子运动的加速度.(4)求粒子射出电场时在电场力方向上的偏转距离y . (5)求粒子离开电场时速度的偏转角θ(用正切值表示).答案 (1)①带电粒子以初速度v 0垂直于电场线方向射入匀强电场时,受到恒定的与初速度方向垂直的电场力作用而做匀变速曲线运动,类似于力学中的平抛运动,平抛运动的研究方法是运动的合成和分解.②a.带电粒子在垂直于电场线方向上不受力,做匀速直线运动.b .在平行于电场线方向上,受到电场力的作用做初速度为零的匀加速直线运动. (2)粒子在电场中的运动时间t =L v 0.(3)匀强电场的场强E =U d ,带电粒子所受电场力F =qE ,则加速度a =F m =qUmd .(4)电场力方向上的偏转距离: y =12at 2=12×qU md ×⎝⎛⎭⎫L v 02=qUL 22md v 02. (5)沿电场方向v y =at ,tan θ=v y v 0=at v 0=qUL md v 02.1.运动分析及规律应用粒子在板间做类平抛运动,应用运动分解的知识进行分析处理. (1)在v 0方向:做匀速直线运动;(2)在电场力方向:做初速度为零的匀加速直线运动. 2.过程分析如图10所示,设粒子不与平行板相撞图10初速度方向:粒子通过电场的时间t =lv 0电场力方向:加速度a =qE m =qUmd离开电场时垂直于板方向的分速度 v y =at =qUlmd v 0速度与初速度方向夹角的正切值 tan θ=v y v 0=qUl md v 02离开电场时沿电场力方向的偏移量y =12at 2=qUl 22md v 02. 3.两个重要推论(1)粒子从偏转电场中射出时,其速度方向的反向延长线与初速度方向的延长线交于一点,此点为粒子沿初速度方向位移的中点.(2)位移方向与初速度方向间夹角α的正切值为速度偏转角θ正切值的12,即tan α=12tan θ.4.分析粒子的偏转问题也可以利用动能定理,即qEy =ΔE k ,其中y 为粒子在偏转电场中沿电场力方向的偏移量.例3 如图11所示为示波管中偏转电极的示意图,两板间距离为d ,长度为l 的平行板A 、B 加上电压后,可在A 、B 之间的空间中(设为真空)产生电场(设为匀强电场).在距A 、B 等距离处的O 点,有一电荷量为+q 、质量为m 的粒子以初速度v 0沿水平方向(与A 、B 板平行)射入电场(图中已标出),不计粒子重力,要使此粒子能从C 处射出电场,则A 、B 间的电压应为( )图11A.m v 02d 2ql 2B.m v 02l 2qd 2 C.lm v 0qd D.q v 0dl答案 A解析 带电粒子只受电场力作用,在平行板间做类平抛运动.设粒子由O 到C 的运动时间为t ,则有l =v 0t ;设A 、B 间的电压为U ,则偏转电极间匀强电场的场强E =Ud ,粒子所受电场力F =qE =qU d ;根据牛顿第二定律可得粒子沿电场方向的加速度a =F m =qUmd ,粒子在沿电场方向做匀加速直线运动,位移为12d ,由匀加速直线运动的规律得d 2=12at 2,联立解得U=m v 02d 2ql 2,选项A 正确.例4 一束电子流经U 1=5 000 V 的加速电压加速后,在距两极板等距离处垂直进入平行板间的匀强电场,如图12所示,两极板间电压U 2=400 V ,两极板间距离d =2.0 cm ,板长L 1=5.0 cm.图12(1)求电子在两极板间穿过时的偏移量y ;(2)若平行板的右边缘与屏的距离L 2=5 cm ,求电子打在屏上的位置与中心O 的距离Y (O 点位于平行板水平中线的延长线上);(3)若另一个质量为m (不计重力)的二价负离子经同一电压U 1加速,再经同一偏转电场射出,则其射出偏转电场的偏移量y ′和打在屏上的偏移量Y ′各是多大? 答案 (1)0.25 cm (2)0.75 cm (3)0.25 cm 0.75 cm 解析 (1)电子加速过程,由动能定理得eU 1=12m v 02①进入偏转电场,电子在平行于极板的方向上做匀速直线运动, L 1=v 0t ②在垂直于极板的方向上做匀加速直线运动,加速度为 a =F m =eU 2dm ③ 偏移距离y =12at 2④由①②③④得:y =U 2L 124dU 1,代入数据得:y =0.25 cm.(2)如图,由几何关系知:yY =L 12L 12+L 2得:Y =L 1+2L 2L 1y 代入数据得:Y =0.75 cm.(3)因y =U 2L 124dU 1,Y =L 1+2L 2L 1y ,偏移量与粒子的质量m 和电荷量q 无关,故二价负离子经同样装置后,y ′=y =0.25 cm ,Y ′=Y =0.75 cm.电性相同的不同粒子经相同电场加速再经同一偏转电场,射出偏转电场时,不会分开. 例5 如图13所示,两个板长均为L 的平板电极,平行正对放置,两极板间距离为d ,极板之间的电势差为U ,板间电场可以认为是匀强电场.一个带电粒子(质量为m ,电荷量为+q ,可视为质点)从正极板边缘以某一初速度垂直于电场方向射入两极板之间,到达负极板时恰好落在极板边缘.忽略重力和空气阻力的影响.求:图13(1)两极板间的电场强度大小E . (2)该粒子的初速度大小v 0.(3)该粒子落到负极板时的末动能E k . 答案 (1)U d (2)LdUq 2m(3)Uq ⎝⎛⎭⎫1+L 24d 2解析 (1)两极板间的电压为U ,两极板间的距离为d ,所以电场强度大小为E =Ud .(2)带电粒子在极板间做类平抛运动,在平行于极板方向上有L =v 0t 在垂直于极板方向上有d =12at 2根据牛顿第二定律可得:a =Fm ,而F =Eq所以a =Uqdm解得:v 0=LdUq 2m. (3)根据动能定理可得Uq =E k -12m v 02解得E k =Uq ⎝⎛⎭⎫1+L 24d 2.1.(示波管的原理)如图14是示波管的原理图.它由电子枪、偏转电极(XX ′和YY ′)、荧光屏组成,管内抽成真空.给电子枪通电后,如果在偏转电极XX ′和YY ′上都没有加电压,电子束将打在荧光屏的中心O 点.图14(1)带电粒子在________区域是加速的,在________区域是偏转的.(2)若U YY ′>0,U XX ′=0,则粒子向________极板偏移,若U YY ′=0,U XX ′>0,则粒子向________极板偏移. 答案 (1)Ⅰ Ⅱ (2)Y X2.(带电粒子的直线运动)两平行金属板间距离为d ,电势差为U ,一电子质量为m ,电荷量为e ,从O 点沿垂直于极板的方向射入,最远到达A 点,然后返回,如图15所示,OA =L ,则此电子具有的初动能是( )图15A.edL U B .edUL C.eU dL D.eULd答案 D解析 电子从O 点运动到A 点,因受电场力作用,速度逐渐减小.根据能量守恒定律得12m v 02=eU OA ,U OA =EL =UL d ,故12m v 02=eULd,所以D 正确.3.(带电粒子的偏转)(2019·荆州市车胤中学高二上月考)如图16所示,电子在电势差为U 1的加速电场中由静止开始运动,然后射入电势差为U 2的两块平行极板间的电场中,射入方向跟极板平行,整个装置处在真空中,电子的重力可忽略.在满足电子能射出平行极板的条件下,下述四种情况,一定能使电子的偏转角θ变大的是( )图16A .U 1变大、U 2变大B .U 1变小、U 2变大C .U 1变大、U 2变小D .U 1变小、U 2变小答案 B解析 设电子被加速后获得的速度为v 0,由动能定理得qU 1=12m v 02,设极板长为l ,则电子在极板间偏转的时间t =lv 0,设电子在平行极板间运动的加速度为a ,由牛顿第二定律得a=qE m =qU 2dm ,电子射出平行极板时,竖直分速度v y =at ,联立可得:v y =qU 2ldm v 0,tan θ=v y v 0=U 2l 2dU 1,故U 2变大、U 1变小时,一定能使偏转角θ变大,选项B 正确,选项A 、C 、D 错误.4.(带电粒子的偏转)如图17所示,电子从静止开始被U =180 V 的电场加速,沿直线垂直进入另一个场强为E =6 000 V/m 的匀强偏转电场,而后电子从极板右侧离开偏转电场.已知电子比荷为e m ≈169×1011 C/kg ,不计电子的重力,偏转极板长为L =6.0×10-2 m .求:图17(1)电子经过电压U 加速后的速度大小v x ; (2)电子在偏转电场中运动的加速度大小a ;(3)电子离开偏转电场时的速度方向与进入该电场时的速度方向之间的夹角θ. 答案 (1)8×106 m /s (2)1.1×1015 m/s 2 (3)45° 解析 (1)根据动能定理有eU =12m v x 2,解得v x =8×106 m/s.(2)电子在偏转电场中受到竖直向下的电场力, 根据牛顿第二定律有a =eEm ,解得a ≈1.1×1015 m/s 2.(3)电子在水平方向上做匀速直线运动,故t =Lv x ,在竖直方向上做初速度为零的匀加速直线运动, 故v y =at ,又tan θ=v yv x ,联立解得θ=45°.考点一 带电粒子的直线运动1.质子(11H)、α粒子(42He)、钠离子(Na +)三个粒子分别从静止状态经过电压为U 的同一电场加速后,获得动能最大的是( ) A .质子(11H) B .α粒子(42He) C .钠离子(Na +)D .都相同答案 B解析 qU =12m v 2-0,U 相同,α粒子带的正电荷多,电荷量最大,所以α粒子获得的动能最大,故选项B 正确.2.(多选)一质量为m 、电荷量为q 的带正电粒子(重力不计)以速度v 0逆着电场线方向射入有左边界的匀强电场,场强为E (如图1所示),则( )图1A .粒子射入的最大深度为m v 02qEB .粒子射入的最大深度为m v 022qEC .粒子在电场中运动的最长时间为m v 0qED .粒子在电场中运动的最长时间为2m v 0qE答案 BD解析 粒子射入到最右端,由动能定理得-Eqx max =-12m v 02,最大深度x max =m v 022qE ;由v 0=at ,a =Eqm ,可得t =m v 0Eq ,则粒子在电场中运动的最长时间为2m v 0qE ,选项B 、D 正确.考点二 带电粒子的偏转3.一电子以初速度v 0沿垂直场强方向射入两平行金属板间的匀强电场中,现减小两板间的电压,则电子穿过两平行板所需的时间( ) A .随电压的减小而减小 B .随电压的减小而增大 C .与电压减小与否无关 D .随两板间距离的增大而减小 答案 C解析 电子垂直于场强方向射入两平行金属板间的匀强电场中,在平行于金属板的方向电子不受力而做匀速直线运动,由L =v 0t 得,电子穿过平行板所需要的时间为t =Lv 0,与金属板的长度成正比,与电子的初速度大小成反比,与其他因素无关,即与电压及两板间距离均无关,故C 正确.4.(2019·人大附中高二期中)如图2所示,有一带电粒子贴着A 板沿水平方向射入匀强电场,当偏转电压为U 1时,带电粒子沿①轨迹从两板正中间飞出;当偏转电压为U 2时,带电粒子沿②轨迹落到B 板中间;设粒子两次射入电场的水平速度相同,则两次偏转电压之比为( )图2A .U 1∶U 2=1∶8B .U 1∶U 2=1∶4C .U 1∶U 2=1∶2D .U 1∶U 2=1∶1答案 A解析 带电粒子在匀强电场中做类平抛运动,水平位移为x =v 0t ,两次运动的水平位移大小之比为2∶1;两次运动的水平速度相同,故运动时间之比为t 1∶t 2=2∶1;由于竖直方向上的位移为h =12at 2,h 1∶h 2=1∶2,故加速度大小之比为a 1∶a 2=1∶8,又a =Uq md AB ,故两次偏转电压之比为U 1∶U 2=1∶8,故A 正确.5.(多选)如图3所示,矩形区域ABCD 内存在竖直向下的匀强电场,两个带正电的粒子a 和b 以相同的水平速度射入电场,粒子a 由顶点A 射入,从BC 的中点P 射出,粒子b 由AB 的中点O 射入,从顶点C 射出,若不计重力,则( )图3A .a 和b 在电场中运动的时间之比为1∶2B .a 和b 在电场中运动的时间之比为2∶1C .a 和b 的比荷之比为1∶8D .a 和b 的比荷之比为8∶1 答案 AD解析 两个粒子在水平方向上做匀速直线运动,a 、b 两粒子的水平位移大小之比为1∶2,根据x =v 0t 可知运动时间之比为1∶2;粒子在竖直方向上做初速度为零的匀加速直线运动,根据y =12at 2,两粒子在竖直方向上的位移大小之比为2∶1,则a 、b 的加速度大小之比为8∶1,根据牛顿第二定律知加速度大小a =qEm,则加速度之比等于两粒子的比荷之比,故两粒子的比荷之比为8∶1,A 、D 正确,B 、C 错误. 考点三 带电粒子的加速与偏转6.(多选)(2019·扬州市高一期末)如图4所示是某示波管的示意图,电子先由电子枪加速后进入偏转电场,如果在偏转电极上加一个电压,则电子束将会偏转,并飞出偏转电场.下列措施中能使电子偏转距离变大的是( )图4A .尽可能把偏转极板L 做得长一点B .尽可能把偏转极板L 做得短一点C .尽可能把偏转极板间的距离d 做得小一点D .将电子枪的加速电压提高 答案 AC解析 设加速电压为U 1, 则qU 1=12m v 02①设偏转电压为U 2,则由L =v 0t ,a =Eq m ,y =12at 2可得y =qU 2L 22md v 02② 联立①②解得,y =U 2L 24dU 1,故选A 、C.7.有一种电荷控制式喷墨打印机的打印头的结构简图如图5所示,其中墨盒可以喷出极小的墨汁微粒,此微粒经过带电室后以一定的初速度垂直射入偏转电场,再经偏转电场后打到纸上,显示出字符.现为了使打在纸上的字迹扩大,下列措施可行的是( )图5A .增大墨汁微粒所带的电荷量B .增大墨汁微粒的质量C .减小极板的长度D .减小偏转板间的电压答案 A解析 使打在纸上的字迹扩大,实质是指速度偏向角θ增大,tan θ=v y v 0=Uqldm v 02增大,微粒所带的电荷量q 增大时,tan θ增大,字迹扩大,选项A 正确;增大墨汁微粒的质量或减小偏转板间的电压或减小极板的长度时,tan θ减小,字迹缩小,选项B 、C 、D 错误.8.(多选)(2019·广州二中期中)如图6所示,氕、氘、氚的原子核自初速度为零经同一电场加速后,又经同一匀强电场偏转,最后打在荧光屏上,那么( )图6A .经过加速电场的过程中,电场力对氚核做的功最多B .经过偏转电场的过程中,电场力对三种核做的功一样多C .三种原子核打在屏上的速度一样大D .三种原子核都打在屏的同一位置上 答案 BD解析 设偏转极板的长度为L ,板间距离为d ,在加速电场中电场力做的功W =qU 1=12m v 02,由于加速电压相同,电荷量相等,所以电场力做的功相等,故选项A 错误;在偏转电场中的偏转位移y =12at 2=12·qU 2md ·(L v 0)2,解得y =U 2L 24U 1d ,同理可得到偏转角度的正切值tan θ=U 2L2U 1d ,可见y 和tan θ与电荷的电荷量和质量无关,所以q U 2yd 为定值,出射点的位置相同,出射速度的方向也相同,故三种原子核打在屏上同一点,故选项B 、D 正确;整个过程运用动能定理得12m v 2=qU 1+q U 2yd ,由于三种原子核的电荷量相同,质量不同,则v 不同,故选项C 错误.9.如图7所示,有一电子(电荷量为e )经电压U 0由静止加速后,进入两块间距为d 、电压为U 的平行金属板间.若电子从两板正中间垂直电场方向射入,且正好能穿过电场,求:图7(1)金属板AB 的长度; (2)电子穿出电场时的动能. 答案 (1)d2U 0U(2)e ⎝⎛⎭⎫U 0+U 2 解析 (1)设电子离开加速电场时速度为v 0,由动能定理得eU 0=12m v 02①设金属板AB 的长度为l ,则电子偏转时间t =lv 0②偏转加速度a =eUmd ③偏转位移y =12d =12at 2④由①②③④得l =d2U 0U. (2)设电子穿出电场时的动能为E k ,根据动能定理得 E k =eU 0+e ·U2=e ⎝⎛⎭⎫U 0+U 2. 10.长为L 的平行金属板水平放置,两极板带等量的异种电荷,板间形成匀强电场,一个带电荷量为+q 、质量为m 的带电粒子,以初速度v 0紧贴上极板垂直于电场线方向进入该电场,刚好从下极板边缘射出,射出时速度恰与水平方向成30°角,如图8所示,不计粒子重力,求:图8(1)粒子离开电场时速度的大小; (2)匀强电场的场强大小; (3)两板间的距离.答案 (1)23v 03 (2)3m v 023qL (3)36L解析 (1)粒子离开电场时,速度与水平方向夹角为30°,由几何关系得:v =v 0cos 30°=23v 03.(2)粒子在匀强电场中做类平抛运动,在水平方向上:L =v 0t ,在竖直方向上:v y =atv y =v 0tan 30°=3v 03由牛顿第二定律有:qE =ma 联立解得:E =3m v 023qL.(3)粒子在匀强电场中做类平抛运动,在竖直方向上: d =12at 2,解得:d =36L .11.如图9所示为真空示波管的示意图,电子从灯丝K 发出(初速度不计),经灯丝与A 板间的加速电压U 1加速,从A 板中心孔沿中心线KO 射出,然后进入两块平行金属板M 、N 间的偏转电场中(偏转电场可视为匀强电场),电子进入偏转电场时的速度与电场方向垂直,电子经过偏转电场后打在荧光屏上的P 点.已知M 、N 两板间的电压为U 2,两板间的距离为d ,板长为L 1,板右端到荧光屏的距离为L 2,电子质量为m ,电荷量为e .求:图9(1)电子穿过A 板时的速度大小; (2)电子从偏转电场射出时的侧移量; (3)P 点到O 点的距离. 答案 (1)2eU 1m (2)U 2L 124U 1d (3)(2L 2+L 1)U 2L 14U 1d解析 (1)设电子经电压U 1加速后的速度为v 0,根据动能定理得eU 1=12m v 02,解得v 0=2eU 1m. (2)电子以速度v 0进入偏转电场后,垂直于电场方向做匀速直线运动,沿电场方向做初速度为零的匀加速直线运动,设偏转电场的电场强度为E ,电子在偏转电场中运动的时间为t 1,电子的加速度为a ,离开偏转电场时的侧移量为y 1,根据牛顿第二定律和运动学公式得F =eE ,E =U 2d ,F =ma ,t 1=L 1v 0,y 1=12at 12,解得y 1=U 2L 124U 1d.(3)设电子离开偏转电场时沿电场方向的速度为v y ,根据运动学公式得v y =at 1,电子离开偏转电场后做匀速直线运动,设电子离开偏转电场后打在荧光屏上所用的时间为t 2,电子从离开偏转电场到打到荧光屏上的侧移量为y 2,如图所示.有t 2=L 2v 0,y 2=v y t 2,解得y 2=U 2L 1L 22dU 1P 点到O 点的距离为y =y 1+y 2=(2L 2+L 1)U 2L 14U 1d.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B、极板X′应带正电 D、极板Y′应带正电
解析:在XX′方向上向X方向偏转,X带正电,A对B错;在YY′方向 上向Y方向偏转,Y带正电,C对D错。
示波管及工作原理
创新微课
练习:在一次使用示波器的过程中,某同学欲按要求先在荧光屏上调
出亮斑,为此,他进行了如下操作:首先将辉度旋钮逆时针转到底,
竖直位移和水平位移旋钮转到某位置,将衰减调节旋钮置于1 000挡,
D、辅助聚焦旋钮
示波管及工作原理
创新微课
如图所示的示波管,当两偏转电极XX′、YY′电压为零时,电子枪发射的电
子经加速电场加速后会打在荧光屏上的正中间(图示坐标的O点,其中x轴
与XX′电场的场强方向重合,x轴正方向垂直于纸面向里,y轴与YY′电场的
场强方向重合)、若要电子打在图示坐标的第Ⅲ象限,则( D ) A、X、Y极接电源的正极,X′、Y′接电源的负极 B、X、Y′极接电源的正极,X′、Y接电源的负极 C、X′、Y极接电源的正极,X、Y′接电源的负极 D、X′、Y′极接电源的正极,X、Y接电源的负极
扫描范围旋钮置于“外X”挡,然后打开电源开关(指示灯亮),过2 min
后,顺时针旋转辉度调节旋钮,结果屏上始终无亮斑出现(示波器完
好)。那么,他应再调节下列哪个旋钮才有可能在屏上出现亮斑( AB )
A、竖直位移旋钮 B、水平位移旋钮 C、聚焦调节旋钮
可能是XY位移旋钮,没有调节好,故需要旋 转竖直位移旋钮和水平位移旋钮
创新微课 现在开始
示波管及工作原理
示波管及工作原理
示波管的结构
创新微课
示波管及工作原理
示 波 管 的 原 理
创新微课
示波管及工作原理
创新微课
例题:示波管是示波器的核心部件,它由电子枪、偏转电极和荧光
屏组成,如图所示。如果在荣光屏上P点出现亮斑,那么示波管中
的( AC )
A、极板X应带正电 C、极板Y应带正电
解析:若要使电子打在图示坐标的第Ⅲ象限
电子在x轴上向负方向偏转,则应使X′接正极,X接负极; 电子在y轴上也向负方向偏转,则应使Y′接正极,Y接负极。
示波管及工作原理
结构 原理
小结
பைடு நூலகம்
示波管
示意图
加速
偏转
创新微课
同学,下节再见
相关文档
最新文档