(新)高中数学:向量法解立体几何总结

合集下载

新人教A版高中数学选修2-1第三章《空间向量与立体几何》知识点汇总及解题方法总计

新人教A版高中数学选修2-1第三章《空间向量与立体几何》知识点汇总及解题方法总计

第三章 空间向量与立体几何单元小结[核心速填]1.空间向量的有关定理和推论(1)共线向量定理:对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb .(2)共线向量定理的推论:若OA →,OB →不共线,则P ,A ,B 三点共线的充要条件是OP →=λOA →+μOB →,且λ+μ=1.(3)共面向量定理:如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在惟一的有序实数对(x ,y ),使得p =x a +y b .(4)共面向量定理的推论:已知空间任意一点O 和不共线的三点A ,B ,C ,则P ,A ,B ,C 四点共面的充要条件是OP →=xOA →+yOB →+zOC →(其中x +y +z =1).(5)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,其中{a ,b ,c }叫做空间的一个基底.2.空间向量运算的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3). (1)a +b =(a 1+b 1,a 2+b 2,a 3+b 3),a -b =(a 1-b 1,a 2-b 2,a 3-b 3),λa =(λa 1,λa 2,λa 3),a ·b =a 1b 1+a 2b 2+a 3b 3.(2)重要结论:a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R ); a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0.3.模、夹角和距离公式(1)设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则①|a |=a ·a②cos 〈a ,b 〉=a ·b |a ||b |=(2)设A (a 1,b 1,c 1),B (a 2,b 2,c 2),则d AB =|AB →|4.空间向量的结论与线面位置关系的对应关系(1)设直线l 的方向向量是u =(a 1,b 1,c 1),平面α的法向量v =(a 2,b 2,c 2), 则l ∥α⇔u ⊥v ⇔u ·v =0⇔a 1a 2+b 1b 2+c 1c 2=0,l ⊥α⇔u ∥v ⇔u =k v ⇔(a 1,b 1,c 1)=k (a 2,b 2,c 2)⇔a 1=ka 2,b 1=kb 2,c 1=kc 2(k ∈R ).(2)设直线l ,m 的方向向量分别为a ,b ,平面α,β的法向量分别为u ,v ,则l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; l ⊥m ⇔a ⊥b ⇔a ·b =0; l ∥α⇔a ⊥u ⇔a ·u =0; l ⊥α⇔a ∥u ⇔a =k u ,k ∈R ;α∥β⇔u ∥v ⇔u =k v ,k ∈R ; α⊥β⇔u ⊥v ⇔u ·v =0. 5.空间向量与空间角的关系(1)设异面直线l 1,l 2的方向向量分别为m 1,m 2,则l 1与l 2的夹角θ满足cos θ=|cos 〈m 1,m 2〉|.(2)设直线l 的方向向量和平面α的法向量分别为m ,n ,则直线l 与平面α的夹角θ满足sin θ=|cos 〈m ,n 〉|.(3)求二面角的大小:(ⅰ)如图3­1①,AB ,CD 是二面角α­l ­β的两个半平面α,β内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.图3­1(ⅱ)如图3­1②③,n 1,n 2分别是二面角α­l ­β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉.[体系构建][题型探究]类型一、空间向量的基本概念及运算例1、如图3­2,在四棱锥S ­ABCD 中,底面ABCD 是边长为1的正方形,S 到A 、B 、C 、D 的距离都等于2.给出以下结论:图3­2①SA →+SB →+SC →+SD →=0; ②SA →+SB →-SC →-SD →=0; ③SA →-SB →+SC →-SD →=0; ④SA →·SB →=SC →·SD →; ⑤SA →·SC →=0.其中正确结论的序号是________. 【答案】 ③④【解析】容易推出SA →-SB →+SC →-SD →=BA →+DC →=0,所以③正确;又因为底面ABCD 是边长为1的正方形,SA =SB =SC =SD =2,所以SA →·SB →=2·2·cos∠ASB ,SC →·SD →=2·2·cos ∠CSD ,而∠ASB =∠CSD ,于是SA →·SB →=SC →·SD →,因此④正确,其余三个都不正确,故正确结论的序号是③④.[规律方法] 1.空间向量的线性运算包括加、减及数乘运算,选定空间不共面的三个向量作为基向量,并用它们表示出目标向量,这是用向量法解决立体几何问题的基本要求,解题时可结合已知和所求,根据图形,利用向量运算法则表示所需向量.2.空间向量的数量积(1)空间向量的数量积的定义表达式a ·b =|a |·|b |·cos 〈a ,b 〉及其变式cos 〈a ,b 〉=a ·b|a | ·|b |是两个重要公式. (2)空间向量的数量积的其他变式是解决立体几何问题的重要公式,如a 2=|a |2,a 在b 上的投影a ·b|b |=|a |·cos θ等.[跟踪训练]1.如图3­3,已知ABCD ­A ′B ′C ′D ′是平行六面体.设M 是底面ABCD 的中心,N 是侧面BCC ′B ′对角线BC ′上的34分点,设MN →=αAB →+βAD→+γAA ′→,则α+β+γ=________.图3­3【答案】32[连接BD ,则M 为BD 的中点,MN →=MB →+BN →=12DB →+34BC ′→=12(DA →+AB →)+34(BC →+CC ′→)=12(-AD →+AB →)+34(AD →+AA ′→)=12AB →+14AD →+34AA ′→.∴α=12,β=14,γ=34.∴α+β+γ=32.]类型二、空间向量的坐标运算例2、(1)已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x =( )A .(0,3,-6)B .(0,6,-20)C .(0,6,-6)D .(6,6,-6)(2)已知向量a =(x,1,2),b =(1,y ,-2),c =(3,1,z ),a ∥b ,b ⊥C . ①求向量a ,b ,c ;②求a +c 与b +c 所成角的余弦值.【答案】(1)B [由b =12x -2a 得x =4a +2b ,又4a +2b =4(2,3,-4)+2(-4,-3,-2)=(0,6,-20), 所以x =(0,6,-20).](2)①∵向量a =(x,1,2),b =(1,y ,-2),c =(3,1,z ),且a ∥b ,b ⊥c ,∴⎩⎪⎨⎪⎧x 1=1y =2-23+y -2z =0,解得⎩⎪⎨⎪⎧x =-1,y =-1,z =1,∴向量a =(-1,1,2),b =(1,-1,-2),c =(3,1,1). ②∵a +c =(2,2,3),b +c =(4,0,-1), ∴(a +c )·(b +c )=2×4+2×0+3×(-1)=5,|a +c |=22+22+32=17,|b +c |=42+02+(-1)2=17, ∴a +c 与b +c 所成角的余弦值为(a +c )·(b +c )|a +c ||b +c |=517.[规律方法] 熟记空间向量的坐标运算公式 设a =(x 1,y 1,z 1),b =(x 2,y 2,z 2), (1)加减运算:a ±b =(x 1±x 2,y 1±y 2,z 1±z 2). (2)数量积运算:a ·b =x 1x 2+y 1y 2+z 1z 2. (3)向量夹角:cos 〈a ,b 〉=x 1x 2+y 1y 2+z 1z 2x 21+y 21+z 21x 22+y 22+z 22. (4)向量长度:设M 1(x 1,y 1,z 1),M 2(x 2,y 2,z 2),则|M 1M 2→|=(x 1-x 2)2+(y 1-y 2)2+(z 1-z 2)2. 提醒:在利用坐标运算公式时注意先对向量式子进行化简再运算. [跟踪训练]2.在空间直角坐标系中,已知点A (1,-2,11),B (4,2,3),C (6,-1,4),则△ABC 一定是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形【答案】C [∵AB →=(3,4,-8),AC →=(5,1,-7),BC →=(2,-3,1),∴|AB →|=32+42+(-8)2=89,|AC →|=52+12+(-7)2=75,|BC →|=22+(-3)2+1=14,∴|AC →|2+|BC →|2=|AB →|2,∴△ABC 一定为直角三角形.]类型三、利用空间向量证明平行、垂直问题例3、 在四棱锥P ­ABCD 中,AB ⊥AD ,CD ⊥AD ,PA ⊥底面ABCD ,PA =AD =CD =2AB =2,M 为PC 的中点.(1)求证:BM ∥平面PAD ;(2)平面PAD 内是否存在一点N ,使MN ⊥平面PBD ?若存在,确定N 的位置;若不存在,说明理由.[思路探究] (1)证明向量BM →垂直于平面PAD 的一个法向量即可;(2)假设存在点N ,设出其坐标,利用MN →⊥BD →,MN →⊥PB →,列方程求其坐标即可. 【答案】以A 为原点,以AB ,AD ,AP 分别为x 轴、y 轴、z 轴建立空间直角坐标系如图所示,则B (1,0,0),D (0,2,0),P (0,0,2),C (2,2,0),M (1,1,1),(1)证明:∵BM →=(0,1,1),平面PAD 的一个法向量为n =(1,0,0), ∴BM →·n =0,即BM →⊥n ,又BM ⊄平面PAD ,∴BM ∥平面PAD . (2)BD →=(-1,2,0),PB →=(1,0,-2), 假设平面PAD 内存在一点N ,使MN ⊥平面PBD . 设N (0,y ,z ),则MN →=(-1,y -1,z -1), 从而MN ⊥BD ,MN ⊥PB , ∴⎩⎪⎨⎪⎧MN →·BD →=0,MN →·PB →=0,即⎩⎪⎨⎪⎧1+2(y -1)=0,-1-2(z -1)=0,∴⎩⎪⎨⎪⎧y =12,z =12,∴N ⎝ ⎛⎭⎪⎫0,12,12,∴在平面PAD 内存在一点N ⎝ ⎛⎭⎪⎫0,12,12,使MN ⊥平面PBD .[规律方法]利用空间向量证明空间中的位置关系(1)线线平行:证明两条直线平行,只需证明两条直线的方向向量是共线向量. (2)线线垂直:证明两条直线垂直,只需证明两直线的方向向量垂直. (3)线面平行:①证明直线的方向向量与平面的法向量垂直;②证明可在平面内找到一个向量与直线的方向向量是共线向量;③利用共面向量定理,即证明直线的方向向量可用平面内两不共线向量线性表示.(4)线面垂直:①证明直线的方向向量与平面的法向量平行;②利用线面垂直的判定定理转化为线线垂直问题.(5)面面平行:①证明两个平面的法向量平行(即是共线向量);②转化为线面平行、线线平行问题.(6)面面垂直:①证明两个平面的法向量互相垂直;②转化为线面垂直、线线垂直问题.[跟踪训练]3.如图3­4,长方体ABCD­A1B1C1D1中,点M,N分别在BB1,DD1上,且AM⊥A1B,AN⊥A1D.图3­4(1)求证:A1C⊥平面AMN.(2)当AB=2,AD=2,A1A=3时,问在线段AA1上是否存在一点P使得C1P∥平面AMN,若存在,试确定P的位置.【答案】(1)证明:因为CB⊥平面AA1B1B,AM⊂平面AA1B1B,所以CB⊥AM,又因为AM⊥A1B,A1B∩CB=B,所以AM⊥平面A1BC,所以A1C⊥AM,同理可证A1C⊥AN,又AM∩AN=A,所以A1C⊥平面AMN.(2)以C 为原点,CD 所在直线为x 轴,CB 所在直线为y 轴,CC 1所在直线为z 轴,建立空间直角坐标系,因为AB =2,AD =2,A 1A =3,所以C (0,0,0),A 1(2,2,3),C 1(0,0,3),CA 1→=(2,2,3), 由(1)知CA 1⊥平面AMN ,故平面AMN 的一个法向量为CA 1→=(2,2,3).设线段AA 1上存在一点P (2,2,t ),使得C 1P ∥平面AMN ,则C 1P →=(2,2,t -3), 因为C 1P ∥平面AMN ,所以C 1P →·CA 1→=4+4+3t -9=0, 解得t =13.所以P ⎝⎛⎭⎪⎫2,2,13, 所以线段AA 1上存在一点P ⎝ ⎛⎭⎪⎫2,2,13,使得C 1P ∥平面AMN .类型四、利用空间向量求空间角例4、如图3­5,在等腰直角三角形ABC 中,∠A =90°,BC =6,D ,E 分别是AC ,AB 上的点,CD =BE =2,O 为BC 的中点.将△ADE 沿DE 折起,得到如图(2)所示的四棱锥A ′­BCDE ,其中A ′O = 3.(1) (2)图3­5(1)证明:A ′O ⊥平面BCDE ;(2)求二面角A ′­CD ­B 的平面角的余弦值.[思路探究] (1)利用勾股定理可证A ′O ⊥OD ,A ′O ⊥OE ,从而证得A ′O ⊥平面BCDE ;(2)用“三垂线”法作二面角的平面角后求解或用向量法求两个平面的法向量的夹角.【答案】(1)证明:由题意,得OC =3,AC =32,AD =2 2. 如图,连接OD ,OE ,在△OCD 中,由余弦定理,得OD =OC 2+CD 2-2OC ·CD cos 45°= 5.由翻折不变性,知A ′D =22,所以A ′O 2+OD 2=A ′D 2,所以A ′O ⊥OD . 同理可证A ′O ⊥OE .又因为OD ∩OE =O ,所以A ′O ⊥平面BCDE .(2)如图,过点O 作OH ⊥CD 交CD 的延长线于点H ,连接A ′H .因为A ′O ⊥平面BCDE ,OH ⊥CD , 所以A ′H ⊥CD .所以∠A ′HO 为二面角A ′­CD ­B 的平面角. 结合图(1)可知,H 为AC 的中点,故OH =322,从而A ′H =OH 2+A ′O 2=302. 所以cos ∠A ′HO =OH A ′H =155. 所以二面角A ′­CD ­B 的平面角的余弦值为155. [规律方法] 用向量法求空间角的注意点(1)异面直线所成角:两异面直线所成角的范围为0°<θ≤90°,需找到两异面直线的方向向量,借助方向向量所成角求解.(2)直线与平面所成的角:要求直线a 与平面α所成的角θ,先求这个平面α的法向量n 与直线a 的方向向量a 夹角的余弦cos 〈n ,a 〉,易知θ=〈n ,a 〉-π2或者π2-〈n ,a 〉.(3)二面角:如图3­6,有两个平面α与β,分别作这两个平面的法向量n 1与n 2,则平面α与β所成的角跟法向量n 1与n 2所成的角相等或互补,所以首先应判断二面角是锐角还是钝角.图3­6[跟踪训练]4.在如图3­7所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O ′的直径,FB是圆台的一条母线.图3­7(1)已知G ,H 分别为EC ,FB 的中点,求证:GH ∥平面ABC . (2)已知EF =FB =12AC =23,AB =BC ,求二面角F ­BC ­A 的余弦值.【答案】 (1)证明:设CF 的中点为I ,连接GI ,HI .在△CEF 中,因为点G ,I 分别是CE ,CF 的中点, 所以GI ∥EF .又EF ∥OB ,所以GI ∥OB .在△CFB 中,因为H ,I 分别是FB ,CF 的中点, 所以HI ∥BC .又HI ∩GI =I ,BC ∩OB =B , 所以平面GHI ∥平面ABC . 因为GH ⊂平面GHI , 所以GH ∥平面ABC .(2)连接OO ′,则OO ′⊥平面ABC .又AB =BC ,且AC 是圆O 的直径, 所以BO ⊥AC .以O 为坐标原点,建立如图所示的空间直角坐标系. 由题意得B (0,23,0),C (-23,0,0). 过点F 作FM ⊥OB 于点M , 所以FM =FB 2-BM 2=3, 可得F (0,3,3).11 故BC →=(-23,-23,0),BF →=(0,-3,3). 设m =(x ,y ,z )是平面BCF 的法向量.由⎩⎪⎨⎪⎧m ·BC →=0,m ·BF →=0可得⎩⎨⎧ -23x -23y =0,-3y +3z =0.可得平面BCF 的一个法向量m =⎝ ⎛⎭⎪⎫-1,1,33.因为平面ABC 的一个法向量n =(0,0,1), 所以cos 〈m ,n 〉=m ·n|m |·|n |=77,所以二面角F ­BC ­A 的余弦值为77.。

纵观立体几何考题感悟向量方法解题

纵观立体几何考题感悟向量方法解题

纵观立体几何考题感悟向量方法解题在高中数学学习中,立体几何一直是学生们非常头疼的一个部分。

立体几何的主要难点是空间的复杂性,加上几何思维本来就不易理解,许多学生解题困难。

但是,通过向量方法解题是一种很好的解决立体几何问题的方法。

本文将通过纵观立体几何考题,分享一些关于向量方法解题的经验与感悟。

一、向量的基本概念及运算向量的表示法是用箭头表示。

箭头的长度代表向量的大小,箭头的方向代表向量的方向。

一个向量可以被表示为一个由有序数对$(x,y)$所确定的点A和另一个由有序数对$(x',y')$所确定的点B之间的向量$\vec{AB}$。

向量也可以表示为箭头的坐标,即$\vec{AB}=\begin{pmatrix}x'-x\\y'-y\end{pmatrix}$。

向量的大小表示为$|\vec{AB}|=\sqrt{(x'-x)^2+(y'-y)^2}$。

向量的运算有向量加法和向量数乘。

向量加法的定义是:$\vec{a}+\vec{b}=\begin{pmatrix}a_1+b_1\\a_2+b_2\\a_3+b_3\e nd{pmatrix}$。

其中,$\vec{a}=(a_1,a_2,a_3)$,$\vec{b}=(b_1,b_2,b_3)$。

向量数乘的定义是:$\lambda\vec{a}=(\lambda a_1,\lambda a_2,\lambda a_3)$。

其中,$\lambda$是一个实数。

二、应用向量方法求解空间几何问题1.立体几何基本概念首先,我们需要掌握一些立体几何的基本概念,比如平面、线段、角等。

此外,还需要了解空间中的直线、平面、空间角、平行线等概念。

了解这些概念是建立解题基础的必要条件。

2.向量表达式的转化在解题中,我们可以通过向量的基本运算将问题转化为向量的加、减、数乘问题。

因此,我们需要能够将向量从一个表达式转化为另一个表达式,并灵活地运用向量的加、减、数乘运算法则来求解问题。

2023年高考之立体几何和空间向量考点解读

2023年高考之立体几何和空间向量考点解读

3
=
2
1
1
|AB|·|BC|=
×2×
2
2
1
所 以 VP-ABC = S△ABC ·|PM|=
2 2=2 2,
3
1
26

×2 2× 3=
3
3
考查,
一是空间线面关系 的 命 题 真 假 的 判 断,
以选填题的形式考查,
属 于 基 础 题;
二是空间
线线、
线面、
面面平行和垂 直 关 系 交 汇 的 综 合
命题,
(
2)若 ∠POF =1
2
0
°,求 三 棱 锥 PABC
|A1A| -|AM| =
2
6

2
2
1
2=
2
解 析:(
1)连 接 DE ,
OF ,设 |AF|=



则 B→
t|AC|,
F =BA + AF = (
1-t)
BA +


所求体积 V =
76

=
6
1
6
×(
4+1+ 4×1)
×
3
2
考点解读:空 间 几 何 体 的 结 构 特 征 是 立
则该圆锥的
1
2
0
°,
4
体积为(
胡银伟
33
2
=
2
-
3
2
2
|PC| -|OC|
2
2
=
= 6。所以圆锥的体积 V
1
1
2
2
π×|OA| ×|PO|= π× (3)× 6=

用空间向量法求解立体几何问题典例及解析

用空间向量法求解立体几何问题典例及解析

用空间向量法求解立体几何问题典例及解析以多面体为载体,以空间向量为工具,来论证和求解空间角、距离、线线关系以及线面关系相关问题,是近年来高考数学的重点和热点,用空间向量解立体几何问题,极大地降低了求解立几的难度,很大程度上呈现出程序化思想。

更易于学生们所接受,故而执教者应高度重视空间向量的工具性。

首先,梳理一下利用空间向量解决立体几何的知识和基本求解方法 一:利用空间向量求空间角 (1)两条异面直线所成的夹角范围:两条异面直线所成的夹角的取值范围是 。

向量求法:设直线,a b 的方向向量为a,b ,其夹角为θ,则有cos ___________.θ= (2)直线与平面所成的角定义:直线与平面所成的角是指直线与它在这个平面内的射影所成的角。

范围:直线和平面所夹角的取值范围是 。

向量求法:设直线l 的方向向量为a ,平面的法向量为n ,直线与法向量所成角的余弦值为|cos |___________.θ=直线与平面所成的角为ϕ,则有sin ___________.ϕ=或在平面内任取一个向量m ,则|cos |___________.θ=.(3)二面角二面角的取值范围是 . 二面角的向量求法:方法一:在两个半平面内任取两个与棱垂直的向量,则这两个向量所成的 即为所求的二面角的大小;方法二:设1n ,2n 分别是两个面的 ,则向量1n 与2n 的夹角(或其补角)即为所求二面角的平面角的大小。

二:利用空间向量求空间距离 (1)点面距离的向量公式平面α的法向量为n ,点P 是平面α外一点,点M 为平面α内任意一点,则点P 到平面α的距离d 就是 ,即d =||||MP ⋅n n . (2)线面、面面距离的向量公式平面α∥直线l ,平面α的法向量为n ,点M ∈α、P ∈l ,平面α与直线l 间的距离d 就是MP 在向量n 方向射影的绝对值,即d = .平面α∥β,平面α的法向量为n ,点M ∈α、P ∈β,平面α与平面β的距离d 就是MP 在向量n 方向射影的绝对值,即d =||||MP ⋅n n . (3)异面直线的距离的向量公式设向量n 与两异面直线a 、b 都垂直,M ∈a 、P ∈b ,则两异面直线a 、b 间的距离d 就是MP 在向量n 方向射影的绝对值,即d =||||MP ⋅n n .三:利用空间向量解证平行、垂直关系1:①所谓直线的方向向量,就是指 的向量,一条直线的方向向量有 个。

立体几何之空间向量法

立体几何之空间向量法

立体几何之空间向量法【知识要点】1. 利用空间向量证明平行问题的方法(1)线线平行:直线与直线平行,只需证明它们的方向向量平行.(2)线面平行:利用线面平行的判定定理,证明直线的方向向量与平面内一条直线的方向向量平行;利用共面向量定理,证明平面外直线的方向向量与平面内两条相交直线的方向向量共面;证明直线的方向向量与平面的法向量垂直.(3)面面平行:平面与平面的平行,除了利用面面平行的判定定理转化为线面平行外,只要证明两个平面的法向量平行即可.下面用符号语言表述为:设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2),平面α,β的法向量分别为u =(a 3,b 3,c 3),v =(a 4,b 4,c 4).(1)线线平行:l ∥m ⇔a ∥b ⇔a =k b ⇔a 1=ka 2,b 1=kb 2,c 1=kc 2.(2)线面平行:l ∥α⇔a ⊥u ⇔a ·u =0⇔a 1a 3+b 1b 3+c 1c 3=0.(3)面面平行:α∥β⇔u ∥v ⇔u =k v ⇔a 3=ka 4,b 3=kb 4,c 3=kc 4.2. 利用空间向量证明垂直问题的方法(1)线线垂直:直线与直线的垂直,只要证明两条直线的方向向量垂直.(2)线面垂直:利用线面垂直的定义,证明直线的方向向量与平面内的任意一条直线的方向向量垂直;利用线面垂直的判定定理,证明直线的方向向量与平面内的两条相交直线的方向向量垂直;证明直线的方向向量与平面的法向量平行.(3)面面垂直:平面与平面的垂直,除了用面面垂直的判定定理转化为线面垂直外,只要证明两个平面的法向量垂直即可.下面用符号语言表述为:设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2).平面α,β的法向量分别为u =(a 3,b 3,c 3),v =(a 4,b 4,c 4).(1)线线垂直:l ⊥m ⇔a ⊥b ⇔a ·b =0⇔a 1a 2+b 1b 2+c 1c 2=0.(2)线面垂直:l ⊥α⇔a ∥u ⇔a =k u ⇔a 1=ka 3,b 1=kb 3,c 1=kc 3.(3)面面垂直:α⊥β⇔u ⊥v ⇔u ·v =0⇔a 3a 4+b 3b 4+c 3c 4=0.3. (1)夹角计算公式①两条异面直线的夹角若两条异面直线a 和b 的方向向量分别为n 1,n 2,两条异面直线a 和b 所成的角为θ,则cos θ=|cos 〈n 1,n 2〉|=⎪⎪⎪⎪n 1·n 2|n 1||n 2|.②直线与平面所成的角若直线a 的方向向量为a ,平面α的法向量为n ,直线a 与平面α所成的角为θ,则sin θ=|cos 〈a ,n 〉|=⎪⎪⎪⎪a ·n |a ||n |.③二面角设n 1,n 2分别为二面角的两个半平面的法向量,其二面角为θ,则θ=〈n 1,n 2〉或θ=π-〈n 1,n 2〉,其中cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|. (2)距离公式①点点距离:点与点的距离,是以这两点为起点和终点的向量的模;②点线距离:点M 到直线a 的距离,设直线的方向向量为a ,直线上任一点为N ,则点M到直线a 的距离d =|MN |sin 〈MN ,a 〉; ③线线距离:两条平行线间的距离,转化为点线距离;两条异面直线间的距离,转化为点面距离或者直接求公垂线段的长度;④点面距离:点M 到平面α的距离,如平面α的法向量为n ,平面α内任一点为N ,则点M 到平面α的距离d =|MN ||cos 〈MN ,n 〉|=||||MN n n ; ⑤线面距离:直线和与它平行的平面间的距离,转化为点面距离;⑥面面距离:两平行平面间的距离,转化为点面距离.4. (1)用空间向量解决立体几何问题的步骤及注意事项①建立空间直角坐标系,要写理由,坐标轴两两垂直要证明;②准确求出相关点的坐标(特别是底面各点的坐标,若底面不够规则,则应将底面单独抽出来分析),坐标求错将前功尽弃;③求平面法向量或直线的方向向量;④根据向量运算法则,求出问题的结果.(2)利用空间向量巧解探索性问题空间向量最适合于解决这类立体几何中的探索性问题,它无需进行繁杂的作图、论证、推理,只需通过坐标运算进行判断.在解题过程中,往往把“是否存在”问题,转化为“点的坐标是否有解,是否有规定范围的解”等,所以使问题的解决更简单、有效,应善于运用这一方法解题.一、真题试做1.如图,在空间直角坐标系中有直三棱柱ABCA 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为( ).A .55B .53C .255D .352.如图,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是棱CD ,CC 1的中点,则异面直线A 1M 与DN 所成的角的大小是__________.3.在如图所示的几何体中,四边形ABCD 是等腰梯形,AB ∥CD ,∠DAB =60°,FC ⊥平面ABCD ,AE ⊥BD ,CB =CD =CF .(1)求证:BD ⊥平面AED ;(2)求二面角F -BD -C 的余弦值.4.如图,在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为CD中点.(1)求证:B1E⊥AD1;(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由;(3)若二面角A-B1E-A1的大小为30°,求AB的长.5.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.(1)证明PC⊥AD;(2)求二面角A-PC-D的正弦值;(3)设E为棱P A上的点,满足异面直线BE与CD所成的角为30°,求AE的长.二、热点例析热点一利用空间向量证明平行问题【例1】如图所示,在平行六面体ABCD-A1B1C1D1中,O是B1D1的中点.求证:B1C∥平面ODC1.变式训练1如图,已知直三棱柱ABC-A1B1C1中,△ABC为等腰直角三角形,∠BAC ,D,E,F分别为B1A,C1C,BC的中点.求证:=90°,且AB=AA(1)DE∥平面ABC;(2)B1F⊥平面AEF.热点二利用空间向量证明垂直问题【例2】如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB于点F,求证:(1)PA∥平面EDB;(2)PB⊥平面EFD.变式训练2如图,在四棱锥P-ABCD中,P A⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.(1)求证:BD⊥平面PAC;(2)若P A=AB,求PB与AC所成角的余弦值;(3)当平面PBC与平面PDC垂直时,求P A的长.热点三利用空间向量求角和距离【例3】如图所示,在三棱柱ABC-A1B1C1中,H是正方形AA1B1B的中心,AA1=22,C1H⊥平面AA1B1B,且C1H= 5.B1所成角的余弦值;(1)求异面直线AC与A(2)求二面角A-A1C1-B1的正弦值;(3)设N为棱B1C1的中点,点M在平面AA1B1B内,且MN⊥平面A1B1C1,求线段BM的长.变式训练3 已知ABCD -A 1B 1C 1D 1是底面边长为1的正四棱柱,O 1为A 1C 1与B 1D 1的交点.(1)设AB 1与底面A 1B 1C 1D 1所成角的大小为α,二面角A -B 1D 1-A 1的大小为β.求证:tan β=2tan α;(2)若点C 到平面AB 1D 1的距离为43,求正四棱柱ABCD -A 1B 1C 1D 1的 高.热点四 用向量法解决探索性问题【例4】如图,四棱锥S -ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点.(1)求证:AC ⊥SD ;(2)若SD ⊥平面PAC ,求二面角P -AC -D 的大小;(3)在(2)的条件下,侧棱SC 上是否存在一点E ,使得BE ∥平面PAC ?若存在,求SE ∶EC 的值;若不存在,请说明理由.变式训练4 如图,平面PAD ⊥平面ABCD ,ABCD 为正方形,∠PAD =90°,且PA =AD=2;E ,F ,G 分别是线段PA ,PD ,CD 的中点.(1)求证:PB ∥平面EFG ;(2)求异面直线EG 与BD 所成的角的余弦值; (3)在线段CD 上是否存在一点Q ,使得A 到平面EFQ 的距离为45若存在,求出CQ 的值;若不存在,请说明理由.三、思想渗透转化与化归思想——利用向量解决空间位置关系及求角问题主要问题类型:(1)空间线面关系的证明;(2)空间角的求法;(3)存在性问题的处理方法.求解时应注意的问题:(1)利用空间向量求异面直线所成的角时,应注意角的取值范围;(2)利用空间向量求二面角的平面角时,应注意观察二面角是钝角还是锐角.【典型例题】如图1,在Rt △ABC 中,∠C =90°,BC =3,AC =6.D ,E 分别是AC ,AB 上的点,且DE ∥BC ,DE =2,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C ⊥CD ,如图2.图1 图2(1)求证:A 1C ⊥平面BCDE ;(2)若M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小;(3)线段BC 上是否存在点P ,使平面A 1DP 与平面A 1BE 垂直?说明理由.四、练习巩固 1.已知AB =(1,5,-2),BC =(3,1,z ),若,AB BC BP =(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 的值分别为( ).A .337,-157,4B .407,-157,4C .4072,4D .4,407,-15 2.已知平面α内有一个点M (1,-1,2),平面α的一个法向量是n =(6,-3,6),则下列点P 在平面α内的是( ).A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4)3.已知E ,F 分别是正方体ABCD -A 1B 1C 1D 1棱BB 1,AD 的中点,则直线EF 和平面BDD 1B 1所成的角的正弦值是( ).A .26B .36C .13D .664.在四面体PABC 中,P A ,PB ,PC 两两垂直,设P A =PB =PC =a ,则点P 到平面ABC 的距离为__________.5.如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,AA 1=2,AC =BC =1,则异面直线A 1B 与AC 所成角的余弦值是__________.7.在正方体ABCD -A 1B 1C 1D 1中,O 是AC 的中点,E 是线段D 1O 上一点,且D 1E =λEO .(1)若λ=1,求异面直线DE 与CD 1所成角的余弦值;(2)若平面CDE ⊥平面CD 1O ,求λ的值.。

高中数学:向量法解立体几何总结

高中数学:向量法解立体几何总结

向量法解立体几何1、直线的方向向量和平面的法向量⑴.直线的方向向量:若A、B是直线上的任意两点,则为直线的一个方向向量;与平行的任意非零向量也是直线的方向向量.⑵.平面的法向量:若向量所在直线垂直于平面,则称这个向量垂直于平面,记作,如果,那么向量叫做平面的法向量。

⑶.平面的法向量的求法(待定系数法):①建立适当的坐标系.②设平面的法向量为.③求出平面内两个不共线向量的坐标.④根据法向量定义建立方程组.⑤解方程组,取其中一组解,即得平面的法向量.2、用向量方法判定空间中的平行关系⑴线线平行.设直线的方向向量分别是,则要证明∥,只需证明∥,即。

⑵线面平行。

设直线的方向向量是,平面的法向量是,则要证明∥,只需证明,即。

⑶面面平行。

若平面的法向量为,平面的法向量为,要证∥,只需证∥,即证。

3、用向量方法判定空间的垂直关系⑴线线垂直。

设直线的方向向量分别是,则要证明,只需证明,即。

⑵线面垂直①(法一)设直线的方向向量是,平面的法向量是,则要证明,只需证明∥,即.②(法二)设直线的方向向量是,平面内的两个相交向量分别为,若⑶面面垂直。

若平面的法向量为,平面的法向量为,要证,只需证,即证.4、利用向量求空间角⑴求异面直线所成的角已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,则⑵求直线和平面所成的角求法:设直线的方向向量为,平面的法向量为,直线与平面所成的角为,与的夹角为,则为的余角或的补角的余角。

即有:⑶求二面角二面角的平面角是指在二面角的棱上任取一点O,分别在两个半平面内作射线,则为二如图:求法:再设的夹角为,二面角的平面角为,则二如果是钝角,则,即.5、利用法向量求空间距离⑴点Q到直线距离若Q为直线外的一点,在直线上,为直线的方向向量,=,则点Q到直线距离为⑵点A到平面的距离若点P为平面外一点,点M为平面内任一点,平面的法向量为,则P到平面的距离就等于在法向量方向上的投影的绝对值。

即⑶直线与平面之间的距离当一条直线和一个平面平行时,直线上的各点到平面的距离相等.由此可知,直线到平面的距离可转化为求直线上任一点到平面的距离,即转化为点面距离。

(完整版)用基底建模向量法解决立体几何问题

(完整版)用基底建模向量法解决立体几何问题

用基底建模向量法解决立体几何问题空间向量是高中数学新教材中一项基本内容,它的引入有利于处理立体几何问题,有利于学生克服空间想象力的障碍和空间作图的困难,有利于丰富学生的思维结构,利用空间向量的坐标运算解立体几何问题,可把抽象的几何问题转化为代数计算问题,并具有很强的规律性和可操作性, 而利用空间向量的坐标运算需先建立空间直角坐标系,但建立空间直角坐标系有时要受到图形的制约,在立体几何问题中很难普遍使用,其实向量的坐标形式只是选取了特殊的基底,一般情况下, 我们可以根据题意在立体几何图形中选定一个基底,然后将所需的向量用此基底表示出来, 再利用向量的运算进行求解或证明, 这就是基底建模法. 它是利用向量的非坐标形式解立体几何问题的一种有效方法。

基向量法在解决立体几何的证明、求解问题中有着很特殊的妙用。

空间向量基本定理及应用空间向量基本定理:如果三个向量a 、b 、c 不共面,那么对空间任一向量p 存在惟一的有序实数组x 、y 、z ,使p =x a + y b + z c .1、 已知空间四边形OABC 中,∠AOB =∠BOC = ∠AOC ,且OA =OB =OC .M ,N 分别是OA ,BC 的中点,G 是 MN 的中点.求证:OG ⊥BC .【解前点津】 要证OG ⊥BC ,只须证明0=•BC OG 即可.而要证0=•BC OG ,必须把OG 、BC 用一组已知的空间基向量来表示.又已知条件为∠AOB =∠BOC =∠AOC ,且OA =OB =OC ,因此可选OC OB OA ,,为已知的基向量.【规范解答】 连ON 由线段中点公式得:例1题图),(41)(212121)(21OC OB OA OC OB OA ON OM OG ++=⎥⎦⎤⎢⎣⎡++=+= 又OB OC BC -=,所以•OG OB OC OB OB OA OC OC OB OC OA OB OC OC OB OA OB •--•-+•+•=-•++=22(41)()(41)=41(OA 22OB OC OB OA OC -+•-•). 因为AOC OC OA OC OA ∠••=•cos .AOB OB OA OB OA ∠••=•cos 且OA OB OC ==,∠AOB =∠AOC .所以BC OG •=0,即OG ⊥BC .【解后归纳】 本题考查应用平面向量、空间向量和平面几何知识证线线垂直的能力.【例2】 在棱长为a 的正方体ABCD —A 1B 1C 1D 1中,求:异面直线BA 1与AC 所成的角.【解前点津】 利用><⨯•=•AC BA AC BA AC BA ,cos 111,求出向量1BA 与AC 的夹角〈1BA ,AC 〉, 再根据异面直线BA 1,AC 所成角的范围确定异面直线所成角. 【规范解答】 因为BC AB AC BB BA BA +=+=,11,所以)()(11BC AB BB BA AC BA +•+=•=BC BB AB BB BC BA AB BA •+•+•+•11 因为AB ⊥BC ,BB 1⊥AB ,BB 1⊥BC , 所以AB BB BC BA •=•1,0=0,AB BA BC BB •=•,01=-a 2.所以AC BA •1=-a 2.又,,cos 111><••=•AC BA AC BA AC BA .2122,cos 21-=⨯->=<aa a AC BA 所以〈AC BA ,1〉=120°.所以异面直线BA 1与AC 所成的角为60°.【解后归纳】 求异面直线所成角的关键是求异面直线上两向量的数量积,而要求两向量的数量积,必须会把所求向量用空间的一组基向量来表示例3:如图,在底面是菱形的四棱锥P-ABCD 中,∠ABC=60º,PA ⊥面ABCD , PA=AC =a,PB=PD=2a ,点E 在PD 上,且PE:PD=2:1. 在棱PC 上是否存在一点F ,使BF ∥ 平面AEC ?证明你的结论. 解析:我们可选取,,AB AD AP 作为一组空间基底CAPE,()(1)(1)22()331233PF PC BF BP PF AP AB AC AP AB AD APAE AP PE AP PD AP AD AP AP AD AC AB A λλλλλ==+=-+-=-++-=+=+=+-=+=+设而又因为并且//,12(1)(1)=+333-1=2213211123PC F,PC BF DBF AEC BF x AE y AC AB AD AP x AP AD AB AD x y x y x λλλλλλλ=+-++-++⎧⎧=⎪⎪⎪⎪⎪⎪==-⎨⎨⎪⎪⎪⎪=-=⎪⎪⎩⎩要使平面那么存在实数x,y 使成立即()y()于是,可得到解得故在棱上存在一点其为的中点,使//AEC平面【例4】 证明:四面体中连接对棱中点的三条直线交于一点且互相平分(此点称为四面体的重心).【规范解答】∵E ,G 分别为AB ,AC 的中点,∴EGBC 21,同理HF BC 21,∴EG HF .从而四边形EGF H 为平行四边形,故其对角线EF , GH 相交于一点O ,且O 为它们的中点,连接OP ,OQ .只要能证明向量OP =-OQ 就可以说明P ,O ,Q 三点共线且O为PQ 的中点,事实上,HQ OH OQ GP OG OP +=+=, ,而O 为GH 的中点, 例4图∴GPOH OG ,0=+21CD,QH21CD,∴.21,21CD QH CD GP ==∴=CD CD HQ GP OH OG OQ OP 21210-+=+++=+=0.∴OQ OP -==,∴PQ 经过O 点,且O 为PQ 的中点.【解后归纳】本例要证明三条直线相交于一点O ,我们采用的方法是先证明两条直线相交于一点,然后证明OQ OP ,两向量共线,从而说明P 、O 、Q 三点共线进而说明PQ 直线过O 点.例5.如图在平行六面体ABCD -A1B1C1D1中,E 、F 、G 分别是A1D1、D1D 、D1C1的中点. 求证:平面EFG ∥平面AB1C.证明:设AB =a ,AD =b ,1AA =c ,则EG =1ED +1D G =12(a +b),AC =a +b =2EG ,∴EG ∥AC ,EF =1ED +1D F =12b -12c =12(b -c),1B C =11B C +1C C =b -c =2EF ,∴EF ∥1B C .又∵EG 与EF 相交,AC 与B1C 相交, ∴平面EFG ∥平面AB1C.例6.如图,平行六面体ABCD -A1B1C1D1中,以顶点A 为端点的三条棱长都为1,且 两夹角为60°. (1)求AC1的长;(2)求BD1与AC 夹角的余弦值. 解:设AB =a ,AD =b ,=c ,则两两夹角为60°,且模均为1.(1)1AC =AC +1CC =AB +AD +1AA =a +b +c.∴|1AC |2=(a +b + c)2=|a|2+|b|2+|c|2+2a ·b +2b ·c +2a ·c=3+6×1×1×12=6,∴|1AC |=6,即AC1的长为 6.(2)1BD =BD +1DD =AD -AB +1AA =b -a +c.∴1BD ·AC =(b -a +c)·(a +b)=a ·b -a2+a ·c +b2-a ·b +b ·c =1. |1BD |=(b -a +c)2=2,|AC |=(a +b)2=3,∴cos 〈1BD ,AC 〉=11BD ACBD AC =12×3=66. ∴BD1与AC 夹角的余弦值为66.14.已知线段AB 在平面α内,线段AC ⊥α,线段BD ⊥AB ,且与α所成的角是30,如果AB =a ,AC =BD =b ,求C 、D 之间的距离..如图,由AC ⊥α,知AC ⊥AB.过D 作DD ′⊥α,D ′为垂足,则∠DBD ′=30°,〈BD CA ,〉=120°, ∴|CD|2= 2)(CD AB CA CD CD ++=• =BDAB BD CA AB CA BD AB CA •+•+•+++222222=b2+a2+b2+2b2cos120°=a2+b2.∴CD =22b a +15如图所示,已知ABCD ,O 是平面AC 外的一点点,OD OD OC OC OB OB OA OA 2,2,2,21111====, 求证:A 1,B 1,C 1,D 1四点共面.证明:∵)(22)(2221111AD AB AC OA OC OA OC OA OC C A +==-=-=-= =2[])22()22(()(OA OD OA OB OA OD OA OB -+-=-+- =11111111)()(D A B A OA OD OA OB +=-+- ∴A1,B1,C1,D1四点共面.16 :如图,已知平行六面体ABCD-A 1B 1C 1D 1的底面ABCD 是菱形,且∠C 1CB=∠C 1CD=∠BCD=60°. 证明:C 1C ⊥BD ;{}1,,,,,,解:分别以的单位向量为空间的基底CD CB CC 123123e e e e e e===m 11CD m ,CB ,CC n 依题设中的条件,可知:23e e e<e 1,e 2>=60°, <e 1,e 3>=60°, <e 2,e 3>=60°,m m n 1(1)BD BC CD m ,BD CC (m )()mn()mn(cos ,cos )0=+=-+∴⋅=-+⋅=⋅-⋅=<>-<>=2121313231323e e e e e e e e e e e e ,e∴ C 1C ⊥BD17 .如图,在梯形ABCD 中,AB ∥CD ,∠ADC =90°,3AD =DC =3,AB =2,E 是DC 上的点,且满足 DE =1,连结AE ,将△DAE 沿AE 折起到△D1AE第17题B 1D C OBA的位置,使得∠D1AB =60°,设AC 与BE 的交点为O. (1)试用基向量AB , AE ,1AD 表示向量1OD ; (2)求异面直线OD1与AE 所成角的余弦值;(3)判断平面D1AE 与平面ABCE 是否垂直?并说明理由. 解:(1)∵AB ∥CE ,AB =CE =2,∴四边形ABCE 是平行四边形,∴O 为BE 的中点. ∴1OD =-AO =1AD -12(AB +AE )=1AD -12AB -12AE .(2)设异面直线OD1与AE 所成的角为θ,则cosθ=|cos 〈1OD ,AE 〉|=11OD AEOD AE⋅⋅,∵1OD ·AE =(1AD -12AB -12AE )·AE =1AD ·AE -12AB ·AE -12|AE |2 =1×2×cos45°-12×2×2×cos45°-12×(2)2=-1,|1OD |=2111()22AD AB AE --=62, ∴cos θ=11OD AEOD AE⋅⋅=|-162×2|=33. 故异面直线OD1与AE 所成角的余弦值为33.(3)平面D1AE ⊥平面ABCE.证明如下: 取AE 的中点M ,则1D M =AM -1AD=12AE -1AD , ∴1D M ·AE =(12AE -1AD )·AE =12|AE |2-1AD ·AE=12×(2)2-1×2×cos45°=0. ∴1D M ⊥AE .∴D1M ⊥AE.∵1D M ·AB =(12AE -1AD )·AB =12AE ·AB -1AD ·AB=12×2×2×cos45°-1×2×cos60°=0,∴1D M ⊥AB ,∴D1M ⊥AB. 又AE∩AB =A ,AE 、AB ⊂平面ABCE ,∴D1M ⊥平面ABCE.∵D1M ⊂平面D1AE , ∴平面D1AE ⊥平面ABCE.在四面体、平行六面体等图形中,当不易找到(或作出)从一点出发的三条两两垂直的直线建立直坐标系时,可采用“基底建模法”选定从一点发的不共面的三个向量作为基底,并用它们表示出指定的向量,再利用向量的运算证明平行和垂直,求解角和距离。

高中数学新湘教版选修2-1 空间向量与立体几何 章末小结复习

高中数学新湘教版选修2-1 空间向量与立体几何   章末小结复习

1.空间向量基本定理设e1,e2,e3是空间中的三个不共面的单位向量,则(1)空间中任意一个向量v可以写成这三个向量的线性组合:v=xe1+ye2+ze3.(2)上述表达式中的系数x,y,z由v唯一决定,即:如果v=xe1+ye2+ze3=x′e1+y′e2+z′e3,则x=x′,y=y′,z=z′.2.空间向量的坐标运算公式(1)加减法:(x1,y1,z1)±(x2,y2,z2)=(x1±x2,y1±y2,z1±z2).(2)与实数的乘法:a(x,y,z)=(ax,ay,az).(3)数量积:设v=(x,y,z),则|v|=x2+y2+z2.(4)向量的夹角:cos θ=v1·v2 |v1|·|v2|=x1x2+y1y2+z1z2x21+y21+z21·x22+y22+z22.3.空间向量在立体几何中的应用设直线l,m的方向向量分别为a,b,平面α,β的法向量分别为u,ν,则[例1]M ,N 分别为AB ,PC 的中点.求证:(1)MN ∥平面PAD ; (2)平面PMC ⊥平面PDC .[证明] 如图所示,以A 为坐标原点,AB ,AD ,AP 所在的直线分别为x ,y ,z 轴建立空间直角坐标系A -xyz .设PA =AD =a ,AB =b .则有,(1)P (0,0,a ),A (0,0,0),D (0,a,0),C (b ,a,0),B (b,0,0). ∵M ,N 分别为AB ,PC 的中点, ∴M ⎝⎛⎭⎫b 2,0,0,N ⎝⎛⎭⎫b 2,a 2,a 2. ∴MN ―→=⎝⎛⎭⎫0,a 2,a 2,AP ―→=(0,0,a ),AD ―→=(0,a,0), ∴MN ―→=12AD ―→+12AP ―→.又∵MN ⊄平面PAD ,∴MN ∥平面PAD . (2)由(1)可知:PC ―→=(b ,a ,-a ),PM ―→=⎝⎛⎭⎫b2,0,-a , PD ―→=(0,a ,-a ).设平面PMC 的一个法向量为n 1=(x 1,y 1,z 1),则 ⎩⎪⎨⎪⎧n 1·PC ―→=0⇒bx 1+ay 1-az 1=0,n 1·PM ―→=0⇒b 2x 1-az 1=0,∴⎩⎪⎨⎪⎧x 1=2a b z 1,y 1=-z 1,令z 1=b ,则n 1=(2a ,-b ,b ).设平面PDC 的一个法向量为n 2=(x 2,y 2,z 2),则 ⎩⎪⎨⎪⎧n 2·PC ―→=0⇒bx 2+ay 2-az 2=0,n 2·PD ―→=0⇒ay 2-az 2=0,∴⎩⎪⎨⎪⎧x 2=0,y 2=z 2.令z 2=1,则n 2=(0,1,1), ∵n 1·n 2=0-b +b =0,∴n 1⊥n 2. ∴平面PMC ⊥平面PDC .(1)用向量法证明立体几何中的平行或垂直问题,主要应用直线的方向向量和平面的法向量,同时也要借助空间中已有的一些关于平行或垂直的定理.(2)用向量法证明平行或垂直的步骤:①建立空间图形与空间向量的关系(通过取基或建立空间直角坐标系的方法),用空间向量或以坐标形式表示问题中涉及的点、直线和平面;②通过向量或坐标,研究向量之间的关系;③根据②的结论得出立体几何问题的结论.(3)在用向量法研究线面平行或垂直时,上述判断方法不唯一,如果要证直线l ∥平面α,只需证l =λa ,l ⊄α,其中l 是直线l 的方向向量,a ⊂α;如果要证l ⊥α,只需在平面α内选取两个不共线向量m ,n ,证明⎩⎪⎨⎪⎧l ·m =0,l ·n =0,即可.1.如图所示,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,O 为AC 与BD 的交点,G 为CC 1的中点,求证:A 1O ⊥平面GBD .证明:法一:设A 1B 1―→=a ,A 1D 1―→=b ,A 1A ―→=c , 则a ·b =0,b ·c =0,a ·c =0, A 1O ―→=A 1A ―→+AO ―→=A 1A ―→+12(AB ―→+AD ―→)=c +12(a +b ),BD ―→=AD ―→-AB ―→=b -a ,OG ―→ =OC ―→ +CG ―→ =12(AB ―→+AD ―→ )+12CC 1―→=12(a +b )-12c ,∴A 1O ―→·BD ―→=⎝⎛⎭⎫c +12a +12b ·(b -a ) =c ·(b -a )+12(a +b )·(b -a )=c ·b -c ·a +12(b 2-a 2)=12(|b |2-|a |2)=0,∴A 1O ―→⊥BD ―→.∴A 1O ⊥BD . 同理可证A 1O ―→⊥OG ―→.∴A 1O ⊥OG . 又OG ∩BD =O , ∴A 1O ⊥平面GBD .法二:如图所示,以D 为坐标原点,DA ,DC ,DD 1分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则D (0,0,0),B (2,2,0),A 1(2,0,2),G (0,2,1),O (1,1,0),所以A 1O ―→=(-1,1,-2),DB ―→=(2,2,0), DG ―→=(0,2,1),则A 1O ―→·DB ―→=(-1,1,-2)·(2,2,0)=0, A 1O ―→·DG ―→=(-1,1,-2)·(0,2,1)=0,所以A 1O ―→⊥DB ―→,A 1O ―→⊥DG ―→.即A 1O ⊥DB ,A 1O ⊥DG . 又DB ∩DG =D ,故A 1O ⊥平面GBD .法三:以D 为坐标原点,DA ,DC ,DD 1分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则D (0,0,0),B (2,2,0),A 1(2,0,2),G (0,2,1),O (1,1,0),所以A 1O ―→=(-1,1,-2),DB ―→=(2,2,0),DG ―→=(0,2,1). 设向量n =(x ,y ,z )为平面GBD 的一个法向量, 则n ⊥DB ―→,n ⊥DG ―→. 即n ·DB ―→=0,n ·DG ―→=0.所以⎩⎪⎨⎪⎧2x +2y =0,2y +z =0.令x =1,则y =-1,z =2, 所以n =(1,-1,2). 所以A 1O ―→=-n .即A 1O ―→∥n . 所以A 1O ⊥平面GBD .2.如图,正方体ABCD -A 1B 1C 1D 1中,M ,N 分别为AB ,B 1C 的中点. (1)用向量法证明平面A 1BD ∥平面B 1CD 1;(2)用向量法证明MN ⊥平面A 1BD . 证明:(1)在正方体ABCD -A 1B 1C 1D 1中, BD ―→=AD ―→-AB ―→,B 1D 1―→=A 1D 1―→-A 1B 1―→, 又∵AD ―→=A 1D 1―→,AB ―→=A 1B 1―→,∴BD ―→=B 1D 1―→, ∴BD ∥B 1D 1. 同理可证A 1B ∥D 1C ,又BD ∩A 1B =B ,B 1D 1∩D 1C =D 1, 所以平面A 1BD ∥平面B 1CD 1.(2)MN ―→=MB ―→+BC ―→+CN ―→=12AB ―→+AD ―→+12(CB ―→+BB 1―→)=12AB ―→+AD ―→+12(-AD ―→+AA 1―→) =12AB ―→+12AD ―→+12AA 1―→.设AB ―→=a ,AD ―→=b ,AA 1―→=c ,则MN ―→=12(a +b +c ).又BD ―→=AD ―→-AB ―→=b -a , ∴MN ―→·BD ―→=12(a +b +c )·(b -a )=12(b 2-a 2+c ·b -c ·a ). 又∵A 1A ⊥AD ,A 1A ⊥AB ,∴c ·b =0,c ·a =0. 又|b |=|a |,∴b 2=a 2.∴b 2-a 2=0. ∴MN ―→·BD ―→=0.∴MN ⊥BD . 同理可证MN ⊥A 1B . 又A 1B ∩BD =B , ∴MN ⊥平面A 1BD .[例2] 四棱锥=AD =2,点M ,N 分别在棱PD ,PC 上,且PC ⊥平面AMN .(1)求AM 与PD 所成的角; (2)求二面角P -AM -N 的余弦值;(3)求直线CD 与平面AMN 所成角的余弦值.[解] 建立如图所示的空间直角坐标系. ∵A (0,0,0),C (2,2,0),P (0,0,2),D (0,2,0), ∴PC ―→=(2,2,-2),PD ―→=(0,2,-2). 设M (x 1,y 1,z 1),PM ―→=λPD ―→, 则(x 1,y 1,z 1-2)=λ(0,2,-2). ∴x 1=0,y 1=2λ,z 1=-2λ+2. ∴M (0,2λ,2-2λ).∵PC ⊥平面AMN ,∴PC ―→⊥AM ―→, ∴PC ―→·AM ―→=0.∴(2,2,-2)·(0,2λ,2-2λ)=0⇒4λ-2(2-2λ)=0. ∴λ=12.∴M (0,1,1).设N (x 2,y 2,z 2),PN ―→=t PC ―→, 则(x 2,y 2,z 2-2)=t (2,2,-2).∴x 2=2t ,y 2=2t ,z 2=-2t +2. ∴N (2t,2t,2-2t ).∵PC ―→⊥AN ―→,∴AN ―→·PC ―→=0. ∴(2t,2t,2-2t )·(2,2,-2)=0. ∴4t +4t -2(2-2t )=0, ∴t =13.∴N ⎝⎛⎭⎫23,23,43. (1)∵cos 〈AM ―→,PD ―→〉=(0,1,1)·(0,2,-2)0+1+1×0+4+4=0,∴AM 与PD 所成角为90°.(2)∵AB ⊥平面PAD ,PC ⊥平面AMN ,∴AB ―→,PC ―→分别是平面PAD ,平面AMN 的法向量. ∵AB ―→·PC ―→=(2,0,0)·(2,2,-2)=4, |AB ―→|=2,|PC ―→|=23, ∴cos 〈AB ―→,PC ―→〉=443=33.∴二面角P -AM -N 的余弦值为33. (3)∵PC ―→是平面AMN 的法向量,∴CD 与平面AMN 所成角即为CD 与PC 所成角的余角. ∵CD ―→·PC ―→=(-2,0,0)·(2,2,-2)=-4, ∴cos 〈CD ―→,PC ―→〉=-42×23=-33.∴直线CD 与PC 所成角的正弦值为63, 即直线CD 与平面AMN 所成角的余弦值为63.(1)求异面直线所成的角:设两异面直线的方向向量分别为n 1,n 2,那么这两条异面直线所成的角为θ=〈n 1,n 2〉或θ=π-〈n 1,n 2〉,∴cos θ=|cos 〈n 1,n 2〉|. (2)求二面角的大小:如图,设平面α,β的法向量分别为n 1,n 2.因为两平面的法向量所成的角就等于平面α,β所成的锐二面角θ,所以cos θ=|cos 〈n 1,n 2〉|.(3)求斜线与平面所成的角:如图,设平面α的法向量为n 1,斜线OA 的方向向量为n 2,斜线OA 与平面所成的角为θ,则sin θ=|cos 〈n 1,n 2〉|.3.如图所示,在矩形ABCD 中,AB =4,AD =3,沿对角线AC折起,使D 在平面ABC 上的射影E 恰好落在AB 上,求这时二面角B -AC -D 的余弦值.解:如图所示,作DG ⊥AC 于G ,BH ⊥AC 于H .在Rt △ADC 中, AC =AD 2+DC 2=5, cos ∠DAC =AD AC =35.在Rt △AGD 中,AG =AD ·cos ∠DAC =3×35=95,DG =AD 2-AG 2=9-8125=125. 同理,cos ∠BCA =35,CH =95,BH =125.AD ―→·BC ―→=(AE ―→+ED ―→)·BC ―→=AE ―→·BC ―→+ED ―→·BC ―→=0, GD ―→·HB ―→=(GA ―→+AD ―→)·(HC ―→+CB ―→) =GA ―→·HC ―→+GA ―→·CB ―→+AD ―→·HC ―→+AD ―→·CB ―→ =-95×95+95×3×35+3×95×35+0=8125.又|GD ―→|·|HB ―→|=14425,∴cos 〈GD ―→,HB ―→〉=916.因此所求二面角的余弦值为916.4.如图,ABCD -A 1B 1C 1D 1是正四棱柱. (1)求证:BD ⊥平面ACC 1A 1;(2)二面角C 1-BD -C 的大小为60°,求异面直线BC 1与AC 所成角的余弦值.解:(1)证明:建立空间直角坐标系D -xyz ,如图.设AD =a ,DD 1=b ,则有D (0,0,0),A (a ,0,0),B (a ,a,0),C (0,a,0),C 1(0,a ,b ),∴BD ―→=(-a ,-a,0),AC ―→=(-a ,a,0),CC 1―→=(0,0,b ), ∴BD ―→·AC ―→=0,BD ―→·CC 1―→=0. ∴BD ⊥AC ,BD ⊥CC 1.又∵AC ,CC 1⊂平面ACC 1A 1,且AC ∩CC 1=C , ∴BD ⊥平面ACC 1A 1.(2)设BD 与AC 相交于点O ,连接C 1O , 则点O 的坐标为⎝⎛⎭⎫a 2,a 2,0,OC 1―→=⎝⎛⎭⎫-a 2,a 2,b . ∵BD ―→·OC 1―→=0,∴BD ⊥C 1O . 又BD ⊥CO ,∴∠C 1OC 是二面角C 1-BD -C 的平面角, ∴∠C 1OC =60°, ∵tan ∠C 1OC =CC 1OC =b22a =3, ∴b =62a . ∵AC ―→=(-a ,a,0),BC 1―→=(-a,0,b ), ∴cos 〈AC ―→,BC 1―→〉=AC ―→·BC 1―→|AC ―→|·|BC 1―→|=55. ∴异面直线BC 1与AC 所成角的余弦值为55.(时间120分钟,满分150分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知l ∥π,且l 的方向向量为(2,m,1),平面π的法向量为⎝⎛⎭⎫1,12,2,则m =( ) A .-8 B .-5 C .5D .8解析:∵l ∥π,∴直线l 的方向向量与平面π的法向量垂直. ∴2+m2+2=0,m =-8.答案:A2.在空间四边形ABCD 中,连接AC ,BD ,若△BCD 是正三角形,且E 为其中心,则AB ―→+12BC ―→-32DE ―→-AD ―→的化简结果为( )A .AB ―→B .2BD ―→C .0D .2DE ―→解析:如图,F 是BC 的中点,E 是DF 的三等分点,∴32DE ―→=DF ―→. ∵12BC ―→=BF ―→,则AB ―→+12BC ―→-32DE ―→-AD ―→=AB ―→+BF ―→-DF ―→-AD ―→=AF ―→+FD ―→-AD ―→=AD ―→-AD ―→=0.答案:C3.在以下命题中,不正确的个数为( ) ①|a |-|b |=|a +b |是a ,b 共线的充要条件; ②若a ∥b ,则存在唯一的实数λ,使a =λb ;③对空间任意一点O 和不共线的三点A ,B ,C ,若OP ―→=2OA ―→-2OB ―→-OC ―→,则P ,A ,B ,C 四点共面;④若{a ,b ,c }为空间的一组基,则{a +b ,b +c ,c +a }构成空间的另一组基; ⑤ |(a ·b )·c |=|a |·|b |·|c |. A .2 B .3 C .4D .5解析:①|a |-|b |=|a +b |⇒a 与b 的夹角为π,故是充分不必要条件,故不正确;②b 需为非零向量,故不正确;③因为2-2-1≠1,由共面向量定理知,不正确;④由基的定义知正确;⑤由向量的数量积的性质知,不正确.答案:C4.直三棱柱ABC -A 1B 1C 1中,若CA ―→=a ,CB ―→=b ,CC 1―→=c ,则A 1B ―→=( ) A .a +b -c B .a -b +c C .-a +b +cD .-a +b -c解析:A 1B ―→=CB ―→-CA 1―→=CB ―→-(CA ―→+CC 1―→)=b -a -c . 答案:D5.已知四面体ABCD 的各边长都是a ,点E ,F 分别为BC ,AD 的中点,则AE ―→·AF ―→的值是( )A .a 2 B.12a 2 C.14a 2 D.34a 2 解析:由已知得ABCD 为正四面体,因为AE ―→=12(AB ―→+AC ―→),AF ―→=12AD ―→,所以AE ―→·AF―→=12(AB ―→+AC ―→)·12AD ―→=14(AB ―→·AD ―→+AC ―→·AD ―→) =14(a 2cos 60°+a 2cos 60°)=14a 2. 答案:C6.已知正四棱锥S -ABCD 的侧棱长与底面边长都相等,E 是SB 的中点,则AE 与SD 所成角的余弦值为( )A.13B.23C.33D.23解析:建立如图所示的空间直角坐标系,设A (1,0,0),则B (0,1,0),D (0,-1,0),AB =2,SD =2,∴SO =1,∴S (0,0,1),∴E ⎝⎛⎭⎫0,12,12,AE ―→=-1,12,12,SD ―→=(0,-1,-1).∴cos 〈AE ―→, SD ―→〉=AE ―→·SD ―→|AE ―→||SD ―→|=-12-1262×2=-33, ∴AE 与SD 所成角的余弦值为33. 答案:C7.在平行六面体ABCD -A ′B ′C ′D ′中,若AC ′―→=x AB ―→+2y BC ―→+3zC ′C ―→,则x +y +z 等于( )A .1 B.76 C.56D.23解析:如图,AC ′―→=AB ―→+BC ―→+CC ′―→=AB ―→+BC ―→-C ′C ―→,所以x =1,2y =1,3z =-1,所以x =1,y =12,z =-13,因此x +y +z =1+12-13=76.答案:B8.如图所示,直三棱柱ABC -A 1B 1C 1中,AA 1=AB =AC ,AB ⊥AC ,M 是CC 1的中点,Q 是BC 的中点,P 是A 1B 1的中点,则直线P Q 与AM 所成的角为( )A.π6 B.π4 C.π3D.π2解析:以A 为坐标原点,AB ,AC ,AA 1所在直线为x 、y 、z 轴建立如图所示的空间直角坐标系,设AA 1=AB =AC =2,则AM ―→=(0,2,1),Q (1,1,0),P (1,0,2),Q P ―→=(0,-1,2),所以Q P ―→·AM ―→=0,所以Q P 与AM 所成角为π2.答案:D9.如图,在长方体ABCD -A1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为( )A.63B.255C.155D.105解析:以D 点为坐标原点,以DA ,DC ,DD 1所在的直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则A (2,0,0),B (2,2,0),C (0,2,0),C 1(0,2,1),∴BC 1―→=(-2,0,1),AC ―→=(-2,2,0),且AC ―→为平面BB 1D 1D 的一个法向量. ∴cos 〈BC 1―→,AC ―→〉=BC 1―→·AC ―→|BC 1―→|·|AC ―→|=45·8=105.∴BC 1与平面BB 1D 1D 所成角的正弦值为105. 答案:D10.已知OA ―→=(1,2,3),OB ―→=(2,1,2),OP ―→=(1,1,2),点Q 在直线OP 上运动,则当Q A ―→·Q B ―→取得最小值时,点Q 的坐标为( )A.⎝⎛⎭⎫12,34,13B.⎝⎛⎭⎫12,32,34 C.⎝⎛⎭⎫43,43,83D.⎝⎛⎭⎫43,43,73解析:∵Q 在OP 上,∴可设Q (x ,x,2x ),则Q A ―→=(1-x ,2-x,3-2x ), Q B ―→=(2-x,1-x,2-2x ).∴Q A ―→·Q B ―→=6x 2-16x +10,∴x =43时,Q A ―→·Q B ―→取得最小值,这时Q ⎝⎛⎭⎫43,43,83. 答案:C11.如图,在四面体P -ABC 中,PC ⊥平面ABC ,AB =BC =CA =PC ,那么二面角B -AP -C 的余弦值为( )A.22 B.33C.77D.57解析:如图,作BD ⊥AP 于点D ,作CE ⊥AP 于点E .设AB =1,则易得CE =22,EP =22,PA =PB =2,可以求得BD =144,ED =24. ∵BC ―→=BD ―→+DE ―→+EC ―→,∴BC ―→2=BD ―→2+DE ―→2+EC ―→2+2BD ―→·DE ―→+2DE ―→·EC ―→+2EC ―→·BD ―→, ∴EC ―→·BD ―→=-14,∴cos 〈BD ―→,EC ―→〉=-77.故二面角B -AP -C 的余弦值为77. 答案:C12.如图,在三棱柱ABC -A1B 1C 1中,底面ABC 为正三角形,且侧棱AA 1⊥底面ABC ,且底面边长与侧棱长都等于2,O ,O 1分别为AC ,A 1C 1的中点,则平面AB 1O 1与平面BC 1O 间的距离为( )A.355B.255C.55D.510解析:如图,连接OO 1,根据题意,OO 1⊥底面ABC ,则以O 为原点,分别以OB ,OC ,OO 1所在的直线为x ,y ,z 轴建立空间直角坐标系.∵AO 1∥OC 1,OB ∥O 1B 1,AO 1∩O 1B 1=O 1,OC 1∩OB =O ,∴平面AB 1O 1∥平面BC 1O .∴平面AB 1O 1与平面BC 1O 间的距离即为O 1到平面BC 1O 的距离.∵O (0,0,0),B (3,0,0),C 1(0,1,2),O 1(0,0,2),∴OB ―→=(3,0,0),OC 1―→=(0,1,2),OO 1―→=(0,0,2),设n =(x ,y ,z )为平面BC 1O 的法向量,则n ·OB ―→=0,∴x =0.又n ·OC 1―→=0,∴y +2z =0,∴可取n =(0,2,-1).点O 1到平面BC 1O 的距离记为d ,则d =|n ·OO 1―→||n |=25=255.∴平面AB 1O 1与平面BC 1O间的距离为255.答案:B二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.若空间三点A (1,5,-2),B (2,4,1),C (p,3,q )共线,则p +q =________. 解析:由已知得AB ―→=(1,-1,3),AC ―→=(p -1,-2,q +2),因为AB ―→∥AC ―→,所以p -11=-2-1=q +23,所以p =3,q =4,故p +q =7.答案:714.已知空间四边形OABC ,如图所示,其对角线为OB ,AC ,M ,N 分别为OA ,BC 的中点,点G 在线段MN 上,且MG ―→=3GN ―→,现用基向量OA ―→,OB ―→,OC ―→表示向量OG ―→,并设OG ―→=x OA ―→+y OB ―→+z OC ―→,则x ,y ,z 的和为________.解析:OG ―→=OM ―→+MG ―→=12OA ―→+34MN ―→=12OA ―→+34⎝⎛⎭⎫-12 OA ―→+OC ―→+12 CB ―→=12OA ―→-38OA ―→+34OC ―→+38OB ―→-38OC ―→=18OA ―→+38OB ―→+38OC ―→, ∴x =18,y =38,z =38.∴x +y +z =78.答案:7815.已知空间三点O (0,0,0),A (-1,1,0),B (0,1,1),在直线OA 上有一点H 满足BH ⊥OA ,则点H 的坐标为______________.解析:由OA ―→=(-1,1,0),且点H 在直线OA 上, 可设H (-λ,λ,0),则BH ―→=(-λ,λ-1,-1).又BH ⊥OA ,∴BH ―→·OA ―→=0,即(-λ,λ-1,-1)·(-1,1,0)=0,即λ+λ-1=0,解得λ=12, ∴H ⎝⎛⎭⎫-12,12,0. 答案:⎝⎛⎭⎫-12,12,0 16.如图,在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,底面ABC 是等腰直角三角形,∠ACB =90°,侧棱AA 1=2,D ,E 分别是CC 1与A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的重心G .则A 1B 与平面ABD 所成角的正弦值为________.解析:以C 为坐标原点,CA 所在的直线为x 轴,CB 所在的直线为y 轴,CC 1所在的直线为z 轴建立空间直角坐标系,如图所示.设CA =CB =a ,则A (a,0,0),B (0,a,0),A 1(a,0,2),D (0,0,1),∴E ⎝⎛⎭⎫a 2,a 2,1,G ⎝⎛⎭⎫a 3,a 3,13, GE ―→=⎝⎛⎭⎫a 6,a 6,23,BD ―→=(0,-a,1). ∵点E 在平面ABD 上的射影是△ABD 的重心G , ∴GE ―→⊥平面ABD ,∴GE ―→·BD ―→=0,解得a =2. ∴GE ―→=⎝⎛⎭⎫13,13,23,BA 1―→=(2,-2,2), ∵GE ―→⊥平面ABD ,∴GE ―→为平面ABD 的一个法向量. 又cos 〈GE ―→,BA 1―→〉=GE ―→·BA 1―→|GE ―→||BA 1―→|=4363×23=23, ∴A 1B 与平面ABD 所成角的正弦值为23. 答案:23三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知向量a =(1,-3,2),b =(-2,1,1),点A (-3,-1,4),B (-2,-2,2).(1)求|2a +b |;(2)在直线AB 上,是否存在一点E ,使得OE ―→⊥b ?(O 为原点)解:(1)2a +b =(2,-6,4)+(-2,1,1)=(0,-5,5),故|2a +b |=02+(-5)2+52=5 2. (2)OE ―→=OA ―→+AE ―→=OA ―→+t AB ―→ =(-3,-1,4)+t (1,-1,-2) =(-3+t ,-1-t,4-2t ). 若OE ―→⊥b ,则OE ―→·b =0,所以-2(-3+t )+(-1-t )+(4-2t )=0, 解得t =95,因此存在点E ,使得OE ―→⊥b , 此时E 点坐标为⎝⎛⎭⎫-65,-145,25.18.(本小题满分12分)如图,在平行六面体ABCD -A 1B 1C 1D 1中,AB =AD =AA 1=1,∠BAD =60°,∠BAA 1=∠DAA 1=45°.(1)求|BD 1―→|;(2)求证:BD ⊥平面ACC 1A 1. 解:(1)∵BD 1―→=BA ―→+BC ―→+BB 1―→∴|BD 1―→|2=(BA ―→+BC ―→+BB 1―→)2=BA ―→2+BC ―→2+BB 1―→2+2(BA ―→·BC ―→+BA ―→·BB 1―→+BC ―→·BB 1―→)=1+1+1+2⎝⎛⎭⎫-12-22+22=2,∴|BD 1―→|= 2.(2)证明:∵BD ―→=AD ―→-AB ―→, ∴AA 1―→·BD ―→=AA 1―→·(AD ―→-AB ―→)=0, ∴BD ⊥AA 1,又BD ⊥AC ,AA 1∩AC =A , 所以BD ⊥平面ACC 1A 1.19.(本小题满分12分)如图,已知点P 在正方体ABCD -A1B 1C 1D 1的对角线BD 1上,∠PDA =60°.(1)求DP 与CC 1所成角的大小; (2)求DP 与平面AA 1D 1D 所成角的大小.解:如图,以D 为原点,DA 为单位长建立空间直角坐标系Dxyz .则DA ―→=(1,0,0),CC 1―→=(0,0,1).连接BD ,B 1D 1.在平面BB 1D 1D 中,延长DP 交B 1D 1于H . 设DH ―→=(m ,m,1)(m >0), 由已知〈DH ―→,DA ―→〉=60°,由DH ―→·DA ―→=|DA ―→||DH ―→|cos 〈DA ―→,DH ―→〉, 可得2m =2m 2+1. 解得m =22,所以DH ―→=⎝⎛⎭⎫22,22,1.(1)因为cos 〈DH ―→,CC 1―→〉=22×0+22×0+1×11×2=22,所以〈DH ―→,CC 1―→〉=45°. 即DP 与CC 1所成的角为45°.(2)平面AA 1D 1D 的一个法向量是DC ―→=(0,1,0). 因为cos 〈DH ―→,DC ―→〉=22×0+22×1+1×01×2=12,所以〈DH ―→,DC ―→〉=60°,可得DP 与平面AA 1D 1D 所成的角为30°.20.(本小题满分12分)如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 是棱DD 1的中点.(1)求直线BE 和平面ABB 1A 1所成的角的正弦值;(2)在棱C 1D 1上是否存在一点F ,使B 1F ∥平面A 1BE ?证明你的结论. 解:设正方体ABCD -A 1B 1C 1D 1的棱长为1.如图所示,以AB ―→,AD ―→,AA 1―→为单位正交基底建立空间直角坐标系.(1)依题意,得B (1,0,0),E ⎝⎛⎭⎫0,1,12,A (0,0,0),D (0,1,0),所以BE ―→=⎝⎛⎭⎫-1,1,12,AD ―→=(0,1,0).在正方体ABCD -A 1B 1C 1D 1中, 因为AD ⊥平面ABB 1A 1,所以AD ―→是平面ABB 1A 1的一个法向量, 设直线BE 和平面ABB 1A 1所成的角为θ,则 sin θ=|BE ―→·AD ―→||BE ―→|·|AD ―→|=132×1=23. 即直线BE 和平面ABB 1A 1所成的角的正弦值为23.(2)依题意,得A 1(0,0,1),BA 1―→=(-1,0,1),BE ―→=⎝⎛⎭⎫-1,1,12. 设n =(x ,y ,z )是平面A 1BE 的一个法向量, 则由n ·BA 1―→=0,n ·BE ―→=0, 得⎩⎪⎨⎪⎧-x +z =0,-x +y +12z =0. 所以x =z ,y =12z .取z =2,得n =(2,1,2).设F 是棱C 1D 1上的点,连接B 1F ,则F (t,1,1)(0≤t ≤1), 又B 1(1,0,1),所以B 1F ―→=(t -1,1,0). 而B 1F ⊄平面A 1BE ,于是B 1F ∥平面A 1BE ⇔B 1F ―→·n =0⇔(t -1,1,0)·(2,1,2)=0⇔2(t -1)+1=0⇔t =12⇔F 为C 1D 1的中点.这说明在棱C 1D 1上存在点F (C 1D 1的中点),使B 1F ∥平面A 1BE .21.(本小题满分12分)(2017·全国卷Ⅲ)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD =∠CBD ,AB =BD .(1)证明:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D -AE -C 的余弦值.解:(1)证明:由题设可得,△ABD ≌△CBD ,从而AD =DC . 又△ACD 是直角三角形,所以∠ADC =90°.取AC 的中点O ,连接DO ,BO ,则DO ⊥AC ,DO =AO .又因为△ABC 是正三角形,所以BO ⊥AC .所以∠DOB 为二面角D -AC -B 的平面角. 在Rt △AOB 中,BO 2+AO 2=AB 2. 又AB =BD ,所以BO 2+DO 2=BO 2+AO 2=AB 2=BD 2, 故∠DOB =90°.所以平面ACD ⊥平面ABC .(2)由题设及(1)知,OA ,OB ,OD 两两垂直.以O 为坐标原点,OA ―→的方向为x 轴正方向,|OA ―→|为单位长度,建立如图所示的空间直角坐标系O -xyz ,则A (1,0,0),B (0,3,0),C (-1,0,0),D (0,0,1).由题设知,四面体ABCE 的体积为四面体ABCD 的体积的12,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,即E 为DB 的中点,得E ⎝⎛⎭⎫0,32,12.故AD ―→=(-1,0,1),AC ―→=(-2,0,0),AE ―→=⎝⎛⎭⎫-1,32,12.设n =(x 1,y 1,z 1)是平面DAE 的法向量, 则⎩⎪⎨⎪⎧ n ·AD ―→=0,n ·AE ―→=0,即⎩⎪⎨⎪⎧-x 1+z 1=0,-x 1+32y 1+12z 1=0. 可取n =⎝⎛⎭⎫1,33,1. 设m =(x 2,y 2,z 2)是平面AEC 的法向量, 则⎩⎪⎨⎪⎧ m ·AC ―→=0,m ·AE ―→=0,即⎩⎪⎨⎪⎧-2x 2=0,-x 2+32y 2+12z 2=0, 可取m =(0,-1,3).则cos 〈n ,m 〉=n ·m |n ||m |=-33+3213×2=77.由图知二面角D -AE -C 为锐角, 所以二面角D -AE -C 的余弦值为77.22.(本小题满分12分)如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF的位置,OD ′=10.(1)证明:D ′H ⊥平面ABCD ; (2)求二面角B -D ′A -C 的正弦值.解:(1)证明:由已知得AC ⊥BD ,AD =CD . 又由AE =CF ,得AE AD =CFCD , 故AC ∥EF .因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6,得DO =BO =AB 2-AO 2=4. 由EF ∥AC ,得OH DO =AE AD =14. 所以OH =1,D ′H =DH =3.于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH . 又D ′H ⊥EF ,而OH ∩EF =H ,所以D ′H ⊥平面ABCD . (2)如图,以H 为坐标原点, HF ―→的方向为x 轴正方向,建立空间直角坐标系H -xyz ,则H (0,0,0),A (-3,-1,0),B (0,-5,0),C (3,-1,0),D ′(0,0,3),故AB ―→=(3,-4,0),AC ―→=(6,0,0),AD ′―→=(3,1,3). 设m =(x 1,y 1,z 1)是平面ABD ′的法向量, 则⎩⎪⎨⎪⎧m ·AB ―→=0,m ·AD ′―→=0即⎩⎪⎨⎪⎧3x 1-4y 1=0,3x 1+y 1+3z 1=0,所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的法向量, 则⎩⎪⎨⎪⎧n ·AC ―→=0,n ·AD ′―→=0,即⎩⎪⎨⎪⎧6x 2=0,3x 2+y 2+3z 2=0,所以可取n =(0,-3,1). 于是cos 〈m ,n 〉=m ·n |m||n|=-1450×10=-7525.故sin 〈m ,n 〉=29525. 因此二面角B -D ′A -C 的正弦值是29525.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

向量法解立体几何
1、直线的方向向量和平面的法向量
⑴.直线的方向向量: 若A 、B 是直线l 上的任意两点,则AB 为直线l 的一个方向向量;与AB 平行的任意非零向量也是直线l 的方向向量.
⑵.平面的法向量: 若向量n 所在直线垂直于平面α,则称这个向量垂直于平面α,记作
n α⊥,如果n α⊥,那么向量n 叫做平面α的法向量.
⑶.平面的法向量的求法(待定系数法): ①建立适当的坐标系.
②设平面α的法向量为(,,)n x y z =.
③求出平面内两个不共线向量的坐标123123(,,),(,,)a a a a b b b b ==.
④根据法向量定义建立方程组0
n a n b ⎧⋅=⎪⎨⋅=⎪⎩.
⑤解方程组,取其中一组解,即得平面α的法向量.
2、用向量方法判定空间中的平行关系
⑴线线平行。

设直线12,l l 的方向向量分别是a b 、,则要证明1l ∥2l ,只需证明a ∥b ,即()a kb k R =∈.
⑵线面平行。

设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l ∥α,只需证明
a u ⊥,即0a u ⋅=.
⑶面面平行。

若平面α的法向量为u ,平面β的法向量为v ,要证α∥β,只需证u ∥v ,即证u v λ=.
3、用向量方法判定空间的垂直关系
⑴线线垂直。

设直线12,l l 的方向向量分别是a b 、
,则要证明12l l ⊥,只需证明a b ⊥,即0a b ⋅=.
⑵线面垂直
①(法一)设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l α⊥,只需证明a
∥u ,即a u λ=.
②(法二)设直线l 的方向向量是a ,平面α内的两个相交向量分别为m n 、
,若0
,.0
a m l a n α⎧⋅=⎪⊥⎨
⋅=⎪⎩则 ⑶面面垂直。

若平面α的法向量为u ,平面β的法向量为v ,要证αβ⊥,只需证u v ⊥,即证0u v ⋅=.
4、利用向量求空间角 ⑴求异面直线所成的角
已知,a b 为两异面直线,A ,C 与B ,D 分别是,a b 上的任意两点,,a b 所成的角为θ,则cos .AC BD AC BD
θ⋅=
⑵求直线和平面所成的角
求法:设直线l 的方向向量为a ,平面α的法向量为u ,直线与平面所成的角为θ,a 与u 的夹角为ϕ, 则θ为ϕ的余角或ϕ的补角 的余角.即有:cos s .in a u a u
ϕθ⋅==
⑶求二面角
二面角的平面角是指在二面角βα--l 的棱上任取一点O ,分别在两个半平面内作射线l BO l AO ⊥⊥,,则AOB ∠为二面角βα--l 的平面角.
如图:
求法:设二面角l αβ--的两个半平面的法向量分别为m n 、
,再设m n 、的夹角为ϕ,二面角l αβ--的平面角为θ,则二面角θ为m n 、
的夹角ϕ或其补角.πϕ- 根据具体图形确定θ是锐角或是钝角: 如果θ是锐角,则cos cos m n m n
θϕ⋅==
, 即arccos
m n m n
θ⋅=;
O
A
B
O
A
B
l
如果θ是钝角,则cos cos m n
m n
θϕ⋅=-=-, 即arccos m n m n θ⎛⎫
⋅ ⎪=-
⎪⎝⎭
. 5、利用法向量求空间距离
⑴点Q 到直线l 距离
若Q 为直线l 外的一点,P 在直线l 上,a 为直线l 的方向向量,b =PQ ,则点Q 到直线l
距离为 1
(||||
h a b a =⑵点A 到平面α的距离
若点P 为平面α外一点,点M 为平面α内任一点,平面α的法向量为n ,则P 到平面α的距离就等于MP 在法向量n 方向上的投影的绝对值.
即cos ,d MP n MP
=n MP MP n MP
⋅=⋅
n MP n
⋅=
⑶直线a 与平面α之间的距离
当一条直线和一个平面平行时,直线上的各点到平面的距离相等。

由此可知,直线到平面的距离可转化为求直线上任一点到平面的距离,即转化为点面距离。

即.n MP d n
⋅=
⑷两平行平面,αβ之间的距离
利用两平行平面间的距离处处相等,可将两平行平面间的距离转化为求点面距离。


.n MP d n
⋅=
⑸异面直线间的距离
设向量n 与两异面直线,a b 都垂直,,,M a P b ∈∈则两异面直线,a b 间的距离d 就是
MP 在向量n 方向上投影的绝对值。

即.n MP d n
⋅=。

相关文档
最新文档