北京第十八中学高三数学第一轮复习 14 函数的表示法求解析式教学案(教师版)
高考数学一轮复习教学案函数及其表示(含解析)

第一节函数及其表示[知识能否忆起]1.函数的概念(1)函数的定义:一般地,设A,B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A 中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应;那么就称f:A→B为从集合A到集合B的一个函数.记作y=f(x),x∈A.(2)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.(3)函数的三要素:定义域、值域和对应关系.(4)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.2.函数的表示法表示函数的常用方法有:解析法、图象法、列表法.3.映射的概念设A,B是两个非空的集合,如果按照某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么称对应f:A→B为集合A 到集合B的一个映射.4.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.[小题能否全取]1.(教材习题改编)设g(x)=2x+3,g(x+2)=f(x),则f(x)等于()A.-2x+1B.2x-1C.2x-3 D.2x+7解析:选D f(x)=g(x+2)=2(x+2)+3=2x+7.2.(·江西高考)设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x ,x >1,则f (f (3))=( )A.15 B .3 C.23D.139解析:选D f (3)=23,f (f (3))=⎝⎛⎭⎫232+1=139. 3.已知集合A =[0,8],集合B =[0,4],则下列对应关系中,不能看作从A 到B 的映射的是( )A .f :x →y =18xB .f :x →y =14xC .f :x →y =12xD .f :x →y =x解析:选D 按照对应关系f :x →y =x ,对A 中某些元素(如x =8),B 中不存在元素与之对应.4.已知f ⎝⎛⎭⎫1x =x 2+5x ,则f (x )=____________. 解析:令t =1x ,则x =1t .所以f (t )=1t 2+5t .故f (x )=5x +1x 2(x ≠0).答案:5x +1x2(x ≠0)5.(教材习题改编)若f (x )=x 2+bx +c ,且f (1)=0,f (3)=0,则f (-1)=________.解析:由已知得⎩⎪⎨⎪⎧ 1+b +c =0,9+3b +c =0,得⎩⎪⎨⎪⎧b =-4,c =3.即f (x )=x 2-4x +3.所以f (-1)=(-1)2-4×(-1)+3=8. 答案:81.函数与映射的区别与联系(1)函数是特殊的映射,其特殊性在于集合A 与集合B 只能是非空数集,即函数是非空数集A 到非空数集B 的映射.(2)映射不一定是函数,从A 到B 的一个映射,A 、B 若不是数集,则这个映射便不是函数.2.定义域与值域相同的函数,不一定是相同函数如函数y =x 与y =x +1,其定义域与值域完全相同,但不是相同函数;再如函数y =sin x 与y =cos x ,其定义域与值域完全相同,但不是相同函数.因此判断两个函数是否相同,关键是看定义域和对应关系是否相同.3.求分段函数应注意的问题在求分段函数的值f (x 0)时,一定要首先判断x 0属于定义域的哪个子集,然后再代入相应的关系式;分段函数的值域应是其定义域内不同子集上各关系式的取值范围的并集.函数的基本概念典题导入[例1] 有以下判断:(1)f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0表示同一函数;(2)函数y =f (x )的图象与直线x =1的交点最多有1个; (3)f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数;(4)若f (x )=|x -1|-|x |,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=0. 其中正确判断的序号是________.[自主解答] 对于(1),由于函数f (x )=|x |x的定义域为{x |x ∈R ,且x ≠0},而函数g (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0的定义域是R ,所以二者不是同一函数;对于(2),若x =1不是y =f (x )定义域的值,则直线x =1与y =f (x )的图象没有交点,如果x =1是y =f (x )定义域内的值,由函数定义可知,直线x =1与y =f (x )的图象只有一个交点,即y =f (x )的图象与直线x =1最多有一个交点;对于(3),f (x )与g (t )的定义域、值域和对应关系均相同,所以f (x )和g (t )表示同一函数;对于(4),由于f ⎝⎛⎭⎫12=⎪⎪⎪⎪12-1-⎪⎪⎪⎪12=0,所以f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=f (0)=1. 综上可知,正确的判断是(2)(3). [答案] (2)(3)由题悟法两个函数是否是同一个函数,取决于它们的定义域和对应关系是否相同,只有当两个函数的定义域和对应关系完全相同时,才表示同一函数.另外,函数的自变量习惯上用x表示,但也可用其他字母表示,如:f(x)=2x-1,g(t)=2t-1,h(m)=2m-1均表示同一函数.以题试法1.试判断以下各组函数是否表示同一函数.(1)y=1,y=x0;(2)y=x-2·x+2,y=x2-4;(3)y=x,y=3t3;(4)y=|x|,y=(x)2.解:(1)y=1的定义域为R,y=x0的定义域为{x|x∈R,且x≠0},故它们不是同一函数.(2)y=x-2·x+2的定义域为{x|x≥2}.y=x2-4的定义域为{x|x≥2,或x≤-2},故它们不是同一函数.(3)y=x,y=3t3=t,它们的定义域和对应关系都相同,故它们是同一函数.(4)y=|x|的定义域为R,y=(x)2的定义域为{x|x≥0},故它们不是同一函数.求函数的解析式典题导入[例2] (1)已知f ⎝⎛⎭⎫x +1x =x 2+1x 2,求f (x )的解析式; (2)已知f ⎝⎛⎭⎫2x +1=lg x ,求f (x )的解析式;(3)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x ). [自主解答] (1)由于f ⎝⎛⎭⎫x +1x =x 2+1x 2=⎝⎛⎭⎫x +1x 2-2, 所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2(x ≥2或x ≤-2). (2)令2x +1=t 得x =2t -1,代入得f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg 2x -1(x >1).(3)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x (x ∈R).由题悟法函数解析式的求法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式(如例(1));(2)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法(如例(3));(3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围(如例(2));(4)方程思想:已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x )(如A 级T6).以题试法2.(1)已知f (x +1)=x +2x ,求f (x )的解析式;(2)设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式.解:(1)法一:设t =x +1,则x =(t -1)2(t ≥1);代入原式有f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1. 故f (x )=x 2-1(x ≥1).法二:∵x +2x =(x )2+2x +1-1=(x +1)2-1, ∴f (x +1)=(x +1)2-1(x +1≥1), 即f (x )=x 2-1(x ≥1). (2)设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b =2x +2, ∴a =1,b =2,f (x )=x 2+2x +c . 又∵方程f (x )=0有两个相等实根, ∴Δ=4-4c =0,c =1,故f (x )=x 2+2x +1.分 段 函 数典题导入[例3] (·广州调研考试)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ∈(-∞,1),x 2,x ∈[1,+∞),若f (x )>4,则x 的取值范围是______.[自主解答] 当x <1时,由f (x )>4,得2-x >4,即x <-2;当x ≥1时,由f (x )>4得x 2>4,所以x >2或x <-2, 由于x ≥1,所以x >2. 综上可得x <-2或x >2.[答案] (-∞,-2)∪(2,+∞)若本例条件不变,试求f (f (-2))的值. 解:∵f (-2)=22=4, ∴f (f (-2))=f (4)=16.由题悟法求分段函数的函数值时,应根据所给自变量值的大小选择相应的解析式求解,有时每段交替使用求值.若给出函数值或函数值的范围求自变量值或自变量的取值范围,应根据每一段的解析式分别求解,但要注意检验所求自变量值或范围是否符合相应段的自变量的取值范围.以题试法3.(·衡水模拟)已知f (x )的图象如图,则f (x )的解析式为________. 解析:由图象知每段为线段.设f (x )=ax +b ,把(0,0),⎝⎛⎭⎫1,32和⎝⎛⎭⎫1,32,(2,0)分别代入, 解得⎩⎪⎨⎪⎧a =32,b =0,⎩⎪⎨⎪⎧a =-32,b =3.答案:f (x )=⎩⎨⎧32x ,0≤x ≤1,3-32x ,1≤x ≤21.下列四组函数中,表示同一函数的是( ) A .y =x -1与y =(x -1)2 B .y =x -1与y =x -1x -1C .y =4lg x 与y =2lg x 2D .y =lg x -2与y =lg x100答案:D2.下列函数中,与函数y =13x定义域相同的函数为( )A .y =1sin xB .y =ln xxC .y =x e xD .y =sin xx解析:选D 函数y =13x的定义域为{x |x ≠0},选项A 中由sin x ≠0⇒x ≠k π,k ∈Z ,故A 不对;选项B 中x >0,故B 不对;选项C 中x ∈R ,故C 不对;选项D 中由正弦函数及分式型函数的定义域确定方法可知定义域为{x |x ≠0}.3.(·安徽高考)下列函数中,不满足f (2x )=2f (x )的是( ) A .f (x )=|x |B .f (x )=x -|x |C .f (x )=x +1D .f (x )=-x解析:选C 对于选项A ,f (2x )=|2x |=2|x |=2f (x );对于选项B ,f (x )=x -|x |=⎩⎪⎨⎪⎧0,x ≥0,2x ,x <0,当x ≥0时,f (2x )=0=2f (x ),当x <0时,f (2x )=4x =2·2x =2f (x ),恒有f (2x )=2f (x );对于选项D ,f (2x )=-2x =2(-x )=2f (x );对于选项C ,f (2x )=2x +1=2f (x )-1.4.已知f (x )=⎩⎪⎨⎪⎧-cos (πx ),x >0,f (x +1)+1,x ≤0,则f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43的值等于( ) A .-2 B .1 C .2D .3解析:选D f ⎝⎛⎭⎫43=12,f ⎝⎛⎭⎫-43=f ⎝⎛⎭⎫-13+1=f ⎝⎛⎭⎫23+2=52,f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43=3. 5.现向一个半径为R 的球形容器内匀速注入某种液体,下面图形中能表示在注入过程中容器的液面高度h 随时间t 变化的函数关系的是( )解析:选C 从球的形状可知,水的高度开始时增加的速度越来越慢,当超过半球时,增加的速度又越来越快.6.若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1,则f (x )=( )A .x -1B .x +1C .2x +1D .3x +3解析:选B 由题意知2f (x )-f (-x )=3x +1.① 将①中x 换为-x ,则有2f (-x )-f (x )=-3x +1.② ①×2+②得3f (x )=3x +3, 即f (x )=x +1.7.已知f (x )=x 2+px +q 满足f (1)=f (2)=0,则f (-1)=________. 解析:由f (1)=f (2)=0,得⎩⎪⎨⎪⎧ 12+p +q =0,22+2p +q =0,所以⎩⎪⎨⎪⎧p =-3,q =2.故f (x )=x 2-3x +2.所以f (-1)=(-1)2+3+2=6. 答案:68.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2ax ,x ≥2,2x +1,x <2,若f (f (1))>3a 2,则a 的取值范围是________.解析:由题知,f (1)=2+1=3,f (f (1))=f (3)=32+6a ,若f (f (1))>3a 2,则9+6a >3a 2,即a 2-2a -3<0,解得-1<a <3.答案:(-1,3)9.设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},那么下面的4个图形中,能表示集合M 到集合N 的函数关系的是________.解析:由函数的定义,对定义域内的每一个x 对应着唯一一个y ,据此排除①④,③中值域为{y |0≤y ≤3}不合题意.答案:②10.若函数f (x )=xax +b (a ≠0),f (2)=1,又方程f (x )=x 有唯一解,求f (x )的解析式.解:由f (2)=1得22a +b=1,即2a +b =2;由f (x )=x 得x ax +b =x ,变形得x ⎝ ⎛⎭⎪⎫1ax +b -1=0,解此方程得x =0或x =1-ba ,又因方程有唯一解,故1-ba =0,解得b =1,代入2a +b =2得a =12,所以f (x )=2x x +2. 11.甲同学家到乙同学家的途中有一公园,甲从家到公园的距离与乙从家到公园的距离都是 2 km ,甲10时出发前往乙家.如图所示,表示甲从家出发到达乙家为止经过的路程y (km)与时间x (min)的关系.试写出y =f (x )的函数解析式.解:当x ∈[0,30]时,设y =k 1x +b 1, 由已知得⎩⎪⎨⎪⎧b 1=0,30k 1+b 1=2,解得⎩⎪⎨⎪⎧ k 1=115,b 1=0.即y =115x .当x ∈(30,40)时,y =2; 当x ∈[40,60]时,设y =k 2x +b 2,由已知得⎩⎪⎨⎪⎧40k 2+b 2=2,60k 2+b 2=4,解得⎩⎪⎨⎪⎧k 2=110,b 2=-2.即y =110x -2.综上,f (x )=⎩⎨⎧115x ,x ∈[0,30],2,x ∈(30,40),110x -2,x ∈[40,60].12.如图1是某公共汽车线路收支差额y 元与乘客量x 的图象.(1)试说明图1上点A 、点B 以及射线AB 上的点的实际意义;(2)由于目前本条线路亏损,公司有关人员提出了两种扭亏为赢的建议,如图2、3所示.你能根据图象,说明这两种建议的意义吗?(3)此问题中直线斜率的实际意义是什么? (4)图1、图2、图3中的票价分别是多少元?解:(1)点A 表示无人乘车时收支差额为-20元,点B 表示有10人乘车时收支差额为0元,线段AB 上的点表示亏损,AB 延长线上的点表示赢利.(2)图2的建议是降低成本,票价不变,图3的建议是提高票价. (3)斜率表示票价.(4)图1、2中的票价是2元.图3中的票价是4元.1.(·北京高考)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎨⎧cx ,x <A ,cA ,x ≥A(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,16解析:选D 因为组装第A 件产品用时15分钟, 所以cA=15,① 所以必有4<A ,且c 4=c2=30.② 联立①②解得c =60,A =16.2.(·江西红色六校联考)具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( )A .①②B .①③C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足;对于②,f ⎝⎛⎭⎫1x =1x +x =f (x ),不满足;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,0<1x<1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足.综上可知,满足“倒负”变换的函数是①③.3.二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1.(1)求f (x )的解析式; (2)解不等式f (x )>2x +5.解:(1)设二次函数f (x )=ax 2+bx +c (a ≠0). ∵f (0)=1,∴c =1.把f (x )的表达式代入f (x +1)-f (x )=2x ,有 a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x . ∴2ax +a +b =2x . ∴a =1,b =-1. ∴f (x )=x 2-x +1.(2)由x 2-x +1>2x +5,即x 2-3x -4>0, 解得x >4或x <-1.故原不等式解集为{x |x >4,或x <-1}.1.已知函数f (x )=⎩⎪⎨⎪⎧3x +2,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a =________.解析:∵f (0)=3×0+2=2,f (f (0))=f (2)=4+2a =4a ,∴a=2.答案:22.若函数的定义域为{x|-3≤x≤6,且x≠4},值域为{y|-2≤y≤4,且y≠0},试在下图中画出满足条件的一个函数的图象.解:本题答案不唯一,函数图象可画为如图所示.3.已知定义域为R的函数f(x)满足f(f(x)-x2+x)=f(x)-x2+x.(1)若f(2)=3,求f(1);又若f(0)=a,求f(a);(2)设有且仅有一个实数x0,使得f(x0)=x0,求函数f(x)的解析式.解:(1)因为对任意x∈R有f(f(x)-x2+x)=f(x)-x2+x,所以f(f(2)-22+2)=f(2)-22+2,又f(2)=3,从而f(1)=1.若f(0)=a,则f(a-02+0)=a-02+0,即f(a)=a.(2)因为对任意x∈R,有f(f(x)-x2+x)=f(x)-x2+x,又有且仅有一个实数x0,使得f(x0)=x0,故对任意x∈R,有f(x)-x2+x=x0.在上式中令x=x0,有f(x0)-x20+x0=x0.又因为f(x0)=x0,所以x0-x20=0,故x0=0或x0=1.若x0=0,则f(x)=x2-x,但方程x2-x=x有两个不相同实根,与题设条件矛盾,故x0≠0.若x0=1,则有f(x)=x2-x+1,易证该函数满足题设条件.综上,所求函数f(x)的解析式为f(x)=x2-x+1.。
北京第十八中学高三数学第一轮复习 14 函数的表示法学案

学案14:函数的表示法【课前预习,听课有针对性】1. 若()23,(2)(),()f x x g x f x g x =--=则的表达式为 ( )A . 2x+1B . 2x —1C .2x —3D . 2x+72.已知1)1(+=+x x f ,则函数)(x f 的解析式为 ( )A .2)(x x f =B .)1(1)(2≥+=x x x fC .)1(22)(2≥+-=x x x x fD .)1(2)(2≥-=x x x x f3.若一次函数y=f (x)在区间[]1,2-上的最大值为3,最小值为1,则y=f (x)的解析式为_____________.4.若二次函数y=f (x)过点()()()0,3,1,4,1,6-,则f (x)=_______________.5.已知f(x)是奇函数,g(x)是偶函数,且f(x)+g(x)=11-x ,则f(x)= ___【及时巩固,牢固掌握知识】A 组 夯实基础,运用知识6. 下列各函数解析式中,满足)(21)1(x f x f =+的是( ) A .2x B . 21+x C . x -2 D . x 21log7.已知32)121(+=-x x f ,且 6)(=m f ,则m 等于( )A .41-B . 41C . 23D . 23-8. 若2)(,2)(xx x x e e x g e e x f --+=-=,则)2(x f 等于 ( ) A .)(2x f B . )]()([2x g x f + C .)(2x g D . )()(2x g x f ⋅9. 已知221111xx x x f +-=⎪⎭⎫ ⎝⎛+-,则)(x f 的解析式可取为( ) A .21x x + B . 212x x +- C . 212x x + D .-21xx +B 组 提高能力,灵活迁移10. 若函数)1,0)((log ≠>+=a a b x y a 的图象过两点(-1,0)和(0,1),则( )A .a=2,b=2B . a= 2 ,b=2C .a=2,b=1D .a= 2 ,b= 211. 若函数)(x f 满足关系式1()2()3f x f x x -=,则的表达式为__________.12. 设函数11)(+=x x f 的图象为1C ,若函数)(x g 的图象2C 与1C 关于x 轴对称,则)(x g 的解析式为________________.13.已知,sin )cos 1(2x x f =-求()2xf 的解析式。
2019-2020学年高三数学第一轮复习 14 函数的表示法----求解析式教学案(教师版).doc

2019-2020学年高三数学第一轮复习 14 函数的表示法----求解析式教学案(教师版)一、课前检测1.若函数()f x 满足2(1)2f x x x +=-,则f= . 答案:6-2.已知()()()23,2f x x g x f x =++=,则()g x = . 答案:21x -3. 若)(x f 是一次函数,14)]([-=x x f f 且,则)(x f = . 答案:()123f x x =-或()21f x x =-+二、知识梳理求函数解析式的题型有:1.已知函数类型,求函数的解析式:待定系数法;解读:2.已知()f x 求[()]f g x 或已知[()]f g x 求()f x :换元法、配凑法;解读:3.已知函数图像,求函数解析式;解读:4.()f x 满足某个等式,这个等式除()f x 外还有其他未知量,需构造另个等式:解方程组法; 解读:5.应用题求函数解析式常用方法有待定系数法等.解读:三、典型例题分析例1 设2211(),f x x x x+=+,求()f x 的解析式. 答案:()22f x x =-变式训练1:设(cos )cos 2,(sin )f x x f x =求的解析式. 答案:()2sin 1f x x =-变式训练2:设33221)1(,1)1(xx x x g x x x x f +=++=+, 求)]([x g f . 答案:()22f x x =-,()33g x x x =-,642[()]692f g x x x x =-+-小结与拓展:配凑法例2 设23)1(2+-=+x x x f ,求)(x f 的解析式. 答案:2()56f x x x =-+变式训练1:已知21lg f x x ⎛⎫+=⎪⎝⎭,求)(x f 的解析式. 答案:2()lg 1f x x =-变式训练2:设x x f 2cos )1(cos =-,求)(x f 的解析式. 答案:2()21f x x x =++小结与拓展:换元法例3 已知()f x 是一次函数,且满足3(1)2(1)217f x f x x +--=+,求()f x 的解析式; 答案:()27f x x =+变式训练1:已知12()3f x f x x ⎛⎫+=⎪⎝⎭,求)(x f 的解析式. 答案:1()2f x x x =-例4.图中的图象所表示的函数的解析式为( B ) A. |1|23-=x y (0≤x ≤2) B. |1|2323--=x y (0≤x ≤2) C. |1|23--=x y (0≤x ≤2)。
高三数学一轮复习教案(函数)

函数(一)函数1.了解构成函数的要素,了解映射的概念,会求一些简单函数的定义域和值域.2.理解函数的三种表示法:解析法、图象法和列表法,能根据不同的要求选择恰当的方法表示简单的函数。
3.了解分段函数,能用分段函数来解决一些简单的数学问题。
4.理解函数的单调性,会讨论和证明一些简单的函数的单调性;理解函数奇偶性的含义,会判断简单的函数奇偶性。
5.理解函数的最大(小)值及其几何意义,并能求出一些简单的函数的最大(小)值.6.会运用函数图像理解和研究函数的性质.(二)指数函数1.了解指数函数模型的实际背景。
2.理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算。
3.理解指数函数的概念,会求与指数函数性质有关的问题。
4.知道指数函数是一类重要的函数模型。
(三)对数函数1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用。
2.理解对数函数的概念;会求与对数函数性质有关的问题.3.知道对数函数是一类重要的函数模型.4.了解指数函数与对数函数互为反函数()。
(四)幂函数1.了解幂函数的概念。
2.结合函数的图像,了解它们的变化情况。
(五)函数与方程1.了解函数零点的概念,结合二次函数的图像,了解函数的零点与方程根的联系。
2.理解并掌握连续函数在某个区间上存在零点的判定方法。
能利用函数的图象和性质判别函数零点的个数.(六)函数模型及其应用1.了解指数函数、对数函数以及幂函数的增长特征。
知道直线上升、指数增长、对数增长等不同函数类型增长的含义。
2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用。
3.能利用给定的函数模型解决简单的实际问题。
定义定义域区间对应法则值域一元二次函数一元二次不等式映射函数性质奇偶性单调性周期性指数函数根式分数指数指数函数的图像和性质指数方程对数方程反函数互为反函数的函数图像关系对数函数对数对数的性质积、商、幂与根的对数对数恒等式和不等式常用对数自然对数对数函数的图像和性质函数是高考数学的重点内容之一,函数的观点和思想方法贯穿整个高中数学的全过程,包括解决几何问题.在近几年的高考试卷中,选择题、填空题、解答题三种题型中每年都有函数试题,而且常考常新.以基本函数为模型的应用题和综合题是高考命题的新趋势.考试热点:①考查函数的表示法、定义域、值域、单调性、奇偶性、反函数和函数的图象.②函数与方程、不等式、数列是相互关联的概念,通过对实际问题的抽象分析,建立相应的函数模型并用来解决问题,是考试的热点.③考查运用函数的思想来观察问题、分析问题和解决问题,渗透数形结合和分类讨论的基本数学思想.函数概念(一)知识梳理1.映射的概念设B A 、是两个集合,如果按照某种对应法则f ,对于集合A 中的任意元素,在集合B 中都有唯一确定的元素与之对应,那么这样的单值对应叫做从A 到B 的映射,通常记为B A f →: ,f 表示对应法则 注意:⑴A 中元素必须都有象且唯一;⑵B 中元素不一定都有原象,但原象不一定唯一。
北师大版版高考数学一轮复习函数导数及其应用函数的图像教学案理解析版

[考纲传真] 1.在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数;2.会运用基本初等函数的图像分析函数的性质,并运用函数的图像解简单的方程(不等式)问题.1.利用描点法作函数的图像方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质(奇偶性、单调性、周期性、最值等);(4)描点连线.2.利用图像变换法作函数的图像(1)平移变换(2)对称变换1y=f(x)的图像错误!y=—f(x)的图像;2y=f(x)的图像错误!y=f(—x)的图像;3y=f(x)的图像错误!y=—f(—x)的图像;4y=a x(a>0且a≠1)的图像错误!y=log a x(a>0且a≠1)的图像.(3)伸缩变换[常用结论]1.关于对称的三个重要结论(1)函数y=f(x)与y=f(2a—x)的图像关于直线x=a对称.(2)函数y=f(x)与y=2b—f(2a—x)的图像关于点(a,b)中心对称.(3)若函数y=f(x)的定义域内任意自变量x满足:f(a+x)=f(a—x),则函数y=f(x)的图像关于直线x=a对称.2.函数图像平移变换八字方针(1)“左加右减”,要注意加减指的是自变量.(2)“上加下减”,要注意加减指的是函数值.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)函数y=f(1—x)的图像,可由y=f(—x)的图像向左平移1个单位得到.()(2)函数y=f(x)的图像关于y轴对称即函数y=f(x)与y=f(—x)的图像关于y轴对称.(3)当x∈(0,+∞)时,函数y=f(|x|)的图像与y=|f(x)|的图像相同.()(4)若函数y=f(x)满足f(1+x)=f(1—x),则函数f(x)的图像关于直线x=1对称.[答案] (1)×(2)×(3)×(4)√2.(教材改编)函数f(x)=错误!—x的图像关于()A.y轴对称B.直线y=—x对称C.坐标原点对称D.直线y=x对称C[∵f(x)=错误!—x是奇函数,∴图像关于原点对称.]3.函数f(x)的图像向右平移1个单位长度,所得图像与曲线y=e x关于y轴对称,则f(x)=()A.e x+1B.e x—1C.e—x+1D.e—x—1D[依题意,与曲线y=e x关于y轴对称的曲线是y=e—x,于是f(x)相当于y=e—x向左平移1个单位的结果,∴f(x)=e—(x+1)=e—x—1.]4.(教材改编)函数f(x)=x2—错误!x的大致图像是()A BC DB[∵f(0)=—1<0,故排除选项D;又f(—2)=0,f(—4)=0,故排除选项A、C,故选B.]5.若关于x的方程|x|=a—x只有一个解,则实数a的取值范围是________.(0,+∞)[在同一个坐标系中画出函数y=|x|与y=a—x的图像,如图所示.由图像知当a>0时,方程|x|=a—x只有一个解.]作函数的图像【例1】作出下列函数的图像:(1)y=错误!|x|;(2)y=|log2(x+1)|;(3)y=错误!;(4)y=x2—2|x|—1.[解] (1)先作出y =错误!x 的图像,保留y =错误!x 图像中x ≥0的部分,再作出y =错误!x的图像中x>0部分关于y 轴的对称部分,即得y =错误!|x |的图像,如图1实线部分.1 2(2)将函数y =log 2x 的图像向左平移一个单位,再将x 轴下方的部分沿x 轴翻折上去,即可得到函数y =|log 2(x +1)|的图像,如图2.(3)∵y =错误!=2+错误!,故函数图像可由y =错误!图像向右平移1个单位,再向上平移2个单位得到,如图3.3 4(4)∵y =错误!且函数为偶函数,先用描点法作出[0,+∞)上的图像,再根据对称性作出(—∞,0)上的图像,得图像如图4. [规律方法] 函数图像的常用画法(1)直接法:当函数解析式(或变形后的解析式)是熟悉的基本函数时,就可根据这些函数的特征描出图像的关键点,进而直接作出图像.(2)转化法:含有绝对值符号的函数,可脱掉绝对值符号,转化为分段函数来画图像.(3)图像变换法:若函数图像可由某个基本函数的图像经过平移、伸缩、翻折、对称得到,则可利用图像变换作出.易错警示:注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.【例2】 (1)(2018·全国卷Ⅱ)函数f (x )=错误!的图像大致为( )A BC D(2)已知定义在区间[0,2]上的函数y=f(x)的图像如图所示,则y=—f(2—x)的图像为()A BC D(1)B(2)B[(1)当x<0时,因为e x—e—x<0,所以此时f(x)=错误!<0,故排除A、D;又f(1)=e—错误!>2,故排除C,选B.(2)当x=0时,—f(2—x)=—f(2)=—1;当x=1时,—f(2—x)=—f(1)=—1.观察各选项可知,应选B.][规律方法] 函数图像的辨识可从以下方面入手:1从函数的定义域,判断图像的左右位置;从函数的值域,判断图像的上下位置;2从函数的单调性,判断图像的变化趋势;3从函数的奇偶性,判断图像的对称性;4从函数的周期性,判断图像的循环往复;5从函数的特征点,排除不合要求的图像.(1)已知图1中的图像对应的函数为y=f(x),则图2中的图像对应的函数为()图1图2A.y=f(|x|)B.y=|f(x)|C.y=f(—|x|)D.y=—f(|x|)(2)如图,圆与两坐标轴分别切于A,B两点,圆上一动点P从A开始沿圆周按逆时针方向匀速旋转回到A点,则与△OBP的面积随时间变化的图像相符合的是()A B C D(1)C(2)A[(1)由题图知,图2中的图像对应的函数为y=f(—|x|),故选C.(2)当P从A运动到B的过程中,△OBP的面积逐渐减小,在点B处,△OBP的面积为零,当P从B 运动到圆的最高点的过程中,△OBP的面积又逐渐增大,且当P位于圆的最高点时,△OBP的面积达到最大值,当P从最高点运动到A点的过程中,△OBP的面积又逐渐减小,故选A.]函数图像的应用►考法1研究函数的性质【例3】设函数f(x)是定义在R上的偶函数,且对任意的x∈R恒有f(x+1)=f(x—1),已知当x ∈[0,1]时,f (x )=错误!1—x ,则: 12是函数f (x )的周期;2函数f (x )在(1,2)上递减,在(2,3)上递增; 3函数f (x )的最大值是1,最小值是0;4当x ∈(3,4)时,f (x )=错误!x —3.其中所有正确命题的序号是________.124 [由已知条件得f (x +2)=f (x ),则y =f (x )是以2为周期的周期函数,1正确;当—1≤x ≤0时,0≤—x ≤1,f (x )=f (—x )=错误!1+x,函数y =f (x )的部分图像如图所示:由图像知2正确,3不正确;当3<x <4时,—1<x —4<0,f (x )=f (x —4)=错误!x —3,因此4正确.故正确命题的序号为124.]►考法2 求参数的取值范围【例4】 (1)已知函数f (x )=x 2+e x —错误!(x <0)与g (x )=x 2+ln (x +a )的图像上存在关于y 轴对称的点,则a 的取值范围是( ) A.错误! B.(—∞,错误!) C.错误!D.错误!(2)已知函数f (x )=错误!若关于x 的方程f (x )=k 有两个不等的实数根,则实数k 的取值范围是________.(1)B (2)(0,1] [(1)由题意知,设x 0∈(—∞,0),使得f (x 0)=g (—x 0),即x 错误!+ex 0—错误!=(—x 0)2+ln (—x 0+a ),∴e x 0—ln (—x 0+a )—错误!=0.令y 1=e x —错误!,y 2=ln (—x +a ),要使得函数图像的交点A 在y 轴左侧,如图,则ln a <错误!=ln e 错误!,∴a <e 错误!.(2)作出函数y =f (x )与y =k 的图像,如图所示,由图可知k ∈(0,1].] [规律方法]1注意函数图像特征与性质的对应关系.2方程、不等式的求解可转化为函数图像的交点和上下关系问题.A.f (x )在(0,2)递增 B.f (x )在(0,2)递减C.y =f (x )的图像关于直线x =1对称 D.y =f (x )的图像关于点(1,0)对称(2)已知函数f (x )=ln x —x 2与g (x )=(x —2)2+错误!—m (m ∈R )的图像上存在关于(1,0)对称的点,则实数m 的取值范围是( ) A.(—∞,1—ln 2) B.(—∞,1—ln 2] C.(1—ln 2,+∞)D.[1—ln 2,+∞)(1)C (2)D [(1)f (x )的定义域为(0,2).f (x )=ln x +ln (2—x )=ln[x (2—x )]=ln (—x 2+2x ).设u =—x 2+2x ,x ∈(0,2),则u =—x 2+2x 在(0,1)上递增,在(1,2)上递减. 又y =ln u 在其定义域上递增,∴f (x )=ln (—x 2+2x )在(0,1)上递增,在(1,2)上递减. ∴选项A ,B 错误.∵f (x )=ln x +ln (2—x )=f (2—x ),∴f (x )的图像关于直线x =1对称,∴选项C 正确.∵f(2—x)+f(x)=[ln(2—x)+ln x]+[ln x+ln(2—x)]=2[ln x+ln(2—x)],不恒为0,∴f(x)的图像不关于点(1,0)对称,∴选项D错误.故选C.(2)∵f(x)=ln x—x2与g(x)=(x—2)2+错误!—m(m∈R)的图像上存在关于(1,0)对称的点,∴f(x)+g(2—x)=0有解,∴ln x—x2=—x2—错误!+m,∴m=ln x+错误!在(0,+∞)内有解.∵m′=错误!,∴函数在错误!内递减,在错误!内递增,∴m≥ln 错误!+1=1—ln 2.]1.(2018·全国卷Ⅲ)函数y=—x4+x2+2的图像大致为()A BC DD[当x=1时,y=2,排除A,B.由y′=—4x3+2x=0,得x=0或x=±错误!,结合三次函数的图像特征,知原函数在(—1,1)上有三个极值点,所以排除C,故选D.]2.(2016·全国卷Ⅱ)已知函数f(x)(x∈R)满足f(—x)=2—f(x),若函数y=错误!与y=f(x)图像的交点为(x1,y1),(x2,y2),…,(x m,y m),则错误!(x i+y i)=()A.0 B.mC.2mD.4mB[因为f(—x)=2—f(x),所以f(—x)+f(x)=2.因为错误!=0,错误!=1,所以函数y=f(x)的图像关于点(0,1)对称.函数y=错误!=1+错误!,故其图像也关于点(0,1)对称.所以函数y=错误!与y=f(x)图像的交点(x1,y1),(x2,y2),…,(x m,y m)成对出现,且每一对均关于点(0,1)对称,所以错误!x i=0,错误!y i=2×错误!=m,所以错误!(x i+y i)=m.]。
高中数学复习学教案第讲函数的解析式与表示方法

高中数学复习教案第一讲函数的解析式与表示方法一、教学目标:1. 理解函数的概念,掌握函数的解析式及其表示方法。
2. 能够求解简单函数的解析式,并能运用函数的解析式解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学内容:1. 函数的概念及定义。
2. 函数的解析式及其表示方法。
3. 求解简单函数的解析式。
4. 函数解析式在实际问题中的应用。
三、教学重点与难点:1. 重点:函数的概念,函数的解析式及其表示方法。
2. 难点:求解复杂函数的解析式,以及运用函数解析式解决实际问题。
四、教学方法:1. 采用讲授法,讲解函数的概念、解析式及其表示方法。
2. 利用案例分析法,分析实际问题中的函数解析式。
3. 开展小组讨论,引导学生主动探究函数解析式的求解方法。
五、教学过程:1. 导入:复习函数的概念,引导学生思考函数的表示方法。
2. 新课讲解:讲解函数的解析式及其表示方法,举例说明。
3. 案例分析:分析实际问题中的函数解析式,引导学生运用函数解析式解决问题。
4. 课堂练习:布置练习题,让学生巩固所学内容。
六、课后作业:1. 复习本节课的内容,整理笔记。
2. 完成课后练习题,巩固函数解析式的求解方法。
3. 思考实际问题中的函数解析式,尝试运用所学知识解决问题。
七、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答情况等。
2. 课后作业:检查学生作业完成情况,评估学生对函数解析式的掌握程度。
3. 小组讨论:评估学生在小组讨论中的表现,考察学生的合作能力。
八、教学资源:1. 教材:《高中数学教材》相关章节。
2. 课件:制作课件,辅助讲解函数的解析式与表示方法。
3. 练习题:搜集相关练习题,巩固学生对函数解析式的掌握。
九、教学进度安排:1. 第一课时:讲解函数的概念、解析式及其表示方法。
2. 第二课时:分析实际问题中的函数解析式,开展小组讨论。
十、教学反思:在教学过程中,关注学生的学习反馈,及时调整教学方法,提高教学效果。
高三数学教案: 函数的解析式及定义域

一.课题:函数的解析式及定义域二.教学目标:掌握求函数解析式的三种常用方法:待定系数法、配凑法、换元法,能将一些简单实际问题中的函数的解析式表示出来;掌握定义域的常见求法及其在实际中的应用.三.教学重点:能根据函数所具有的某些性质或所满足的一些关系,列出函数关系式;含字母参数的函数,求其定义域要对字母参数分类讨论;实际问题确定的函数,其定义域除满足函数有意义外,还要符合实际问题的要求.四.教学过程:(一)主要知识:1.函数解析式的求解;2.函数定义域的求解.(二)主要方法:1.求函数解析式的题型有:(1)已知函数类型,求函数的解析式:待定系数法;(2)已知()f x 求[()]f g x 或已知[()]f g x 求()f x :换元法、配凑法;(3)已知函数图像,求函数解析式;(4)()f x 满足某个等式,这个等式除()f x 外还有其他未知量,需构造另个等式:解方程组法;(5)应用题求函数解析式常用方法有待定系数法等.2.求函数定义域一般有三类问题:(1)给出函数解析式的:函数的定义域是使解析式有意义的自变量的取值集合;(2)实际问题:函数的定义域的求解除要考虑解析式有意义外,还应考虑使实际问题有意义;(3)已知()f x 的定义域求[()]f g x 的定义域或已知[()]f g x 的定义域求()f x 的定义域: ①掌握基本初等函数(尤其是分式函数、无理函数、对数函数、三角函数)的定义域; ②若已知()f x 的定义域[],a b ,其复合函数[]()f g x 的定义域应由()a g x b ≤≤解出.(三)例题分析:例1.已知函数1()1x f x x+=-的定义域为A ,函数()y f f x =⎡⎤⎣⎦的定义域为B ,则 ()A A B B =U ()B A B ≠⊂ ()C A B = ()D A B B =I ( D ) 解法要点:{}|1A x x =≠,121[()]()(1)11x y f f x f f x x x +===-+=---, 令2111x-+≠-且1x ≠,故{}{}|1|0B x x x x =≠≠I . 例2.(1)已知3311()f x x x x+=+,求()f x ; (2)已知2(1)lg f x x+=,求()f x ; (3)已知()f x 是一次函数,且满足3(1)2(1)217f x f x x +--=+,求()f x ;(4)已知()f x 满足12()()3f x f x x+=,求()f x . 解:(1)∵3331111()()3()f x x x x x x x x+=+=+-+,∴3()3f x x x =-(2x ≥或2x ≤-). (2)令21t x +=(1t >),则21x t =-,∴2()lg 1f t t =-,∴2()lg (1)1f x x x =>-. (3)设()(0)f x ax b a =+≠,则3(1)2(1)3332225217f x f x ax a b ax a b ax b a x +--=++-+-=++=+, ∴2a =,7b =,∴()27f x x =+.(4)12()()3f x f x x += ①, 把①中的x 换成1x ,得132()()f f x x x+= ②, ①2⨯-②得33()6f x x x =-,∴1()2f x x x =-. 注:第(1)题用配凑法;第(2)题用换元法;第(3)题已知一次函数,可用待定系数法;第(4)题用方程组法.例3.设函数2221()log log (1)log ()1x f x x p x x +=+-+--, (1)求函数的定义域;(2)问()f x 是否存在最大值与最小值?如果存在,请把它写出来;如果不存在,请说明理由.解:(1)由101100x x x p x +⎧>⎪-⎪⎨->⎪->⎪⎩,解得1x x p >⎧⎨<⎩ ① 当1p ≤时,①不等式解集为φ;当1p >时,①不等式解集为{}|1x x p <<,∴()f x 的定义域为(1,)(1)p p >.(2)原函数即22221(1)()log [(1)()]log [()]24p p f x x p x x -+=+-=--+, 当112p -≤,即13p <≤时,函数()f x 既无最大值又无最小值; 当112p p -<<,即3p >时,函数()f x 有最大值22log (1)2p +-,但无最小值. 例4.《高考A 计划》考点8,智能训练15:已知函数()y f x =是定义在R 上的周期函数,周期5T =,函数()(11)y f x x =-≤≤是奇函数.又知()y f x =在[0,1]上是一次函数,在[1,4]上是二次函数,且在2x =时函数取得最小值5-.①证明:(1)(4)0f f +=;②求(),[1,4]y f x x =∈的解析式;③求()y f x =在[4,9]上的解析式.解:∵()f x 是以5为周期的周期函数,∴(4)(45)(1)f f f =-=-,又∵()(11)y f x x =-≤≤是奇函数,∴(1)(1)(4)f f f =--=-,∴(1)(4)0f f +=.②当[1,4]x ∈时,由题意可设2()(2) 5 (0)f x a x a =-->,由(1)(4)0f f +=得22(12)5(42)50a a --+--=,∴2a =,∴2()2(2)5(14)f x x x =--≤≤.③∵()(11)y f x x =-≤≤是奇函数,∴(0)0f =,又知()y f x =在[0,1]上是一次函数,∴可设()(01)f x kx x =≤≤,而2(1)2(12)53f =--=-,∴3k =-,∴当01x ≤≤时,()3f x x =-,从而当10x -≤<时,()()3f x f x x =--=-,故11x -≤≤时,()3f x x =-. ∴当46x ≤≤时,有151x -≤-≤,∴()(5)3(5)315f x f x x x =-=--=-+.当69x <≤时,154x <-≤,∴22()(5)2[(5)2]52(7)5f x f x x x =-=---=-- ∴2315,46()2(7)5,69x x f x x x -+≤≤⎧=⎨--<≤⎩.例5.我国是水资源比较贫乏的国家之一,各地采取价格调控等手段来达到节约用水的目的,某地用水收费的方法是:水费=基本费+超额费+损耗费.若每月用水量不超过最低限量a 3m 时,只付基本费8元和每月每户的定额损耗费c 元;若用水量超过a 3m 时,除了付同上的基本费和定额损耗费外,超过部分每3m 付b 元的超额费.已知每户每月的定额损耗费不超过5元.解:设每月用水量为x 3m ,支付费用为y 元,则有8,0(1)8(),(2)c x ay b x a c x a +≤≤⎧=⎨+-+>⎩由表知第二、第三月份的水费均大于13元,故用水量153m ,223m 均大于最低限量a 3m ,于是就有198(15)338(22)b a c b a c=+-+⎧⎨=+-+⎩,解之得2b =,从而219 (3)a c =+再考虑一月份的用水量是否超过最低限量a 3m ,不妨设9a >,将9x =代入(2)式,得982(9)a c =+-+,即217a c =+,这与(3)矛盾.∴9a ≤.从而可知一月份的付款方式应选(1)式,因此,就有89c +=,得1c =.故10a =,2b =,1c =. (四)巩固练习:1.已知2()f x 的定义域为[1,1]-,则(2)xf 的定义域为(,0]-∞. 2.函数1sin 21sin 2x y x +=-的定义域为{|(1),}6k x x k k Z ππ≠+-∈. 五.课后作业:《高考A 计划》考点8,智能训练4,5,10,11,12,13.。
高三数学第二章函数+导数高考一轮复习教案2.14 函数的实际应用 教案

函数的实际应用一、学习目标:理解函数模型及其应用热点提示:1.能够应用函数的性质解决有关数学问题,能够应用函数知识解决一些简单的实际问题;2.培养学生的阅读能力、文字语言转化为数学语言的能力及数学建模能力.3.多一解答题出现,属中高档题,偶尔在小题中出现本节重点:建立恰当的函数关系. 二、知识要点:1.函数定义域、图象、单调性质等知识;2.函数的值域、最值;解不等式等知识。
3.常见函数模型:一次函数,二次函数,分段函数,指数函数 主要方法:解数学应用题的一般步骤为:()1审题;()2建模;()3求解;()4作答. 三、课前检测:1.(09某某卷理)(本小题满分12分)两县城A 和B 相距20km ,现计划在两县城外以AB 为直径的半圆弧上选择一点C 建造垃圾处理厂,其对城市的影响度与所选地点到城市的的距离有关,对城A 和城B 的总影响度为城A 与城B 的影响度之和,记C 点到城A 的距离为x km ,建在C 处的垃圾处理厂对城A 和城B 的总影响度为y,统计调查表明:垃圾处理厂对城A 的影响度与所选地点到城A 的距离的平方成反比,比例系数为4;对城B 的影响度与所选地点到城B 的距离的平方成反比,比例系数为k ,当垃圾处理厂建在的中点时,对城A 和城B 的总影响度为0.065.(1)将y 表示成x 的函数;(2)讨论(1)中函数的单调性,并判断弧上是否存在一点,使建在此处的垃圾处理厂对城A 和城B 的总影响度最小?若存在,求出该点到城A 的距离;若不存在,说明理由。
A BC x2.(09某某)本小题满分16分按照某学者的理论,假设一个人生产某产品单件成本为a 元,如果他卖出该产品的单价为m 元,则他的满意度为mm a+;如果他买进该产品的单价为n 元,则他的满意度为nn a+.如果一个人对两种交易(卖出或买进)的满意度分别为1h 和2h ,则他对这两种交现假设甲生产A 、B 两种产品的单件成本分别为12元和5元,乙生产A 、B 两种产品的单件成本分别为3元和20元,设产品A 、B 的单价分别为A m 元和B m 元,甲买进A 与卖出B 的综合满意度为h 甲,乙卖出A 与买进B 的综合满意度为h 乙 (1) 求h 甲和h 乙关于A m 、B m 的表达式;当35AB m m =时,求证:h 甲=h 乙; (2) 设35AB m m =,当A m 、B m 分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少?(3) 记(2)中最大的综合满意度为0h ,试问能否适当选取A m 、B m 的值,使得0h h ≥甲和0h h ≥乙同时成立,但等号不同时成立?试说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京第十八中学高三数学第一轮复习 14 函数的表示法求解
析式教学案(教师版)
一、课前检测
1.若函数()f x 满足2(1)2f x x x +=-,则f
= . 答案:6-
2.已知()()()23,2f x x g x f x =++=,则()g x = . 答案:21x -
3. 若)(x f 是一次函数,14)]([-=x x f f 且,则)(x f = . 答案:()123f x x =-
或()21f x x =-+
二、知识梳理
求函数解析式的题型有:
1.已知函数类型,求函数的解析式:待定系数法;
解读:
2.已知()f x 求[()]f g x 或已知[()]f g x 求()f x :换元法、配凑法;
解读:
3.已知函数图像,求函数解析式;
解读:
4.()f x 满足某个等式,这个等式除()f x 外还有其他未知量,需构造另个等式:解方程组法; 解读:
5.应用题求函数解析式常用方法有待定系数法等.
解读:
三、典型例题分析
例1 设2211(),f x x x x
+=+
,求()f x 的解析式. 答案:()22f x x =-
变式训练1:设(cos )cos 2,(sin )f x x f x =求的解析式. 答案:()2sin 1f x x =-
变式训练2:设33221)1(,1)1(x
x x x g x x x x f +=++=+, 求)]([x g f . 答案:()22f x x =-,()33g x x x =-,642[()]692f g x x x x =-+-
小结与拓展:配凑法
例2 设23)1(2+-=+x x x f ,求)(x f 的解析式. 答案:2()56f x x x =-+
变式训练1:已知21lg f x x ⎛⎫+= ⎪⎝⎭,求)(x f 的解析式. 答案:2
()lg 1f x x =-
变式训练2:设x x f 2cos )1(cos =-,求)(x f 的解析式. 答案:2()21f x x x =++
小结与拓展:换元法
例3 已知()f x 是一次函数,且满足3(1)2(1)217f x f x x +--=+,
求()f x 的解析式; 答案:()27f x x =+
变式训练1:已知12()3f x f x x ⎛⎫
+= ⎪⎝⎭,求)(x f 的解析式. 答案:1
()2f x x x =-
例4.图中的图象所表示的函数的解析式为( B ) A. |1|23-=x y (0≤x ≤2)
B. |1|23
23
--=x y (0≤x ≤2)
C. |1|23
--=x y (0≤x ≤2)。