(新)高中数学必修4三角函数常考题型:三角函数的诱导公式(一)

合集下载

1.3三角函数的诱导公式(一) 新课标高中数学人教A版必修四 教案

1.3三角函数的诱导公式(一)     新课标高中数学人教A版必修四 教案

1.3诱导公式(一)教学目标(一)知识与技能目标⑴理解正弦、余弦的诱导公式.⑵培养学生化归、转化的能力.(二)过程与能力目标(1)能运用公式一、二、三的推导公式四、五.(2)掌握诱导公式并运用之进行三角函数式的求值、化简以及简单三角恒等式的证明.(三)情感与态度目标通过公式四、五的探究,培养学生思维的严密性与科学性等思维品质以及孜孜以求的探索精神等良好的个性品质.教学重点掌握诱导公式四、五的推导,能观察分析公式的特点,明确公式用途,熟练驾驭公式.教学难点运用诱导公式对三角函数式的求值、化简以及简单三角恒等式的证明.教学过程一、复习:诱导公式(一)tan )360tan(cos )360(cos sin )360sin(αααααα=+︒=+︒=+︒k k k 诱导公式(二)tan )180tan(cos )180cos( sin )180sin(αααααα=+︒-=+︒-=+︒ 诱导公式(三)tan )tan(cos )cos( sin )sin(αααααα-=-=--=-诱导公式(四)tan )180tan(cos )180cos( sin )180sin(αααααα-=-︒-=-︒=-︒ 对于五组诱导公式的理解 :①可以是任意角;公式中的α②这四组诱导公式可以概括为:符号。

看成锐角时原函数值的前面加上一个把三角函数值,的同名的三角函数值,等于它ααπαπααπ ,, , ),Z (2-+-∈+k k总结为一句话:函数名不变,符号看象限练习1:P27面作业1、2、3、4。

2:P25面的例2:化简二、新课讲授: 1、诱导公式(五) sin )2cos( cos )2sin(ααπααπ=-=- 2、诱导公式(六) sin )2cos( cos )2sin(ααπααπ-=+=+ 总结为一句话:函数正变余,符号看象限例1.将下列三角函数转化为锐角三角函数:).317sin()4( ,519cos )3( ,3631sin )2( ,53tan )1(πππ-︒ 练习3:求下列函数值:).580tan )4( ,670sin )3( ),431sin()2( ,665cos)1(︒︒-ππ 例2.证明:(1)ααπcos )23sin(-=- (2)ααπsin )23cos(-=- 例3.化简:.)29sin()sin()3sin()cos()211cos()2cos()cos()2sin(αππααπαπαπαπαπαπ+-----++- 的值。

高中数学 人教A版必修4 第1章 1.3三角函数的诱导公式(一)

高中数学 人教A版必修4    第1章 1.3三角函数的诱导公式(一)

的运用.利用诱导公式把求任意角的三角函数值转化为求锐角 的三角函数值,清晰地体现了化归的思想.
填一填·知识要点、记下疑难点
§1.3(一)
1.设 α 为任意角,则 π+α,-α,π-α 的终边与 α 的终边之间
本 课 时 栏 目 开 关
的对称关系.
相关角 π+ α 与 α -α 与 α π- α 与 α 终边之间的对称关系 关于 原点 对称 关于 x轴 对称 关于 y轴 对称
研一研·问题探究、课堂更高效
由三角函数的定义得
§1.3(一)
y sin α= y ,cos α= x ,tan α= x ,
-y y 本 又 sin(π+α)=-y ,cos(π+α)=-x ,tan(π+α)= -x = x ,
课 时 栏 ∴sin(π+α)=-sin α , cos(π+α)=-cos α,tan(π+α)= tan α . 目 开 关 (3)公式作用:第三象限角的三角函数转化为第一象限角的三
§1.3(一)
(1)公式内容:
sinπ+α=-sin α,
本 课 时 栏 目 开 关
cosπ+α=-cos α, tanπ+α=tan α.
(2)公式推导: 如图,设角 α 的终边与单位圆交于点 P1(x, y),则角 π+α 的终边与单位圆的交点为 P2(-x,-y),下面是根据三角函数定义推 导公式的过程,请你补充完整:
§1.3(一)
本 课 时 栏 目 开 关
§1.3(一)
【学习要求】 1.了解三角函数的诱导公式的意义和作用.
本 课 化简和证明问题. 时 3.能运用有关诱导公式解决一些三角函数的求值、 栏 目 【学法指导】 开 关 1.本节将要学习的诱导公式既是
1 3 2π - , 2 2 (4)角 的终边与单位圆的交点坐标为_______________ ,所以

高一数学必修四三角函数诱导公式总结

高一数学必修四三角函数诱导公式总结

高一数学必修四三角函数诱导公式总结【公式一:】设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)【公式二:】设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα【公式三:】任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα【公式四:】利用公式二和公式三能够得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα【公式五:】利用公式一和公式三能够得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα【公式六:】π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)【函数复习资料】一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。

高中数学 第一章 三角函数 1.3 三角函数的诱导公式(1)课时提升作业2 新人教A版必修4-新人教

高中数学 第一章 三角函数 1.3 三角函数的诱导公式(1)课时提升作业2 新人教A版必修4-新人教

三角函数的诱导公式(一)一、选择题(每小题3分,共18分)1.计算sin2150°+sin2135°+2sin210°+cos2225°的值是( )A. B. C. D.【解析】选A.原式=sin230°+sin245°-2sin30°+cos245°=+-1+=.2.(2014·某某高一检测)sin的值是( )A. B.- C. D.-【解析】选A.sin=sin=sin=.3.已知sin(π+θ)<0,cos(θ-π)>0,则下列不等关系中必定成立的是( )A.sinθ<0,cosθ>0B.sinθ>0,cosθ<0C.sinθ>0,cosθ>0D.sinθ<0,cosθ<0【解析】选B.sin(π+θ)=-sinθ<0,所以sinθ>0;cos(θ-π)=-cosθ>0,所以cosθ<0,应选B.4.cos(k∈Z)的值为( )A.±B.C.-D.±【解析】选A.当k=2n(n∈Z)时,原式=cos=;当k=2n+1(n∈Z)时,原式=cos=-cos=-.5.(2014·某某高一检测)已知sin(π+α)=,且α是第四象限角,那么cos(α-2π)的值是( )A. B.- C.± D.【解析】选A.sin(π+α)=-sinα=,所以sinα=-;cos(α-2π)=cosα==.【变式训练】已知cos(π+α)=-,则tan(α-9π)=.【解析】cos(π+α)=-cosα=-,cosα=,所以tanα=±,tan(α-9π)=-tan(9π-α)=-tan(π-α)=tanα=±.答案:±6.已知tan=,则tan= ( )A. B.- C. D.-【解题指南】解答本题时注意+=π.【解析】选B.因为tan=tan=-tan,所以tan=-.二、填空题(每小题4分,共12分)7.化简sin(-α)cos(π+α)tan(2π+α)=.【解析】原式=(-sinα)(-cosα)tanα=sinαcosα=sin2α.答案:sin2α8.若cos(π-x)=,x∈(-π,π),则x的值为.【解析】因为cos(π-x)=,所以cosx=-.因为x∈(-π,π),所以x=±.答案:±9.若tan(5π+α)=m,则的值为.【解析】由tan(5π+α)=m,得tanα=m.原式===.答案:三、解答题(每小题10分,共20分)10.已知sin(α+π)=,且sinαcosα<0,求的值.【解析】因为sin(α+π)=,所以sinα=-,又因为sinαcosα<0,所以cosα>0,cosα==,所以tanα=-.所以原式===-.11.证明:=. 【证明】左边==-=,右边===,左边=右边,所以原等式成立.一、选择题(每小题4分,共16分)1.化简的结果为( )A.sin2+cos2B.cos2-sin2C.sin2-cos2D.±(cos2-sin2)【解析】选C.===|sin2-cos2|.因为2弧度在第二象限,所以sin2>0>cos2,所以原式=sin2-cos2.2.设f(x)=asin(πx+α)+bcos(πx+β),其中a,b,α,β∈R,且ab≠0,α≠kπ(k∈Z).若f(2009)=5,则f(2015)等于( )A.4B.3C.-5D.5【解析】选D.因为f(2009)=asin(2009π+α)+bcos(2009π+β)=-asinα-bcosβ=5,所以asinα+bcosβ=-5,所以f(2015)=asin(2015π+α)+bcos(2015π+β)=-asinα-bcosβ=-(asinα+bcosβ)=5.3.已知a=tan,b=cos,c=sin,则a,b,c的大小关系是( )A.a>b>cB.b>a>cC.b>c>aD.c>a>b【解析】选B.a=-tan=-,b=cos=cos=,c=sin=-sin=-,所以b>a>c.4.已知角α的终边上一点P(3a,4a),a<0,则cos(540°-α)的值为( )A.-B.C.D.-【解析】选B.cosα===-,cos(540°-α)=cos(180°-α)=-cosα=.二、填空题(每小题5分,共10分)5.(2014·某某高一检测)已知sin(125°-α)=,则sin(55°+α)的值为.【解析】因为(125°-α)+(55°+α)=180°,所以sin(55°+α)=sin[180°-(125°-α)]=sin(125°-α)=.答案:6.若cos100°=k,则tan80°的值为.【解析】cos80°=-cos100°=-k.于是sin80°==,从而tan80°=-.答案:-三、解答题(每小题12分,共24分)7.已知cos(α-75°)=-,且α为第四象限角,求sin(105°+α)的值.【解析】因为cos(α-75°)=-<0,且α为第四象限角,所以α-75°是第三象限角.所以sin(α-75°)=-=-=-.所以sin(105°+α)=sin[180°+(α-75°)]=-sin(α-75°)=. 【变式训练】化简:.【解析】=====-1.8.求证:=-1,k∈Z. 【证明】当k是偶数,即k=2n(n∈Z)时,左边===-1;当k是奇数,即k=2n+1(n∈Z)时,左边===-1. 所以原式成立.。

完整版)三角函数诱导公式总结

完整版)三角函数诱导公式总结

完整版)三角函数诱导公式总结三角函数诱导公式与同角的三角函数知识点1】诱导公式及其应用诱导公式是指通过一些特定的公式,将三角函数中的某些角度转化为其他角度,从而简化计算。

以下是常用的诱导公式:公式一:sin(-α) = -sinα;cos(-α) = cosα;tan(-α) = -tanα公式二:sin(π+α) = -sinα;cos(π+α) = -cosα;tan(π+α) =tanα公式三:sin(π-α) = sinα;cos(π-α) = -cosα;tan(π-α) = -tanα公式四:sin(2π-α) = -sinα;cos(2π-α) = cosα;tan(2π-α) = -tanα公式五:sin(π/2-α) = cosα;cos(π/2-α) = sinα公式六:sin(π/2+α) = cosα;cos(π/2+α) = -sinα公式七:sin(-π/2-α) = -cosα;cos(-π/2-α) = -sinα公式八:sin(-π/2+α) = -cosα;cos(-π/2+α) = sinα公式九:sin(α+2kπ) = sinα;cos(α+2kπ) = cosα;tan(α+2kπ) = tanα(其中k∈Z)。

以上公式可以总结为两条规律:1.前四组诱导公式可以概括为:函数名不变,符号看象限。

2.公式五到公式八总结为一句话:函数名改变,符号看象限(原函数所在象限)。

另外,还有一个规律是:奇变偶不变,符号看象限。

也就是说,将三角函数的角度全部化成kπ/2+α或是kπ/2-α的形式,如果k是奇数,那么符号要改变;如果k是偶数,符号不变。

例1、求值:(1)cos(2916π)= ________;(2)tan(-855)= ________;(3)sin(-π)= ________。

例2、已知tan(π+α)=3,求:(2cos(-α)-3sin(π+α))/(4cos(-α)+sin(2π-α))的值。

高中数学 1.3.1 三角函数的诱导公式(一)素材 新人教A版必修4

高中数学 1.3.1 三角函数的诱导公式(一)素材 新人教A版必修4

1.3.1三角函数的诱导公式命题方向1 求值问题利用诱导公式求任意角三角函数的步骤(1)“负化正”——用公式一或三来转化;(2)“大化小”——用公式一将角化为0°到360°间的角;(3)“小化锐”——用公式二或四将大于90°的角转化为锐角;(4)“锐求值”——得到锐角的三角函数后求值.[特别提醒] 牢记0°,30°,45°,60°,90°角的正弦、余弦和正切值对给角求值问题很重要!求下列三角函数值:(1)sin960°;(2)cos(-43π6). [分析] 先将不是[0°,360°)范围内角的三角函数,转化为[0°,360°)范围内的角的三角函数(利用诱导公式一),或先将负角转化为正角,然后再用诱导公式化到[0°,90°]范围内的三角函数的值.[解析] (1)sin960°=sin(960°-720°)=sin240°=sin(180°+60°)=-sin60°=-32. (2)cos(-43π6)=cos 43π6=cos(7π6+6π)=cos 7π6=cos(π6+π)=-cos π6=-32.[点评] 用诱导公式可将任意角的三角函数化为锐角的三角函数,其一般步骤:①化负角的三角函数为正角的三角函数;②化为[0°,360°)内的三角函数;③化为锐角的三角函数.可概括为:“负化正,大化小,化到锐角为终了”(有时也直接化到锐角求值).解决条件求值问题策略解决条件求值问题,要仔细观察条件与所求式之间的角、函数名及有关运算之间的差异及联系,要么将已知式进行变形向所求式转化,要么将所求式进行变形向已知式转化.总之,设法消除已知式与所求式之间的种种差异是解决问题的关键.[解析] ∵sin(π+α)=-sin α,∴sin α=13, ∴cos α=±1-cos2α=±1-(13)2=±223又∵cos(5π+α)=cos(π+α)=-cos α=±223. 命题方向2 三角函数式的化简问题三角函数式的化简方法(1)利用诱导公式将任意角的三角函数转化为锐角三角函数;(2)常用“切化弦”法,即通常将表达式中的切函数化为弦函数;(3)注意“1”的变形应用.化简:(1)sin(-α)cos(-α-π)tan(2π+α);(2)sin2(α+π)cos(π+α)tan(π-α)cos3(-α-π)tan(-α-2π). [分析] 先观察角的特点,选用恰当的诱导公式化简,然后依据同角关系式求解.[解析] (1)原式=(-sin α)·cos(π+α)·tan α=-sin α·(-cos α)·sin αcos α=sin2α.(2)原式=(-sin α)2·(-cos α)(-tan α)·(-cos α)3·(-tan α)=-sin2αcos α-tan2α·cos3α=1. 命题方向3 三角函数式的证明问题三角函数关系式的证明方法证明简单的三角函数关系式常用的途径有(1)由左边推至右边或由右边推至左边,遵循的是化繁为简的原则.(2)证明左边=A ,右边=A ,则左边=右边,这里的A 起着桥梁的作用.(3)通过作差或作商证明,即左边-右边=0或左边右边=1.设tan(α+87π)=m.求证:sin(157π+α)+3cos(α-137π)sin(20π7-α)-cos(α+227π)=m +3m +1. [分析] 本题主要考查诱导公式,从已知角的关系入手,将所求各角用α+87π表示,然后用诱导公式和三角函数关系式求解.[解析]左边=sin[π+(87π+α)]+3cos[(α+8π7)-3π]sin[4π-(α+87π)]-cos[2π+(α+8π7)] =-sin(α+8π7)-3cos(α+8π7)-sin(α+8π7)-cos(α+8π7) =tan(α+87π)+3tan(π+87π)+1 =m +3m +1=右边.∴等式成立.[点评] 本题是条件等式的证明,证明条件等式一般常用的方法有两种:一是从被证等式一边推向另一边,并在适当的时候,将条件代入,推出被证等式的另一边,这种方法称为代入法;二是直接将条件变形,变形为被证等式,这种方法称为推出法或直接法.证明条件等式无论使用哪种方法,都要盯住目标,据果变形.精美句子1、善思则能“从无字句处读书”。

正弦余弦正切的诱导公式 三角函数

正弦余弦正切的诱导公式 三角函数

正弦、余弦、正切的诱导公式【知识点精析】1. 三角函数的诱导公式 诱导公式(一): sin()sin 2k παα+= cos()cos 2k παα+= tan()tan 2k παα+=cot()cot 2k παα+=公式含义:终边相同的角的正弦、余弦、正切、余切值相等。

公式作用:把任意角的三角函数化为0°~360°(或0~2π)内的三角函数。

其方法是:先在0°~360°(或0~2π)内找出与角α终边相同的角,再将它分成诱导公式(一)的形式,然后得出结果。

如coscos()cos 25646632ππππ=+==诱导公式(二): sin()sin παα+=- cos()cos παα+=- tan()tan παα+=cot()cot παα+=公式结构特征:①同名函数关系②符号规律:右边符号是将α看作锐角时,πα+是第三象限角的原函数值符号。

即:“函数名不变,符号看象限”。

公式作用:可以把180°~270°(或ππ~32)内的角的三角函数转化为锐角三角函数。

例:sin210°=sin (180°+30°)=-sin30°=-12cos cos()cos 433312ππππ=+=-=- 诱导公式(三): sin()sin -=-ααcos()cos -=αα tan()tan -=-ααcot()cot -=-αα公式结构特征:①同名函数关系②符号规律:右边符号是将α看作锐角时,-α是第四象限角原函数值的符号。

即:“函数名不变,符号看象限”。

公式的作用:可以把负角的三角函数转化为正角三角函数。

例:sin()sin-=-=-ππ4422cos()cos -==606012诱导公式(四): sin()sin παα-= cos()cos παα-=-tan()tan παα-=-cot()cot παα-=-公式结构特征: ①同名函数关系②符号规律:右边符号是将α看作锐角时,πα-是第二象限角的原函数值的符号。

高中数学苏教版必修四练习:1.2.3三角函数的诱导公式(一)(含答案)

高中数学苏教版必修四练习:1.2.3三角函数的诱导公式(一)(含答案)

1.2.3 三角函数的诱导公式(一) 课时目标1.借助单位圆及三角函数定义理解三组公式的推导过程.2.运用所学四组公式进行求值、化简与证明.1.设α为任意角,则π+α,-α,π-α的终边与α的终边之间的对称关系.2.诱导公式一~四(1)公式一:sin(α+2k π)=________,cos(α+2k π)=________,tan(α+2k π)=________,其中k ∈Z.(2)公式二:sin(-α)=________,cos(-α)=________,tan(-α)=________.(3)公式三:sin(π-α)=________,cos(π-α)=________,tan(π-α)=________.(4)公式四:sin(π+α)=________,cos(π+α)=______,tan(π+α)=________.一、填空题1.sin585°的值为________.2.已知cos(π6+θ)=33,则cos(5π6-θ)=________. 3.若n 为整数,则代数式sin(n π+α)cos(n π+α)的化简结果是________.4.三角函数式cos(α+π)sin 2(α+3π)tan(α+π)cos 3(-α-π)的化简结果是______. 5.若cos(π+α)=-12,32π<α<2π,则sin(2π+α)=________. 6.tan(5π+α)=2,则sin(α-3π)+cos(π-α)sin(-α)-cos(π+α)的值为________. 7.记cos(-80°)=k ,那么tan100°=________.(用k 表示)8.代数式1+2sin290°cos430°sin250°+cos790°的化简结果是______. 9.设f (x )=a sin(πx +α)+b cos(πx +β)+2,其中a 、b 、α、β为非零常数.若f (2011)=1,则f (2012)=____.10.若sin(π-α)=log 814,且α∈⎝⎛⎭⎫-π2,0,则cos(π+α)的值为________. 二、解答题11.若cos(α-π)=-23,求sin(α-2π)+sin(-α-3π)cos(α-3π)cos(π-α)-cos(-π-α)cos(α-4π)的值.12.已知sin(α+β)=1,求证:tan(2α+β)+tan β=0.能力提升13.化简:sin[(k +1)π+θ]·cos[(k +1)π-θ]sin(k π-θ)·cos(k π+θ)(其中k ∈Z).14.在△ABC 中,若sin(2π-A )=-2sin(π-B ),3cos A =-2cos(π-B ),求△ABC 的三个内角.1.2.3 三角函数的诱导公式(一) 知识梳理1.原点 x 轴 y 轴2.(1)sin α cos α tan α(2)-sin α cos α -tan α(3)sin α -cos α -tan α(4)-sin α -cos α tan α作业设计1.-22 2.-33 3.tan α 4.tan α解析 原式=-cos α·sin 2αtan α·cos 3(α+π)=-cos α·sin 2α-tan α·cos 3α=cos α·sin 2αsin α·cos 2α=sin αcos α=tan α. 5.-32解析 由cos(π+α)=-12,得cos α=12, ∴sin(2π+α)=sin α=-1-cos 2α=-32(α为第四象限角).6.3解析 原式=sin α+cos αsin α-cos α=tan α+1tan α-1=2+12-1=3. 7.-1-k 2k解析 ∵cos(-80°)=k ,∴cos80°=k ,∴sin80°=1-k 2.∴tan80°=1-k 2k . ∴tan100°=-tan80°=-1-k 2k. 8.-1解析 原式=1+2sin(180°+110°)·cos(360°+70°)sin(180°+70°)+cos(720°+70°) =1-2sin110°cos70°-sin70°+cos70°=1-2sin70°cos70°cos70°-sin70°=|sin70°-cos70°|cos70°-sin70°=sin70°-cos70°cos70°-sin70°=-1. 9.3解析 f (2011)=a sin(2011π+α)+b cos(2011π+β)+2=a sin(π+α)+b cos(π+β)+2 =2-(a sin α+b cos β)=1,∴a sin α+b cos β=1,f (2012)=a sin(2012π+α)+b cos(2012π+β)+2=a sin α+b cos β+2=3.10.-53解析 ∵sin(π-α)=sin α=232log 2 =-23, ∴cos(π+α)=-cos α=-1-sin 2α=-1-49=-53. 11.解 原式=-sin(2π-α)-sin(3π+α)cos(3π-α)-cos α-(-cos α)cos α=sin α-sin αcos α-cos α+cos 2α=sin α(1-cos α)-cos α(1-cos α)=-tan α.∵cos(α-π)=cos(π-α)=-cos α=-23, ∴cos α=23.∴α为第一象限角或第四象限角. 当α为第一象限角时,cos α=23, sin α=1-cos 2α=53, ∴tan α=sin αcos α=52,∴原式=-52. 当α为第四象限角时,cos α=23, sin α=-1-cos 2α=-53, ∴tan α=sin αcos α=-52,∴原式=52. 综上,原式=±52. 12.证明 ∵sin(α+β)=1,∴α+β=2k π+π2(k ∈Z), ∴α=2k π+π2-β (k ∈Z). tan(2α+β)+tan β=tan ⎣⎡⎦⎤2⎝⎛⎭⎫2k π+π2-β+β+tan β =tan(4k π+π-2β+β)+tan β=tan(4k π+π-β)+tan β=tan(π-β)+tan β=-tan β+tan β=0,∴原式成立.13.解 当k 为偶数时,不妨设k =2n ,n ∈Z ,则原式=sin[(2n +1)π+θ]·cos[(2n +1)π-θ]sin(2n π-θ)·cos(2n π+θ)=sin(π+θ)·cos(π-θ)-sin θ·cos θ=-sin θ·(-cos θ)-sin θ·cos θ=-1.当k 为奇数时,设k =2n +1,n ∈Z ,则原式=sin[(2n +2)π+θ]·cos[(2n +2)π-θ]sin[(2n +1)π-θ]·cos[(2n +1)π+θ]=sin[2(n +1)π+θ]·cos[2(n +1)π-θ]sin(π-θ)·cos(π+θ)=sin θ·cos θsin θ·(-cos θ)=-1. ∴原式的值为-1.14.解 由条件得sin A =2sin B ,3cos A =2cos B ,平方相加得2cos 2A =1,cos A =±22, 又∵A ∈(0,π),∴A =π4或34π. 当A =34π时,cos B =-32<0,∴B ∈⎝⎛⎭⎫π2,π, ∴A ,B 均为钝角,不合题意,舍去.∴A =π4,cos B =32,∴B =π6,∴C =712π.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数的诱导公式(一) 【知识梳理】
1.诱导公式二
(1)角π+α与角α的终边关于原点对称.
如图所示.
(2)公式:sin(π+α)=-sin_α.
cos(π+α)=-cos_α.
tan(π+α)=tan_α.
2.诱导公式三
(1)角-α与角α的终边关于x轴对称.
如图所示.
(2)公式:sin(-α)=-sin_α.
cos(-α)=cos_α.
tan(-α)=-tan_α.
3.诱导公式四
(1)角π-α与角α的终边关于y轴对称.
如图所示.
(2)公式:sin(π-α)=sin_α.
cos(π-α)=-cos_α.
tan(π-α)=-tan_α.
【常考题型】 题型一、给角求值问题
【例1】 求下列三角函数值:
(1)sin(-1 200°);(2)tan 945°;(3)cos 119π6
. [解] (1)sin(-1 200°)=-sin 1 200°=-sin(3×360°+120°)=-sin 120°=-sin(180°-60°)=-sin 60°=-32
; (2)tan 945°=tan(2×360°+225°)=tan 225°=tan(180°+45°)=tan 45°=1;
(3)cos 119π6=cos ⎝⎛⎭⎫20π-π6=cos ⎝⎛⎭⎫-π6=cos π6=32
. 【类题通法】
利用诱导公式解决给角求值问题的步骤
【对点训练】
求sin 585°cos 1 290°+cos(-30°)sin 210°+tan 135°的值.
解:sin 585°cos 1 290°+cos(-30°)sin 210°+tan 135°=sin(360°+225°)cos(3×360°+210)+cos 30°sin 210°+tan(180°-45°)=sin 225°cos 210°+cos 30°sin 210°-tan 45°=sin(180°+
45°)cos(180°+30°)+cos 30°·sin(180°+30°)-tan 45°=sin 45°cos 30°-cos 30°sin 30°-tan 45°=
22×32-32×12-1=6-3-44
. 题型二、化简求值问题
【例2】 (1)化简:cos (-α)tan (7π+α)sin (π-α)
=________; (2)化简sin (1 440°+α)·cos (α-1 080°)cos (-180°-α)·sin (-α-180°)
.
(1)[解析] cos (-α)tan (7π+α)sin (π-α)=cos αtan (π+α)sin α=cos α·tan α
sin α=sin α
sin α=1.
[答案] 1
(2)[解] 原式=sin (4×360°+α)·cos (3×360°-α)cos (180°+α)·[-sin (180°+α)]=sin α·cos (-α)(-cos α)·sin α=cos α
-cos α=-1.
【类题通法】
利用诱导公式一~四化简应注意的问题
(1)利用诱导公式主要是进行角的转化,从而达到统一角的目的;
(2)化简时函数名没有改变,但一定要注意函数的符号有没有改变;
(3)同时有切(正切)与弦(正弦、余弦)的式子化简,一般采用切化弦,有时也将弦化切.
【对点训练】
化简:tan (2π-θ)sin (2π-θ)cos (6π-θ)
(-cos θ)sin (5π+θ).
解:原式=tan (-θ)sin (-θ)cos (-θ)
(-cos θ)sin (π+θ)=tan θsin θcos θ
cos θsin θ=tan θ.
题型三、给角(或式)求值问题
【例3】 (1)已知sin β=13,cos(α+β)=-1,则sin(α+2β)的值为( )
A .1
B .-1
C.13 D .-13
(2)已知cos(α-55°)=-13,且α为第四象限角,求sin(α+125°)的值.
(1)[解析] ∵cos(α+β)=-1,
∴α+β=π+2k π,k ∈Z ,
∴sin(α+2β)=sin[(α+β)+β]=sin(π+β)=-sin β=-13.
[答案] D
(2)[解] ∵cos(α-55°)=-13<0,且α是第四象限角.
∴α-55°是第三象限角.
sin(α-55°)=-1-cos 2(α-55°)=-223
. ∵α+125°=180°+(α-55°),
∴sin(α+125°)=sin[180°+(α-55°)]=-sin(α-55°)=
223
. 【类题通法】
解决条件求值问题的策略
(1)解决条件求值问题,首先要仔细观察条件与所求式之间的角、函数名称及有关运算之间的差异及联系.
(2)可以将已知式进行变形向所求式转化,或将所求式进行变形向已知式转化.
【对点训练】
已知sin(π+α)=-13
,求cos(5π+α)的值. 解:由诱导公式得,sin(π+α)=-sin α,
所以sin α=13
,所以α是第一象限或第二象限角. 当α是第一象限角时,cos α= 1-sin 2α=223, 此时,cos(5π+α)=cos(π+α)=-cos α=-223
. 当α是第二象限角时,cos α=-1-sin 2α=-223
, 此时,cos(5π+α)=cos(π+α)=-cos α=223
. 【练习反馈】
1.如图所示,角θ的终边与单位圆交于点P ⎝⎛⎭
⎫-55,255,则cos(π-θ)的值为( )
A .-255
B .-55
C.55
D.255
∴cos(π-θ)=-cos θ=5
5.
2.已知sin(π+α)=4
5,且α是第四象限角,则cos(α-2π)的值是( )
A .-3
5 B.3
5
C .±35 D.4
5
解析:选B sin α=-4
5,又α是第四象限角,
∴cos(α-2π)=cos α=1-sin 2α=3
5.
3.设tan(5π+α)=m ,则sin (α-3π)+cos (π-α)
sin (-α)-cos (π+α)=________.
解析:∵tan(5π+α)=tan α=m ,
∴原式=-sin α-cos α
-sin α+cos α=-tan α-1-tan α+1=-m -1-m +1=m +1
m -1. 答案:m +1
m -1
4.cos (-585°)
sin 495°+sin (-570°)的值是________.
解析:原式=cos (360°+225°)
sin (360°+135°)-sin (210°+360°)
=cos 225°sin 135°-sin 210°=cos (180°+
45°)
sin (180°-45°)-sin (180°+30°)
=-cos 45°sin 45°+sin 30°=-2
2
22+12
=2-2. 答案:2-2
5.已知cos ⎝⎛⎭⎫π
6-α=33,求cos ⎝⎛⎭⎫α+5π
6的值.
解:cos ⎝⎛⎭⎫π+5π6=-cos ⎣⎡⎦⎤π-⎝⎛⎭⎫α+5π6=
-cos ⎝⎛⎭⎫π6-α=-3
3.。

相关文档
最新文档