分子生物学

合集下载

名词解释:分子生物学

名词解释:分子生物学

名词解释:分子生物学
分子生物学是一门研究生物体及其组织、细胞和分子层面上的
生物学现象和机制的学科。

它探究生物体的结构、功能和相互作用,以及这些过程背后的分子机制。

在分子生物学中,研究者关注的是生命的基本单位——分子。

他们研究DNA、RNA和蛋白质等生物分子的结构和功能,以及它
们在细胞内的相互关系。

分子生物学的研究领域非常广泛。

它包括基因结构和功能的研究,以及基因的表达、转录和翻译过程。

此外,分子生物学也涉及
到进化、遗传学、生物工程和药物研发等领域。

分子生物学的研究方法多样且不断发展。

常用的方法包括
DNA测序、PCR、蛋白质电泳和基因工程技术等。

这些方法使得
研究者能够深入研究生物分子的结构和功能,揭示它们对生物体的
影响。

总体而言,分子生物学对于我们理解生命的奥秘、解决疾病和推动生物技术和医学的发展具有重要意义。

通过研究生物分子的组成和相互作用,我们能够更好地理解生命的起源、进化和机制,为人类的健康和科学研究做出贡献。

分子生物学名词解释

分子生物学名词解释

分子生物学:从广义来讲,分子生物学是从分子水平阐明生命现象和生物学规律的一门新兴的边缘学科。

它主要对蛋白质及核酸等生物大分子结构和功能以及遗传信息的传递过程进行研究。

DNA重组技术:DNA重组技术(又称基因工程)是将DNA片段或基因在体外经人工剪接后,按照人们的设计与克隆用载体定向连接起来,转入特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状。

信号转导:是指外部信号通过细胞膜上的受体蛋白传到细胞内部,并激发诸如离子通透性、细胞形状或其它细胞功能方面的应答过程。

转录因子:是指一群能与基因5′端上游特定序列专一结合,从而保证目的基因以特定强度在特定时间和空间表达的蛋白质分子。

功能基因组:又称后基因组,是在基因组计划的基础上建立起来的,它主要研究基因及其所编码蛋白质的结构和功能,指导人们充分准确地利用这些基因的产物。

结构分子生物学:就是研究生物大分子特定空间结构及结构的运动变化与其生物学功能关系的科学。

生物信息学:是生物科学和信息科学重大交叉的前沿学科,它依靠计算机对所获得数据进行快速高效计算、统计分类以及生物大分子结构功能的预测。

染色体:是指存在于细胞核中的棒状可染色结构,由染色质构成。

染色质是由DNA、RNA和蛋白质形成的复合体。

染色体是一种动态结构,在细胞周期的不同阶段明显不同。

C-值(C-value):一种生物单位体基因组DNA的总量。

C-值矛盾(C-value paradox):基因组大小与机体的遗传复杂性缺乏相关性。

核心DNA(core DNA):结合在核心颗粒而不被降解的DNA。

连接DNA(linker DNA):重复单位中除核心DNA以外的其它DNA。

DNA多态性:指DNA序列中发生变异而导致的个体间核苷酸序列的差异,主要包括单核苷酸多态性和串联重复序列多态性两类。

DNA的一级结构:是指4种核苷酸的排列顺序,表示了该DNA分子的化学组成。

又由于4种核苷酸的差异仅仅是碱基的不同,因此又是指碱基的排列顺序。

分子生物学

分子生物学

1.SNP单核苷酸多态性指基因组DNA上单个碱基的变异引起的DNA序列多态性。

SNP是人类基因组DNA多态性最多的,是人群个体差异最具代表性的DNA 多态性,相当一部分直接或间接地与个体的表型差异、对疾病的易感性或抵抗能力、对药物的反应性等相关。

由于没一个个体基因组的每一个核苷酸突变的频率非常低及突变的随机性,使得大多数SNP位点十分稳定。

2.ORF 开放阅读框架在DNA链上,由蛋白质合成的起始密码开始,到终止密码为止的一个连续编码列,包括3个区域:编码区,有外显子和内含子;前导区,位于编码区上游;调节区,有启动子和沉默子等。

3.调节基因指某些可调节、控制结构基因表达的基因。

其突变可影响一个或多个结构基因的功能,或导致一个或多个蛋白质量的改变。

4.目前蛋白质组学研究最常用的技术流程是基于凝胶的工作流程。

通过样品制备、样品标记、双向电泳分离、图像获取、图像分析,到抠点、酶切、点靶和MALDI—TOF蛋白质鉴定的一整套技术手段。

用于分离的双向电泳原理第一等电聚焦,蛋白质沿PH梯度分离,第二进行相对分子质量分离。

5.细胞起始基因转录需要反式转录激活因子的参与.酵母转录因子GAL4在结构上是组件式的,往往由两个或两个以上结构上可以分开、功能上相互独立的结构域构成,其中有DNA结合功能域和转录激活结构域。

将这两个结构域分开时仍分别具有功能,但不能激活转录,只有当被分开的两者通过适当的途径在空间上较为接近时,才能重新呈现完整的GAL4转录活性,并可激活上游激活序列的下游的启动子,使启动子下游的基因得到转录。

6.(1)分----分离目的基因;切-----限制酶切割目的基因和载体;接-----拼接重组体;转-----转入受体菌;筛----筛选重组体。

(2)黏性末端DNA分子的连接;平末端的连接,其中包括质粒和目的基因上没有相同的酶切位点和人工接头连接;通过同聚尾连接。

7.限制性核算内切酶:分子克隆中切割DNA获取目的基因和切割载体形成切口,使目的基因插入载体;DNA聚合酶和klenow片段:具有5’—3’聚合酶和3’----5’核酸外切酶活性;taqDNA聚合酶:一种耐热的DNA聚合酶聚5’—3’聚合酶和依赖于聚合作用的5’----3’外切酶活性;反转录酶:以RNA为模板合成DNA的功能;末端脱氧核糖核苷酰转移酶:在载体或目的基因3’末端加上互补的同质多聚尾,形成人工黏性末端;DNA连接酶:催化两个互补的黏性末端或平端双链DNA 分子端口的连接;碱性磷酸酶:除去DNA片段上的5’磷酸,以防自身连接;核酸酶S1:水解双链DNA、RNA或DNA---RNA杂交中的单链部分,其作用是除去双链DNA的黏性末端产生平末端。

分子生物学概述

分子生物学概述

传信息传递的基本方式,最终确
定了核酸是遗传的物质基础。
5’
2、遗传信息传递中心法则的建立
1956年,Kornber在大肠杆菌的无细胞提取液中实
现了DNA的合成,并从E.col中分离出DNA聚合酶;
1958年,Meselson与Stahl的实验证明,DNA复制 时 DNA分子的两条链先行分开。他们用15N重同位 素及密度梯度超速离心证明了DNA的复制是一种半 保 留复制。
三、分子生物学的主要研究内容
1、重组技术的建立和发展 2、基因组研究的发展 3、功能基因组研究的发展 4、基因表达调控机理的研究
基因组、功能基因组及生物信息学研究
基因组:指某种生物单倍体染色体中所含有基因的总数, 也就是包含个体生长、发育等一切生命活动所需的全部 遗传信息的整套核酸。
功能基因组:又称后基因组,是在基因组计划的基础上 建立起来的,它主要研究基因及其所编码蛋白质的结构 和功能,指导人们充分准确地利用这些基因的产物。
人类基因组计划(human genome project, HGP)
美国科学家、诺贝尔奖获得者Dulbecco R于1986年在美国 《 Science 》杂志上发表的短文中率先提出,并认为这是加快 癌症研究进程的一条有效途径。
主要的目标是绘制遗传连锁图、物理图、转录图,并完成人类 基因组全部核苷酸序列测定。测出人体细胞中24条染色体上全 部30亿对核苷酸的序列,把所有人类基因都明确定位在染色体 上,破译人类的全部遗传信息。
里程碑的发现
Watson 和 Crick 在前人的基础 上,提出了DNA双螺旋结构的 模型。
1962年诺贝尔医学与生理学奖
Watson JD和Crick FHC的“双
5’

什么是分子生物学

什么是分子生物学

什么是分子生物学分子生物学是一门崭新的科学,由于它是20世纪发展起来的新兴学科,它在未来也将产生重大的影响。

下面将介绍分子生物学的几个基本概念并阐述它的重要性:一、什么是分子生物学?分子生物学是一门研究分子水平生命现象和自然关系的新科学。

它使用分子生物学手段,利用化学、物理和生物技术,探讨以分子和最小细胞为基础的生物学过程。

分子生物学以DNA、RNA、蛋白质和其他分子结构为框架,结合生物信息学,解析各种生物过程及其分子机制。

二、分子生物学的方法分子生物学有许多研究方法和工具,主要包括基因测序、分子标记、克隆技术、蛋白质分析、遗传学和定量PCR的技术。

(1)基因测序:基因测序是分子生物学研究最常用的技术,它是一种可以分析DNA片段顺序和检测DNA表达状态的技术。

(2)分子标记:分子标记是将一种活性体与另一种它可能与之具有共同性质的生物活性体混合,以产生一种可检测的化学反应的技术。

(3)克隆技术:克隆技术是指利用可重组DNA技术在一个宿主上复制目标DNA片段、克隆它们作为载体的技术。

(4)蛋白质分析:蛋白质分析是指利用紫外分光光度计、流式细胞仪等分析仪器,研究蛋白质结构、凝胶电泳分析、质谱分析以及免疫学方法等技术来检测蛋白质结构和性质的方法。

(5)遗传学:遗传学是指研究基因在细胞中的表达、基因间相互作用及其在不同生物间的进化变异,以及它们在适应性演化中的作用的学科。

(6)定量PCR:定量PCR是指使用定量PCR技术研究DNA序列,利用荧光基因特异性引物和特异序列来检测、建库和定量分析DNA。

三、分子生物学的重要性(1)分子生物学能够探究生命的奥秘;(2)通过分子生物学,我们可以更好地了解遗传基因是如何影响人类生理和心理行为;(3)分子生物学可以帮助我们更好地理解疾病的发展机制,进行疾病的预防和治疗;(4)分子生物学也是真核细胞和原核细胞的比较研究的基础,从而有助于我们更好地利用微生物培养;(5)分子生物学还可以帮助我们更好地利用基因工程技术实现转基因动物生物学研究和创新生物材料研究。

分子生物学完整版

分子生物学完整版
分散在基因组中,许多中度重复序列与单拷贝序列和低度重复序列相间排列。
非编码的中度重复序列,在进化中起着重要的作用。
SINE--Alu家族
人类基因组中存在最广泛的中度重复序列,平均长度约300bp,拷贝数30~50万,均匀地散布在整个基因组中。
低度重复序列(2-10次)每一种在基因组中的重复次数为2~10,多为编码蛋白质的基因
存在复杂的RNA加工反应,包括切割,顺式-,反式-剪接,RNA的编辑和降解。
某些重复序列的核苷酸顺序不完全相同
单拷贝序列(single copy sequence)
在基因组中只存在一个拷贝,复性最慢。
编码真核生物绝大部分蛋白,表达具有时空特异性。
基因家族(gene family):一组功能类似、结构具有同源性的基因。
细胞器基因组
1950s,为了解释某些表型特殊的遗传方式,提出了extra-chromosomal genes。1960s早期(1962年〕,Ris and Plant通过电镜首次证明叶绿体中含有DNA,用DNA酶处理,超薄切片的2.5~3.0m的纤丝消失,进一步在电镜下观察到环状DNA分子。几乎所有的真核生物有线粒体基因组;所有的光合真核生物含有叶绿体基因组;一般来讲,细胞器基因组DNA呈环状,也有线状(一些真核微生物酵母等的线粒体基因组都呈线状;有的环状和线状并存,叶绿体中还有小环DNA分子存在.
分子生物学
The Coming of Wisdom With Time
Though leaves are many, the root is one
Through all the lying days of my youth
I swayed my leaves and flowers in the sun;

分子生物学

分子生物学

分子生物学分子生物学(Molecular Biology)是生物学的一个分支学科,主要研究生物体内分子的结构、功能、相互作用和调控机制。

分子生物学的发展推动了对于基因和蛋白质的研究,为我们对生物体内的生命活动以及人类疾病的认识提供了重要的基础。

分子生物学的研究主要是从分子层面探究生物体的组成和功能。

在分子生物学的视角下,生物体被看作是由各种复杂的分子组成的。

这些分子包括核酸(DNA和RNA)、蛋白质、细胞膜和其他生物分子。

通过研究这些分子的结构和功能,我们可以深入了解生物体内的一系列生物过程,如DNA复制、基因表达、蛋白质合成等。

在分子生物学的研究中,DNA是一个重要的研究对象。

DNA是三个硝基酸组成的核酸分子,它携带着生物体的遗传信息。

在细胞分裂过程中,DNA会通过复制过程产生两个完全相同的分子。

这种DNA的复制是生物体生长和繁殖的基础。

通过研究DNA的结构和复制机制,分子生物学家可以理解细胞遗传信息的传递和维持。

分子生物学的另一个重要研究对象是蛋白质。

蛋白质是生物体最重要的功能分子之一,它在细胞的结构、功能和代谢过程中起到了关键作用。

分子生物学研究了蛋白质的合成和调控机制,以及蛋白质在细胞内的运输、定位和降解过程。

通过研究蛋白质的结构和功能,分子生物学家可以揭示蛋白质如何参与细胞和组织的功能调节,进而理解生物体的正常生理活动和疾病的发生机制。

除了DNA和蛋白质,分子生物学还研究其他类型的分子。

例如,分子生物学研究了细胞膜的组成和运输机制,了解了细胞如何通过细胞膜与外界进行交流和物质交换。

此外,分子生物学还研究了一些小分子信号物质,如激素和信号分子,它们在细胞间的通讯和调节中扮演重要角色。

分子生物学的技术和方法也得到了快速发展。

例如,PCR(聚合酶链反应)技术可以快速复制DNA,并且已经成为了基因工程和基因诊断的关键技术。

基因测序技术则使得我们能够快速高效地获取DNA的序列信息,进一步推动了基因组学和遗传学的发展。

什么是分子生物学

什么是分子生物学

什么是分子生物学
分子生物学的发展举足轻重,它为生命科学的发展提供了重要而有力的支持。

本文旨在全面系统地介绍分子生物学的相关知识,帮助读者更加深入地了解该领域的研究现状,并更好地应对社会的发展挑战。

1. 什么是分子生物学?
分子生物学是基于分子机理的一门研究生命科学的研究领域。

它针对生物分子的结构和功能进行深入的研究,并开展着关于生命体系的基本性理论研究,从而推动了现代生物学研究与新技术的广泛发展。

2. 分子生物学的研究对象
分子生物学重点研究的方向主要有生物分子,比如:DNA、RNA、蛋白质、各类酶等,还有一些生物信号分子,可以帮助我们更清楚地了解有关生物的调控机制。

3. 分子生物学的研究方法
分子生物学的研究技术包括:实验室基本手段、测序技术、分子结构定位技术、细胞和分子影像技术、计算生物学等,这种独特的技术使分子生物学成为生物学研究中重要的基础研究领域。

4. 分子生物学的研究优势
分子生物学由于研究内容与视野狭窄,研究领域较为集中,可以更加深入地把握各种生物分子的功能、结构、变化过程,从而更加有效地应用于实际的科研工作中。

5. 分子生物学的应用
分子生物学为各类疾病的治疗、疫苗的开发和药物研发方面提供了强有力的支持。

它能够揭示病原体的分子机制,并根据改变这种机制而设计出新药物;它还为科学家研究一些病毒性疾病的分子机制提供基础,进而开发出抗病毒疫苗。

此外,分子生物学为植物育种和动物育种研究提供了新的信息来源,可以帮助提高农作物的产量和品质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Introduction (1 class hours)1. Conception of molecular biology分子生物学的概念A discipline for the study of law of living beings genetics and variationat molecular level. 就是肉眼能看到的生物体的特性characteristic、现象Phenomena 从分子水平上进行阐明。

这个定义范围广,与生物化学概念不好区分。

另外definition:the study of gene structure and function at themolecular level. Main research contents: DNA replication, transcription,translation, regulation.2. Brief history of molecular biology分子生物学简史~1847 年,Schleiden and Sckwan提出Theory of cell. 这是19 世纪三大发现之一。

~Mendel’s laws of inheritance, traits inheritance 性状遗传(性状3:1)。

~Morgan’s theory of gene, traits 和gene 联系起来。

~1953 年,Watson和Crick,determined the structure of DNA. 即提出thedouble-helix model of DNA。

~1954 年,Crick提出Central Dogma:transcription translationDNA ―――→RNA ―――→Proteinreplication~In 1958, Meselson和Stahl,复制是semiconservative replication of DNA.~ In 1961, Yanofsky, 提出了triplet的设想,即3 base encodes a AA. 同年又discovered messenger RNA. 法国科学家Monod和Jacob提出了operontheory。

~In 1963, Nirenberg, 在无细胞系统中,用人工合成的polynucleotide 合成polypeptide.~In 1966,Nirenberg 和Khoranak, Finished unraveling the genetic code.~In 1970, Smith, discovered restriction enzymes that cut DNA at specificsites. DNA 是长链分子,要研究需切割成小片段,切割时需要enzymes.~ In 1970,从致癌RNA virus 中发现了reverse transcriptase (RT),RNA―――→cDNAApplication: cDNA library, DNA chip; gene expression level. DNA chip把成千上万的DNA 探针固化在支持物表面上,产生二维DNA 探针阵列,然后与标记的样品进行杂交,通过检测杂交信号来实现对生物样品快速检测。

有两种类型,DNA chip 和oligonucleotide array;寡核苷酸阵列主要由ESTs(espressed sequence tag)制作,它是300一500bp cDNA 片段~ In 1972, Berg, Made the first recombinant DNA in vitro. In 1980 获得Nobel 奖。

~In 1977, 在研究分子生物学中了解DNA 的核苷酸的序列是非常重要的。

Sanger 及Gilbert 分别用不同的方法完成了DNA sequence 测定。

Sanger采用的是method of enzyme,而Glibert 采用method of chemistry。

他们都将DNA分子中碱基序列准确地测定出来,使我们对基因结构得到了解。

~In 2000, Determined the base sequence of the genome of Arabidopsis andfruit fly (drosophila). 这是人类首次全部破译出一种植物的基因序列.~In 2002, Determined the base sequence of rice genome. 参加的国家有美,日,中等10 国家,我国承担的是水稻基因组的第四号染色体的测序,测序结果发表在2002 年的nature 杂志上.~In 2003, Repotted the finished sequence of human genome. 这一人类基因组计划也有我国的参与,承担了1%的测序工作。

虽然承担的仅仅是1%,但意义还是挺大的,可以分享这一计划所建立的所有技术、资源和数据。

~In 2006, poplar 杨树。

~ In 2007, grape~ In 2008, working draft of maize and soybean.目前已有300 多种生物基因组全序列完成了测定。

随着这些结构基因组工作的完成,今后基因组研究的重点就要转入功能基因组的研究。

3. Prospects for molecular biology分子生物学展望3.1 Functional genomicsThe sequences of genomes is called structural genomics because of its focus on the structure of genomes. Now we need to ask this question; Ofwhat use is the sequence of a genome? There are many applications, buttwo of the most important are: 1) finding genes involved in genetic traits(diseases, adversity, quality); and 2) probing the pattern of gene expressionin a given cell type at a given time (functional genomics).3.2 Proteomics指一个基因组所表达的细胞内的全部蛋白质。

蛋白质组学是以蛋白质组为研究对象,研究细胞内所有蛋白质及其动态变化规律的科学, 是从整体上研究组织、细胞的器官在特定条件下的蛋白质。

Genome: all the genes in an organism;Genomics: the study of the structure and function of whole genomes.Transcriptome: all the transcripts an organism can make in its lifetimeTranscriptomics: the study of the gene expression at RNA level.Proteome: all the proteins expressed in a cell in a genomeProteomics: the study of the proteome3.3 Bioinformatics对DNA 和蛋白质序列资料中各种类型的信息进行识别、存储、分析、模拟和运输。

常由数据库、计算机网络和应用软件三大部分组成。

4. Relation between molecular biology and other Disciplines分子生物学已经渗透到all fields of life science。

Genetics: Mol+遗传学----- Molecular GeneticsBiochemistry:核酸生物化学,蛋白质与DNA 的结合研究Microbiology:密不可分,E.coli ,plasmid、restrictive enzymeCell Biology:分子细胞生物学。

在分子水平上探讨构成细胞各种组分的基因及其表达。

Developmental Biology:发育分子生物学。

Chapter 1 Genetic materials遗传的物质基础(6 学时)1. 1 DNA is main genetic materials早在二十世纪20年代,人们就已经认识到染色体有两种主要的组成成分,即DNA (deoxyribonucleic acid)—4 nucleotides 和Histone---20 AA.1.1.1 Transformation experiment of pneumococcus 肺炎链球菌的转化作用1928年,英国微生物学家Griffith做了有名的Pneumococcus感染mice的实验。

这种细菌有三种类型(I、II、III). Wild type (S): spherical cell surrounded by a capsule polysaccharidecoat, smooth colonies. The coat has protective role, so it can proliferate enough. The polysaccharide is virulent that is capable of killing the mice.Mutant strain (R):has lost the ability to form a capsule, rough colonies. No coat---no proliferate, avirulent---mice live.1) S---mice, die. 2) S, heat at 65℃---mice, live.3) R---mice, live. 4) Dead S + R ---mice, die.从死鼠体内分离细菌,得到了S 型细菌。

从实验4)可以作出这样的判断,在killed S 型细菌中,仍有某种active substance 存在,它可以使R 型细菌变为S型,从而使小白鼠染病而死.但是,这种活性物质是什么.当时并不清楚。

相关文档
最新文档