小学五年级奥数家庭作业试题及答案第一讲

合集下载

小学五年级奥数第一讲和倍问题

小学五年级奥数第一讲和倍问题

第一讲:和倍问题【知识点】已知两个数的和与它们之间的倍数关系,求这两个数各是多少的应用题,叫做和倍应用题。

基本数量关系:和÷倍数和=较小数【例1】学校有科技书和故事书共480本,科技书是故事书的3倍,两种书各有多少本?【思路导航】把故事书的本数看作1份,那么科技书的本数就是这样的3份,两种书的本数就是1+3=4份。

把480本书平均分成4份,1份就是故事书的本数,3份就是科技书的本数。

【练习1】用锡和铝制成的合金是720千克,其中铝的质量是锡的5倍,铝和锡各用了多少千克?【练习2】一块长方形黑板的周长是96分米,长是宽的3倍,这块长方形黑板的长和宽各是多少分米?【例2】果园里有梨树、桃树和苹果树共1200棵,其中梨树的棵树是苹果树的3倍,桃树的棵树是苹果树的4倍。

求梨树、桃树和苹果树各有多少棵?【思路导航】如果把苹果树的棵树看作1份,三种树的总棵树是1+3+4=8份。

所以,苹果树有1200÷8=150(棵),梨树有150×3=450(棵),桃树有150×4=600(棵)【练习1】专业户李大伯养鸭、鸡、鹅共960只,养鸡的只数是鹅的3倍,养鸭的只数是鹅的4倍。

鸡、鸭、鹅各养了多少只?【练习2】商店有铅笔、钢笔、圆珠笔共560支,圆珠笔的支数是钢笔的3倍,铅笔的支数和圆珠笔的支数同样多。

铅笔、钢笔、圆珠笔各有多少支?【例3】少先队员种柳树和杨树共216棵,杨树的棵树比柳树的棵树的3倍多20棵,两种树各种了多少棵?【思路导航】如果杨树少种20棵,那么杨树和柳树的总棵树是216-20=196棵,这时杨树的棵树恰好是柳树的3倍,柳树的棵树是196÷(3+1)=49棵,杨树的棵树是216-49=167(棵)。

【练习1】小华和小明两人参加数学竞赛,两人共得168分,小华的得分比小明的2倍少42分,两人各得了多少分?【练习2】学校购买了720本图书分给高、中、低三个年级段,高年级段分得的比低年级段的3倍多8本,中年级段分得的比低年级段的2倍多4本。

五年级奥数题及答案200道

五年级奥数题及答案200道

第一讲小数的巧算[同步巩固演练]1、计算:7.93+(2.8-1.93)2、计算:7736-473+733、计算:3.71-2.74+4.7+5.29-0.26+6.34、计算:34×25×65、计算:8.25×186、计算:8.4÷5÷87、计算:49000÷1258、计算:(5.25+0.125+5.75)×89、计算下面各题⑴2.56-(1.65-0.97)⑵4.74+(1.26-0.77)⑶5.47-(1.47+0.84)⑷9.9×9.9+0.99⑸1.25×2.5×32009、计算:75×4.7+159×2.510、计算:4.25×5.24+1.52×2.5111、计算:7142.85÷3.7÷2.7×1.7×0.712、计算:1.25×17.6+36÷0.8+2.64×12.513、计算:176.2+348.3+42.47+252.5+382.2314、计算:(6.4×7.5×8.1)÷(3.2×2.5×2.7)15、计算:15.37×7.88-9.37×7.38+1.537×21.2-93.7×0.262[能力拓展平台]1、C.DE×A.B=A.CDE是用字母表示的一个小数乘法算式,题中每一个字母表示一个数字,如果A.CDE<C.DE,求A.B所表示的数。

2、计算:10-9-0.9-0.09-0.009-0.0009-0.000093、计算:15.37×7.88-9.37×7.88-15.37×2.12+9.37×2.124、计算:4.65×32+2.5×46.5+0.465×4305、计算:4.05+4.08+4.11+…+7.026、不计算,在□中填入“>”“<”或“=”:⑴0.3÷0.03×0.003÷0.0003□10÷100×1000÷1000⑵32.7÷0.25+2.51×10□32.7×4+2.51÷0.1⑶282.4÷0.999□282.4×0.9997、计算:(0.12+0.22+0.32+0.42)2÷(0.13+0.23+0.33+0.43)38、计算:⑴2.89×6.37+4.63×2.89 ⑵327×2.8+17.3×28[全讲综合训练]1、计算:⑴14.529+(2.471-3); ⑵38.68-(4.7-2.32)2、计算:44.8-21.7-24.7+16.43、计算:131-68-85+534、计算:34.5×8.23-34.5+2.77×34.55、计算:7.9×25+33×2.56、计算:23×(63÷23÷4)÷217、计算:18.3÷4+5.3×2.5+7.13×7.58、计算:243587×11119、计算:1.1+3.3+5.5+7.7+9.9+11.11+13.13+15.15+17.17+19.1910、计算:(8.4×2.5+9.7)÷(1.05÷1.5+8.4÷0.28)11、计算:1.25×67.875+125×6.7875+1250×0.05337512、计算:172.4×6.2+2724×0.3813、计算:0.739×(48.8+20.3+51.2+4.7)×8.88÷73914、计算:6.03+6.06+6.09+6.12+…+7.9515、计算:41.2×8.1+11×9.25+537×0.1916、(全奥赛题)计算⑴3.51×49+35.1×5.1+49×51⑵784070+78407.1+7840.72+784.073+78.40717、(全国我爱少年夏令营计算题竞赛)⑴7-4.36+5.378⑵3.5×[6.8-(1.6+3.6÷0.9)]÷8418、(全国奥赛题)计算3.6×42.3×3.75-12.5×0.423×2819(我爱数学少年夏令营计算竞赛)⑴0.76+29.44×1.6⑵0.1+0.3+…+0.9+0.11+0.13+…+0.97+0.99参考答案第1讲小数的巧算[同步巩固演练]1、8.8原式=7.93-1.93+2.8=8.82、7336原式=7736-400=73363、17原式=(3.17+5.29)-(2.74+0.26)+(4.7+6.3)=9-3+11=174、5100原式=17×2×25×2×3=51×100=51005、14.8原式=8.25×(10+8)=82.5+66=148.56、0.21原式=8.4÷(5×8)=8.4÷40=0.217、392原式=(49000×8)÷(125×8)=392000÷1000=3928、89原式=(11+0.125)×8=11×8+8×0.125=88+1=899、(1)1.79原式=2.65-1.65+0.97=1.97(2)5.21原式=4.74+1.26-0.77=6-0.77=5.21(3)3.16原式=5.47-1.47-0.84=4-0.84=3.16(4)99原式=9.9×9.9+9.9×0.1=9.9×(9.9+0.1)=99(5)10000原式=(8×1.25)×(2.5×4)×100=10×10×100=1000010、750原式=2.5×141+159×2.5=2.5×300=75011、26.0852原式=22.27+3.8152=26.085212、850.85原式=7142.85÷(3.7×2.7)×1.7×0.7=7142.85÷9.99×1.7×0.7=715×1.7×0.7=850.8513、100原式=1.25×(17.6+264)+45=1.25×44+45=55+45=10014、1201.7原式=(176.2+348.3+252.5)+(42.47+382.23)=777+424.7=1201.715、18原式=(6.4÷3.2)×(7.5÷2.5)×(8.1÷2.7)=2×3×3=1816、60原式=15.3×(7.88+2.12)-9.37×(7.38+2.62)=153.7-93.7=60[能力拓展平台]1、0.1因为C.DE和A.CDE的尾数相同,且A、CDE<C、DE,可知A、B=0.12、0.00001原式=1-(0.9+0.09+0.009+0.0009+0.00009)=1-0.99999=0.000013、34.56原式=7.88×(15.37-9.37)-2.12×(15.37-9.37)=7.88×6-21.2×6=6×(7.88-2.12)=6×5.76=34.564、465原式=4.65×32+4.65×25+4.65×43=4.65×(32+25+43)=4.65×100=4655、553.5(4.05+7.02)×100÷2=553.56、(1)>(2)=(3)>7、90原式=(0.01+0.04+0.09+0.16)2÷(0.001+0.008+0.027+0.064)3=0.32÷0.13=0.09÷0.001=908、(1)31.79原式=2.89×(6.37÷4.63)=31.79(2)1400原式=32.7×28+17.3+28=28×(32.7+17.3)=28×50=14009、312500000原式=(0.6258×2)×0.625×8×0.625=10000000×3.125=312500000[全讲综合训练]1、(1)14原式=(14.529+2.471)-3=17-3=14(2)36.3原式=38.68-4.7+2.32=38.68+2.32-4.7=41-4.7=36.32、14.8原式=44.8+16.4-21.7-24.7=14.83、31原式=131-153+53=314 345原式=34.5×(8.23+2.77-1)=34.5×10=3455、280原式=25×(7.9+3.3)=25×11.2=25×4×2.8=2806、0.75原式=(23÷23)×(63÷21)÷4=1×3÷4=0.757、71.3原式=1.83×2.5+5.3×2.5+7.13×7.5=2.5×(1.83+5.3)+7.13×7.5=2.5×7.13+7.13×7.5=7.13×10=71.38、2706251579、103.25原式=5.5×5+15.15×5=5×(5.5+15.15)=5×20.65=103.2510、1原式=(21+9.7)÷(0.7+30)=30.7÷30.7=111、1000原式=125×0.67875+125×6.7875+125×0.53375=125×(0.67875+6.7875+0.53375)=125×8=100012、2104原式=172.4×6.2+172.4×3.8+100×3.8=172.4×(6.2+3.8)+380=1724+380=210413、1.11原式=0.739×125×8.88÷739=0.739×1000×1.11÷739=1.1114、454.35原式=(6.03+7.95)×65÷2=454.3515、537.5原式=41.2×8.1+(41.2+12.5)×1.9+11×9.25=41.2×(8.1+1.9)+12.5×1.9+11×9.25=412+1.25+(19+11)+11×8=412+88+1.25×30=500+37.5=537.516、(1)2850原式=3.15×49+3.51×51+49×51=3.51×(49+51)+49×51=351+50+51-51=300+2550=2850(2)8711803原式=862477.1+8703.2=871180.317、(1)8.018原式=7+5.378-4.36=12.378-4.36=8.018(2)0.05原式=3.5×[6.8—5.6]÷84=3.5×1.2÷84=0.0518、(1)4230原式=4.23×1.25×108—1.25×4.23×=4.23×1.25×(108—28)=4.23×1.25×80 =4.23×1000 =423019、(1)47.864原式=0.76+47.104=47.864(2)27.25原式=(0.1+0.9)×5÷2+(0.11+0.99)×45÷2 =2.5+24.75 =27.25思维能力训练1.甲、乙两校平均每人捐款185元,甲校50人,平均每人捐款203元,乙校平均每人捐款170元,乙校有多少人捐款?列方程解这道题。

五年级奥数第一讲:整除初步

五年级奥数第一讲:整除初步

五年级奥数第一讲:整除初步例题1,判断下面12个数的整除性。

23487,3568,8875,6765,5880,7538,198954,6512,93625,864,407,91301301。

(1)哪些数能被4整除?--末尾2位数。

分析:3568、5880、198954、6512、864都是4的倍数,因为末尾2位数都是4的倍数。

(2)哪些数能被8整除?--末尾3位数。

分析:3568、5880、6512、864都是8的倍数,末尾三位数是8的倍数即可。

(3)哪些数能被25整除?---末尾2位数。

分析:8875、93625都是25的倍数,因为末尾2位数是25倍数。

(4)哪些数能被125整除?---末尾3位数。

分析:8875、93625,末尾三位数都是125的倍数。

(5)哪些数能被3整除?-----数字和是3的倍数。

分析:23487、6765、5880、198954、864、91301301都是3的倍数,因为数字和都是3的倍数。

(6)哪些数能被9整除?---数字和是9的倍数。

分析:198954、864,因为数字和是9的倍数。

(7)哪些数能被11整除?--截位判别法或奇偶位和差分析法。

分析:6765、6512、407是11的倍数。

(8)哪些数能被13整除?-截位判别法。

分析:91301301,末尾三位数和末尾三位数之前的数的差是13的倍数。

练习1:在数列3124,312,3823,45235,5289,5588,661,7314中。

(1)哪些数能被4整除?--末尾2位数。

分析:3124、312、5588的末尾两位数都是4的倍数,所以是4的倍数。

(2)哪些数能被3整除?---数字和。

分析:312、5289、7314都是3的倍数,因为数字和是3的倍数。

(3)哪些数能11整除?--截位判别法或奇偶位和差分析法。

分析:3124、5588是11的倍数。

例题2,173()是一个四位数,在括号内依次输入三个数字,分别得到三个四位数,依次分别能被9,11,8整除。

高斯小学奥数五年级上册含答案_整除问题初步

高斯小学奥数五年级上册含答案_整除问题初步

第一讲整除问题初步从这一讲开始,我们将会进入一个神奇而美妙的世界:数论.什么是数论呢?人类从学会数数开始,就一直和整数打交道.人们在对整数的应用和研究中,探索出很多奇妙的数学规律,正是这些富有魅力的规律,吸引了古往今来的许多数学家,于是就出现了数论这门学科.确切的说,数论就是一门研究整数性质的学科.我们就从最基本的性质一一整除开始,一起在数论的海洋中遨游吧.X:: 数论在数学中的地位是独特的,伟大的数学家高斯曾经说过:“数学是科学的皇后,数;论是数学的皇冠” ?整除的定义如果整数a 除以整数 b ( b 0 ),除得的商是整数且没有余数,我们就说a 能被b 整除,也可以说b 能整除a,记作b | a .「丁M 丄[EfiAI邑九牛城帀,琴百捨吧円样的方式冉境OOOKH3C01B.以G 、乩出卞城布可胯号毀離00001 'oooowjja 序谏次脫锂A- B- C,懵快.軒iHflt 反应境闻瞭面丈旳埠茶逾稲伸只记聲车壇忙¥2.鼻、4. $、隔一亍?貝侔的推列浚记件yrmir =Flf 面丈谥氓功了毡豪酊r.舌方境出了颯珂停!* w<?帀的T/如果除得的结果有余数,我们就说a 不能被b 整除,也可以说b 不能整除 a.整除的一些基本性质:1. 尾数判断法3.奇偶位求差法|能被ii 整除的数的特征:“奇位和”与“偶位和”的差能被ii 整除HI我们把一个数从右往左数的第1、3、5位,……,统称为奇数位,把一个数从右往左数的第2、4、6位,,统称为偶数位.我们把“奇数位上的数字之和”简称为“奇位和” 把“偶数位上的数字之和”简称为“偶位和”.F 面我们来看一下如何运用这些性质.例题1.判断下面11个数的整除性:23487, 3568, 8875, 6765, 5880, 7538, 198954, 6512, 93625, 864, 407 (1)这些数中,有哪些数能被4整除?哪些数能被8整除?(2)哪些数能被25整除?哪些数能被125整除?(3)哪些数能被3整除?哪些数能被9整除?(4)哪些数能被11整除?【分析】关于4、8、25、125以及3、9、11的整除特征刚才都已经介绍过了,大家不妨根据整除特性判断一下.练习 1.在数列3124、312、3823、45235、5289、5588、661、7314 中哪些数能被4 整除,哪些数能被3整除,哪些数能被11整除?如果将例题1中能被3整除的数相加或相减,会发现得到的结果还能被3整除;同样的,如果将其中能被11整除的数相加或相减,会发现得到的结果同样能被11整除.从中我们可以总结出如下规律:和整除性与差整除性:两个数如果都能被自然数a 整除,那它们的和与差也都能被a|能被2, 5整除的数的特征:个位数字能被2或5整除.||能被4, 25整除的数的特征:末两位能被4或25整除. 1[能被8, 125整除的数的特征:末三位能被8或125整除.1数字求和法能被3, 9整除的数的特征:各位数字之和能被3或9整除.|(1) (2) (3)2.整除.例题2. 17石是一个四位数?文老师说:“我在其中的方框内先后填入3个数字,得到3个四位数,依次能被9, 11, 8整除问:文老师在方框中先后填入的3个数字之和是多少?【分析】本题包括三个小问题,我们逐个分析.需要分别用到9、11和8的整除特性.练习2.在2S 的方框内先后填上3个数字,分别组成3个三位数,使它们依次被3、4、5整除.上面我们已经学习了如何利用“整除特征”,解决单个数的整除问题?下面我们再来看一看,涉及多个数的整除问题应该如何解决.例题3.牛叔叔给45名工人发完工资后,将总钱数记在一张纸上?但是记账的那张纸破了两个洞,上面只剩下“ 6dd ”,其中方框表示破了的洞. 牛叔叔记得每名工人的工资都一样,并且都是整数元.请问:这45名工人的总工资有可能是多少元呢?【分析】这45名员工的工资都一样,所以总工资就能被45整除?我们没有学过被45整除的数的特征.但注意到45 5 9,于是6dd应该能同时被5和9整除,那么先考虑哪一个数的整除特征比较好呢?练习3.四位数CC 能被36整除,那么这个四位数可能是多少?在例3中,我们并不知道45的整除特征,但是45 5 9,能被45整除的数,也能被5和9整除,那么只需考虑5和9的整除特征即可.请同学们注意,虽然45 3 15,但是在考虑能否被45整除时,不能只考虑被3和15 整除?你能想明白为什么吗?例题4. 一天,王经理去电信营业厅为公司安装一部电话. 服务人员告诉他,目前只有形如“ 1234 口6口8 ”的号码可以申请?也就是说,在申请号码时,方框内的两个数字可以随意选择,而其余数字不得改动. 王经理打算申请一个能同时被8和11整除的号码.请问:他申请的号码可能是多少?【分析】要被8整除,说明号码的后三位Q8是8的倍数?想一下,这样的三位数是唯一的吗?练习4.七位数22 333 能被44整除,那么这个七位数是多少?有时候满足题目条件的答案会非常多. 如果只要求找出最大的或最小的,我们只需要从极端情况考虑即可.例题5.在所有各位数字互不相同的五位数中,能被45整除的数最小是多少?最大是多少?【分析】要想让五位数最大且数字不重复,每个数位上的数字应该依次是9、&….如果想让五位数尽量小,是不是应该依次是1、2、…呢?例题6.由1、3、4、5、7、8这六个数字所组成的六位数中,能被11整除的最大的数是多少?【分析】要想能被11整除,奇位和与偶位和的差应该是11的倍数.那么奇位和与偶位和的和又是什么呢?天才未必事事都聪明牛顿小时候的一个故事告诉我们,天才有时也傻乎乎的.一次,粮仓里闹鼠灾了,大人让牛顿在粮仓的门底开一个洞让猫进出.结果他开了两个洞一一大的给老猫,小的给小猫.其实在整除性的问题当中也有类似情况. 比如要在200 □匚的方框中填入两个数字使得这个五位数同时能被4、5、8整除,实际根本不用考虑4,只要考虑5和8即可,因为能被8整除的也必然能被4整除.如果你还要再考虑4的整除性,那就多此一举了.作业1. 下面有9 个自然数:48, 75, 90, 122, 650, 594, 4305, 7836, 4100 .其中能被 4 整除的有哪些?能被25整除的有哪些?2. 有如下5个自然数:12345, 189, 72457821, 333666, 54289?其中能被9整除的有哪些?3. 有如下5个自然数:3124, 3823, 45235, 5289, 5588 ?其中能被11整除的有哪些?4. 是一个四位数?王老师说:“我在其中的方框内先后填入3个数字,得到3个四位数,依次能被9, 11, 8整除? ”问:王老师在方框中先后填入的3个数字之和是多少?5. 阿呆买了72支同样的钢笔,可是发票不慎落水浸湿,单价已无法辨认,总价数字也不全,只能认出:匚111.C 元(表示不明数字).请问总价应该是多少?第一讲整除问题初步例题1. 答案:(1)能被4整除的有3568、5880、6512、864;能被8整除的有3568、5880、6512、864 .(2)能被25 整除的有8875、93625 ;能被125 整除的有8875、93625 . ( 3) 能被 3 整除的有23487、6765、5880、198954、864;能被9 整除的有198954、864. (4) 能被11整除的有407、6765、6512.例题2.答案:21详解:要想让四位数能被9整除,数字和得是9的倍数,空格中要填7 ?要想让四位数能被11整除,奇位和与偶位和的差得是11的倍数,空格中要填8?要想让四位数能被8整除,需要后三位即7C 是8的倍数,空格中要填 6 .三个数字之和是21 .例题3. 答案:67680或67185详解:根据题意,这个数能被45整除,即能同时被5和9整除,个位只能是0或5,对应的百位是6或1 .例题 4. 答案:12345608、12341648、12348688详解:末三位被8整除,十位数字只能是0、4、8 .要满足号码能被11整除对应的千位数字只能是5、1、&例题 5. 答案:10395; 98730详解:要被45整除,五位数既得是5的倍数,也得是9的倍数.那么五位数的末尾只能是0或5 ?先来看最小的数?要让前面数位上的数字尽量小,可以是1CD5 ?要满足它是9的倍数且最小,应该是10395 ?再来看最大,要让前面数位上的数字尽量大,可以是98口口5或9CD0 ?要满足它是9的倍数且最大,应该是98730.例题6. 答案:875413详解:要想是11的倍数,奇位和与偶位和的差得是11的倍数.这六个数字的和是28 , 而最大的三个数的和是20,也就是说无论是奇位还是偶位之和都不会超过20,所以只能把28分成两个14,偶位为& 5、1,奇位为7、4、3.练习1. 答案:能被4整除的数有3124、312、5588;能被3整除的数有312、5289、7314 ; 能被11整除的数有3124、5588.练习2. 答案:本题的答案不止一种,要想被3整除,空格中可以填1、4、7.要想被 4 整除,空格中可填 2 或 6.要想被 5 整除,空格中可填0或 5.练习 3. 答案:3132 或3636简答:要想被36整除,这个四位数要既是4的倍数, 也是9的倍数. 要想是 4 的倍数, 个位上的空格中可填 2 或6.要想满足四位数是9的倍数,百位上的空格对应要填1或6.练习 4. 答案:2213332 或2283336简答:这个七位数既是4的倍数,也是11的倍数.要想是 4 的倍数,个位上的空格中可填2或6,剩下的空格中对应可填1或8.作业 1. 答案:48, 7836, 4100;75, 650, 4100简答: 4 和25 看末两位.作业 2. 答案:189, 72457821, 333666简答:被9 整除看数字和.作业 3. 答案:3124, 5588简答:被11 整除看奇位和与偶位和的差.作业4. 答案:11简答:填入的三个数字分别为1, 4, 6,数字和为11.作业 5. 答案:811.44 元简答:72 8 9 ,分别考虑8和9的整除特性.。

(完整版)小学五年级奥数第一讲__定义新运算及作业

(完整版)小学五年级奥数第一讲__定义新运算及作业

第一讲定义新运算一、a、b是自然数,规定a※b=(a+b)÷2,求:3※(4※6)的值。

二、对于任意两个自然数a、b,定义一种新运算“*”:a*b=ab+a÷b,求75*5=?,12*4=?三、定义运算符“◎”:a◎b=3a+4b-5,求6◎9=?9◎6=?四、定义两种运算“○+”和“○×”,对于任意两个整数a、b规定:a○+b=a+b-1,a○×b=a×b-1,那么8○× [(6○+10)○+(5○×3)]等于多少?五、定义运算“○+”=(a+b)÷3,那么(3○+6)○+12与3○+(6○+12)哪一个大?大的比小的大多少?六、a、b是自然数,规定a⊙b= ab-a-b-10,求8⊙8=?七、如果1*2=1+2,2*3=2+3+4,3*4=3+4+5+6,……,请按照此规则计算3*7=?八、规定运算a@b=(a+b)÷2,且3@(x@2)=2,求x=?九、规定a△b=ab+2a, a▽b=2b-a,求(8△3)▽(9△5)的值。

第二讲定义新运算作业十、定义新运算“*”:a*b=3a+4b-2,求(1)10*11;(2)11*10。

十一、定义新运算“△”:a△b= a÷b×3,求(1)24△6;(2)36△9。

十二、规定a○+b,表示自然数a到b的各个数之和,例如:3 ○+10=3+4+5+6+7+8+9+10=52,求1○+200的值。

十三、定义新运算“○×”,a○×b=10a+20b,求(3○×7)+(4○×8)。

十四、定义新运算“△”:a△b=6a+3b+7,那么5△6和6△5哪个大?大的比小的大多少?十五、规定a*b=(a+b)÷2,求[(1*9)*9]*3的值。

十六、规定a☆b=3a-2b,如果x☆(4☆1)=7,求x的值。

十七、规定X○+Y=(X+Y)÷4求:(1)2○+(3○+5),(2)如果X○+16=10,求X的值。

五年级奥数不定方程

五年级奥数不定方程

五年级奥数教程与训练第一讲不定方程【知识要点与基本方法】方程的个数少于未知数的个数的方程(或方程组)称为不定方程(或不定方程组),它的解是不定的,一般地说,如果没有给不定方程某种制约的条件,那么它就有无限多个解,本讲中所涉及的不定方程根据题目的要求和实际情况局限在一定的范围内,它可能有解,也可能无解,如果有解,也只能是有限个解。

【例题解析】例1.求下列方程的整数解(x>0,y>0)11x+3y==89解:原方程整理得:y=(89-11x)÷3因为x和y都是大于零的整数,11x<89,所以x<9,由上式得:x=1,y=26,或者x=4,y=15,或者x=7,y=4例2.邮局买了助动车和自行车若干辆,共付出11700元,已知每辆助动车2500元,每辆自行车350元,问:邮局买这两种车各多少辆?解:设买了x辆助动车,y辆自行车。

由题意得:2500x+350y=11700y=(11700-2500x)÷350解得x=3,y=12答:邮局买了3辆助动车和12辆自行车。

例3.有三张扑克牌,牌的数字各不相同,并且都在10以内,把三张牌洗完后,分别发给甲,乙,丙三人,每人记下自己牌的数字,再重新洗牌,发牌,记数。

这样反复几次后,三人各自记录的数字和分别是13,15,23.问:这三张牌的数字是多少?解:设三张牌按照从大到小排列为x,y,z,再设共发了n轮(每轮发三张),x+y+z=S则有:n×S=13+15+23=51=3×17只有n=3,S=17. x+y+z=17,则x>17/3,所以x可取的值为6,7,8,9.当x=6时,y+z=11,而y+z最多只能是9,所以不符合题意。

当x=7时,y+z=10,而只有y=6,z=4,但是丙三次牌数字之和是23,而23显然不可能表示为(7,6,4)中任意三个数之和。

故也不符合题意。

当x=8时,y+z=9,(y,z)可能情况有(7,2)、(6,3)、(5,4),而13(甲的三次牌数字和)不能表示为(8,7,2)中任意三个数之和,23不能表示为(8,6,3)和(8,5,4)中任意三个数之和,故x=8也不符合题意。

小学奥数基础教程含练习题和答案五年级讲全册版

小学奥数基础教程含练习题和答案五年级讲全册版

第1讲数字谜(一)数字谜的内容在三年级和四年级都讲过,同学们已经掌握了不少方法。

例如用猜想、拼凑、排除、枚举等方法解题。

数字谜涉及的知识多,思考性强,所以很能锻炼我们的思维。

这两讲除了复习巩固学过的知识外,还要讲述数字谜的代数解法及小数的除法竖式问题。

例1 把+,-,×,÷四个运算符号,分别填入下面等式的○内,使等式成立(每个运算符号只准使用一次):(5○13○7)○(17○9)=12。

分析与解:因为运算结果是整数,在四则运算中只有除法运算可能出现分数,所以应首先确定“÷”的位置。

当“÷”在第一个○内时,因为除数是13,要想得到整数,只有第二个括号内是13的倍数,此时只有下面一种填法,不合题意。

(5÷13-7)×(17+9)。

当“÷”在第二或第四个○内时,运算结果不可能是整数。

当“÷”在第三个○内时,可得下面的填法:(5+13×7)÷(17-9)=12。

例2 将1~9这九个数字分别填入下式中的□中,使等式成立:□□□×□□=□□×□□=5568。

解:将5568质因数分解为5568=26×3×29。

由此容易知道,将 5568分解为两个两位数的乘积有两种:58×96和64×87,分解为一个两位数与一个三位数的乘积有六种:12×464, 16×348, 24×232,29×192, 32×174, 48×116。

显然,符合题意的只有下面一种填法:174×32=58×96=5568。

例3 在443后面添上一个三位数,使得到的六位数能被573整除。

分析与解:先用443000除以573,通过所得的余数,可以求出应添的三位数。

由443000÷573=773 (71)推知, 443000+(573-71)=443502一定能被573整除,所以应添502。

新人教版五年级小学数学全册奥数(含答案)

新人教版五年级小学数学全册奥数(含答案)
二、精讲精练
【例题1】有5张同样大小的纸如下图(a)重叠着,每张纸都是边长6厘米的正方形,重叠的部分为边长的一半,求重叠后图形的周长。
练习1:
1.下图由8个边长都是2厘米的正方形组成,求这个图形的周长。
2.下图由1个正方形和2个长方形组成,求这个图形的周长。
【例题2】一块长方形木板,沿着它的长度不同的两条边各截去4厘米,截掉的面积为192平方厘米。现在这块木板的周长是多少厘米?
第2讲 平均数(二)
精讲精练
【例题1】小明前几次数学测验的平均成绩是84分,这次要考100分,才能把平均成绩提高到86分。问这是他第几次测验?
练习1:
1.老师带着几个同学在做花,老师做了21朵,同学平均每人做了5朵。如果师生合起来算,正好平均每人做了7朵。求有多少个同学在做花?
2.一位同学在期中测验中,除了数学外,其它几门功课的平均成绩是94分,如果数学算在内,平均每门95分。已知他数学得了100分,问这位同学一共考了多少门功课?
新人教版小学数学五年级全册奥数
附参考答案
第1讲 平均数(一)
一、知识要点
把几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等,求得的相等的数就是平均数。
如何灵活运用平均数的数量关系解答一些稍复杂的问题呢?
下面的数量关系必须牢记:
平均数=总数量÷总份数 总数量=平均数×总份数 总份数=总数量÷平均数
练习5:
1.小明去爬山,上山时每小时行3千米,原路返回时每小时行5千米。求小明往返的平均速度。
2.运动员进行长跑训练,他在前一半路程中每分钟跑150米,后一半路程中每分钟跑100米。求他在整个长跑中的平均速度。
3.把一份书稿平均分给甲、乙二人去打,甲每分钟打30个字,乙每分钟打20个字。打这份书稿平均每分钟打多少个字?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲找规律与定义新运算
基础班
1、找规律
(1)3,4,6,9,14,22,(),56……
(2)1,4,8,13,19,(),34,(),……
(3)2,3,5,7,11,13,(),19……
(4)1,2,2,4,8,32,()……
(5)6,7,3,0,3,3,6,9,5,(),()……
解:(1)35;(2)26,43;(3)17;(4)256;(5)4,9。

提示:(1)3+4-1=6;4+6-1=9;6+9-1=14;9+14-1=22,所以扩号中应该填14+22-1=35。

(2)前两个数的差是
3,以后相邻两个数的差每次增大1,19+7=26,34+9=43。

(3)连续质数数列。

(4)从第3个数开始后一个数等于前两个数的乘积。

(5)从第3个数开始,后一个数都是前两个数的和的个位数字。

2、有一列数3,1000,997,3,994,991,……从第三个数起,每一个数都是它前面两个数中大数减小数的差,那么在这列数中最小的数是几?它第一次出现时在这列数的第几个?
解:0。

提示:每三个数中就有一个3,去掉3后剩余的数成递减的等差数列,公差为3;结合该数列的奇偶性,可续写:……,3,10,7,3,4,1,3,2,1,1,0,1,1,0,……因此出现的最小数是0,第一次出现是在第[(1000-1)÷3+1] ÷2×3+5=506个。

3、一串数排成一行:头两个数都是1,从第三个数起,每一个数都是前两个数的和,也就是:
1,1,2,3,5,8,13,21,34,55,...问:这串数的前100个数中(包括其100个数)有多少个偶数?解:数列为:1,1,2,3,5,8,13,21,34,55 3 6 9 ……从以上可以看出3,6,9,12......位上数是偶数,因为3,6,9,12......形成一个等差数列,所以前100位中的偶数数量(99-3)÷3+1=33个或者:100中3的倍数:100/3=33……1,共33个。

4、定义A◎B表示A、B之间所有奇数的和,例如12◎7=9+11=20,计算(2◎10)◎19。

解:44。

提示:2◎10=3+5+7+9=24,(2◎10)◎19=24◎19=21+23=44。

5、定义一种新运算:A○+B等于A,B之间的所有自然数的和(不包括A,B),例如:7○+2=2○+7=3+4+5+6=18。

现在已知9○+C=21,那么C可能是_________。

解:12或5。

提示:如果C大于9,则因为21=10+11,所以C=12;如果C比9小,则因为21=8+7+6,所以C=5。

提高班
1、找规律
(1)3,4,6,9,14,22,(),56……
(2)1,4,8,13,19,(),34,(),……
(3)2,3,5,7,11,13,(),19……
(4)1,2,2,4,8,32,()……
(5)6,7,3,0,3,3,6,9,5,(),()……
解:(1)35;(2)26,43;(3)17;(4)256;(5)4,9。

提示:(1)3+4-1=6;4+6-1=9;6+9-1=14;9+14-1=22,所以扩号中应该填14+22-1=35。

(2)前两
个数的差是3,以后相邻两个数的差每次增大1,19+7=26,34+9=43。

(3)连续质数数列。

(4)从第3个数开始后一个数等于前两个数的乘积。

(5)从第3个数开始,后一个数都是
前两个数的和的个位数字。

2、有一列数3,1000,997,3,994,991,……从第三个数起,每一个数都是它前面两个数中大数减小数的差,那么在这列数中最小的数是几?它第一次出现时在这列数的第几个?
解:0。

提示:每三个数中就有一个3,去掉3后剩余的数成递减的等差数列,公差为3;结合该数列的奇偶性,可续写:……,3,10,7,3,4,1,3,2,1,1,0,1,1,0,……因此出现的最小数是0,第一次出现是在第[(1000-1)÷3+1] ÷2×3+5=506个。

3、一串数排成一行:头两个数都是1,从第三个数起,每一个数都是前两个数的和,也就是:
1,1,2,3,5,8,13,21,34,55,...问:这串数的前100个数中(包括其100个数)有多少个偶数? 解:数列为:1,1,2,3,5,8,13,21,34,55 3 6 9 ……从以上可以看出3,6,9,12......位上数是偶数,因为3,6,9,12......形成一个等差数列,所以前100位中的偶数数量(99-3)÷3+1=33个 或者:100中3的倍数:100/3=33……1,共33个。

4、定义A ◎B 表示A 、B 之间所有奇数的和,例如12◎7=9+11=20,计算(2◎10)◎19。

解:44。

提示:2◎10=3+5+7+9=24,(2◎10)◎19=24◎19=21+23=44。

5、定义一种新运算:A ○+B 等于A ,B 之间的所有自然数的和(不包括A ,B ),例如:7○
+2=2○+7=3+4+5+6=18。

现在已知9○
+C=21,那么C 可能是_________。

解:12或5。

提示:如果C 大于9,则因为21=10+11,所以C=12;如果C 比9小,则因为21=8+7+6,所以C=5。

6、已知-串有规律的数:1,32,85,2113,5534
,… 那么,在这串数中,从左往右数,第10个数是 解:每个分数的分子等于前-个分数的分母加分子;每个分数的分母等于分子加前-个分数的分母,所以第
6、7、8、9、10个分数依次为14489,377233,987610,25841597,67654181。

精英班
1、找规律
(1)3,4,6,9,14,22,( ),56……
(2)1,4,8,13,19,( ),34,( ),……
(3)2,3,5,7,11,13,( ),19……
(4)1,2,2,4,8,32,( )……
(5)6,7,3,0,3,3,6,9,5,( ),( )……
解:(1)35;(2)26,43;(3)17;(4)256;(5)4,9。

提示:(1)3+4-1=6;4+6-1=9;6+9-1=14;9+14-1=22,所以扩号中应该填14+22-1=35。

(2)前两个数的差是3,以后相邻两个数的差每次增大1,19+7=26,34+9=43。

(3)连续质数数列。

(4)从第3个数开始后一个数等于前两个数的乘积。

(5)从第3个数开始,后一个数都是前两个数的和的个位数字。

2、有一列数3,1000,997,3,994,991,……从第三个数起,每一个数都是它前面两个数中大数减小数的差,那么在这列数中最小的数是几?它第一次出现时在这列数的第几个?
解:0。

提示:每三个数中就有一个3,去掉3后剩余的数成递减的等差数列,公差为3;结合该数列的奇偶性,可续写:……,3,10,7,3,4,1,3,2,1,1,0,1,1,0,……因此出现的最小数
是0,第一次出现是在第[(1000-1)÷3+1] ÷2×3+5=506个。

3、一串数排成一行:头两个数都是1,从第三个数起,每一个数都是前两个数的和,也就是:
1,1,2,3,5,8,13,21,34,55,...问:这串数的前100个数中(包括其100个数)有多少个偶数? 解:数列为:1,1,2,3,5,8,13,21,34,55 3 6 9 ……从以上可以看出3,6,9,12......位上数是偶数,因为3,6,9,12......形成一个等差数列,所以前100位中的偶数数量(99-3)÷3+1=33个 或者:100中3的倍数:100/3=33……1,共33个。

4、定义A ◎B 表示A 、B 之间所有奇数的和,例如12◎7=9+11=20,计算(2◎10)◎19。

解:44。

提示:2◎10=3+5+7+9=24,(2◎10)◎19=24◎19=21+23=44。

5、定义一种新运算:A ○+B 等于A ,B 之间的所有自然数的和(不包括A ,B ),例如:7○
+2=2○+7=3+4+5+6=18。

现在已知9○
+C=21,那么C 可能是_________。

解:12或5。

提示:如果C 大于9,则因为21=10+11,所以C=12;如果C 比9小,则因为21=8+7+6,所以C=5。

6、已知-串有规律的数:1,32,85,2113,5534
,….那么,在这串数中,从左往右数,第10个数是 解:每个分数的分子等于前-个分数的分母加分子;每个分数的分母等于分子加前-个分数的分母,所以第
6、7、8、9、10个分数依次为14489,377233,987610,25841597,67654181。

7、(第七届“华杯赛”复赛第9题)一列数,前三个是1,9,9,以后每个都是它前面相邻3个数的和除以3所得的余数,问这列数中的第1999个数是几?
解:直接计算,这个数列为1,9,9,1,1,2,1,1,1,0,2,0,2,1,0,0,1,1,2,…自第17项起,第4至第16项重复出现,而(1999—3)÷(16—4+1)=153……7,因此第1999个数即第10(=3+7)个数是0.。

相关文档
最新文档