页式虚拟存储管理中地址转换和缺页中断实验参考2

合集下载

操作系统实验报告-页式虚拟存储管理中地址转换和缺页中断

操作系统实验报告-页式虚拟存储管理中地址转换和缺页中断

操作系统实验报告-页式虚拟存储管理中地址转换和缺页中断实验四页式虚拟存储管理中地址转换和缺页中断一.实验目的(1)深入了解存储管理如何实现地址转换。

(2)进一步认识页式虚拟存储管理中如何处理缺页中断。

二.实验内容编写程序完成页式虚拟存储管理中地址转换过程和模拟缺页中断的处理。

三.实验原理页式存储管理把内存分割成大小相等位置固定的若干区域,叫内存页面,内存的分配以“页”为单位,一个程序可以占用不连续的页面,逻辑页面的大小和内存页面的大小相同,内外存的交换也以页为单位进行,页面交换时,先查询快表,若快表中找不到所需页面再去查询页表,若页表中仍未找到说明发生了缺页中断,需先将所需页面调入内存再进行存取。

四.实验部分源程序#define size 1024//定义块的大小,本次模拟设为1024个字节。

#include "stdio.h"#include "string.h"#includestruct plist{int number; //页号int flag; //标志,如为1表示该页已调入主存,如为0则还没调入。

int block; //主存块号,表示该页在主存中的位置。

int modify; //修改标志,如在主存中修改过该页的内容则设为1,反之设为0int location; //在磁盘上的位置};//模拟之前初始化一个页表。

struct plist p1[7]={{0,1,5,0,010},{1,1,8,0,012},{2,1,9,0,013},{3,1,1,0,021},{4,0,-1,0,022},{5,0,-1,0,023},{6, 0,-1,0,125}};//命令结构,包括操作符,页号,页内偏移地址。

struct ilist{char operation[10];int pagenumber;int address;};//在模拟之前初始化一个命令表,通过程序可以让其顺序执行。

页式虚拟存储器管理中地址转换和缺页中断心得体会

页式虚拟存储器管理中地址转换和缺页中断心得体会

页式虚拟存储器管理中地址转换和缺页中断心得体会
在页式虚拟存储器管理中,地址转换和缺页中断是非常重要的概念和机制。

地址转换是指将逻辑地址(在进程中使用的地址)转换为物理地址(实际存在于主存储器中的地址)的过程。

它实现了虚拟内存的核心功能,使得每个进程可以感觉到它有独立的连续内存空间,而不受实际的物理内存大小限制。

地址转换通过页表来实现,页表中记录了虚拟页面与物理页面的对应关系。

当进程引用一个虚拟页面时,地址转换会根据页表将其映射到相应的物理地址上。

地址转换过程中还需要使用页表维护一些权限位来控制对页面的读写权限,保障内存的安全性。

缺页中断是在地址转换过程中发现虚拟页面不存在于主存中时触发的事件。

当进程引用一个未加载到内存的页面时,操作系统会产生一个缺页中断。

处理缺页中断的过程一般包括以下几个步骤:首先,操作系统会将控制权转移到中断处理程序,保存当前执行进程的上下文。

然后,操作系统会查找该虚拟页面是否在辅存(如硬盘)上,并将其加载到空闲的物理页面中。

最后,更新页表,将虚拟页面的记录指向新加载的物理页面。

完成这些步骤后,操作系统可以重新执行原进程,并使其继续访问该页面。

通过地址转换和缺页中断机制,页式虚拟存储器管理可以实现更高效的内存管理。

它允许系统在有限的物理内存的情况下运行多个进程,减少了进程间的内存冲突。

同时,通过将未使用的页面交换到辅存中,它也能够提供更大的可用内存空间,提高系统的整体性能。

以上是我对地址转换和缺页中断的心得体会,希望对您有所帮助。

实验四页式虚拟存储管理中地址转换和页式中断FIFOLRUOPTC++版本

实验四页式虚拟存储管理中地址转换和页式中断FIFOLRUOPTC++版本

实验四页式虚拟存储管理中地址转换和页式中断FIFO一、实验目的深入了解页式存储管理如何实现地址转换;进一步认识页式虚拟存储管理中如何处理缺页中断以及页面置换算法。

二、实验主要内容编写程序完成页式虚拟存储管理中地址转换过程和模拟缺页中断的处理。

实验具体内容包括:首先对给定的地址进行转换工作,若发现缺页则先进行缺页中断处理,然后再进行地址转换;最后编写主函数对所做工作进行测试。

假定主存64KB,每个主存块1024字节,作业最大支持到64KB,系统中每个作业分得主存块4块。

三、实验原理1)地址转换过程:首先从逻辑地址中的高位取得页号,然后根据页号查页表,得到块号;然后从逻辑地址中的低位取得页内地址,将块号和页内地址合并即得到物理地址。

2)缺页中断处理根据页号查找页表,判断该页是否在主存储器中,若该页标志位“0”,形成缺页中断。

操作系统让调出中断处理程序处理中断。

四、实验方法与步骤实现地址转换与缺页中断处理,主要考虑三个问题:第一,设计页式虚拟存储管理方式中页表的数据结构;第二,地址转换算法的实现;第三,缺页中断处理算法的实现。

1)设计页表的数据结构页式虚拟存储管理方式中页表除了页号和该页对应的主存块号外,至少还要包括存在标志(该页是否在主存),磁盘位置(该页的副本在磁盘上的位置)和修改标志(该页是否修改过)。

在实验中页表用数组模拟,其数据结构定义如下:struct{int lnumber; //页号int flag; //表示页是否在主存中,“1”表示在,“0”表示不在int pnumber; // 该页所在主存块的块号int write; //该页是否被修改过,“1”表示修改过,“0“表示没有修改过int dnumber; //该页存放在磁盘上的位置,即磁盘块号}page[n]; //页表定义2)地址转换算法的实现地址转换是由硬件完成的,实验中使用软件程序模拟地址转换过程。

在实验中,每个主存块1024字节,则块内地址占10位;主存64KB,则主存共64块,即块号占6位;物理地址共占16位;作业最大64KB,则作业最大占64块,即页号占6位,逻辑地址共占16位。

在四页虚拟存储管理中使用先进先出版本的地址转换和页面中断进行实验.doc

在四页虚拟存储管理中使用先进先出版本的地址转换和页面中断进行实验.doc

在四页虚拟存储管理中使用先进先出版本的地址转换和页面中断进行实验四页虚拟存储管理中的地址转换和页中断先进先出实验首先,实验的目的是深入理解基于页面的存储管理如何实现地址转换。

进一步了解在页面虚拟存储管理中如何处理分页和页面替换算法。

其次,实验的主要内容是编写一个程序来完成地址转换过程,并模拟基于页面的虚拟存储管理中缺页中断的处理。

实验的具体内容包括:首先,给定的地址被转换。

如果发现缺页,首先中断该页,然后转换地址。

最后,编写主要函数来测试所做的工作。

假设主内存为64KB,每个主内存块为1024字节,支持的最大作业数为64KB,系统中的每个作业分为4个主内存块。

3.实验原则1)地址翻译过程:首先,从逻辑地址中的高位获得页号,然后根据页号搜索页表以获得块号。

然后,从逻辑地址的低位获得页内地址,并且通过组合块号和页内地址获得物理地址。

2)缺页中断处理根据页码查找页表,以确定该页是否在主存储器中。

如果页面标志位为“0”,则形成缺页中断。

操作系统让调用中断处理程序处理中断。

四、实现地址翻译和分页处理的实验方法和步骤,主要考虑三个问题:首先,设计了页面虚拟存储管理模式下页面表的数据结构。

二是地址转换算法的实现;第三,缺页中断处理算法的实现。

1)设计页表的数据结构。

在页型虚拟存储管理模式中,除了对应于该页的页号和主存储器块号之外,页表还应至少包括存在标志(该页是否在主存储器中)、磁盘位置(该页在磁盘上的副本的位置)和修改标志(该页是否已被修改)。

在实验中,页表由数组模拟,其数据结构定义如下:结构{ int lnumber//页码int标志;//表示页面是否在主存中,“1”表示“0”表示不在整数中;//页面所在的主内存块的块号为int write//页面是否已被修改,“1”表示已被修改,“0”表示未被修改为数字;//页面在磁盘上存储的位置,即磁盘块号}页面[n];//页表定义2)地址转换算法由硬件实现。

在实验中,使用软件程序来模拟地址转换过程。

页式虚拟存储管理缺页中断的模拟系统的设计

页式虚拟存储管理缺页中断的模拟系统的设计

燕山大学课程设计说明书课程设计名称:操作系统OS题目:页式存储管理中页面置换(淘汰)的模拟程序班级:计算机应用二班开发小组名称:CAMPUS课题负责人:课题组成员:姓名学号班级自评成绩课题开发日期:2011-1-10至2011-1-14一.概述1目的通过分析、设计和实现页式虚拟存储管理缺页中断的模拟系统,熟悉和掌握请求分页式存储管理的实现过程,重点掌握当请求页面不在内存而内存块已经全部被占用时的替换算法,熟悉常见替换算法的原理和实现过程,并利用替换算法的评价指标——缺页次数和缺页率,来对各种替换算法进行评价比较。

2.主要完成的任务自行输入实际页数、内存可用页面数、存取内存时间、存取快表时间及缺页中断时间,然后由用户随机输入各页面号,模拟系统自动运行出FIFO、LRU、OPT、LFU四种算法的缺页次数、缺页率、命中率、总存取时间、存取平均时间等结果。

3 使用的开发工具(1)使用系统:Windows7(2)使用语言:C++(3)开发工具:Visual C++ 6.04 解决的主要问题设计的结果程序能实现FIFO、OPT、LRU、LFU算法模拟页式存储管理缺页中断,主要能够处理以下的问题:(1) 用户能够输入给作业分配的内存块数;(2) 用户能够输入给定的页面,并计算发生缺页的次数以及缺页率;(3) 程序可由用户输入页面序列;(4)系统自动计算总存取时间及平均存取时间。

二使用的基本概念和原理1.概念FIFO即先进先出页面置换算法,该算法总是淘汰最先进入内存的页面,即选择在内存中驻留时间最久的页面予以淘汰。

LRU 即最近最久未使用页面置换算法,该算法选择最近最久未使用的页面予以淘汰。

OPT 即最佳值换算法,其选择淘汰的页面是在最长时间内不再被访问的页面。

LFU 即最近使用最少页面置换算法,其淘汰的页面是最近一段时间内使用最少的页面。

缺页中断存取页面时页面不在内存中需从外存调入的现象。

缺页次数即在存取页面过程中发生缺页中断的次数。

页式虚拟FIFO存储管理缺页中断的模拟算法

页式虚拟FIFO存储管理缺页中断的模拟算法

页式虚拟FIFO存储管理缺页中断的模拟算法FIFO一课程设计目的与功能1目的通过分析、设计和实现页式虚拟存储管理缺页中断的模拟系统,熟悉和掌握请求分页式存储管理的实现过程,重点掌握当请求页面不在内存而内存块已经全部被占用时的替换算法,熟悉常见替换算法的原理和实现过程,并利用替换算法的评价指标——缺页次数和缺页率,来对各种替换算法进行评价比较。

设计并实现出的结果程序要能够很好地显示页面调入和替换详细信息。

2初始条件(1)预备内容:阅读操作系统的内存管理章节内容,了解有关虚拟存储器、页式存储管理等概念,并体会和了解缺页和页面置换的具体实施方法。

(2)实践准备:掌握一种计算机高级语言的使用3 开发环境(1)使用系统:Windows XP(2)使用语言:C++(3)开发工具:Visual C++ 6.04功能设计的结果程序能实现OPT、FIFO、随机淘汰算法模拟页式存储管理缺页中断,主要能够处理以下的情形:(1) 用户能够输入给作业分配的内存块数;(2) 用户能够输入给定的页面,并计算发生缺页的次数以及缺页率;(3) 程序可随机生成页面序列,替代用户输入;(4) 缺页时,如果发生页面置换,输出淘汰的页号。

二需求分析,整体功能及设计数据结构或模块说明1 需求分析在纯页式存储管理提高了内存的利用效率,但并不为用户提供虚存,换句话说,当一个用户程序的页数大于当前总空闲内存块数时,系统就不能将该程序装入运行。

即用户程序将受到物理内存大小的限制。

为了解决这个问题,人们提出了能提供虚存的存储管理技术——请求分页存储管理技术和请求分段技术。

本设计实现请求分页管理技术。

请求分页系统是在分页系统的基础上,增加了请求调页功能和页面置换功能所形成的页式虚拟存储系统。

它允许只装入部分页面的程序和数据,便启动运行。

以后,再通过调页功能和页面置换功能,陆续把即将要运行的页面调入内存,同时把暂时不运行的页面换出到外存上。

置换时以页面为单位,为了能实现请求调页和置换功能,系统必须提供必要的硬件支持和相应的软件。

页式虚拟存储地址变换.

页式虚拟存储地址变换.

页式虚拟存储管理中地址转换和缺页中断的模拟
实验目的:
1.深入了解页式虚拟存储管理技术如何实现地址转换。

2.进一步认识页式虚拟存储管理中如何处理缺页中断。

实验要求:
编写程序模拟实现页式虚拟存储管理中的地址转换过程以及缺
页中断的处理过程。

实验指导:
1.请求分页中硬件地址变换过程。

(1)
自己设计一个主存分配表。

(2)对逻辑地址进行划分为页号和页内地址
(3)越界检查,若越界直接中断退出程序的执行。

(不越界情况下)检索页表分2种情况:其一,若该页在内存,则找到其对应的物理块号;合并块号和块内地址形成物理地址。

进行输出。

(4)其二,若该页不再内存,产生缺页中断,调用缺页中断子
程序执行缺页中断处理过程。

中断返回后重新执行被中断的指令。

2.采用某一种页面置换算法实现分页管理的缺页调度。

(1)当硬件发出缺页中断后转操作系统处理缺页中断。

查看主存分块表看有无可用空闲块。

若有则为进程分配一块。

若无空闲块,当采用一种页面置换算法(例如FIFO形成队列),其头部放在变量K 中淘汰最先进入主存的一页,若该页修改过,好要重新写回磁盘。

然后再把当前要访问的页装入该内存块,并修改页表和存储分块表。

数组P中各个元素为作业已在主存的页号。

假定作业最多可分配m块。

当淘汰一页时,总是淘汰P[K]所指页。

之后调整数组P:
P[K]=要装入的页;
K=(K+1)mod m;
流程图如下:。

模拟分页式虚拟存储管理中硬件的地址转换和缺页中断--选择页面调度算法处理缺页中断

模拟分页式虚拟存储管理中硬件的地址转换和缺页中断--选择页面调度算法处理缺页中断

操作系统实验二〔第一题〕一.实验内容模拟分页式虚拟存储管理中硬件的地址转换和缺页中断,以及选择页面调度算法处理缺页中断。

二.实验目的在电脑系统总,为了提高主存利用率,往往把辅助存储器作为主存储器的扩充,使多道运行的作业的全部逻辑地址空间综合可以超出主存的绝对地址空间。

用这种方法扩充的主存储区成为虚拟存储器。

三.实验题目模拟分页式存储管理中硬件的地址转换和产生缺页中断。

四.程序清单//// 操作实验二.cpp : 定义控制台应用程序的入口点。

//#include "stdafx.h"#include<iostream>#include<string>#include<fstream>using namespace std;class ins{private:string ope;long int page;long int unit;public:ins(){ }ins(string o,long int p,long int u):ope(o),page(p),unit(u){}void setope(string o){ ope=o;}void setpage(long int p){ page=p;}void setunit(long int u){ unit=u;}string getope(){return ope;}long int getpage(){return page;}long int getunit(){return unit;}};class work{private:long int Page;int sym;long int inum;long int onum;public:work(){}work(long int P, int s,long int i,long int o):Page(P),sym(s),inum(i),onum(o){} void setPage(long int P){ Page=P;}void setsym( int s){ sym=s;}void setinum(long int i){ inum=i;}void setonum(long int o){ onum=o;}long int getPage(){return Page;}int getsym(){return sym;}long int getinum(){return inum;}long int getonum(){return onum;}};void diaodu(work *w,ins * i,int numofins){ for(int j=0;j<numofins;j++){long int tempofk;long int a =i[j].getpage();for(int k=0;k<7;k++) //7是页表的页数if(w[k].getPage()!=a)continue;else{tempofk=k;break;}if(w[tempofk].getsym()==1)cout<<"绝对地址:"<<w[tempofk].getinum()*128+i[j].getunit()<<" "<<"磁盘地址为:"<<w[tempofk].getonum()<<" "<<"操作为:"<<i[j].getope()<<endl;else cout<<"*"<<"发生缺页中断"<<endl;}}int main(){ins*INS=new ins[12];INS[0].setope ("+");INS[0].setpage(0);INS[0].setunit(70);INS[1].setope ("+");INS[1].setpage(1);INS[1].setunit(50);INS[2].setope ("×");INS[2].setpage(2);INS[2].setunit(15);INS[3].setope ("存"); INS[3].setpage(3);INS[3].setunit(21);INS[4].setope ("取"); INS[4].setpage(0);INS[4].setunit(56);INS[5].setope ("-");INS[5].setpage(6);INS[5].setunit(40);INS[6].setope ("移位"); INS[6].setpage(4);INS[6].setunit(53);INS[7].setope ("+");INS[7].setpage(5);INS[7].setunit(23);INS[8].setope ("存"); INS[8].setpage(1);INS[8].setunit(37);INS[9].setope ("取"); INS[9].setpage(2);INS[9].setunit(78);INS[10].setope ("+"); INS[10].setpage(4);INS[10].setunit(1);INS[11].setope ("存"); INS[11].setpage(6);INS[11].setunit(84);work*W =new work[7]; ifstream in("g://operate1.txt");long int p;int s;long int i;long int o;for(int jj=0;jj<7 ;jj++){in>>p;in>>s;in>>i;in>>o ;W[jj].setPage(p);W[jj].setsym(s);W[jj].setinum(i);W[jj].setonum(o);}diaodu(W,INS,12);}五.结果显示操作系统实验二〔第二题〕一.用先进先出〔FIFO〕九.程序清单/ 操作系统实验二.cpp : 定义控制台应用程序的入口点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

页式虚拟存储管理中地址转换和缺页中断
一.实验目的
(1)深入了解存储管理如何实现地址转换。

(2)进一步认识页式虚拟存储管理中如何处理缺页中断。

二.实验内容
编写程序完成页式虚拟存储管理中地址转换过程和模拟缺页中断的处理。

三.实验原理
页式存储管理把内存分割成大小相等位置固定的若干区域,叫内存页面,内存的分配以“页”为单位,一个程序可以占用不连续的页面,逻辑页面的大小和内存页面的大小相同,内外存的交换也以页为单位进行,页面交换时,先查询快表,若快表中找不到所需页面再去查询页表,若页表中仍未找到说明发生了缺页中断,需先将所需页面调入内存再进行存取。

四.实验部分源程序
#define size 1024//定义块的大小,本次模拟设为1024个字节。

#include "stdio.h"
#include "string.h"
#include <conio.h>
struct plist
{
int number; //页号
int flag; //标志,如为1表示该页已调入主存,如为0则还没调入。

int block; //主存块号,表示该页在主存中的位置。

int modify; //修改标志,如在主存中修改过该页的内容则设为1,反之设为0
int location; //在磁盘上的位置
};
//模拟之前初始化一个页表。

struct plist p1[7]={{0,1,5,0,010},{1,1,8,0,012},{2,1,9,0,013},{3,1,1,0,021},{4,0,-1,0,022},{5,0,-1,0,023},{6, 0,-1,0,125}};
//命令结构,包括操作符,页号,页内偏移地址。

struct ilist
{
char operation[10];
int pagenumber;
int address;
};
//在模拟之前初始化一个命令表,通过程序可以让其顺序执行。

struct ilist p2[12]={{"+",0,72},{"5+",1,50},{"*",2,15},{"save",3,26},
{"load",0,56},{"-",6,40},{"+",4,56},{"-",5,23},
{"save",1,37},{"+",2,78},{"-",4,1},{"save",6,86}};
main()
{
printf(" 模拟页式虚拟存储管理中硬件的地址转换和用先进先出调度算法处理缺页中断\n");
int i,lpage,pflage,replacedpage,pmodify;
int p[4]={0,1,2,3};
int k=0;
int m=4;
long memaddress;
for(i=0;i<12;i++)//作业执行指令序列,12个
{
lpage=p2[i].pagenumber;//获取页号
pflage=p1[lpage].flag;//标志,是否在内存中
printf("%s,%d,%d",p2[i].operation,p2[i].pagenumber,p2[i].address);
printf(" 在主存块%d中执行",lpage);
if(pflage==0)//如果页面不在内存中
{
printf("把页号%d",lpage);//置换
replacedpage=p[k];
pmodify=p1[replacedpage].modify;
if(pmodify==1)
printf("***放在页号%d的位置",replacedpage);
else
printf("放在页号%d的位置执行",replacedpage);
p[k]=lpage;
k=(k+1)%m;
p1[lpage].flag=1;//标志位改为1
p1[lpage].block=p1[replacedpage].block;
p1[replacedpage].block=-1;
p1[replacedpage].flag=0;
p1[replacedpage].modify=0;
}
memaddress=p1[lpage].block*size+p2[i].address;
if(p2[i].operation=="save")
p1[lpage].modify=1;
printf("\n 物理地址为%ld\n",memaddress);
}
}
五,实验结果与体会
我的体会:。

相关文档
最新文档