2.3组合与组合数公式教案

合集下载

组合与组合数教案

组合与组合数教案

组合与组合数教案一、教学目标1. 让学生理解组合的概念,掌握组合数的计算方法。

2. 培养学生运用组合知识解决实际问题的能力。

3. 引导学生发现生活中的组合现象,培养学生的观察力和想象力。

二、教学内容1. 组合的概念:组合是从n个不同元素中,任取m(m≤n)个元素的所有可能排列的集合。

2. 组合数的计算:组合数用C(n,m)表示,计算公式为C(n,m) = n! / [m! (n-m)!],其中n!表示n的阶乘。

三、教学重点与难点1. 教学重点:组合的概念,组合数的计算方法。

2. 教学难点:组合数的计算公式的推导与应用。

四、教学方法1. 采用问题驱动法,引导学生主动探索组合数的计算方法。

2. 利用实例分析,让学生体验组合知识在实际问题中的应用。

3. 采用小组讨论法,培养学生的合作与交流能力。

五、教学过程1. 导入新课:通过生活中的实例,如排列组合的抽奖活动,引导学生思考组合的概念。

2. 讲解组合的概念:详细解释组合的定义,让学生理解组合的本质。

3. 推导组合数的计算公式:引导学生利用阶乘的概念,推导组合数的计算公式。

4. 讲解组合数的计算方法:讲解组合数的计算公式,让学生掌握组合数的计算方法。

5. 应用实例:通过实际问题,让学生运用组合知识解决问题,巩固所学知识。

6. 课堂小结:总结本节课的主要内容,强调组合的概念和组合数的计算方法。

7. 课后作业:布置相关练习题,让学生巩固组合知识。

六、教学活动1. 设计意图:通过小组合作活动,让学生更深入理解组合概念,并锻炼动手动脑能力。

活动内容:让学生分组,每组使用卡片或骰子等物品,创造出不同的组合。

每组需要记录下他们创建的组合,并计算出组合数。

2. 分组活动:学生自由分组,每组4-6人。

每组选择一种物品,如卡片、骰子等,进行组合创造。

3. 分享与讨论:每组向全班展示他们的组合创造,并分享他们的组合数计算过程。

其他组的学生可以提问或提出不同看法。

4. 教师点评:教师对每组的展示进行点评,强调组合的概念和组合数的计算方法。

人教B版数学选修23课件1221组合及组合数公式

人教B版数学选修23课件1221组合及组合数公式
②几何中的组合问题,要注意分清“对应关系”,如不共线的三点对
应一个三角形,不共面的四点确定一个四面体等,解题时可借图形
来帮助思考,并善于利用几何性质.
③对于有多个约束条件的问题,可以先分析每个约束条件,再综
合考虑是分类、分步或交替使用两个基本原理;也可以先不考虑约
束条件,再去除不符合条件的情况获得结果.
题型一
题型二
题型三
题型四
题型一 应用组合的定义解题
【例1】 判断下列问题是排列问题,还是组合问题.
(1)从1,2,3,…,9九个数字中任取3个,有多少种不同的取法?
(2)从1,2,3,…,9九个数字中任取3个,组成一个三位数,这样的三位
数共有多少个?
分析取出元素之后,在安排这些元素时,与顺序有关的则为排列问
题型二
题型三
题型四
正解由题意可知m的取值范围是{m|0≤m≤5,m∈N}.
!(5-)! !(6-)!
− 6!
5!
由已知得
7(7-)!!
= 10×7! ,
整理得m2-23m+42=0,
解得m=21或m=2.
∵m∈{m|0≤m≤5,m∈N},∴m=2.
1
2
3
4
5
1.给出下面几个问题:
①由1,2,3,4构成的含两个元素的集合;


,
2
2
解:由题意可知 3 ≤ + 21, 即
∈N+,
∈N+,
∴n=10.
28
∴原式=C30
+
30
C31
=
30!
31!
+
2!×28! 1!×30!

人教版高中数学选修2-3课件 组合与组合数公式

人教版高中数学选修2-3课件 组合与组合数公式
A.24 种 B.12 种 C.10 种 D.9 种 解析:第一步,为甲地选 1 名女老师,有 C21=2 种选法;第二 步,为甲地选 2 名男教师,有 C42=6 种选法;第三步,剩下的 3 名 教师到乙地,故不同的安排方案共有 2×6×1=12(种),故选 B. 答案:B
8
5.7 个朋友聚会,每两人握手 1 次,共握手________次. 解析:组合问题,共握手 C72=21 次. 答案:21
9
课堂探究 互动讲练 类型一 组合的有关概念 [例 1] 判断下列问题是组合问题还是排列问题: (1)10 人聚会,见面后每两人之间要握手相互问候,共需握手 多少次? (2)10 名同学分成人数相同的两个学习小组,共有多少种分法? (3)从 1,2,3,…,9 九个数字中任取 3 个,然后把这三个数字相 加得到一个和,这样的和共有多少个? (4)从 a,b,c,d 四名学生中选 2 名,去完成同一件工作,有 多少种不同的选法?
1
【课标要求】 1.理解组合的定义,正确认识组合与排列的区别与联系. 2.理解排列数与组合数之间的联系,掌握组合数公式,能运用 组合数公式进行计算. 3.会解决一些简单的组合问题.
2
自主学习 基础认识 1.组合的定义 从 n 个不同元素中取出 m(n≥m)个元素合成一组,叫做从 n 个
不同元素中取出 m 个元素的一个组合.
由此可以写出所有的组合:ABC,ABD,ABE,ACD,ACE, ADE,BCD,BCE,BDE,CDE.
17
方法归纳 (1)此类列举所有从 n 个不同元素中选出 m 个元素的组合,可 借助本例所示的“顺序后移法”(如方法一)或“树形图法”(如方 法二),直观地写出组合做到不重复不遗漏. (2)由于组合与顺序无关.故利用“顺序后移法”时箭头向后逐 步推进,且写出的一个组合不可交换位置.如写出 ab 后,不必再 交换位置为 ba,因为它们是同一组合.画“树形图”时,应注意顶 层及下枝的排列思路.防止重复或遗漏.

人教课标版高中数学选修2-3《组合(第2课时)》教案-新版

人教课标版高中数学选修2-3《组合(第2课时)》教案-新版

1.2.2 组合(第2课时)一、教学目标 【核心素养】通过学习组合与组合数公式,更进一步的提高了学生的数学运算能力和逻辑推理能力. 【学习目标】(1)掌握组合数的性质(2)解答涉及到组合问题的应用题 【学习重点】通过实例,理解组合数的性质并能解决简单的实际问题 【学习难点】组合数性质的推导,组合数公式的简单应用.二、教学设计 (一)课前设计 1.预习任务任务1 默写组合数公式的具体内容任务2 回忆组合数的推导过程 整理组合的应用方法 2.预习自测1.计算:69584737C C C C +++; 【知识点:组合数的性质】解:原式4565664889991010210C C C C C C C =++=+===;2.求证:n m C 2+=n m C +12-n m C +2-n m C .【知识点:组合数的性质】解:(2)右边1121112()()n n n n n n nm m m m m m m C C C C C C C ----+++=+++=+=左边(二)课堂设计问题探究一 ●活动一 组合数的性质推导 1:m n nm n C C -=.一般地,从n 个不同元素中取出m 个元素后,剩下n m -个元素.因为从n 个不同元素中取出m 个元素的每一个组合,与剩下的n - m 个元素的每一个组合一一对应,所以从n 个不同元素中取出m 个元素的组合数,等于从这n 个元素中取出n - m 个元素的组合数,即:m n n m n C C -=.在这里,主要体现:“取法”与“剩法”是“一一对应”的思想证明:∵)!(!!)]!([)!(!m n m n m n n m n n C m n n -=---=-又)!(!!m n m n C m n -=,∴mn n m n C C -=说明:①规定:10=n C ; ②等式特点:等式两边下标同,上标之和等于下标;③此性质作用:当2nm >时,计算m n C 可变为计算m n n C -,能够使运算简化.例如20012002C =200120022002-C =12002C =2002; ④yn x n C C =y x =⇒或n y x =+. 2.m n C 1+=m n C +1-m n C .一般地,从121,,,+n a a a 这n+1个不同元素中取出m 个元素的组合数是mn C 1+,这些组合可以分为两类:一类含有元素1a ,一类不含有1a .含有1a 的组合是从132,,,+n a a a 这n 个元素中取出m -1个元素与1a 组成的,共有1-m n C 个;不含有1a 的组合是从132,,,+n a a a 这n 个元素中取出m个元素组成的,共有mn C 个.根据分类计数原理,可以得到组合数的另一个性质.在这里,主要体现从特殊到一般的归纳思想,“含与不含其元素”的分类思想.证明:)]!1([)!1(!)!(!!1---+-=+-m n m n m n m n C C m n m n)!1(!!)1(!+-++-=m n m m n m n n )!1(!!)1(+-++-=m n m n m m n )!1(!)!1(+-+=m n m n mn C 1+=∴m n C 1+=m n C +1-m n C .说明:①公式特征:下标相同而上标差1的两个组合数之和,等于下标比原下标多1而上标与大的相同的一个组合数;②此性质的作用:恒等变形,简化运算 例1.一个口袋内装有大小不同的7个白球和1个黑球, (1)从口袋内取出3个球,共有多少种取法?(2)从口袋内取出3个球,使其中含有1个黑球,有多少种取法? (3)从口袋内取出3个球,使其中不含黑球,有多少种取法?【知识点:排列组合,分步计数原理,数学思想:分类讨论】解:(1)5638=C ,或=38C +27C 37C ,;(2)2127=C ;(3)3537=C . 点拨:区分排列与组合 例2.解方程:(1)3213113-+=x x CC;(2)解方程:333222101+-+-+=+x x x x x A C C .【知识点:组合数的性质】解:(1)由原方程得123x x +=-或12313x x ++-=,∴4x =或5x =,又由111312313x x x N *⎧≤+≤⎪≤-≤⎨⎪∈⎩得28x ≤≤且x N *∈,∴原方程的解为4x =或5x =点拨:上述求解过程中的不等式组可以不解,直接把4x =和5x =代入检验,这样运算量小得多.(2)原方程可化为2333110x x x C A -++=,即5333110x x C A ++=,∴(3)!(3)!5!(2)!10!x x x x ++=-⋅,∴11120(2)!10(1)(2)!x x x x =-⋅-⋅-,∴2120x x --=,解得4x =或3x =-,经检验:4x =是原方程的解 点拨:组合数中含参数,要注意参数范围问题探究二1.整体分类.对事件进行整体分类,从集合的意义讲,分类要做到各类的并集等于全集,以保证分类的不遗漏,任意两类的交集等于空集,以保证分类的不重复,计算其结果时,使用分类加法计数原理.2.局部分步.整体分类以后,对每一类进行局部分步,分步要做到步骤连续,以保证分步的不遗漏,同时步骤要独立,以保证分步的不重复.计算每一类相应的结果时,使用分步乘法计数原理. 3.考查顺序.区别排列与组合的重要标志是“有序”与“无序”,无序的问题用组合解答,有序的问题属于排列问题.4.辩证地看待“元素”与“位置”.排列组合问题中的元素与位置,要视具体情况而定,有时“定元素选位置”,有时“定位置选元素”.例3.在 100 件产品中,有 98 件合格品,2 件次品.从这 100 件产品中任意抽出 3 件. (1)有多少种不同的抽法?(2)抽出的 3 件中恰好有 1 件是次品的抽法有多少种? (3)抽出的 3 件中至少有 1 件是次品的抽法有多少种? 【知识点:排列组合,分步计数原理,数学思想:分类讨论】解:(1)所求的不同抽法的种数,就是从100件产品中取出3件的组合数,所以共有31001009998123C⨯⨯=⨯⨯= 161700 (种).(2)从2 件次品中抽出 1 件次品的抽法有12C 种,从 98 件合格品中抽出 2 件合格品的抽法有298C 种,因此抽出的 3 件中恰好有 1 件次品的抽法有12298C C ⋅=9506(种). (3)解法 1 从100 件产品抽出的 3 件中至少有 1 件是次品,包括有1件次品和有 2 件次品两种情况.在第(2)小题中已求得其中1件是次品的抽法有12298C C ⋅种,因此根据分类加法计数原理,抽出的3 件中至少有一件是次品的抽法有12298C C ⋅+21298C C ⋅=9 604 (种)解法2 抽出的3 件产品中至少有 1 件是次品的抽法的种数,也就是从100件中抽出3 件的抽法种数减去3 件中都是合格品的抽法的种数,即3310098C C -=161 700-152 096 = 9 604 (种). 点拨:“至少”“至多”的问题,通常用分类法或间接法求解. 3.课堂总结 【知识梳理】1掌握组合数性质m n n m n C C -=和m n C 1+=m n C +1-m n C ,为解题提供方便2区分排列与组合的关键是看结果是否与元素的顺序有关,若交换某两个元素的位置对结果产生影响,则是排列问题,否则是组合问题.也就是说排列问题与选取元素的顺序有关,组合问题与选取元素的顺序无关. 【重难点突破】写组合时,一般先将元素按一定的顺序排好,然后按照顺序用图示的方法逐个地将各个组合表示出来,这样做直观、明了、清楚,可防重复和遗漏.当从正面入手情况复杂、不易解决时,可考虑换位思考将其等价转化,使问题变得简单、明朗. 4.随堂检测1.若266x C C =,则x 的值为( )A .2B .4C .4或2D .3 【知识点:组合数的性质】 解:C2从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于...该正方形边长的概率为( )A .15B .25C .35D .45【知识点:排列组合,古典概型】解:C 如图,基本事件共有25C =10个,小于正方形边长的事件有OA 、OB 、OC 、OD 共4个,∴P =1-410=35. 3.222223416C C C C ++++…等于( )A .215CB .316C C .317CD .417C【知识点:组合数的性质】解:C 原式=222223416C C C C ++++…=3224416C C C +++…=3225516C C C +++…=…=321616C C +=317C .4.从0,1,2,…,9这10个数字中选出5个不同的数字组成五位数,其中大于13000的有多少个?【知识点:排列组合,分步计数原理,数学思想:分类讨论】解:方法一:(直接法)满足条件的五位数有两类:第一类:万位数大于1,这样的五位数共有498A ⨯个;第二类:万位数为1,千位数不小于3,这样的五位数共有387A ⨯个. 根据分类计数原理,大于13000的五位数共有498A ⨯+38726544A ⨯=个. 方法二:(间接法)由0,1,2,…,9这10个数字中不同的5个数字组成的五位数共有499A 个,其中不大于13000的五位数的万位数都是1,且千位数小于3,这样的数共有382A 个,所以,满足条件的五位数共有43989226544A A -=个. 5.有甲、乙、丙3项任务,任务甲需要2人承担,任务乙、丙各需要1人承担,从10人中选派4人承担这3项任务,不同的选法共有________种(用数字作答). 【知识点:排列组合,分步计数原理,数学思想:分类讨论】解:法一:先从10人中选出2人承担任务甲;再从余下8人中选出1人承担任务乙;最后从剩下的7人中选出1人去承担任务丙.根据乘法原理,不同的选法共有2111087C C C =2 520种. 法二:先从10人中选出2人承担任务甲,再从余下8人中选出2人分别承担任务乙、丙.根据乘法原理,不同的选法共有22108C A =2 520种. 【易错剖析】本题易出现如下错解:错解一:分3步完成:第一步,从10人中选出4人,有410C 种方法.第二步,从这4人中选出2人承担任务甲,有24A 种方法. 第三步,剩下的2人分别承担任务乙、丙,有22A 种方法.根据乘法原理,不同的选法共有4221042C A A =5 040 种. 错解二:分3步完成,不同的选法共有4221042C C C =1 260 种. 错解一的错因是:“排列”“组合” 概念混淆不清.承担任务甲的两人与顺序无关,此处应是组合问题,即24A 应改为24C .错解二的错因是:剩下的2人去承担任务乙、丙,这与顺序有关,此处应是排列问题,即22C 应改为22A . (三)课后作业 基础型 自主突破1.6个人分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车方法数为( )A .40B .50C .60D .70 【知识点:排列组合,分步计数原理,数学思想:分类讨论】解:B 先分组再排列,一组2人一组4人有26C =15种不同的分法;两组各3人共有3622C A =10种不同的分法,所以乘车方法数为(15+10)×2=50,故选B .2.从甲、乙等5名志愿者中选出4名,分别从事A ,B ,C ,D 四项不同的工作,每人承担一项.若甲、乙二人均不能从事A 工作,则不同的工作分配方案共有( )A .60种B .72种C .84种D .96种【知识点:排列组合,分步计数原理,数学思想:分类讨论】解:B 解法1:根据题意,分两种情形讨论:①甲、乙中只有1人被选中,需要从甲、乙中选出1人,担任后三项工作中的1种,由其他三人担任剩余的三项工作,有13132333C C C A =36种选派方案. ②甲、乙两人都被选中,则在后三项工作中选出2项,由甲、乙担任,从其他三人中选出2人,担任剩余的两项工作,有222332C A A =36种选派方案,综上可得,共有36+36=72种不同的选派方案,解法2:从甲、乙以外的三人中选一人从事A 工作,再从剩余四人中选三人从事其余三项工作共有1334C A =72种选法. 3.有两张卡片,一张的正反面分别写着数字0与1,另一张的正反面分别写着数字2与3,将两张卡片排在一起组成一个两位数,则所组成的两位数为奇数的概率是( )A .16B .13C .12 D .38【知识点:排列组合,古典概型】解:C 由这两张卡片排成的两位数共有6个,其中奇数有3个,∴P =36=12.4.男、女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有( )A .2人或3人B .3人或4人C .3人D .4人 【知识点:排列组合,分步计数原理,数学思想:分类讨论】解:A 设男生有n 人,则女生有(8-n )人,由题意可得218n n C C =30,解得n =5或n =6,代入验证,可知女生为2人或3人. 能力型 师生共研5.某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则方法有( )A .45种B .36种C .28种D .25种 【知识点:排列组合,分步计数原理,数学思想:分类讨论】解:C 因为10级台阶走8步,故可以肯定一步一个台阶的有6步,一步两个台阶的有2步,那么只需从8步中选取2步,这两步中每一步上两个台阶即可,共有28C =28种选法.6.如图,用4种不同的颜色涂入图中的矩形A 、B 、C 、D 中,(四种颜色可以不全用也可以全用)要求相邻的矩形涂色不同,则不同的涂法有( )A .72种B .48种 D .12种【知识点:排列组合,分步计数原理,数学思想:分类讨论】 解:A 解法1:(1)4种颜色全用时,有44A =24种不同涂色方法.(2)4种颜色不全用时,因为相邻矩形不同色,故必须用三种颜色,先从4种颜色中选3种,涂入A 、B 、C 中,有34A 种涂法,然后涂D ,D 可以与A (或B )同色,有2种涂法,∴共有234A =48种,∴共有不同涂色方法,24+48=72种.解法2:涂A 有4种方法,涂B 有3种方法,涂C 有2种方法,涂D 有3种方法,故共有4×3×2×3=72种涂法.7.用1、2、3、4、5组成不含重复数字的五位数,数字2不出现在首位和末位,数字1、3、5中有且仅有两个数字相邻,则满足条件的不同五位数的个数是________(注:用数字作答). 【知识点:排列组合,分步计数原理,数学思想:分类讨论】解:48 按2的位置分三类:①当2出现在第2位时,即02000,则第1位必为1、3、5中的一个数字,所以满足条件的五位数有122322C A A =12个;②当2出现在第3位时,即00200,则第1位、第2位为1、3、5中的两个数字或第4位、第5位为1、3、5中的两个数字,所以满足条件的五位数有22232A A =24个;③当2出现在第4位时,即00020,则第5位必为1、3、5中的一个数字,所以满足条件的五位数有122322C A A =12个.综上,共有12+24+12=48个. 8.高三某学生计划报名参加某7所高校中的4所学校的自主招生考试,其中仅甲、乙两所学校的考试时间相同,因此该学生不能同时报考这两所学校,那么该学生不同的报考方法有________种.【知识点:排列组合,分步计数原理,数学思想:分类讨论】解:25 报考学校甲的方法有35C ,报考学校乙的方法有35C ,甲、乙都不报的方法有45C ,∴共有352C +45C =25种.9.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有________种(用数字作答).【知识点:排列组合,分步计数原理,数学思想:分类讨论】解:1080 先将6名志愿者分为4组,共有226422C C A 种分法,再将4组人员分到4个不同场馆去,共有44A 种分法,故所有分配方案有:22464422C C A A =1 080种10.已知集合A ={5},B ={1,2},C ={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为( )A .33B .34C .35D .36【知识点:排列组合,分步计数原理,分类计数原理数学思想:分类讨论】解:A ①所得空间直角坐标系中的点的坐标中不含1的有1323C A =12个; ②所得空间直角坐标系中的点的坐标中含有1个1的有1323C A +33A =18个; ③所得空间直角坐标系中的点的坐标中含有2个1的有13C =3个.故共有符合条件的点的个数为12+18+3=33个,故选A . 探究型 多维突破11.如果小明在某一周的第一天和第七天分别吃了3个水果,且从这周的第二天开始,每天所吃水果的个数与前一天相比,仅存在三种可能:或“多一个”或“持平”或“少一个”,那么,小明在这一周中每天所吃水果个数的不同选择方案共有( )A .50种B .51种C .140种D .141种 【知识点:分步计数原理】解:D 按第二天到第七天选择持平次数分类得642222033662642663C C A C C C C C C +++=141种. 12.如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有( )A .50种B .60种C .120种D .210种【知识点:排列组合,分步计数原理,数学思想:分类讨论】解:C 先安排甲学校的参观时间,一周内两天连排的方法一共有6种:(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7),甲任选一种为16C ,然后在剩下的5天中任选2天有序地安排其余两所学校参观,安排方法有25A 种,按照分步乘法计数原理可知共有不同的安排方法1265C A =120种,故选C . 13. 某班班会准备从甲、乙等7名学生中选派4名学生发言,要求甲、乙两名同学至少有一人参加,且若甲、乙同时参加,则他们发言时不能相邻.那么不同的发言顺序种数为( )A .360B .520C .600D .720 【知识点:排列组合,分步计数原理,数学思想:分类讨论】解:C 当甲、乙两人中只有一人参加时,有134254C C A =480种方法; 当甲、乙两人都参加时,有2242225423()C C A A A -=120种方法. 由分类加法计数原理知,不同的发言顺序共有480+120=600种,故选C .14. 要在如图所示的花圃中的5个区域中种入4种颜色不同的花,要求相邻区域不同色,有_____种不同的种法(用数字作答).【知识点:排列组合,分步计数原理,数学思想:分类讨论】解:72 5有4种种法,1有3种种法,4有2种种法.若1、3同色,2有2种种法,若1、3不同色,2有1种种法,∴有4×3×2×(1×2+1×1)=72种. 自助餐1.将标号为1,2,,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有( )A .12种B .18种C .36种D .54种 【知识点:排列组合,分步计数原理,数学思想:分类讨论】解:D 和为偶数共有3种情况,取4个数均为偶数的取法有44C =1种,取2奇数2偶数的取法有2245C C =60种,取4个数均为奇数的取法有45C =5种,故不同的取法共有1+60+5=66种. 2.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( )A .60种B .63种C .65种D .66种 【知识点:排列组合,分步计数原理,数学思想:分类讨论】解:D 和为偶数共有3种情况,取4个数均为偶数的取法有44C =1种,取2奇数2偶数的取法有2245C C =60种,取4个数均为奇数的取法有45C =5种,故不同的取法共有1+60+5=66种. 3.从4台甲型和5台乙型电视机中任意取出3台,其中至少要有甲型与乙型电视机各1台,不同的取法有( )A .140种B .84种C .70种D .35种 【知识点:排列组合】 解:C4 .5个代表分4张同样的参观券,每人最多分一张,且全部分完,那么分法一共有( )A .45A 种B .45种C .54种D .45C 种 【知识点:排列组合】解:D 由于4张同样的参观券分给5个代表,每人最多分一张,从5个代表中选4个即可满足,故有C 45种.5.将标号为A 、B 、C 、D 、E 、F 的6张卡片放入3个不同的信封中,若每个信封放2张卡片,其中标号为A 、B 的卡片放入同一信封,则不同的放法共有( )A .12种B .18种C .36种D .54种 【知识点:排列组合,分步计数原理】解:B 由题意,不同的放法共有1234C C =4332⨯⨯=18种. 6.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A .72B .120C .144D .168 【知识点:排列组合,分步计数原理,数学思想:分类讨论】解:B 依题意,先仅考虑3个歌舞类节目互不相邻的排法种数为3433A A =144,其中3个歌舞类节目互不相邻但2个小品类节目相邻的排法种数为332222A A A =24,因此满足题意的排法种数为144-24=120,选B.7.A ,B 两地街道如图所示,某人要从A 地前往B 地,则路程最短的走法有________种(用数字作答).【知识点:排列组合】解:根据题意,要求从A 地到B 地路程最短,必须只向上或向右行走即可,分析可得,需要向上走2次,向右走3次,共5次, 从5次中选3次向右,剩下2次向上即可, 则有35C =10种不同的走法, 故答案为10.8.从一组学生中选出4名学生当代表的选法种数为A ,从这组学生中选出2人担任正、副组长的选法种数为B ,若213B A =,则这组学生共有________人. 【知识点:排列组合】解:15 设有学生n 人,则24213n n A C =,解之得n =15.9.7名志愿者中安排6人在周六、周日两天参加社区公益活动.若每天安排3人,则不同的安排方案共有________种.(用数字作答)【知识点:排列组合,分步计数原理,数学思想:分类讨论】解:140 第一步安排周六有37C 种方法,第二步安排周日有34C 种方法,所以不同的安排方案共有3374C C =140种. 10.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有多少种?【知识点:排列组合,分步计数原理,数学思想:分类讨论】解:当最左端排甲时,不同的排法共有55A 种;当最左端排乙时,甲只能排在中间四个位置之一,则不同的排法共有4414A C 种.故不同的排法共有55A +4414A C =120+96=216(种).11.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a ,b ,共可得到lga -lgb 的不同值的个数是多少?【知识点:对数运算,基本事件,排列组合,分类计数原理,数学思想:分类讨论】解:记基本事件为(a ,b),则基本事件空间Ω={(1,3),(1,5),(1,7),(1,9),(3,1),(3,5),(3,7),(3,9),(5,1),(5,3),(5,7),(5,9),(7,1),(7,3),(7,5),(7,9),(9,1),(9,3),(9,5),(9,7)}共有20个基本事件,而lga -lgb =lg a b ,其中基本事件(1,3),(3,9)和(3,1),(9,3)使lg ab的值相等,则不同值的个数为20-2=18(个)12.6男4女站成一排,求满足下列条件的排法共有多少种?(列出算式即可) (1)任何2名女生都不相邻,有多少种排法? (2)男甲不在首位,男乙不在末位,有多少种排法? (3)男生甲、乙、丙顺序一定,有多少种排法?(4)男甲在男乙的左边(不一定相邻)有多少种不同的排法? 【知识点:排列组合,分步计数原理,数学思想:分类讨论】解:(1)任何2名女生都不相邻,则把女生插空,所以先排男生再让女生插到男生的空中,共有6467A A 种不同排法.(2)方法一:甲不在首位,按甲的排法分类,若甲在末位,则有99A 种排法,若甲不在末位,则甲有18A 种排法,乙有18A 种排法,其余有88A 种排法,综上共有(99A +18A 18A 88A )种排法. 方法二:甲在首位的共有99A 种,乙在末位的共有99A 种,甲在首位且乙在末位的有88A 种,因此共有(1010A -299A +88A )种排法.(3)10人的所有排列方法有1010A 种,其中甲、乙、丙的排序有33A 种,其中只有一种符合题设要求,所以甲、乙、丙顺序一定的排法有101033A A 种.男甲在男乙的左边的10人排列与男甲在男乙的右边的10人排列数相等,而10.。

人教版高中数学选修2-31.2.2《组合与组合数公式》教学设计

人教版高中数学选修2-31.2.2《组合与组合数公式》教学设计

1.2.2组合第一课时 组合与组合数公式教学目标:1.理解组合与组合数的定义,明确组合与排列的联系与区别,能判断一个问题是排列问题还是组合问题2.会用公式和性质处理简单的计算问题。

教学重点:理解组合与组合数的定义教学难点:会用选择恰当的公式计算和证明 授课类型:新授课 教学过程:一、复习引入:复习排列数的定义:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号mn A 表示探究:问题1:从甲、乙、丙3名同学中选出2名去参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的选法?问题2:从甲、乙、丙3名同学中选出2名去参加一项活动,有多少种不同的选法? 师引导学生观察:示例1中不但要求选出2名同学,而且还要按照一定的顺序“排列”,而示例2只要求选出2名同学,是与顺序无关的引出课题:组合... 二、讲解新课:类比排列给出组合定义1组合的概念:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合学生活动:在课本划出定义并找出关键点说明:⑴不同元素;⑵“只取不排”——无序性;⑶()m n ≤ 学生活动:小组讨论1.比较排列和组合定义找出两者的区别与联系2.什么是相同的排列与组合 例1.判断下列问题是组合还是排列(1)一个小组有7名学生,现抽调5人参加劳动; (2)从5名同学中选4名组成代表团参加对外交流;(3)从5名同学中选4名组成代表团去4个单位参加对外交流;2.组合数的概念:从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数....用符号mn C 表示. 3.组合数公式的推导:(1)回顾引例问题找到排列数与组合数的关系(2)从4个不同元素,,,a b c d 中取出3个元素的组合数34C 是多少呢?启发:由于排列是先组合再排列.........,而从4个不同元素中取出3个元素的排列数34A 可以求得,故我们可以考察一下34C 和34A 的关系,如下:组 合 排列dcbcdb bdc dbc cbd bcd bcd dca cda adc dac cad acd acd dba bda adb dab bad abd abd cba bca acb cab bac abc abc ,,,,,,,,,,,,,,,,,,,,→→→→ 由此可知,每一个组合都对应着6个不同的排列,因此,求从4个不同元素中取出3个元素的排列数34A ,可以分如下两步:① 考虑从4个不同元素中取出3个元素的组合,共有34C 个;② 对每一个组合的3个不同元素进行全排列,各有33A 种方法.由分步计数原理得:34A =⋅34C 33A . (2)推广:一般地,求从n 个不同元素中取出m 个元素的排列数mn A ,可以分如下两步: ① 先求从n 个不同元素中取出m 个元素的组合数m n C ;② 求每一个组合中m 个元素全排列数m m A ,根据分步计数原理得:m n A =m n C m mA ⋅. (3)组合数的公式:(1)(2)(1)!m m n nm m A n n n n m C A m ---+==或)!(!!m n m n C mn -=,,(n m N m n ≤∈*且学生活动:记忆公式规定: 01n C =.三、讲解范例:例2.计算710C .解法1:710109876547!C ⨯⨯⨯⨯⨯⨯==120.解法2:71010!10987!3!3!C ⨯⨯===120. 师板书两个公式计算,比较难易度,引导学生选择恰当的公式学生活动:熟记公式,完成针对练习课堂练习1:计算师由特殊例子引导学生总结性质1组合数的性质1:mn nm n C C -=. 课堂练习2:完成市本112页自我测评A 组1、6(1) 师提问学生口答并强调易错点组合数的性质2:m n C 1+=m n C +1-m nC . 学生活动:学生板演证明性质2成立证明:)]!1([)!1(!)!(!!1---+-=+-m n m n m n m n C C m n m n )!1(!!)1(!+-++-=m n m m n m n n )!1(!!)1(+-++-=m n m n m m n )!1(!)!1(+-+=m n m n m n C 1+= ∴m n C 1+=m n C +1-m nC . 说明:①公式特征:下标相同而上标差1的两个组合数之和,等于下标比原下标多1而上标与大的相同的一个组合数;②此性质的作用:恒等变形,简化运算 学生活动:熟记性质完成针对练习 四、课堂小结:学生思考总结:1、本节课重点和难点分别是什么?2、本节课讲解了几类题型 五、课后作业:完成市本第一课时C37)1(C)2(25C C 24362)3(-。

组合与组合数教案

组合与组合数教案

组合与组合数教案一、教学目标:1. 让学生理解组合的概念,掌握组合的计算方法。

2. 培养学生运用组合知识解决实际问题的能力。

3. 提高学生的逻辑思维能力和创新意识。

二、教学内容:1. 组合的定义及表示方法。

2. 组合数的计算公式。

3. 组合数在实际问题中的应用。

三、教学重点与难点:1. 重点:组合的定义,组合数的计算方法。

2. 难点:组合数的推导过程,组合数在实际问题中的应用。

四、教学方法:1. 采用讲授法,讲解组合的基本概念和计算方法。

2. 运用案例分析法,让学生通过实际问题理解组合数的应用。

3. 开展小组讨论,培养学生的合作能力和创新意识。

五、教学过程:1. 导入:通过生活中的实例,如抽奖、排列组合等问题,引导学生思考组合的概念。

2. 讲解组合的定义及表示方法,如组合数公式C(n, k) = n! / (k! (n-k)!)。

3. 讲解组合数的计算方法,并通过例题演示。

4. 开展小组讨论,让学生运用组合数解决实际问题,如人员安排、物品搭配等。

6. 布置课后作业,巩固所学知识。

六、教学评估:1. 课堂问答:通过提问的方式检查学生对组合概念和组合数计算公式的理解程度。

2. 练习题:布置一些组合数的计算题目,检查学生运用组合知识解决问题的能力。

3. 小组讨论:评估学生在小组讨论中的参与度和创新思维能力。

七、教学资源:1. 教材:提供相关的数学教材,以便学生课后复习和自学。

2. 网络资源:提供一些在线数学教育资源,帮助学生深入了解组合与组合数的相关知识。

3. 教具:使用图表、幻灯片等教具,帮助学生更直观地理解组合与组合数的概念。

八、教学拓展:1. 组合与排列的对比:引导学生思考组合与排列的区别和联系。

2. 组合数的推广:介绍组合数在其他数学领域中的应用,如图论、概率论等。

3. 组合数与现实生活的联系:引导学生发现组合数在日常生活和工作中的应用,提高学生的数学素养。

九、教学反思:2. 反思教学方法的有效性,看是否需要调整教学策略以提高教学效果。

组合与组合数教案()

组合与组合数教案()

组合与组合数教案(优秀)教学目标:1. 理解组合的概念和性质。

2. 掌握组合数的计算方法。

3. 能够应用组合数解决实际问题。

教学重点:1. 组合的概念和性质。

2. 组合数的计算方法。

教学难点:1. 理解组合的性质和计算方法。

教学准备:1. 教学PPT。

2. 练习题。

教学过程:一、导入(5分钟)1. 引入组合的概念,引导学生思考在日常生活中遇到的组合问题。

二、新课讲解(15分钟)1. 讲解组合的定义和性质,通过示例解释组合的概念。

2. 介绍组合数的计算方法,包括排列组合公式和递推公式。

3. 通过PPT展示组合数的计算过程和应用实例。

三、课堂练习(10分钟)1. 让学生独立完成练习题,巩固组合的概念和计算方法。

2. 引导学生思考如何应用组合数解决实际问题。

四、总结与拓展(5分钟)1. 总结组合的概念和计算方法,强调组合在实际生活中的应用。

2. 提出拓展问题,引导学生进一步思考组合数的性质和应用。

五、作业布置(5分钟)1. 布置练习题,要求学生巩固组合的概念和计算方法。

2. 鼓励学生思考生活中的组合问题,培养学生的应用能力。

教学反思:本节课通过导入、新课讲解、课堂练习、总结与拓展等环节,使学生理解组合的概念和性质,掌握组合数的计算方法,并能够应用组合数解决实际问题。

在教学过程中,要注意引导学生思考和讨论,激发学生的学习兴趣和主动性。

通过练习题和实际问题的解决,巩固学生的知识,提高学生的应用能力。

六、组合与组合数在几何中的应用(15分钟)教学目标:1. 理解组合数在几何中的应用。

2. 学会使用组合数解决几何问题。

教学重点:1. 组合数在几何中的应用。

教学难点:1. 如何将几何问题转化为组合问题。

教学准备:1. 教学PPT。

2. 几何问题示例。

教学过程:1. 通过PPT展示组合数在几何中的应用实例,如平面几何中的区域划分、线段组合等。

2. 引导学生思考如何将几何问题转化为组合问题,并利用组合数解决。

3. 分析几何问题中的组合规律,引导学生总结解决几何问题的方法。

人教B版高中数学-选修2-3教学案 第一课时 组合与组合数公式及组合数的两个性质(Word)

人教B版高中数学-选修2-3教学案 第一课时 组合与组合数公式及组合数的两个性质(Word)

第一课时组合与组合数公式及组合数的两个性质[对应学生用书P11][例1](1) 10支球队以单循环进行比赛(每两队比赛一次),这次比赛需要进行多少场次?(2)10支球队以单循环进行比赛,这次比赛冠、亚军获得者有多少种可能?(3)从10个人里选3个代表去开会,有多少种选法?(4)从10个人里选出3个不同学科的课代表,有多少种选法?[思路点拨]要确定是组合还是排列问题,只需确定取出的元素是否与顺序有关.[精解详析](1)是组合问题,因为每两个队比赛一次并不需要考虑谁先谁后,没有顺序的区别.(2)是排列问题,因为甲队得冠军、乙队得亚军与甲队得亚军、乙队得冠军是不一样的,是有顺序区别的.(3)是组合问题,因为3个代表之间没有顺序的区别.(4)是排列问题,因为3个人中,担任哪一科的课代表是有顺序区别的.[一点通]要区分排列与组合问题,先确定完成的是什么事件,然后看问题是否与顺序有关,与顺序有关的是排列,与顺序无关的是组合.1.求从2,3,4,5四个数中任取2个数作为对数式log a b的底数与真数,得到的对数的个数有多少,是________问题;若把两个数相乘得到的积有几种,则是________问题.(用“排列”“组合”填空)解析:从2,3,4,5四个数中任取2个数作为对数式log a b的底数与真数,交换a,b的位置后所得对数值不同,应为排列问题;取两个数相乘,如2×3与3×2的积是相等的,没有顺序,故为组合问题.答案:排列组合2.判断下列问题是组合问题还是排列问题:(1)设集合A={a,b,c,d,e},则集合A的子集中含有3个元素的有多少个?(2)某铁路线上有5个车站,则这条线上共需准备多少种车票?多少种票价?(3)3人去干5种不同的工作,每人干一种,有多少种分工方法?(4)把3本相同的书分给5个学生,每人最多得1本,有几种分配方法?解:(1)因为本问题与元素顺序无关,故是组合问题.(2)因为甲站到乙站的车票与乙站到甲站的车票是不同的,故是排列问题,但票价与顺序无关,甲站到乙站与乙站到甲站是同一种票价,故是组合问题.(3)因为分工方法是从5种不同的工作中选出3种,按一定顺序分给3个人去干,故是排列问题.(4)因为3本书是相同的,无论把3本书分给哪三人,都不需考虑他们的顺序,故是组合问题.[例2] (1)1073(2)证明:m C m n =n C m -1n -1; (3)已知1C m 5-1C m 6=710C m 7,求C m 8+C 5-m 8. [思路点拨] (1)(2)运用公式进行化简即可,(3)先求出m 的值,再进行计算.[精解详析] (1)原式=C 410-A 37=10×9×8×74×3×2×1-7×6×5=210-210=0. (2)证明:m C m n =m ·n !m !(n -m )!=n ·(n -1)!(m -1)!(n -m )!=n ·(n -1)!(m -1)!(n -m )!=n C m -1n -1. (3)∵1C m 5-1C m 6=m !(5-m )!5!-m !(6-m )!6!, 710C m 7=7×(7-m )!m !10×7!, ∴m !(5-m )!5!-m !(6-m )(5-m )!6×5! =7×m !(7-m )(6-m )(5-m )!10×7×6×5!, ∴1-6-m 6=(7-m )(6-m )60, 即m 2-23m +42=0,解得m =2或21.而0≤m ≤5,∴m =2.∴C m 8+C 5-m 8=C 28+C 38=C 39=84.[一点通]1.组合数公式C m n =n (n -1)(n -2)…(n -m +1)m ! 体现了组合数与相应排列数的关系,一般在计算具体的组合数时会用到.2.组合数公式C m n =n !m !(n -m )!的主要作用:一是计算m ,n 较大时的组合数;二是对含有字母的组合数的式子进行变形和证明.另外,当m >n 2时,计算C m n 可用性质C m n =C n -m n转化,减少运算量.3.C410-C37·A33=________.解析:原式=C410-A37=10×9×8×74×3×2×1-7×6×5=210-210=0.答案:04.若A3n=12C2n,则n=________.解析:∵A3n=n(n-1)·(n-2),C2n=12n(n-1),∴n(n-1)(n-2)=6n(n-1).又n∈N+,且n≥3,∴n=8. 答案:85.解不等式1C3n-1C4n<2C5n.解:n的取值范围是{n|n≥5,n∈N+}.∵1C3n-1C4n<2C5n,∴6n(n-1)(n-2)-24n(n-1)(n-2)(n-3)<240n(n-1)(n-2)(n-3)(n-4).又∵n(n-1)(n-2)>0.∴原不等式化简得n2-11n-12<0,解得-1<n<12.结合n的取值范围,得n=5,6,7,8,9,10,11,∴原不等式的解集为{5,6,7,8,9,10,11}.[例3](10分)5人参加市级培训.在下列条件下,有多少种不同的选法?(1)任意选5人;(2)甲、乙、丙三人必需参加;(3)甲、乙、丙三人不能参加;(4)甲、乙、丙三人只能有1人参加.[思路点拨]本题属于组合问题中的最基本的问题,可根据题意分别对不同问题中的“含”与“不含”作出正确分析和判断.[精解详析](1)从中任取5人是组合问题,共有C512=792种不同的选法.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导入新课讲授新课一、引例导入
在、、民航站的直达航线之间,有多少种不同的飞机票价?
(假定两地间的往返票价和仓位票价是相同的)
二、新知探究
列举
——(——)
——(——)
——(——)
一般地,从n个不同元素中,任取m(m≤n)个元素并成
一组,叫做从n个不同元素中取出m个元素的一个组合
从n个不同元素中取出m(m≤n)个元素的所有组合的个
数,叫做从n个不同元素中取出m个元素的组合数用符
号表示
想一想:从4个不同元素a,b,c,d中取出3个元素的排
列与组合有何关系?
abc abc bac cab
acb bca cba
abd abd bad dab
adb bda dba
acd acd cad dac
adc cda dca
adc bcd cbd dbc
bdc cdb dcb
A3
4
=C3
4
×A3
3
从而探究得到:
求从n个不同元素中取出m个元素的排列数A m
n
,可以
分如下两步完成,
第一步,求从这n个元素中取出m个元素的组合数C m
n
出示生活实例
激发学生兴趣
学生思考举例
引导学生
理解记忆
学生分组讨论
小组回答
成员补充
给予课堂评价
理解
巩固应用专业
课堂小结选法?
(2)从全班50人中选班长、副班长、学习委员、体
育委员、宣传委员、生活委员、文娱委员各一人,共有多
少种不同的选法?
解:(1)C7
50
=
)!
7
50
(!7
!
50
=99884400(种);
(2)A7
50
=50×49×48×47×46×45×44=0(种).
三、巩固应用
1.计算;;+;-.
2.写出a、b、c、d、e从这5个元素中取出2个和3
个元素的所有组合。

3.平面有4点中,任意3点不共线,那么它们可连成
多少条线段?
引例分析与解决
==3
某产品共100件,其中有5件次品,从中抽取2件进行检
验:
(1)一共有多少件不同的抽法?
(2)不含次品的抽法有有多少种?
(3)抽出的3件中至少有1件次品的抽法共有多少种?
(4)抽出的3件中至多有1件次品的抽法共有多少种?
四、课堂小结
1、组合的定义
2、组合数公式
3、组合数公式应用:与顺序无关则属于组合问题
对于较复杂的排列和组合的综合应用,解题思路是先
分类后分步,先分组后排列。

上交作业:P
36
4、5、6
引导学生
分析解决
黑板展示
学生练习
师生共同解决
给学生时间纠错
学生梳理归纳
教师强调。

相关文档
最新文档