高一数学函数的单调性3
高一数学必修一第三讲《函数的单调性与奇偶性》

注意:
①函数的奇偶性是函数的整体性质;
②定义域内的任意一个 x,则-x 也一定是定义域内的一个自变量
(即定义域关于原点对称)。
★★★利用定义判断函数奇偶性的格式步骤:
①首先确定函数的定义域,并判断其定义域是否关于原点对称;
②确定 f(-x)与 f(x)的关系;
③作出相应结论:
若 f(-x) = f(x) 或 f(-x)-f(x) = 0,则 f(x)是偶函数;
f (a2 1) f (a 1) 0 的实数 a 的取值范围.
家长签字:
第五讲 函数单调性与奇偶性的复习 一、必备基础
1.单调函数:增函数,减函数,单调性,单调区间 2.奇偶函数定义:奇偶函数图象性质
3.最值:设函数 y f x 定义域为 I,如果存在实数满足:①对于任意的 x I ,都有 f x M 。②存在 x0 I 使得 f x0 M ,那么称函数 y f x 有最大值为 M。
2、画出反比例函数 y 1 的图象。 x
(1)这个函数的定义域 是什么? (2)它在定义域 上的单调性是怎样的?证明你的结论。
家长签字:
第3页共8页
一、偶函数
暑期预科:函数
第四讲 奇偶性
勤动笔,多思考! 各位,加油!!
画出函数 f (x) x 2 和函数 f (x) | x | 的图象,思考并讨论以下问题:
你能仿照函数最大值的定义,给出函数 y f (x) 的最小值 (min imum value )的定义吗? 例 5、求函数 f (x) x 1 在区间 (0,2) 上的最小值。
x
第2页共8页
暑期预科:函数
勤动笔,多思考! 各位,加油!!
例
6、已知函数
y
2( x 1
高一数学单调性知识点总结

高一数学单调性知识点总结在高中数学学习中,单调性是一个非常重要的概念。
单调性可以帮助我们理解函数的增减趋势以及函数图像的形状。
在本文中,我们将总结高一数学中与单调性相关的知识点,并探讨其应用。
一、函数的单调性函数的单调性是指函数在定义域内的增减趋势。
具体来说,我们可以分为递增和递减两种情况进行讨论。
1. 函数的递增性如果对于定义域内的任意两个实数a和b,当a<b时有f(a)<f(b),那么我们称函数为递增函数。
简单来说,递增函数的函数值随着自变量的增大而增大。
通过求导可以帮助我们判断函数的递增性。
如果函数的导数大于零,则函数递增;如果导数小于零,则函数递减;如果导数等于零,则函数在该区间内的单调性不确定,需要进行进一步的分析。
2. 函数的递减性如果对于定义域内的任意两个实数a和b,当a<b时有f(a)>f(b),那么我们称函数为递减函数。
递减函数的函数值随着自变量的增大而减小。
二、函数图像的单调性分析在图像上观察函数的单调性,可以通过以下几个方面来判断。
1. 函数图像在某个区间内递增或递减通过观察函数图像,在某个区间内如果图像整体上升,则该区间内函数递增;如果图像整体下降,则该区间内函数递减。
2. 函数图像在特定点的切线斜率通过求导函数,可以得到函数的导函数。
根据导函数的正负性,可以判断函数图像在特定点的切线斜率的正负。
如果导函数大于零,则函数图像在该点的切线斜率大于零,即函数递增;如果导函数小于零,则函数图像在该点的切线斜率小于零,即函数递减。
3. 函数图像的拐点与极值点在函数图像上,拐点和极值点可能对函数的单调性产生影响。
如果在拐点或极值点的左侧函数递增,在右侧函数递减,或者相反,那么拐点或极值点就是函数单调性发生改变的点。
三、应用举例单调性是数学中的一个重要概念,有许多实际应用。
1. 市场需求曲线在经济学中,市场需求曲线通常被认为是递减函数。
这意味着当商品价格上涨时,需求量下降;当价格下降时,需求量增加。
新教材高中数学第三章函数的单调性课件新人教B版必修第一册ppt

【解析】选 C.对于 A,y=-2x 在定义域上无单调性,在区间(-∞,0)和(0,+∞)上 是增函数,所以 A 错误; 对于 B,y=x2+1 1 在(-∞,0)上是增函数,在(0,+∞)上是减函数,所以 B 错误; 对于 C,y=-3x2-6x 图像是抛物线,对称轴是 x=-1,所以函数在[-1,+∞)上是 减函数,所以 C 正确; 对于 D,a>0 时,y=ax+3 在(-∞,+∞)上为增函数,a<0 时,y=ax+3 在(-∞, +∞)上是减函数,所以 D 错误.
A.[1,2]
B.12,2
C.(1,2]
D.21,2
【思路导引】分别考虑 x>0,x<0,分界点三个方面的因素求范围.
【解析】选 A.因为函数 f(x)=( -2x2b+-(1)2-x+b)b-x,1,x≤x0>,0, 2b-1>0,
在 R 上为增函数,所以 2-2 b≥0, 解得 1≤b≤2. b-1≥0,
3.函数 y=|x-1|的单调增区间是____________. 【解析】作出函数的图像,如图所示,所以函数的单调递增区间为[1,+∞).
答案:[1,+∞)
图像法求函数单调区间的步骤 (1)作图:作出函数的图像; (2)结论:上升图像对应单调递增区间,下降图像对应单调递减区间.
【补偿训练】 画出函数 y=|x|(x-2)的图像,并指出函数的单调区间. 【解析】y=|x|(x-2)=x-2-x22+x=2x( =x--(1)x-2-1)1,2+x≥1,0,x<0, 函数的图像如图所示. 由函数的图像知:函数的单调递增区间为(-∞,0]和[1,+∞), 单调递减区间为(0,1).
类型三 函数单调性的应用(数学运算、逻辑推理) 利用单调性解函数不等式 【典例】已知函数 f(x)的定义域为[-2,2],且 f(x)在区间[-2,2]上是增函数, f(1-m)<f(m),则实数 m 的取值范围为________. 【思路导引】从定义域,单调性两个方面列不等式求范围.
高一数学北师大版必修1教学教案第二章3函数的单调性

函数的单调性教学设计与反思一.教材分析函数的单调性是函数的重要性质.从知识的网络结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用.函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用.根据函数单调性在整个教材内容中的地位与作用,本节课教学应实现如下教学目标【教学目标】1.知识与技能理解函数单调性概念;掌握用定义判断和证明一些简单函数单调性的方法;了解函数单调区间。
2.过程与方法培养从概念出发,进一步研究其性质的意识及能力;体会感悟数形结合、分类讨论的思想.3.情感态度价值观由合适的例子引发学生探求数学知识的欲望,突出学生的主观能动性,激发学生学习数学的兴趣.【教学重难点】重点:函数单调性的概念,判断和证明一些简单函数单调性的方法.难点:关于函数单调性概念的符号语言的认知,应用定义证明单调性的代数推理论证【教学过程】一.导课要研究函数的单调性,我们先从熟知的函数入手,下面请同学们作出函数y=x+1 和y=x+1 的图像.1.思考: 从左到右看,图像的变化趋势如何?随着自变量的变化,函数值如何变化?2.观察动画回答:(1)由函数y=x2图像,观察图像的变化趋势。
(2)函数y=x2中y随x如何变化?那么,我们怎样用符号语言表达函数值的增减变化呢?〖设计意图〗从图像直观感知函数单调性在学生已有认知结构的基础上提出新问题,使学生明了,过去所研究的函数的相关特征,就是现在所学的函数的单调性,从而加深对函数单调性概念的理解.二.新知探究1.请同学们阅读课本37页(3分钟)2.老师强调相关概念:函数递增时,图像是_________函数递减时, 图像是________在函数y=f(x)的定义域内的一个区间内A上,如果对于任意两个数x1,x2∈A,当x1<x2时,都有f(x1)<f(x2),那么就称函数在区间A上是增加的,有时也称函数在区间A上是递增的。
高一数学函数的单调性3

(1, 2)
.
x2 2.证明函数 y x 1 在区间 (1, ) 上是减函数.
a 3.判断函数 f ( x) x (a 0) 在区间 (0, 4)上 x 的单调性.
四、
本节课我们从函数单调性的概念入手, 着重学习了: 1.证明函数单调性的方法; 2.函数单调区间的求法.
二.
a 例1.证明函数 f ( x) x (a 0) 在区间 x
(0, a ) 上是减函数.
用定义证明函数 f ( x) 在区间 M 上的单 调性的一般步骤:
2.作差变形;3.定号得出结论. 1.取值;
已知函数f ( x) 的定义域为D ,在 D的某 ' 个区间 M 上,如果 f ( x) 0,那么函数 f ( x) ' M 在区间 上是增函数;如果 f ( x) 0 ,那 么函数 f ( x) 在区间 M 上是减函数.
•
:
1.函数 f ( x) x 2 6 x 5 的单调增区间是 ;单调减区间是 . 2.函数 f ( x) log0.7 ( x2 6x 5) 的单调增区 间是 ;单调减区间是 .
.
许昌高中
罗建军
(,0) (0, )
y
1 y x
o
x
/ 卫斯理小说网
干系/他の本意是出手相救/假设结局别如意/他还别如当初别出那各手/虽然他们之间从没什么谈论过名分问题/可是霍沫是各兰心蕙质の女子/怎么可能想别到那壹层关系?所以当王爷提出/名分/问题の时候/由于她早早就深思熟虑过/当即没什么 丝毫迟疑地回复道:/回爷/那壹辈子/霍沫真是啥啊念想也没什么/若别是十三爷/霍沫现在也就是孤魂野鬼壹各/若别是您/霍沫现在也就是贫尼壹名/两位爷の救命、知遇之恩/霍沫就是壹辈子给您们当牛做马也
函数的单调性课件-2022-2023学年高一上学期数学苏教版(2019)必修第一册

(3)最大(小)值定义中的“存在”是说定义域中至少有一个实数使等号成立,也就是说y=f(x)的图象与直线y= f(x0)
至少有一个交点.
高中数学
示例
必修第一册
配套江苏版教材
1 + 2 +
=
1 + 2 +
则f(x1)-f(x2)=
1+
−
1 +
- 1+
−
2 +
=
− −
− 2 −1
=
1 + 2 +
1 + 2 +
.
∵ a>b>0,x2>x1>-b,∴ a-b>0,x2-x1>0,x2+b>0,x1+b>0,
∴ f(x1)-f(x2)>0,即f(x1)>f(x2),
f(x)在[0,a]上单调递减,在[a,2]上单调递增,
所以f(x)min=f(a)=-1-a2,f(x)max=f(0)=-1.
(4)当a>2时,由图可知,f(x)在[0,2]上单调递减,
所以f(x)min=f(2)=3-4a,f(x)max=f(0)=-1.
综 上 , f ( x )
−1, < 0,
综上,函数y=f (x)在(0, ]上是减函数,在[ ,+∞)上是增函数.
高中数学
必修第一册
配套江苏版教材
【方法总结】
利用定义证明函数单调性的步骤
(1)取值:设x1,x2是该区间内的任意两个值,且x1<x2.
3.2.1 函数的单调性(原卷版)高一数学同步讲义(新教材人教A版必修第一册)

3.2.1 函数的单调性一、知识点归纳一般地,设函数f(x)的定义域为I,区间D⊆I:(1)如果⊆x1,x2⊆D,当x1<x2时,都有f(x1)<f(x2),那么就称函数f(x)在区间D上单调递增.特别地,当函数f(x)在它的定义域上单调递增时,我们就称它是增函数.(2)如果⊆x1,x2⊆D,当x1<x2时,都有f(x1)>f(x2),那么就称函数f(x)在区间D上单调递减.特别地,当函数f(x)在它的定义域上单调递减时,我们就称它是减函数.(3)如果函数y=f(x)在区间D上单调递增或单调递减,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.二、题型分析题型一用定义法证明(判断)函数的单调性【例1】已知函数f(x)=1x2-1.(1)求f(x)的定义域;(2)判断函数f(x)在(1,+∞)上的单调性,并加以证明.【规律方法总结】利用定义证明函数单调性的步骤10 / 1010 / 10________________________________________________________________________________________________________________________________________________________________________________________【变式1】试用函数单调性的定义证明:f (x )=2xx -1在(1,+∞)上是减函数.题型二 求函数的单调区间【例2】已知f (x )=⎩⎪⎨⎪⎧x 2+4x +3,-3≤x <0,-3x +3,0≤x <1,-x 2+6x -5,1≤x ≤6.(1)画出这个函数的图象; (2)求函数的单调区间.【规律方法总结】图象法求函数单调区间的步骤________________________________________________________________________________________________________________________________________________________________________________________10 / 10【变式2】. 求下列函数的单调区间,并指出该函数在其单调区间上是增函数还是减函数.(1)f (x )=-1x ;(2)f (x )=⎩⎪⎨⎪⎧2x +1,x ≥1,5-x ,x <1;(3)f (x )=-x 2+2|x |+3.题型三 函数单调性的应用【例3】 (1)已知函数f (x )=-x 2-2(a +1)x +3.⊆若函数f (x )在区间(-∞,3]上是增函数,则实数a 的取值范围是________; ⊆若函数f (x )的单调递增区间是(-∞,3],则实数a 的值为________.(2)若函数f (x )=x 2+ax +b 在区间[1,2]上不单调,则实数a 的取值范围为________. 【规律方法总结】________________________________________________________________________________________________________________________________________________________________________________________【变式3】已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围.三、课堂达标检测10 / 101.如图是定义在区间[-5,5]上的函数y =f (x ),则下列关于函数f (x )的说法错误的是( )A .函数在区间[-5,-3]上单调递增B .函数在区间[1,4]上单调递增C .函数在区间[-3,1]⊆[4,5]上单调递减D .函数在区间[-5,5]上没有单调性2.如果函数f (x )=x 2-2bx +2在区间[3,+∞)上是增函数,则b 的取值范围为( ) A .b =3 B .b ≥3 C .b ≤3D .b ≠33.下列函数在区间(0,+∞)上不是增函数的是( ) A .y =2x +1 B .y =x 2+1 C .y =3-xD .y =x 2+2x +14.函数y =f (x )的图象如图所示,其增区间是( )A .[-4,4]B .[-4,-3]⊆[1,4]C .[-3,1]D .[-3,4]5.下列函数中,在区间(0,+∞)上是减函数的是( ) A .y =-1xB .y =x10 / 10C .y =x 2D .y =1-x6.函数y =(x +4)2的递减区间是( ) A .(-∞,-4) B .(-4,+∞) C .(4,+∞)D .(-∞,4)7.证明:函数y =xx +1在(-1,+∞)上是增函数.8.利用单调性的定义,证明函数y =x +2x +1在(-1,+∞)上是减函数.四、课后提升作业10 / 10一、选择题1.函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,x -1,x <0在R 上( )A .是减函数B .是增函数C .先减后增D .先增后减2.函数f (x )=|x |,g (x )=x (2-x )的递增区间依次是( ) A .(-∞,0],(-∞,1] B .(-∞,0],(1,+∞) C .[0,+∞),(-∞,1]D .[0,+∞),[1,+∞)3.函数y =x 2-6x +10在区间(2,4)上( ) A .单调递增 B .单调递减 C .先减后增D .先增后减4.设(a ,b ),(c ,d )都是f (x )的单调递增区间,且x 1⊆(a ,b ),x 2⊆(c ,d ),x 1<x 2,则f (x 1)与f (x 2)的大小关系为( ) A .f (x 1)<f (x 2) B .f (x 1)>f (x 2) C .f (x 1)=f (x 2)D .不能确定5.已知函数f (x )是R 上的增函数,A (0,-1),B (3,1)是其图象上的两点,则-1<f (x )<1的解集是( ) A .(-3,0)B .(0,3)C .(-∞,-1]⊆[3,+∞)D .(-∞,0]⊆[1,+∞)6.若f (x )=-x 2+2ax 与g (x )=ax 在区间[1,2]上都是减函数,则a 的取值范围是( )A .(-1,0)⊆(0,1)B .(-1,0)∩(0,1)C .(0,1)D .(0,1]7.下列函数中,在(0,2)上是增函数的是( )10 / 10A .y =1xB .y =2x -1C .y =1-2xD .y =(2x -1)28.函数f (x )=|x |,g (x )=x (2-x )的递增区间依次是( ) A .(-∞,0],(-∞,1] B .(-∞,0],(1,+∞) C .[0,+∞),(-∞,1]D .[0,+∞),[1,+∞)9.下列函数中,满足“对任意x 1,x 2⊆(0,+∞),都有f (x 1)-f (x 2)x 1-x 2>0”的是( )A .f (x )=2xB .f (x )=-3x +1C .f (x )=x 2+4x +3D .f (x )=x +1x10.若函数y =ax 与y =-bx 在(0,+∞)上都是减函数,则函数y =ax 2+bx 在(0,+∞)上( )A .单调递增B .单调递减C .先增后减D .先减后增11.定义在R 上的函数f (x ),对任意x 1,x 2⊆R(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,则( )A .f (3)<f (2)<f (1)B .f (1)<f (2)<f (3)C .f (2)<f (1)<f (3)D .f (3)<f (1)<f (2) 12.f (x )为(-∞,+∞)上的减函数,a ⊆R ,则( ) A .f (a )<f (2a ) B .f (a 2)<f (a ) C .f (a 2+1)<f (a )D .f (a 2+a )<f (a )二、填空题13.如果二次函数f (x )=x 2-(a -1)x +5在区间⎝⎛⎭⎫12,1上是增函数,则实数a 的取值范围为________.10 / 1014.若函数f (x )=1x +1在(a ,+∞)上单调递减,则a 的取值范围是________.15.已知f (x )在定义域内是减函数,且f (x )>0,在其定义域内下列函数为单调增函数的是________. ⊆y =a +f (x )(a 为常数); ⊆y =a -f (x )(a 为常数); ⊆y =1f (x );⊆y =[f (x )]2.16.函数y =|x |(1-x )的单调递增区间为________.17.已知函数f (x )为定义在区间[-1,1]上的增函数,则满足f (x )<f ⎝⎛⎭⎫12的实数x 的取值范围为________. 18.若函数f (x )=8x 2-2kx -7在[1,5]上为单调函数,则实数k 的取值范围是________. 19.若函数f (x )=x 2+a |x -2|在(0,+∞)上单调递增,则实数a 的取值范围是________. 20.已知定义在R 上的函数y =f (x )满足以下三个条件: ⊆对于任意的x ⊆R ,都有f (x +1)=-f (x ); ⊆函数y =f (x )的图象关于直线x =1对称; ⊆对于任意的x 1,x 2⊆[0,1],且f (x 1)-f (x 2)x 2-x 1>0.则f (-1),f ⎝⎛⎭⎫32,f (2)的大小顺序是________.(用“<”连接)三、解答题21.用定义判断函数f (x )=ax +1x +2⎝⎛⎭⎫a ≠12在(-2,+∞)上的单调性.10 / 1022.已知一次函数f (x )是R 上的增函数,g (x )=f (x )(x +m ),且f (f (x ))=16x +5. (1)求f (x )的解析式;(2)若g (x )在(1,+∞)上单调递增,求实数m 的取值范围.23.已知函数f (x )=x -a x +a2在(1,+∞)上是增函数,求实数a 的取值范围.10 / 1024.已知函数f (x )对任意的a ,b ⊆R ,都有f (a +b )=f (a )+f (b )-1,且当x >0时,f (x )>1. (1)求证:f (x )是R 上的增函数;(2)若f ⎝⎛⎭⎫x y =f (x )-f (y ),f (2)=1,解不等式f (x )-f ⎝⎛⎭⎫1x -3≤2.。
函数的单调性教学设计3

《函数的单调性》教学设计一、教学内容解析本节内容是人教A版必修一教材第一章第三节内容,是一节概念性知识,属于函数的基本性质.本节内容是学生在理解函数概念后学习的函数的第一个性质,起着承前启后的作用.一方面,初中数学的很多内容在解决函数的某些问题中得到了充分的使用,另一方面,函数的单调性与前一节函数的概念和图像的知识的延续有着密切的联系,函数的单调性与后面的奇偶性是今后研究指数函数、对数函数、幂函数及三角函数等其他函数的基础.学生在观察函数图像时,首先注意到的是图像的上升或下降,但是由图像直观获得的结论还需要从数量关系的角度通过逻辑推理加以论证.教学中充分利用函数图像,让学生观察图像获得函数基本性质的直观理解,这样处理充分表达了数形结合思想,也为下一步学习函数其他性质提供了方法依据.由此确定本节课的教学重点为:重点:函数单调性的概念、判断和证明.研究函数性质时的“三步曲”是:第一步,观察图像,描绘函数图像特征;第二步,结合图、表,用自然语言描绘函数图像特征;第三步,用数学符号语言定义函数性质.本节课特别重视从几个实例的共同特征到一般性质的概括过程,并引导学生用数学语言表达出来,正是形成数学概念,培养学生探究水平的契机.因为函数图像是发现函数性质的直观载体,所以,教学中充分使用信息技术创设教学情境,以利于学生作函数图像,有更多的时间用于思考、探究函数的单调性.二、教学目标设置根据本节课的教学内容以及学生的认知水平,确定了本节课的教学目标:知识与技能:从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.过程与方法:通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的水平和语言表达水平;通过对函数单调性的证明,提升学生的推理论证水平.情感、态度、价值观:通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程.三、学生学情分析本节课的教学对象是长春市实验中学高一年级的学生.1.学生已有认知基础一是学生通过初中的数学学习,已有研究一次函数、二次函数等初等函数的直接经验,对函数的简单性质有初步的理解;二是前一节已经学习过函数的概念,对函数的图像也有一定的感性认知;三是水平上具备了一定的观察、类比、分析、归纳水平.2.达成目标所需要的认知基础学生需要对研究目标、方法和途径有初步理解,具备知识整合和主动迁移的水平,从形的直观理解、感性认知到形成抽象的数学概念,具有数形结合的意识和归纳推理的水平.3.难点及突破策略对于函数单调性,学生的认知困难主要在两个方面:(1)要求用准确的数学符号语言去刻画图象的上升与下降,这种由形到数的翻译,从直观到抽象的转变对高一的学生是比较困难的;(2)单调性的证明是学生在函数内容中首次接触到的代数论证内容,而学生在代数方面的推理论证水平是比较薄弱的.由此确定的难点及突破策略为:难点:(1)函数单调性概念的形成;(2)理解自变量在区间[a,b]上的“任意”取值的意义.突破策略:(1)在探索概念阶段, 让学生经历从直观到抽象、从特殊到一般、从感性到理性的认知过程,完成对单调性定义的三次理解,使得学生对概念的理解持续深入.(2)在应用概念阶段,通过对证明过程的分析,协助学生掌握用定义证明函数单调性的方法和步骤.(3)教师启发引导,组织学生交流研讨,表达思维过程.四、教学策略设计根据本节课的教学内容、学生情况和教学目标,教学中采用“教师设疑引导,学生自主探究”的教学方法.通过启发引导,激发学生的思维,鼓励学生发现、探究、合作、展示,使其在探究中对问题本质的思考逐步深入,思维水平持续提升.针对本节课的重点——函数单调性的判断和证明,教学中采用直观到抽象,特殊到一般,感性到理性的教学过程,先通过讨论具体函数图像的上升或下降直观描绘发现问题,再把具体的、直观形象的单调性特征抽象出来,用数学符号语言描绘.本节课的难点之一是单调性概念的得出.教学中采用教师启发引导,学生自主、合作、探究的教学方法,以及多媒体直观教学的恰当应用,使学生从感性理解上升到理性理解,从“形”的直观到“数”的推理,从“无限”验证转化为“有限”证明,使学生对单调性概念的理解水到渠成,逐层深入,步步升华.本节课的另一个难点是为什么要在区间上“任意”取两个大小不等的实数21x x ,.针对这个难点,教学中采取两个措施.一是引导学生通过对图像的观察、分析,自主形成理解;二是通过小组研讨的方式让学生实行合作探究,加深对概念中“任意”含义的理解.五、教学过程设计【教学过程】一、创设情境,明确目标生活中的实例:情境一:我市某日24小时内的气温变化图.情境二:艾宾浩斯记忆遗忘曲线这是一条衰减曲线,随着时间的推移,记忆的保持两逐渐减小,第一天遗忘的速度最快,一天之后遗忘的速度趋于缓慢,这个规律提醒我们:在学习新知识的时候,一定要即时实行复习和巩固,以便加深理解和记忆.生活中很多与数据相关的问题:比方燃油价格, 股票行情,水位高低等等,理解这些数据的变化规律,对我们的生活很有协助.而这些数据的变化,用函数的观点看,其实就是随着自变量变化时,函数值的变化规律.【学生活动】感受生活中的数学,体会理解函数的变化规律有助于把握事物的变化规律.【教师活动】通过实例,引导学生体会生活中的数学无处不在,数学对生活的影响无处不在.【设计意图】由生活情境引入新课,激发兴趣.二、自主学习,启发引导概念生成——“形”的直观感知问题:函数是描绘事物运动变化规律的数学模型.假如理解了函数的变化规律,那么也就基本把握了相对应事物的变化规律.在事物变化过程中,保持不变的特征就是这个事物的性质.观察下列图中各个函数的图像,你能说说它们分别反映了相对应函数的哪些变化规律吗?【学生活动】从个人观察的角度,描绘图像反映的函数的变化规律.【教师活动】肯定学生多角度发现函数变化规律,并纠正学生语言表述的准确性.提出函数的性质有很多,引出本节课要研究的是随着自变量持续增大,函数值是增大还是减小这个特征.【学生活动】观察函数2+=x y ,2+-=x y ,2x y =,x y 1=的图象,并且观察自变量变化时,函数值有什么变化规律?【教师活动】引导学生读图分析,直观感知单调性这个性质.【设计意图】函数的变化规律反映了函数的性质,研究函数的变化规律使我们更能够把握相对应事物的变化规律,引出研究函数性质的实际意义.培养学生读图和分析总结规律的水平. 得出描绘性定义:函数单调性的描绘性...定义:设函数的定义域为I ,区间I D ⊆,在区间D 上,若函数的图像(从左至右看)总是上升的,则称函数在区间D 上是增函数,区间D 称为函数的单调增区间;在区间D 上,若函数的图像(从左至右看)总是下降的,则称函数在区间D 上是减函数,区间D 称为函数的单调减区间.【学生活动】学生完成对函数单调性的直观理解.....根据单调性的定义,完成教材29页例1: 定义在区间[]5,5-上的函数)(x f y =的图象,根据图象说出)(x f y =的单调区间,以及在每一单调区间上,它是增函数还是减函数.【教师活动】引导学生理解函数的单调性是对定义域内某个区间来说的,是函数的部分性质.并提出图像解决问题不够精确严谨,还要有数量上的准确刻画.【设计意图】从“形”的角度直观理解函数单调性的意义,并铺垫单调性是一个区间概念.三、合作探究,互助研讨概念生成——“数”的抽象刻画探究一:根据函数的定义,对于自变量x 的每一个确定的值,变量y 有唯一确定的值与它对应.那么,当一个函数在某一区间上是单调递增(或单调递减)时,相对应的,自变量的值.....与对应的函数值......的变化规律....是怎样的?(几何画板演示) 【设计意图】从“形”到“数”的转化,从图像的直观理解,到变量的数值增减理解,形象的“上升”和“下降”的规律对应到函数在变量值上的变化规律.概念生成——单调性的严格定义探究二:函数)(x f 在区间),(b a 上有无数个自变量x ,满足当b x x a <<<< 21时,有)()()()(21b f x f x f a f <<<< ,那么)(x f 在区间),(b a 上一定单调递增吗?说明理由(可举例或画图)【设计意图】自变量不能被穷举的情况下,引导学生在给定区间内任意取两个自变量1x ,2x ,体会无限向有限的转化思想.探究三:如何从解析式的角度说明2)(x x f =在[)+∞,0为增函数? 【设计意图】通过讨论,学生发现结合解析式实行严密化、精确化的研究的方法.在区间[)0,+∞上,任取两个12,x x ,得到221122(),()f x x f x x ==,当12x x <时,有12()()f x f x <则说明函数2()f x x =在[)0,+∞为增函数. 【学生活动】通过先自主再合作,小组互助研讨解决探究问题,并展示自己的观点.【教师活动】提出问题,放手学生解决,巡视、适当点拨.【设计意图】从“数”的角度深入严谨理解函数单调性的意义,培养学生思考的习惯和探究问题的水平,通过合作学习互促提升,突破难点.通过上述探究,得出增函数严格的定义,然后学生类比得出减函数的定义.板书定义: 一般地,设函数)(x f 的定义域为I :假如对于定义域I 内某个区间D 上的任意两个自变量的值21x x ,,当21x x <时,都有)()(21x f x f <,那么就说函数)(x f 在区间D 上是增函数;对于定义域I 内某个区间D 上的任意两个自变量的值21x x ,,当21x x <时,都有)()(21x f x f >,那么就说函数)(x f 在区间D 上是减函数.判断与证明单调性判断以下说法是否准确?(1)已知x x f 1)(=,因为)1()2(f f <-,所以函数)(x f 是增函数 (2)若函数)(x f 满足)2()1(f f <,则函数)(x f 在区间]2,1[上是增函数.(3)若函数)(x f 在区间(]2,1和)3,2(上均为增函数,则函数)(x f 在区间(1,3)上为增函数.(4)因为函数x x f 1)(=在区间)0,(-∞和),0(+∞上都是减函数,所以x x f 1)(=在),0()0,(+∞⋃-∞上是减函数.【学生活动】先自主思考,再小组交流,得出结论.【教师活动】纠正学生语言的准确性,给出合理评价.【设计意图】1.从特殊到一般,从“形”到“数”,从直观到抽象,提升理解的高度和严谨性,加深理解单调性的严格定义,并培养学生类比、归纳的水平.2.通过概念辨析,强调(1)单调性是对定义域内某个区间来说的,所以谈单调性离不开区间;(2)定义中的“任意”是关键;(3)函数在定义域内的两个区间A ,B 上都是增(或减)函数,一般不能认为函数在B A ⋃上是增(或减)函数.四、精心点拨,启发引导1.例题:物理学中的玻意耳定律V k p =(为正常数)告诉我们,对于一定量的气体,当其体积减小时,压强将增大.试用函数的单调性证明之.2.巩固练习:画出反比例函数xx f 1)(=的图象. (1)这个函数的定义域I 是什么?(2)它在定义域I 上的单调性是怎样的?证明你的结论.【学生活动】自主完成,展示过程.【教师活动】引导学生归纳证明函数单调性的步骤:取值、比较、变形、定号、结论. 投影学生证明过程,实行点拨和要点强调.【设计意图】初步掌握根据定义证明函数单调性的方法和步骤.等价形式进一步发展能够得到导数法,为用导数方法研究函数单调性埋下伏笔.五、归纳小结,整理提升学生交流在本节课学习中的体会、收获,交流学习过程中的体验和感受,师生合作共同完成小结.1.小结(1) 概念探究过程:直观到抽象、感性到理性、无限到有限.(2) 证明方法和步骤:取值、比较、变形、定号、结论.(3) 数学思想方法和思维方法:数形结合,等价转化,类比等.2.作业书面作业:课本第39页 习题1.3 A 组第1、2、3题. 课后探究:研究函数xx y 1+=的单调性,并证明你的结论. 板书设计:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中华民族是一个生于忧患、历尽艰辛与苦难的民族,但中华民族也是一个自强不息、生生不灭、虽饱受挫折又不断浴火重生的伟大民族。我们常说“多难兴邦”,这其中隐含着中华民族在国难当头 之时,从来就不会抛弃的同舟共济、共克时艰的家国情怀和担当精神。越是大灾大难面前,越能迸发和凝聚起万众一心的坚强力量。当祖国遭灾、同胞罹难、整个民族在承受着巨大的创伤和悲痛的时候, 一家、一户、一个人,又岂能独善其身,奢望什么更好的命运?诗人邵燕祥在《致人民》一诗中写道:“即使把我放逐到别的星球,我也不能忘怀我祖国的命运。抛我于天之涯地之角举目无亲,我仍然 依傍着、亲近着我的人民。”这就是中华民族由来已久的最宝贵的精神基因和民族秉性之一。爱拼真人游戏规则
ห้องสมุดไป่ตู้