高一数学复习知识点讲解专题训练21---函数的单调性

合集下载

高一数学函数的单调性知识点

高一数学函数的单调性知识点

高一数学知识点函数的单调性一、函数单调性知识结构【知识网络】1.函数单调性的定义,2.证明函数单调性;3.求函数的单调区间4.利用函数单调性解决一些问题;5.抽象函数与函数单调性结合运用二、重点叙述1. 函数单调性定义(一)函数单调性概念(1)增减函数定义一般地,设函数y=f(x)的定义域为I,对于定义域I内某个区间D上的任意两个自变量的值x1、x2 :如果当x1<x2时,都有f(x1 ) <f(x2 ),那么就说函数y=f(x)在区间D上是增函数;如果当x1<x2时,都有f(x1 ) >f(x2 ),那么就说函数y=f(x)在区间D上是减函数。

如果函数在区间D上是增函数或减函数,那么就说函数在这一区间具有(严格的)单调性,区间D叫做的单调区间。

(2)函数单调性的内涵与外延⑴函数的单调性也叫函数的增减性。

函数的单调性是对某个区间而言的,是一个局部概念。

⑵由函数增减性的定义可知:任意的x1、x2∈D,① x1<x2 ,且f(x1 ) <f(x2 ),y=f(x)在区间D上是增函数;(可用于判断或证明函数的增减性)② y=f(x)在区间D上是增函数,且x1<x2 , f(x1 ) <f(x2 ) ;(可用于比较函数值的大小)③ y=f(x)在区间D上是增函数,且f(x1 ) <f(x2 ), x1<x2。

(可用于比较自变量值的大小)2. 函数单调性证明方法证明函数单调性的方法有:定义法(即比较法);导数法。

实际上,用导数方法证明一般函数单调性是很便捷的方法,定义法是基本方法,常用来证明解决抽象函数或不易求导的函数的单调性。

(1)定义法:利用增减函数的定义证明。

在证明过程中,把数式的大小比较转化为求差比较(或求商比较)。

⑴转化为求差比较证明程序:①设任意的x 1、x 2∈D,使x 1<x 2 ;②求差—变形—判断正负;此为关键步骤,变形大多要“因式分解”。

求差:; 变形:化简、因式分解; 判断:差的符号的正或负。

高考数学专题复习 函数的单调性(学生版)

高考数学专题复习  函数的单调性(学生版)

第二讲 函数的单调性【套路秘籍】1.函数的单调性 (1)单调函数的定义自左向右看图象是上升的如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间. 2.函数的最值【套路修炼】考向一 单调区间求解【例1】(1)下列函数中,定义域是R 且为增函数的是( )A.y =2-xB.y =xC.y =log 2xD.y =-1x(2)函数f (x )=ln (x 2-2x -8) 的单调递增区间是( )A .(-∞,-2)B .(-∞,1)C .(1,+∞)D .(4,+∞) (3)求函数f (x )=|x 2-4x +3|的单调区间. (4)求函数f (x )=x -ln x 的单调区间.(5)函数33y x x =-的单调增区间为__________.【举一反三】1.下列函数中,在(0,+∞)上单调递减的是( )A . f(x)=lnxB . f(x)=(x −1)2C . f(x)=2−xD . f(x)=x 3 2.函数f (x )=log 2(4+3x −x 2)的单调递减区间是( ) A . (−∞,32] B . [32,+∞) C . (−1,32] D . [32,4)3.函数()| g x x =的单调递增区间是 ( )A . [)0+∞,B . (]0-∞,C . (]2-∞-,D . [)2+-∞,考向二 单调性的运用一---比较大小【例2】定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈(-∞,0)(x 1≠x 2),都有f (x 1)-f (x 2)x 1-x 2<0.则下列结论正确的是( )A .f (0.32)<f (20.3)<f (log 25) B .f (log 25)<f (20.3)<f (0.32) C .f (log 25)<f (0.32)<f (20.3) D .f (0.32)<f (log 25)<f (20.3)【举一反三】1.已知f (x )=2x-2-x,117459279,,log 97a b c -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭则f (a ),f (b ),f (c )的大小顺序为( ) A.f (b )<f (a )<f (c ) B.f (c )<f (b )<f (a ) C.f (c )<f (a )<f (b )D.f (b )<f (c )<f (a )2.已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( )A .c >a >bB .c >b >aC .a >c >bD .b >a >c 3.设a =ln22,b =ln33,c =1e ,则( )A . c <a <bB . c <b <aC . a <b <cD . b <a <c 4.已知x =1.10.1,y =0.91.1,z =log 2343,则x ,y ,z 的大小关系是( )A . x >y >zB . y >x >zC . y >z >xD . x >z >y考向三 单调性的运用二---解不等式【例3】(1)f(x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是( )A .(8,+∞)B .(8,9]C .[8,9]D .(0,8)(2)已知函数f (x )在(-∞,+∞)上单调递减,且为奇函数.若f (1)=-1,则满足-1≤f (x -2)≤1的x 的取值范围是( ) A.[-2,2] B.[-1,1] C.[0,4] D.[1,3]【举一反三】1.若log a 23<1(a >0且a ≠1),则实数a 的取值范围是( )A . (0,23)B . (0,23)∪(1,+∞) C . (1,+∞) D . (0,1)2.设函数f (x )={2x , x ≥0x , x <0 ,则满足f (x +1)<f (2x )的x 的取值范围是( )A . (−∞ , −1]B . (1 , +∞)C . (−1 , 0)D . (−∞ , 0)3.定义在R 上的偶函数f(x)在[0,+∞)上单调递增,且f(1)=0,则满足f(log 12x)>0的x 的集合为______.4.设函数f(x)=x 3+1,若f(1−2a)<f(a),则实数a 的取值范围是 _______。

函数单调性知识点总结高中

函数单调性知识点总结高中

函数单调性知识点总结高中一、基本概念函数单调性是指在定义域上函数值的变化趋势。

具体来说,如果对于函数f(x),当x1 < x2时有f(x1) < f(x2),则称函数f(x)在区间(x1, x2)上是增函数;如果对于函数f(x),当x1 <x2时有f(x1) > f(x2),则称函数f(x)在区间(x1, x2)上是减函数。

综合起来,可以将函数的单调性分为增函数、减函数和不单调函数。

其次,函数的单调性还与导数的正负有关。

若函数f(x)在区间I上可导,则:1. 若f'(x) > 0对于x∈I,即f(x)严格递增;2. 若f'(x) < 0对于x∈I,即f(x)严格递减;3. 若f'(x) = 0对于x∈I,即f(x)在区间I上是常数函数或拐点函数,不能确定其单调性。

对于定义在闭区间[a, b]上的函数f(x),其单调性还需考虑在端点处的情况。

若f(x)在[a, b]上是增函数,且在a处有定义域,则称f(x)在[a, b]上是关于x的增函数;若f(x)在[a, b]上是减函数,且在a处有定义域,则称f(x)在[a, b]上是关于x的减函数。

二、函数单调性的判定方法1. 利用函数的导数判定单调性函数f(x)在区间I上是增函数,当且仅当f'(x) > 0对于x∈I;函数f(x)在区间I上是减函数,当且仅当f'(x) < 0对于x∈I。

因此,判定函数的单调性,可通过求导数并考察导数的正负来进行。

2. 利用函数的增减表判定单调性若函数f(x)在区间I上可导,则可根据f'(x)的正负或0来构建增减表。

增减表是一个用来判定函数单调性的表格,通过列出各点的f'(x)值,来判断函数在各点的单调性。

三、函数单调性的应用1. 函数的最值问题对于一个定义在区间[a, b]上的函数f(x),若可判定出f(x)在[a, b]上为增函数,则f(x)在[a, b]上的最小值为f(a),最大值为f(b);若可判定出f(x)在[a, b]上为减函数,则f(x)在[a, b]上的最小值为f(b),最大值为f(a)。

高考专题函数单调性知识点

高考专题函数单调性知识点

高考专题函数单调性知识点:函数单调性知识点详解导言:高考数学中,函数单调性是一个重要而常见的考点。

理解和掌握函数单调性的相关知识点,不仅是解题的关键,也是学习高中数学的基础。

本文将从函数单调性的定义、判定和应用三个方面详细介绍这一知识点。

一、函数单调性的定义函数的单调性是指函数在定义域内的全部或部分区间上是递增或递减的性质。

具体地说,对于定义在闭区间[a, b]上的函数f(x),如果对于任意的x1和x2(x1<x2),都有f(x1)≤f(x2),则称函数f(x)在闭区间[a, b]上是递增函数;如果对于任意的x1和x2(x1<x2),都有f(x1)≥f(x2),则称函数f(x)在闭区间[a, b]上是递减函数。

二、函数单调性的判定1. 导数法:对于可导函数,通过判断导数的正负性可以确定函数的单调性。

如果函数的导数f'(x)>0恒成立,则函数递增;如果函数的导数f'(x)<0恒成立,则函数递减。

2. 一阶导数法:对于一次可导函数,通过一阶导数的增减性可判断函数的单调性。

如果在某一区间上一阶导数f'(x)递增,则函数递增;如果一阶导数f'(x)递减,则函数递减。

3. 二阶导数法:对于二次可导函数,通过二阶导数的正负性可以判定函数的单调性。

如果二阶导数f''(x)>0恒成立,则函数为凹函数,即在该区间递增;如果二阶导数f''(x)<0恒成立,则函数为凸函数,即在该区间递减。

三、函数单调性的应用1. 求函数的单调增区间和单调减区间:通过判定函数的单调性,可以求出函数的单调增区间和单调减区间。

在解题时,常常需要利用函数的单调性来确定函数的取值范围、最值、零点等。

2. 求函数的最值:对于持续递增(递减)的函数来说,该函数的最小值(最大值)可以通过求出定义域的最小值(最大值)来得到。

这对于优化问题的解决非常有用。

完整版)函数的单调性知识点与题型归纳

完整版)函数的单调性知识点与题型归纳

完整版)函数的单调性知识点与题型归纳备考知考情:在高考中,理解函数的单调性、最大值、最小值及其几何意义以及运用基本初等函数的图象分析函数的性质是非常重要的。

函数的单调性是热点,常见问题有求单调区间、判断函数的单调性、求参数的取值、利用函数单调性比较数的大小以及解不等式等。

客观题主要考查函数的单调性,最值的确定与简单应用。

题型多以选择题、填空题的形式出现,若与导数交汇命题,则以解答题的形式出现。

一、知识梳理在研究函数单调性之前,必须先求函数的定义域。

函数的单调区间是定义域的子集,单调区间不能并。

知识点一:函数的单调性单调函数的定义:若函数f(x)在区间D上是增函数或减函数,则称函数f(x)在这一区间上具有(严格的)单调性,区间D 叫做f(x)的单调区间。

注意:1.定义中x1,x2具有任意性,不能是规定的特定值。

2.函数的单调区间必须是定义域的子集。

3.定义有两种变式。

问题探究:1.关于函数单调性的定义应注意哪些问题?1)定义中x1,x2具有任意性,不能是规定的特定值。

2)函数的单调区间必须是定义域的子集。

3)定义有两种变式。

2.单调区间的表示注意哪些问题?单调区间只能用区间表示,不能用集合或不等式表示。

如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结。

知识点二:单调性的证明方法:定义法及导数法高频考点例1:规律方法1) 定义法:利用定义证明函数单调性的一般步骤是:①任取x1、x2∈D,且x1<x2;②作差f(x1)-f(x2),并适当变形(如“分解因式”、配方成同号项的和等);③依据差式的符号确定其增减性。

2) 导数法:x+1x+1a>0)由定义可知。

f(x1f(x2即f(x)在(-1,+∞)上为增函数.法二:导数法f′(x)=a(x+1)-axx+1)2ax+1)2a>0,x∈(-1,+∞))即f(x)在(-1,+∞)上为增函数.例2.(2)《名师一号》P16高频考点例1(2)判断函数f(x)=x2-2x+3在R上的单调性,并证明.法一:导数法f′(x)=2x-22(x-1)当x<1时,f′(x)<0,即f(x)在(-∞,1)上为减函数;当x>1时,f′(x)>0,即f(x)在(1,+∞)上为增函数.综上可知,f(x)在R上单调性不同.法二:二次函数法对于任意实数x,有f(x)=(x-1)2+2因为平方项非负,所以f(x)的最小值为2,即f(x)≥2;又因为当x=1时,f(x)=2,所以f(x)的最小值为2,即f(x)≥2;又因为当x=1时,f(x)=2,所以f(x)在(-∞,1)上为减函数,在(1,+∞)上为增函数.综上可知,f(x)在R上单调性不同.例3.(1)《名师一号》P16高频考点例1(3)设f(x)=exax-b,其中a,b为常数,证明:当a2<4时,f(x)在R上为凸函数;当a2>4时,f(x)在R上为下凸函数;当a2=4时,f(x)在R上为抛物线.证明:f′(x)=exaf′′(x)=ex当a20,即f(x)在R上为凸函数;当a2>4时,f′′(x)<0,即f(x)在R上为下凸函数;当a2=4时,f′′(x)=0,即f(x)为抛物线.因此,当a2<4时,f(x)在R上为凸函数;当a2>4时,f(x)在R上为下凸函数;当a2=4时,f(x)在R上为抛物线.2.1、解析:根据题意,我们可以列出不等式a-2<0,解得a≤2.代入原式得到实数a的取值范围为(-∞。

高一 函数的单调性及其最值知识点+例题+练习 含答案

高一 函数的单调性及其最值知识点+例题+练习 含答案

1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数y=f(x)的定义域为A,区间I⊆A,如果对于区间I内的任意两个值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间I上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间I上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)如果函数y=f(x)在区间I上是单调增函数或单调减函数,那么就说函数y=f(x)在区间I上具有单调性,区间I叫做y=f(x)的单调区间.2.函数的最值前提设函数y=f(x)的定义域为A,如果存在x0∈A,使得条件对于任意的x∈A,都有f(x)≤f(x0)对于任意的x∈A,都有f(x)≥f(x0) 结论f(x0)为最大值f(x0)为最小值判断下面结论是否正确(请在括号中打“√”或“×”)(1)在增函数与减函数的定义中,可以把“任意两个值x1,x2”改为“存在两个值x1,x 2”.( × )(2)对于函数f (x ),x ∈D ,若x 1,x 2∈D 且(x 1-x 2)·[f (x 1)-f (x 2)]>0,则函数f (x )在D 上是增函数.( √ )(3)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( × ) (4)函数y =1x 的单调递减区间是(-∞,0)∪(0,+∞).( × )(5)所有的单调函数都有最值.( × )(6)对于函数y =f (x ),若f (1)<f (3),则f (x )为增函数.( × )1.下列函数中,①y =1x -x ;②y =x 2-x ;③y =ln x -x ;④y =e x -x ,在区间(0,+∞)内单调递减的是__________. 答案 ①解析 对于①,y 1=1x 在(0,+∞)内是减函数,y 2=x 在(0,+∞)内是增函数,则y =1x -x 在(0,+∞)内是减函数;②,③,④函数在(0,+∞)上均不单调.2.若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a 的值为________. 答案 -6解析 由图象易知函数f (x )=|2x +a |的单调增区间是[-a 2,+∞),令-a2=3,∴a =-6.3.设函数y =x 2-2x ,x ∈[-2,a ],若函数的最小值为g (a ),则g (a )=________.答案 ⎩⎪⎨⎪⎧a 2-2a ,-2≤a <1,-1,a ≥1解析 ∵函数y =x 2-2x =(x -1)2-1, ∴对称轴为直线x =1.当-2≤a <1时,函数在[-2,a ]上单调递减, 则当x =a 时,y min =a 2-2a ;当a ≥1时,函数在[-2,1]上单调递减,在[1,a ]上单调递增, 则当x =1时,y min =-1.综上,g (a )=⎩⎪⎨⎪⎧a 2-2a ,-2≤a <1,-1,a ≥1.4.(教材改编)已知函数f (x )=2x -1,x ∈[2,6],则f (x )的最大值为________,最小值为________. 答案 2 25解析 可判断函数f (x )=2x -1在[2,6]上为减函数,所以f (x )max =f (2)=2,f (x )min =f (6)=25.5.(教材改编)已知函数f (x )=x 2-2ax -3在区间[1,2]上具有单调性,则实数a 的取值范围为________________________________________________________________________. 答案 (-∞,1]∪[2,+∞)解析 函数f (x )=x 2-2ax -3的图象开口向上,对称轴为直线x =a ,画出草图如图所示.由图象可知函数在(-∞,a ]和[a ,+∞)上都具有单调性,因此要使函数f (x )在区间[1,2]上具有单调性,只需a ≤1或a ≥2,从而a ∈(-∞,1]∪[2,+∞).题型一 确定函数的单调性(区间)命题点1 给出具体解析式的函数的单调性例1 (1)下列函数中,①y =ln(x +2);②y =-x +1;③y =(12)x ;④y =x +1x ,在区间(0,+∞)上为增函数的是________.(2)函数f (x )=log 12(x 2-4)的单调递增区间是____________.(3)函数y =-x 2+2|x |+3的单调增区间为_________________________. 答案 (1)① (2)(-∞,-2) (3)(-∞,-1],[0,1] 解析 (1)y =ln(x +2)的增区间为(-2,+∞), ∴在区间(0,+∞)上为增函数.(2)因为y =log 12t 在定义域上是减函数,所以求原函数的单调递增区间,即求函数t =x 2-4的单调递减区间,结合函数的定义域,可知所求区间为(-∞,-2).(3)由题意知,当x ≥0时,y =-x 2+2x +3=-(x -1)2+4;当x <0时,y =-x 2-2x +3=-(x +1)2+4,二次函数的图象如图.由图象可知,函数y =-x 2+2|x |+3在(-∞,-1],[0,1]上是增函数. 命题点2 解析式含参函数的单调性例2 试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性.解 设-1<x 1<x 2<1,f (x )=a ⎝ ⎛⎭⎪⎫x -1+1x -1=a ⎝⎛⎭⎪⎫1+1x -1,f (x 1)-f (x 2)=a ⎝ ⎛⎭⎪⎫1+1x 1-1-a ⎝ ⎛⎭⎪⎫1+1x 2-1=a (x 2-x 1)(x 1-1)(x 2-1),由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0, 故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 函数f (x )在(-1,1)上递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函数f (x )在(-1,1)上递增.综上,当a >0时,f (x )在(-1,1)上单调递减;当a <0时,f (x )在(-1,1)上单调递增. 引申探究若本题中的函数变为f (x )=axx 2-1 (a >0),则f (x )在(-1,1)上的单调性如何?解 设-1<x 1<x 2<1,则f (x 1)-f (x 2)=ax 1x 21-1-ax 2x 22-1 =ax 1x 22-ax 1-ax 2x 21+ax 2(x 21-1)(x 22-1)=a (x 2-x 1)(x 1x 2+1)(x 21-1)(x 22-1), ∵-1<x 1<x 2<1,∴x 2-x 1>0,x 1x 2+1>0,(x 21-1)(x 22-1)>0. 又∵a >0,∴f (x 1)-f (x 2)>0, ∴函数在(-1,1)上为减函数.思维升华 确定函数单调性的方法:(1)定义法和导数法,证明函数单调性只能用定义法和导数法;(2)复合函数法,复合函数单调性的规律是“同增异减”;(3)图象法,图象不连续的单调区间不能用“∪”连结.已知a >0,函数f (x )=x +ax(x >0),证明:函数f (x )在(0,a ]上是减函数,在[a ,+∞)上是增函数.证明 方法一 任意取x 1>x 2>0,则 f (x 1)-f (x 2)=⎝⎛⎭⎫x 1+a x 1-⎝⎛⎭⎫x 2+a x 2=(x 1-x 2)+⎝⎛⎭⎫a x 1-a x 2=(x 1-x 2)+a (x 2-x 1)x 1x 2=(x 1-x 2)⎝⎛⎭⎫1-a x 1x 2.当a ≥x 1>x 2>0时,x 1-x 2>0,1-ax 1x 2<0,有f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),此时,函数f (x )=x +ax (a >0)在(0,a ]上为减函数;当x 1>x 2≥a 时,x 1-x 2>0,1-ax 1x 2>0, 有f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),此时,函数f (x )=x +ax(a >0)在[a ,+∞)上为增函数;综上可知,函数f (x )=x +ax(a >0)在(0,a ]上为减函数,在[a ,+∞)上为增函数.方法二 f ′(x )=1-a x 2,令f ′(x )>0,则1-ax2>0,解得x >a 或x <-a (舍).令f ′(x )<0,则1-ax 2<0,解得-a <x <a .∵x >0,∴0<x <a .故f (x )在(0,a ]上为减函数,在[a ,+∞)上为增函数.题型二 函数的最值例3 已知函数f (x )=x 2+2x +ax ,x ∈[1,+∞),a ∈(-∞,1].(1)当a =12时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围. 解 (1)当a =12时,f (x )=x +12x +2在[1,+∞)上为增函数,f (x )min =f (1)=72.(2)f (x )=x +ax+2,x ∈[1,+∞).①当a ≤0时,f (x )在[1,+∞)内为增函数. 最小值为f (1)=a +3.要使f (x )>0在x ∈[1,+∞)上恒成立,只需a +3>0,即a >-3,所以-3<a ≤0. ②当0<a ≤1时,f (x )在[1,+∞)上为增函数,f (x )min =f (1)=a +3. 所以a +3>0,a >-3,所以0<a ≤1.综上所述,f (x )在[1,+∞)上恒大于零时,a 的取值范围是(-3,1]. 思维升华 求函数最值的常用方法:(1)单调性法:先确定函数的单调性,再由单调性求最值;(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值;(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.(1)函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.(2)已知函数f (x )=1a -1x (a >0,x >0),若f (x )在⎣⎡⎦⎤12,2上的值域为[12,2],则a =________. 答案 (1)2 (2)25解析 (1)当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2. 故函数f (x )的最大值为2.(2)由反比例函数的性质知函数f (x )=1a -1x (a >0,x >0)在⎣⎡⎦⎤12,2上单调递增, 所以⎩⎪⎨⎪⎧f ⎝⎛⎭⎫12=12,f (2)=2,即⎩⎨⎧1a -2=12,1a -12=2,解得a =25.题型三 函数单调性的应用命题点1 比较大小例4 已知函数f (x )=log 2x +11-x,若x 1∈(1,2),x 2∈(2,+∞),则f (x 1)________0,f (x 2)________0.(判断大小关系) 答案 < >解析 ∵函数f (x )=log 2x +11-x 在(1,+∞)上为增函数,且f (2)=0,∴当x 1∈(1,2)时,f (x 1)<f (2)=0, 当x 2∈(2,+∞)时,f (x 2)>f (2)=0, 即f (x 1)<0,f (x 2)>0.命题点2 解不等式例5 已知函数f (x )为R 上的减函数,则满足f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是______________. 答案 (-1,0)∪(0,1)解析 由f (x )为R 上的减函数且f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1), 得⎩⎪⎨⎪⎧⎪⎪⎪⎪1x >1,x ≠0,即⎩⎨⎧|x |<1,x ≠0.∴-1<x <0或0<x <1.命题点3 求参数范围例6 (1)如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是__________.(2)已知f (x )=⎩⎪⎨⎪⎧(2-a )x +1,x <1,a x ,x ≥1,满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________. 答案 (1)⎣⎡⎦⎤-14,0 (2)[32,2) 解析 (1)当a =0时,f (x )=2x -3,在定义域R 上是单调递增的,故在(-∞,4)上单调递增; 当a ≠0时,二次函数f (x )的对称轴为x =-1a ,因为f (x )在(-∞,4)上单调递增, 所以a <0,且-1a ≥4,解得-14≤a <0.综合上述得-14≤a ≤0.(2)由已知条件得f (x )为增函数, ∴⎩⎪⎨⎪⎧2-a >0,a >1,(2-a )×1+1≤a ,解得32≤a <2,∴a 的取值范围是[32,2).思维升华 函数单调性应用问题的常见类型及解题策略(1)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.(2)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域. (3)利用单调性求参数.①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;②需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的; ③分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.(1)f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是__________.(2)若f (x )=-x 2+2ax 与g (x )=a x +1在区间[1,2]上都是减函数,则a 的取值范围是__________.答案 (1)(8,9] (2)(0,1]解析 (1)2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f [x (x -8)]≤f (9),因为f (x )是定义在(0,+∞)上的增函数, 所以有⎩⎪⎨⎪⎧x >0,x -8>0,x (x -8)≤9,解得8<x ≤9.(2)由f (x )=-x 2+2ax 在[1,2]上是减函数可得[1,2]⊆[a ,+∞),∴a ≤1. ∵y =1x +1在(-1,+∞)上为减函数,∴由g (x )=ax +1在[1,2]上是减函数可得a >0,故0<a ≤1.1.确定抽象函数单调性解函数不等式典例 (14分)函数f (x )对任意的m 、n ∈R ,都有f (m +n )=f (m )+f (n )-1,并且x >0时,恒有f (x )>1.(1)求证:f (x )在R 上是增函数; (2)若f (3)=4,解不等式f (a 2+a -5)<2.思维点拨 (1)对于抽象函数的单调性的证明,只能用定义.应该构造出f (x 2)-f (x 1)并与0比较大小.(2)将函数不等式中的抽象函数符号“f ”运用单调性“去掉”是本题的切入点.要构造出f (M )<f (N )的形式. 规范解答(1)证明 设x 1,x 2∈R ,且x 1<x 2,∴x 2-x 1>0, ∵当x >0时,f (x )>1, ∴f (x 2-x 1)>1.[2分] f (x 2)=f [(x 2-x 1)+x 1] =f (x 2-x 1)+f (x 1)-1,[4分]∴f (x 2)-f (x 1)=f (x 2-x 1)-1>0⇒f (x 1)<f (x 2),∴f(x)在R上为增函数.[6分](2)解∵m,n∈R,不妨设m=n=1,∴f(1+1)=f(1)+f(1)-1⇒f(2)=2f(1)-1,[8分]f(3)=4⇒f(2+1)=4⇒f(2)+f(1)-1=4⇒3f(1)-2=4,∴f(1)=2,∴f(a2+a-5)<2=f(1),[11分]∵f(x)在R上为增函数,∴a2+a-5<1⇒-3<a<2,即a∈(-3,2).[14分]解函数不等式问题的一般步骤:第一步:(定性)确定函数f(x)在给定区间上的单调性;第二步:(转化)将函数不等式转化为f(M)<f(N)的形式;第三步:(去f)运用函数的单调性“去掉”函数的符号“f”,转化成一般的不等式或不等式组;第四步:(求解)解不等式或不等式组确定解集;第五步:(反思)反思回顾.查看关键点,易错点及解题规范.温馨提醒本题对函数的单调性的判断是一个关键点.不会运用条件x>0时,f(x)>1,构造不出f(x2)-f(x1)=f(x2-x1)-1的形式,便找不到问题的突破口.第二个关键应该是将不等式化为f(M)<f(N)的形式.解决此类问题的易错点:忽视了M、N的取值范围,即忽视了f(x)所在单调区间的约束.[方法与技巧]1.利用定义证明或判断函数单调性的步骤(1)取值;(2)作差;(3)定量;(4)判断.2.确定函数单调性有四种常用方法:定义法、导数法、复合函数法、图象法,也可利用单调函数的和差确定单调性.3.求函数最值的常用求法:单调性法、图象法、换元法.[失误与防范]1.分段函数单调性不仅要考虑各段的单调性,还要注意衔接点.2.函数在两个不同的区间上单调性相同,一般要分开写,用“,”或“和”连结,不要用“∪”.A 组 专项基础训练(时间:40分钟)1.下列函数f (x )中,①f (x )=1x;②f (x )=(x -1)2;③f (x )=e x ;④f (x )=ln(x +1),满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是________.(填序号)答案 ①解析 由题意知f (x )在(0,+∞)上是减函数.①中,f (x )=1x满足要求; ②中,f (x )=(x -1)2在[0,1]上是减函数,在(1,+∞)上是增函数;③中,f (x )=e x 是增函数;④中,f (x )=ln(x +1)在(0,+∞)上是增函数.2.已知函数y =log 2(ax -1)在(1,2)上单调递增,则实数a 的取值范围是__________. 答案 [1,+∞)解析 要使y =log 2(ax -1)在(1,2)上单调递增,则a >0且a -1≥0,∴a ≥1.3.已知函数y =f (x )的图象关于x =1对称,且在(1,+∞)上单调递增,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为______________.答案 b <a <c解析 ∵函数图象关于x =1对称,∴a =f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52,又y =f (x )在(1,+∞)上单调递增, ∴f (2)<f ⎝⎛⎭⎫52<f (3),即b <a <c .4.若函数f (x )=x 2-2x +m 在 [3,+∞)上的最小值为1,则实数m 的值为________. 答案 -2解析 ∵f (x )=(x -1)2+m -1在[3,+∞)上为单调增函数,且f (x )在[3,+∞)上的最小值为1,∴f (3)=1,即22+m -1=1,m =-2.5.已知函数f (x )=2ax 2+4(a -3)x +5在区间(-∞,3)上是减函数,则a 的取值范围是__________.答案 [0,34] 解析 当a =0时,f (x )=-12x +5,在(-∞,3)上是减函数,当a ≠0时,由⎩⎨⎧ a >0,-4(a -3)4a ≥3,得0<a ≤34, 综上a 的取值范围是0≤a ≤34. 6.函数f (x )=⎩⎪⎨⎪⎧12log ,x x ≥1,2x ,x <1的值域为________. 答案 (-∞,2)解析 当x ≥1时,f (x )=log 12x 是单调递减的,此时,函数的值域为(-∞,0];当x <1时,f (x )=2x 是单调递增的,此时,函数的值域为(0,2).综上,f (x )的值域是(-∞,2).7.已知函数f (x )=⎩⎪⎨⎪⎧x 2+12a -2,x ≤1,a x -a ,x >1,若f (x )在(0,+∞)上单调递增,则实数a 的取值范围为________.答案 (1,2]解析 由题意,得12+12a -2≤0,则a ≤2,又y =a x -a (x >1)是增函数,故a >1,所以a 的取值范围为1<a ≤2.8.函数f (x )=⎝⎛⎭⎫13x -log 2(x +2)在区间[-1,1]上的最大值为________.答案 3解析 由于y =⎝⎛⎭⎫13x 在R 上递减,y =log 2(x +2)在[-1,1]上递增,所以f (x )在[-1,1]上单调递减,故f (x )在[-1,1]上的最大值为f (-1)=3.9.已知f (x )=x x -a(x ≠a ). (1)若a =-2,试证明f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围.(1)证明 任设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2). ∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)上单调递增.(2)解 任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a=a (x 2-x 1)(x 1-a )(x 2-a ). ∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0在(1,+∞)上恒成立,∴a ≤1.综上所述,a 的取值范围是(0,1].10.设函数y =f (x )是定义在(0,+∞)上的函数,并且满足下面三个条件:①对任意正数x ,y ,都有f (xy )=f (x )+f (y );②当x >1时,f (x )<0;③f (3)=-1.(1)求f (1),f (19)的值; (2)如果不等式f (x )+f (2-x )<2成立,求x 的取值范围.解 (1)令x =y =1易得f (1)=0.而f (9)=f (3)+f (3)=-1-1=-2,且f (9)+f ⎝⎛⎭⎫19=f (1)=0,故f ⎝⎛⎭⎫19=2. (2)设0<x 1<x 2,则x 2x 1>1,f ⎝⎛⎭⎫x 2x 1<0, 由f (xy )=f (x )+f (y )得f (x 2)=f ⎝⎛⎭⎫x 1·x 2x 1=f (x 1)+f ⎝⎛⎭⎫x 2x 1<f (x 1), 所以f (x )是减函数.由条件①及(1)的结果得:f [x (2-x )]<f ⎝⎛⎭⎫19,其中0<x <2,由函数f (x )在R 上单调递减,可得⎩⎪⎨⎪⎧ x (2-x )>19,0<x <2,由此解得x 的取值范围是⎝⎛⎭⎫1-223,1+223. B 组 专项能力提升(时间:20分钟)11.对于任意实数a ,b ,定义min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b .设函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是________.答案 1解析 依题意,h (x )=⎩⎪⎨⎪⎧ log 2x ,0<x <2,-x +3,x ≥2.当0<x <2时,h (x )=log 2x 是增函数;当x ≥2时,h (x )=3-x 是减函数,∴h (x )在x =2时,取得最大值h (2)=1.12.定义新运算:当a ≥b 时,ab =a ;当a <b 时,a b =b 2,则函数f (x )=(1x )x -(2x ),x ∈[-2,2]的最大值等于________.答案 6解析 由已知,得当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数.∴f (x )的最大值为f (2)=23-2=6.13.已知函数f (x )为(0,+∞)上的增函数,若f (a 2-a )>f (a +3),则实数a 的取值范围为_________.答案 (-3,-1)∪(3,+∞)解析 由已知可得⎩⎪⎨⎪⎧ a 2-a >0,a +3>0,a 2-a >a +3,解得-3<a <-1或a >3.所以实数a 的取值范围为(-3,-1)∪(3,+∞).14.已知函数f (x )=lg(x +a x-2),其中a 是大于0的常数. (1)求函数f (x )的定义域;(2)当a ∈(1,4)时,求函数f (x )在[2,+∞)上的最小值;(3)若对任意x ∈[2,+∞)恒有f (x )>0,试确定a 的取值范围.解 (1)由x +a x -2>0,得x 2-2x +a x>0, 当a >1时,x 2-2x +a >0恒成立,定义域为(0,+∞), 当a =1时,定义域为{x |x >0且x ≠1},当0<a <1时,定义域为{x |0<x <1-1-a 或x >1+1-a }.(2)设g (x )=x +a x-2,当a ∈(1,4),x ∈[2,+∞)时, g ′(x )=1-a x 2=x 2-a x 2>0恒成立, 所以g (x )=x +a x-2在[2,+∞)上是增函数. 所以f (x )=lg ⎝⎛⎭⎫x +a x -2在[2,+∞)上是增函数. 所以f (x )=lg ⎝⎛⎭⎫x +a x -2在[2,+∞)上的最小值为f (2)=lg a 2. (3)对任意x ∈[2,+∞)恒有f (x )>0,即x +a x-2>1对x ∈[2,+∞)恒成立. 所以a >3x -x 2,令h (x )=3x -x 2,而h (x )=3x -x 2=-⎝⎛⎭⎫x -322+94在x ∈[2,+∞)上是减函数, 所以h (x )max =h (2)=2,所以a >2.。

函数的单调性与极值点例题和知识点总结

函数的单调性与极值点例题和知识点总结

函数的单调性与极值点例题和知识点总结在数学的世界里,函数的单调性与极值点是非常重要的概念。

它们不仅在数学理论中有着关键地位,还在实际问题的解决中发挥着巨大作用。

接下来,让我们通过一些具体的例题来深入理解这两个概念,并对相关知识点进行总结。

一、函数单调性的定义函数的单调性指的是函数在其定义域内的增减性。

如果对于定义域内的某个区间内的任意两个自变量的值\(x_1\)、\(x_2\),当\(x_1 < x_2\)时,都有\(f(x_1) < f(x_2)\),那么就称函数在这个区间上是增函数;反之,如果当\(x_1 < x_2\)时,都有\(f(x_1) >f(x_2)\),那么就称函数在这个区间上是减函数。

二、函数单调性的判定方法1、定义法设\(x_1\)、\(x_2\)是给定区间上的任意两个自变量,且\(x_1 < x_2\),函数\(f(x)\)在给定区间上具有单调性,作差\(f(x_2) f(x_1)\),然后判断差的正负。

2、导数法对函数\(f(x)\)求导,如果\(f'(x) > 0\),则函数在相应区间上为增函数;如果\(f'(x) < 0\),则函数在相应区间上为减函数。

三、函数极值点的定义设函数\(f(x)\)在点\(x_0\)附近有定义,如果对\(x_0\)附近的所有点,都有\(f(x) < f(x_0)\),则称\(f(x_0)\)是函数\(f(x)\)的一个极大值,记作\(y_{极大值}=f(x_0)\);如果对\(x_0\)附近的所有点,都有\(f(x) > f(x_0)\),则称\(f(x_0)\)是函数\(f(x)\)的一个极小值,记作\(y_{极小值}=f(x_0)\)。

极大值点和极小值点统称为极值点。

四、函数极值点的判定方法1、第一充分条件设函数\(f(x)\)在\(x_0\)处连续,且在\(x_0\)的某去心邻域内可导。

(1)若当\(x\)在\(x_0\)的左侧邻近时,\(f'(x) > 0\);当\(x\)在\(x_0\)的右侧邻近时,\(f'(x) < 0\),则\(f(x_0)\)为极大值。

2021年高考数学函数的单调性必考知识点

2021年高考数学函数的单调性必考知识点

2021年高考数学函数的单调性必考知识点高中数学知识点:函数的单调性一般地,设函数fx的定义域为I:如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1fx2.那么就是fx在这个区间上是减函数。

高中数学知识点:函数的单调区间单调区间是指函数在某一区间内的函数值Y,随自变量X增大而增大或减小恒成立。

如果函数y=fx在某个区间是增函数或减函数。

那么就说函数y=fx在这一区间具有严格的单调性,这一区间叫做y=fx的单调区间。

高中数学知识点:函数的单调图像高中数学知识点:函数的单调性的应用高中数学知识点:求函数单调性的基本方法解:先要弄清概念和研究目的,因为函数本身是动态的,所以判断函数的单调性、奇偶性,还有研究函数切线的斜率、极值等等,都是为了更好地了解函数本身所采用的方法。

其次就解题技巧而言,当然是立足于掌握课本上的例题,然后再找些典型例题做做就可以了,这部分知识仅就应付解题而言应该不是很难。

最后找些考试试卷题目来解,针对考试会出的题型强化一下,所谓知己知彼百战不殆。

1、把握好函数单调性的定义。

证明函数单调性一般初学最好用定义用定义谨防循环论证,如果函数解析式异常复杂或者具有某种特殊形式,可以采用函数单调性定义的等价形式证明。

另外还请注意函数单调性的定义是[充要命题]。

2、熟练掌握基本初等函数的单调性及其单调区间。

理解并掌握判断复合函数单调性的方法:同增异减。

3、高三选修课本有导数及其应用,用导数求函数的单调区间一般是非常简便的。

还应注意函数单调性的应用,例如求极值、比较大小,还有和不等式有关的问题。

高中数学知识点:例题判断函数的单调性y = 1/ x的平方-2x-3。

设x^2-2x-3=t,令x^2-2x-3=0,解得:x=3或x=-1,当x>3和x<-1时,t>0,当-1所以得到x^2-2x-1对称轴是1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A.f(a)>f(2a)
B.f(a2)<f(a)
C.f(a2+a)<f(a)
D.f(a2+1)<f(a2)
答案 D
解析 因为 f(x)是区间(-∞,+∞)上的减函数, 且 a2+1>a2, 所以 f(a2+1)<f(a2).故选 D.
b 5.已知函数 y=ax 和 y=-x在(0,+∞)上都是减函数,则函数 f(x)=bx+a 在 R 上是
数出现两个以上单调区间时,单调区间之间可用“,”分开,不能用“∪”,可以用
“和”来表示;在单调区间 D 上函数要么是增函数,要么是减函数,不能二者兼有.
1 跟踪训练 2 (1)函数 y=x-1的单调递减区间是________.
答案 (-∞,1),(1,+∞)
1
1
解析 方法一 y=x-1的图象可由 y=x的图象向右平移一个单位得到,如图,
ax1(x2-1)-ax2(x1-1) = (x1-1)(x2-1)
a(x2-x1) =(x1-1)(x2-1) 因为 x1,x2∈(-1,1)且 x1<x2, 所以 x2-x1>0,x1-1<0,x2-1<0,
2 / 15
所以(x1-x21-)(xx21-1)>0, 当 a>0 时,f(x1)-f(x2)>0,即 f(x1)>f(x2), 所以 f(x)在(-1,1)上单调递减, 当 a<0 时,f(x1)-f(x2)<0, 即 f(x1)<f(x2), 所以 f(x)在(-1,1)上单调递增. 综上,当 a=0 时,f(x)在(-1,1)上不具有单调性; 当 a>0 时,f(x)在(-1,1)上单调递减; 当 a<0 时,f(x)在(-1,1)上单调递增. 反思感悟 利用定义判断或证明函数单调性的步骤
-1≤x≤1, 解析 由题设得x<12,
1 解得-1≤x<2.
9 / 15
1.知识清单: (1)增函数、减函数的定义. (2)函数的单调区间. 2.方法归纳:数形结合法. 3.常见误区:函数的单调区间不能用并集.
如图是定义在区间[-5,5]上的函数 y=f(x),则下列关于函数 f(x)的说法错误的是 ()
1 ∴函数 f(x)=x2在(0,+∞)上是减函数. 二、求单调区间并判断单调性 例 2 (1)如图是定义在区间[-5,5]上的函数 y=f(x),根据图象说出函数的单调区间, 以及在每一单调区间上,它是增函数还是减函数?
考点 求函数的单调区间 题点 求函数的单调区间 解 y=f(x)的单调区间有[-5,-2),[-2,1),[1,3),[3,5],其中 y=f(x)在区间[-5, -2),[1,3)上是减函数,在区间[-2,1),[3,5]上是增函数. (2)作出函数 f(x)=-(x-x-2)32+,3x≤,1x>,1 的图象,并指出函数 f(x)的单调区间. 解 f(x)=-(x-x-2)32+,3x≤,1x>,1 的图象如图所示,
一、函数单调性的判定与证明 ax
例 1 根据定义,研究函数 f(x)=x-1在 x∈(-1,1)上的单调性. 解 当 a=0 时,f(x)=0,在(-1,1)上不具有单调性, 当 a≠0 时,设 x1,x2 为(-1,1)上的任意两个数,且 x1<x2, 所以 f(x1)-f(x2)=x1a-x11-x2a-x21
6 / 15
________. 答案 23,+∞ 解析 因为 y=f(x)的定义域为 R,且为增函数,
2 f(1-a)<f(2a-1),所以 1-a<2a-1,即 a>3, 所以所求 a 的取值范围是23,+∞. 延伸探究 在本例(2)中,若将定义域 R 改为(-1,1),其他条件不变,则 a 的范围又是什么?
A.函数在区间[-5,-3]上单调递增 B.函数在区间[1,4]上单调递增 C.函数在区间[-3,1]∪[4,5]上单调递减 D.函数在区间[-5,5]上没有单调性 答案 C
解析 单调区间不能用“∪”连接.
2.下列函数中,在区间(0,2)上为增函数的是( )
A.y=3-x
B.y=x2+1
1 C.y=x
8 / 15
3.函数 y=|x+2|在区间[-3,0]上( )
A.递减
B.递增
C.先减后增
D.先增后减
答案 C
解析 因为 y=|x+2|=x-+x2-,2x,≥x-<-2,2.
作出 y=|x+2|的图象,如图所示,
易知函数在[-3,-2)上为减函数,在[-2,0]上为增函数. 4.若 f(x)=x2+2(a-2)x+2 的单调增区间为[3,+∞),则 a 的值是________. 答案 -1 解析 ∵f(x)=x2+2(a-2)x+2 的单调增区间为[2-a,+∞), ∴2-a=3,∴a=-1. 5.已知函数 f(x)为定义在区间[-1,1]上的增函数,则满足 f(x)<f 12的实数 x 的取值范 围为________. 答案 -1,12
D.y=-|x+1|
答案 B
10 / 15
解析 y=x2+1 在(0,2)上是增函数.
3.若 y=(2k-1)x+b 是 R 上的减函数,则有( )
1 A.k>2
1 B.k>-2
1 C.k<2
1 D.k<-2
答案 C
4.若函数 f(x)在区间(-∞,+∞)上是减函数,则下列关系式一定成立的是( )
所以单调减区间是(-∞,1),(1,+∞). 1
方法二 函数 f(x)=x-1的定义域为(-∞,1)∪(1,+∞),
设 x1,x2∈(-∞,1),且 x1<x2,则
1
1
f(x1)-f(x2)=x1-1-x2-1
=(x1-x12-)(xx21-1).
因为 x1<x2<1,
5 / 15
所以 x2-x1>0,x1-1<0,x2-1<0, 所以 f(x1)-f(x2)>0,即 f(x1)>f(x2). 所以函数 f(x)在(-∞,1)上单调递减,同理函数 f(x)在(1,+∞)上单调递减. 综上,函数 f(x)的单调递减区间是(-∞,1),(1,+∞). (2)函数 y=|x2-2x-3|的图象如图所示,试写出它的单调区间,并指出单调性.
4 / 15
由图可知,函数 f(x)=-(x-x-2)32+,3x≤,1x>,1 的单调递减区间为(-∞,1]和(1,2),单调递 增区间为[2,+∞). 反思感悟 (1)函数单调区间的两种求法
①图象法.即先画出图象,根据图象求单调区间.
②定义法.即先求出定义域,再利用定义法进行判断求解. (2)函数的单调性是在定义域内的某个区间上的性质,单调区间是定义域的子集;当函
高一数学复习知识点讲解专题训练
函数的单调性
学习目标 1.了解函数的单调区间、单调性等概念.2.会划分函数的单调区间,判断单 调性.3.会用定义证明函数的单调性.
知识点一 增函数与减函数的定义 一般地,设函数 f(x)的定义域为 I,区间 D⊆I: (1)如果∀x1,x2∈D,当 x1<x2 时,都有 f(x1)<f(x2),那么就称函数 f(x)在区间 D 上单调 递增,特别地,当函数 f(x)在它的定义域上单调递增时,我们称它是增函数. (2)如果∀x1,x2∈D,当 x1<x2 时,都有 f(x1)>f(x2),那么就称函数 f(x)在区间 D 上单调 递减,特别地,当函数 f(x)在它的定义域上单调递减时,我们称它是减函数. 思考 (1)所有的函数在定义域上都具有单调性吗? (2)在增函数和减函数定义中,能否把“任意 x1,x2∈D”改为“存在 x1,x2∈D”? 答案 (1)不是;(2)不能. 知识点二 函数的单调区间 如果函数 y=f(x)在区间 D 上单调递增或单调递减,那么就说函数 y=f(x)在这一区间具 有(严格的)单调性,区间 D 叫做 y=f(x)的单调区间. 特别提醒:(1)函数单调性关注的是整个区间上的性质,单独一点不存在单调性问题, 所以单调区间的端点若属于定义域,则该点处区间可开可闭,若区间端点不属于定义
1 ∴函数 f(x)=x2在(-∞,0)上是增函数.
3 / 15
对于任意的 x1,x2∈(0,+∞),且 x1<x2,有 f(x1)-f(x2)=(x2-xx12)1(xx222+x1). ∵0<x1<x2,∴x2-x1>0,x2+x1>0,x12x22>0. ∴f(x1)-f(x2)>0,即 f(x1)>f(x2).
考点 求函数的单调区间 题点 求函数的单调区间 解 y=|x2-2x-3|的单调区间有(-∞,-1],[-1,1],[1,3],[3,+∞),其中单调递 减区间是(-∞,-1],[1,3];单调递增区间是[-1,1],[3,+∞). 三、单调性的应用 例 3 (1)已知函数 f(x)=x2+2(a-1)x+2 在区间(-∞,4]上是减函数,则实数 a 的取 值范围为________. 答案 (-∞,-3] 解析 f(x)=x2+2(a-1)x+2 的开口方向向上,对称轴为 x=1-a, ∵f(x)=x2+2(a-1)x+2 在区间(-∞,4]上是减函数, ∴4≤1-a, ∴a≤-3, ∴a 的取值范围是(-∞,-3]. (2)若函数 y=f(x)的定义域为 R,且为增函数,f(1-a)<f(2a-1),则 a 的取值范围是
1 跟踪训练 1 求证:函数 f(x)=x2在(0,+∞)上是减函数,在(-∞,0)上是增函数. 证明 对于任意的 x1,x2∈(-∞,0),且 x1<x2,有 f(x1)-f(x2)=x121-x122=x22x-21x22x21=(x2-xx121)x(x222+x1). ∵x1<x2<0, ∴x2-x1>0,x1+x2<0,x21x22>0. ∴f(x1)-f(x2)<0,即 f(x1)<f(x2).
相关文档
最新文档