人教版九年级数学上册22.3 第2课时 商品利润最大问题同步测试题附答案(2020必考)

合集下载

人教版数学九年级上册:22.3 第2课时 最大利润问题 (含答案)

人教版数学九年级上册:22.3 第2课时 最大利润问题  (含答案)

第2课时最大利润问题1.将进货价为每件70元的某种商品按每件100元出售时每天能卖出20件,若这种商品每件的售价在一定范围内每降低1元,其日销售量就增加1件,为了获得最大利润,决定降价x 元,则单件的利润为________元,每日的销售量为________件,则每日的利润y(元)关于x(元)的函数关系式是y=________________,所以每件降价________元时,每日获得的利润最大,为________元.2.服装店将进价为100元/件的服装按x元/件出售,每天可销售(200-x)件,若想获得最大利润,则x应定为()A.150 B.160 C.170 D.1803.某公司的生产利润原来是a万元,经过连续两年的增长达到了y万元,如果每年增长的百分率都是x,那么y关于x的函数解析式是()A.y=x2+a B.y=a(x-1)2C.y=a(1-x)2D.y=a(1+x)24.[2019·丹东] 某服装超市购进单价为30元/件的童装若干件,物价部门规定其销售单价不低于30元/件,不高于60元/件.销售一段时间后发现:当销售单价为60元/件时,平均每月的销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.同时,在销售过程中,每月还要支付其他费用450元.设销售单价为x元/件,平均月销售量为y件.(1)求出y与x之间的函数关系式,并写出自变量x的取值范围;(2)当销售单价为多少时,销售这种童装每月可获利1800元?(3)当销售单价为多少时,销售这种童装每月获得的利润最大?最大利润是多少?5.某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元.经市场调查发现,这种双肩包每天的销售量y(个)与销售单价x(元/个)有如下关系:y=-x+60(30≤x≤60,且x 为整数).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)这种双肩包的销售单价定为多少元/个时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不能高于42元/个,该商店销售这种双肩包每天要获得200元的销售利润,那么销售单价应定为多少元/个?6. 某商店销售某种商品所获得的利润y(元)与所卖件数x(件)之间满足关系式y=-x2+1000x -200000,则当0<x≤450时的最大利润为()A.2500元B.47500元C.50000元D.250000元7.某种工艺品的进价为每件100元,当标价135元出售时,每天可售出100件.根据销售统计,该工艺品每件的价格每降低1元,每天可多售出4件.要使每天获得的利润最大,则每件需降价()A.5元B.10元C.15元D.20元8.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于50%.经试销发现,销售量y(件)与销售单价x(元/件)之间的关系符合一次函数y=-x+140.(1)直接写出x的取值范围:__________;(2)若销售该服装获得的利润为W元,试写出利润W与销售单价x之间的关系式:________________________________________________________________________.9.某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元,试销期间发现每天的销售量y(袋)与销售单价x(元/袋)之间满足一次函数关系,部分数据如下表所示,其中3.5≤x≤5.5,另外每天还需支付其他各项费用80元.(1)请直接写出y与x之间的函数关系式;(2)如果想每天获得160元的利润,那么销售单价应定为多少元/袋?(3)设每天的利润为w元,当销售单价定为多少元/袋时,每天的利润最大?最大利润是多少元?10.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天的销售量y(件)与销售单价x(元/件)之间存在一次函数关系,如图22-3-9所示.(1)求y与x之间的函数解析式(不要求写出自变量的取值范围);(2)如果规定每天漆器笔筒的销售量不低于240件,那么当销售单价为多少时,每天获取的利润最大,最大利润是多少?图22-3-911.十一黄金周期间,由于7座以下小型车辆免收高速公路通行费,使汽车租赁市场需求旺盛.某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当租出的车辆每减少1辆,每辆车的日租金将增加50元,另外公司平均每日的各项支出共4800元.设公司每日租出x(0≤x≤20)辆车时,日收益为y元.(日收益=日租金收入-平均每日各项支出)(1)公司每日租出x(x≤20)辆车时,每辆车的日租金增加__________元,此时每辆车的日租金为__________元(用含x的代数式表示);(2)当每日租出多少辆时,租赁公司的日收益最多?最多是多少元?答案1.(30-x) (20+x) -x 2+10x +600 5 6252.A [解析] 设利润为w 元,则w =(x -100)(200-x)=-x 2+300x -20000=-(x -150)2+2500(100≤x≤200), 故当x =150时,w 有最大值.3.D4.解:(1)由题意得y =80+20×60-x 10, ∴y 与x 之间的函数关系式为y =-2x +200(30≤x≤60).(2)由题意得(x -30)(-2x +200)-450=1800,解得x 1=55,x 2=75(不符合题意,舍去).答:当销售单价为55元/件时,销售这种童装每月可获利1800元.(3)设每月获得的利润为w 元.由题意得w =(x -30)(-2x +200)-450=-2(x -65)2+2000.∵-2<0,∴当x≤65时,w 随x 的增大而增大.∵30≤x≤60,∴当x =60时,w 取最大值,w 最大=-2(60-65)2+2000=1950.答:当销售单价为60元/件时,销售这种童装每月获得的利润最大,最大利润是1950元.5.解:(1)w =()x -30·y =(x -30)·(-x +60)=-x 2+90x -1800(30≤x≤60,且x 为整数).(2)w =-x 2+90x -1800=-()x -452+225.∵-1<0,∴当x =45时,w 有最大值,最大值为225.答:这种双肩包的销售单价定为45元/个时,每天的销售利润最大,最大利润是225元.(3)当w =200时,可得方程-()x -452+225=200,解得x 1=40,x 2=50. ∵50>42,∴x =50不符合题意,舍去.答:销售单价应定为40元/个.6.B [解析] 因为抛物线的对称轴为直线x =500,在对称轴左侧,y 随x 的增大而增大,因此在0<x≤450的范围内,当x =450时,函数有最大值为47500.7.A8.(1)60≤x≤90 (2)W =-x 2+200x -8400[解析] (1)∵规定试销期间销售单价不低于成本单价,且获利不得高于50%,∴60≤x≤90.(2)∵单件利润为(x -60)元,销售量为y =-x +140,∴销售该服装获得的利润W =(x -60)(-x +140)=-x 2+200x -8400.9.解:(1)设y =kx +b ,将x =3.5,y =280;x =5.5,y =120代入,得⎩⎪⎨⎪⎧3.5k +b =280,5.5k +b =120,解得⎩⎪⎨⎪⎧k =-80,b =560.则y 与x 之间的函数关系式为y =-80x +560(3.5≤x≤5.5). (2)由题意,得(x -3)(-80x +560)-80=160,整理,得x 2-10x +24=0,解得x 1=4,x 2=6.∵3.5≤x≤5.5,∴x =4.答:如果想每天获得160元的利润,那么销售单价应定为4元/袋.(3)由题意,得w =(x -3)(-80x +560)-80=-80x 2+800x -1760=-80(x -5)2+240.∵3.5≤x≤5.5,∴当x =5时,w 有最大值为240.故当销售单价定为5元/袋时,每天的利润最大,最大利润是240元.10.解:(1)设y 与x 之间的函数解析式为y =kx +b.由题意得⎩⎪⎨⎪⎧40k +b =300,55k +b =150, 解得⎩⎪⎨⎪⎧k =-10,b =700. 故y 与x 之间的函数解析式为y =-10x +700.(2)由题意,得-10x +700≥240,解得x≤46.设每天获得的利润为w 元,则w =(x -30)·y =(x -30)(-10x +700)=-10x 2+1000x -21000=-10(x-50)2+4000.∵-10<0,∴当x<50时,w随x的增大而增大.∴当x=46时,w最大=-10×(46-50)2+4000=3840.答:当销售单价为46元/件时,每天获取的利润最大,最大利润是3840元.11.解:(1)50(20-x)(-50x+1400)(2)由题意,得y=x(-50x+1400)-4800=-50x2+1400x-4800=-50(x-14)2+5000.∵-50<0,∴函数图象开口向下,函数有最大值,即当x=14时,在0≤x≤20范围内,y有最大值5000.答:当每日租出14辆时,租赁公司的日收益最多,最多是5000元.。

2018年人教版九年级数学上册《第22章二次函数与商品利润》同步练习题含答案

2018年人教版九年级数学上册《第22章二次函数与商品利润》同步练习题含答案

二次函数与商品利润练习题基础题知识点销售中的最大利润1.某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价.若每件商品售价为x元,则可卖出(350-10x)件商品,那么卖出商品所赚钱y元与售价x元之间的函数关系为() A.y=-10x2-560x+7350B.y=-10x2+560x-7350C.y=-10x2+350xD.y=-10x2+350x-73502.一件工艺品进价为100元,标价135元售出,每天可售出100件.根据销售统计,该件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为() A.5元B.10元C.0元D.6元3.出售某种文具盒,若每个获利x元,一天可售出(6-x)个,则当x=________元时,一天出售该种文具盒的总利润最大.4.我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资与收益的关系为:每投入x万元,可获得利润P=-1100(x-60)2+41(万元).每年最多可投入100万元的销售投资,则5年所获利润的最大值是________.5.天水“伏羲文化节”商品交易会上,某商人将每件进价为8元的纪念品,按每件9元出售,每天可售出20件.他想采用提高售价的办法来增加利润,经试验,发现这种纪念品每件提价1元,每天的销售量会减少4件.(1)写出每天所得的利润y(元)与售价x(元/件)之间的函数关系式;(2)每件售价定为多少元,才能使一天所得的利润最大?最大利润是多少元?6.某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系:y=ax2+bx-75.其图象如图.(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?(2)销售单价在什么范围时,该种商品每天的销售利润不低于16元?中档题7.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的利润y和月份n之间函数关系式为y=-n2+14n-24,则该企业一年中应停产的月份是() A.1月、2月、3月B.2月、3月、4月C.1月、2月、12月D.1月、11月、12月8.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30-x)件.若使利润最大,每件的售价应为________元.9.某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为________元时,该服装店平均每天的销售利润最大.10.某水果店销售某种水果,由历年市场行情可知,从第1月至第12月,这种水果每千克售价y1(元)与销售时间第x月之间存在如图1所示(一条线段)的变化趋势,每千克成本y2(元)与销售时间第x月满足函数关系式y2=mx2-8mx+n,其变化趋势如图2所示.(1)求y2的解析式;(2)第几月销售这种水果,每千克所获的利润最大?最大利润是多少?综合题11.大学毕业生小王响应国家“自主创业”的号召,利用银行小额无息贷款开办了一家饰品店.该店购进一种今年新上市的饰品进行销售,饰品的进价为每件40元,售价为每件60元,每月可卖出300件.市场调查反映:调整价格时,售价每涨1元每月要少卖10件;售价每下降1元每月要多卖20件.为了获得更大的利润,现将饰品售价调整为60+x(元/件)(x>0即售价上涨,x<0即售价下降),每月饰品销售量为y(件),月利润为w(元).(1)直接写出y与x之间的函数关系式;(2)如何确定销售价格才能使月利润最大?求最大月利润;(3)为了使每月利润不少于6 000元应如何控制销售价格?参考答案基础题1.B2.A3.34.205万元5.(1)由题意得:y =(x -8)[20-4(x -9)],化简得:y =-4x 2+88x -448(9≤x ≤14).(2)y =-4x 2+88x -448=-4(x -11)2+36.所以当x =11时,y 最大=36.答:每件售价定为11元时,一天所得的利润最大,最大利润是36元.6.(1)y =ax 2+bx -75图象过点(5,0),(7,16).∴⎩⎪⎨⎪⎧25a +5b -75=0,49a +7b -75=16.解得⎩⎪⎨⎪⎧a =-1,b =20.∴y =-x 2+20x -75=-(x -10)2+25.∴当x =10时,y 最大=25.答:销售单价为10元时,该种商品每天的销售利润最大,最大利润为25元.(2)∵函数y =-x 2+20x -75图象的对称轴为直线x =10,可知点(7,16)关于对称轴的对称点是(13,16).又∵函数y =-x 2+20x -75图象开口向下,∴当7≤x ≤13时,y ≥16.答:销售单价不少于7元且不超过13元时,该种商品每天的销售利润不低于16元.中档题7.C 8.25 9.2210.(1)由题意可得,函数y 2的图象经过两点(3,6),(7,7),∴⎩⎪⎨⎪⎧9m -24m +n =6,49m -56m +n =7,解得⎩⎨⎧m =18,n =638.∴y 2的解析式为y 2=18x 2-x +638(1≤x ≤12). (2)设y 1=kx +b ,∵函数y 1的图象过两点(4,11),(8,10),∴⎩⎪⎨⎪⎧4k +b =11,8k +b =10,解得⎩⎪⎨⎪⎧k =-14,b =12.∴y 1的解析式为y 1=-14x +12(1≤x ≤12).设这种水果每千克所获得的利润为w 元.则w =y 1-y 2=(-14x +12)-(18x 2-x +638)=-18x 2+34x +338,∴w =-18(x -3)2+214(1≤x ≤12).∴当x =3时,w 取最大值214.答:第3月销售这种水果,每千克所获的利润最大,最大利润是214元/千克. 综合题11.(1)由题可知:y =⎩⎪⎨⎪⎧300-10x (0≤x ≤30),300-20x (-20≤x<0). (2)w =⎩⎪⎨⎪⎧(20+x )(300-10x )(0≤x ≤30),(20+x )(300-20x )(-20≤x<0).化简得:w =⎩⎪⎨⎪⎧-10x 2+100x +6 000(0≤x ≤30),-20x 2-100x +6 000(-20≤x<0).即:w =⎩⎪⎨⎪⎧-10(x -5)2+6 250(0≤x ≤30),-20(x +52)2+6 125(-20≤x<0).①当0≤x ≤30,x =5时,w 最大值为6 250;②当-20≤x<0,x =-52时,w 最大值为6 125.由题意知x 应取整数,故当x =-2或-3时,w<6 125<6 250.故当销售价格为65元时,月利润最大,最大月利润为6 250元.(3)由题意知:w≥6 000,如图,令w=6 000,得x1=-5,x2=0,x3=10,∴-5≤x≤10,故将销售价格控制在55元到70元之间(含55元和70元)才能使每月利润不少于6 000元.。

最新人教版初中数学九年级上册22.3 第2课时 商品利润最大问题过关习题及解析答案

最新人教版初中数学九年级上册22.3 第2课时 商品利润最大问题过关习题及解析答案

第2课时 商品利润最大问题知识点1、二次函数常用解决最优化的问题,这个问题实质是求函数的最大(小)值。

2、抛物线2(0)y ax bx c a =++≠的顶点是它的最高(低)点,当x=2b a-时,二次函数有最大(小)值y=244ac b a -。

一、选择题1、进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价。

若设平均每次降价的百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数关系式为( )A 、2(1)y a x =-B 、2(1)y a x =-C 、2(1)y a x =-D 、2(1)y a x =-2、某商店从厂家以每件21元的价格购进一批商品,该商品可以自行定价。

若每件商品的售价为x 元,则可卖处(350-10x)件商品。

商品所获得的利润y 元与售价x 的函数关系为( )A 、2105607350y x x =--+B 、2105607350y x x =-+-C 、210350y x x =-+D 、2103507350y x x =-+-3、某产品的进货价格为90元,按100元一个售出时,能售500个,如果这种商品每涨价1元,其销售量就减少10个,为了获得最大利润,其定价应定为( )[]A 、130元B 、120元C 、110元D 、100元4、小明在跳远比赛中跳出了满意的一跳,函数23.5 4.9h t t =-(t 单位s ,h 单位m )可用描述她的重心的高度变化,则她从起跳后到重心处于最高位置时所用的时间是()A、0.71sB、0.70sC、0.63sD、0.36s5、如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(秒),2y PC=,则y关于x的函数图像大致为()[]A B 第5题 C D6、已知二次函数2(0)=++≠的图像如图所示,现有下列结论:①abcy ax bx c a>0;②24-<0;③c<4b;④a+b>0.则其中正确的结论的个数是()b acA、1B、2C、3D、47、如图,已知:正方形ABCD边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为s,AE为x,则s关于x的函数图象大致是()A B C 第7题 D8、某厂有许多形状为直角梯形的铁皮边角料,为节约资,现要按图中所示的方法从这些边角料上截取矩形(阴影部分)片备用,当截取的矩形面积最大时,矩形两边长x、y应分别为()A、x=10,y=14B、x=14,y=10C、x=12,y=15D、x=15,y=12第6题第8题二、填空题1、已知卖出盒饭的盒数x(盒)与所获利润y(元)满足关系式:21200357600y x x=-+-,则卖出盒饭数量为盒时,获得最大利润为元。

人教版九年级数学上知识点巩固与综合运用 第2课时 商品利润最大问题

人教版九年级数学上知识点巩固与综合运用 第2课时 商品利润最大问题

-10 x +50000.
∵-10<0,∴当 x =700时, W 有最小值,
最小值为-10×700+50000=43000.
∵42000<43000,
∴当种植甲种蔬菜的种植面积为400m2,
乙种蔬菜的种植面积为600m2时, W 最小.
1
2
3
4
5
6
7
8
谢谢观看
Thank you for watching!
= +,
= − ,
解得ቊ
∴ y =- x +140.
= .
1
2
3
4
5
6
7
8
(2)当护眼灯销售单价定为多少元时,商店每月出
售这种护眼灯所获的利润最大?最大月利润为多少
元?
解:(2)设每月出售这种护眼灯所获的利润为 w元.
根据题意得 w =( x -40) y =( x -40)(- x+
装按每件 x ( x ≥100)元出售,每天可销售(200-
x )件.若想获得最大利润,则 x 应定为( A
A. 150
B. 160
C. 170
D. 180
1
2
3
4
5
6
7
8

4. (2023-2024·石家庄赵县月考)某纪念品的进价
为每件40元,售价为每件50元,每星期可卖出200件.
经市场调查发现:以不低于现售价的价格销售该商
∵-4<0,50≤ x ≤68,
∴当 x =68时, w 取得最大值,
最大值为-4×(68-70)2+3600=3584.
答:单价定为68元时,每星期销售这种商品获得的
利润最大,最大利润是3584元.

人教版九年级数学上册 第22章 22.3.2 《二次函数与商品利润》 同步测试(含答案)

人教版九年级数学上册  第22章 22.3.2 《二次函数与商品利润》    同步测试(含答案)

人教版九年级数学上册第22章二次函数22.3.2二次函数与商品利润同步测试第Ⅰ卷(选择题)一、选择题(共10小题,3*10=30)1.若一种服装销售盈利y(万元)与销售数量x(万件)满足函数关系式y=-2x2+4x+5,则盈利( )A.最大值为5万元B.最大值为7万元C.最小值为5万元D.最大值为6万元2.某公司的生产利润原来是a万元,经过连续两年的增长达到了y万元,如果每年增长的百分率都是x,那么y与x的函数关系是( )A.y=x2+aB.y=a(x-1)2C.y=a(1-x)2D.y=a(1+x)23. 一台机器原价60万元,如果每年的折旧率为x,两年后这台机器的价位为y万元,则y 关于x的函数关系式为( )A.y=60(1-x)2B.y=60(1-x2)C.y=60-x2D.y=60(1+x)24.喜迎圣诞,某商店销售一种进价为50元/件的商品,售价为60元/件,每星期可卖出200件,若每件商品的售价每上涨1元,则每星期就会少卖出10件.设每件商品的售价上涨x 元(x为正整数),每星期销售该商品的利润为y元,则y与x的函数关系式为( )A.y=-10x2+100x+2 000B.y=10x2+100x+2 000C.y=-10x2+200xD.y=-10x2-100x+2 0005. 一件工艺品进价为100元,标价135元出售,每天可售出100件.根据销售统计,该件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为( )A.5元B.10元C.0元D.6元6. 服装店将进价为100元的服装按x元出售,每天可销售(200-x)件,若想获得最大利润,则x应定为( )A.150元B.160元C.170元D.180元7.某产品进货单价为9元,按10元一件出售时,能售出50件.若每件每涨价1元,销售量就减少10件,则该产品能获得的最大利润为( )A.50元B.80元C.90元D.100元8. 一件工艺品的进价为100元,标价135元出售,每天可售出100件,根据销售统计,一件工艺品每降价1元,则每天可多售出4件,要使每天获得的利润最大,则每件的售价应定为( )A.130元B.125元C.135元D.129元9生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的利润y和月份n之间的函数关系式为y=-n2+14n-24,则该企业一年中应停产的月份是( )A.1月、2月、3月B.2月、3月、4月C.1月、2月、12月D.1月、11月、12月10.某旅社有100张床位,每床每晚收费10元时,床位可全部租出.若每床每晚收费提高2元,则减少10张床位的租出;若每床每晚收费再提高2元,则再减少10张床位租出.以每次提高2元的这种方法变化下去,为了投资少而获利大,每床每晚应提高( )A.4元或6元B.4元C.6元D.8元第Ⅱ卷(非选择题)二.填空题(共6小题,4*6=24)11.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x 为整数)出售,可卖出(30-x)件,若使利润最大,则每件商品的售价应为____________元.12. 我市某镇的一种特产由于运输的原因,长期只能在当地销售,当地政府对该特产的销售投资与收益的关系为每投入x万元,可获得利润P=-1100(x-60)2+41(万元),每年最多可投入100万元的销售投资,则5年所获得利润的最大值是___________万元.13. 某旅行社在十一黄金周期间接团去外地旅游,经计算,所获营业额y(元)与旅行团人数x(人)满足关系式y=-x2+100x+28 400,要使所获营业额最大,则此旅行团有____人.14. 某商场购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可销售出400件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,当销售量单价是____元时,才能在半月内获得最大利润.15.将进货价为70元/件的某种商品按零售价100元/件出售时每天能卖出20件,若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1件.为了获得最大利润决定降价x元,则单件的利润为________元,每日的销售量为_______件,每日的利润y=___________ ,16.某公司在甲、乙两地同时销售某种品牌的汽车,已知在甲、乙两地的销售利润y(单位:万元)与销售量x(单位:辆)之间分别满足y甲=-x2+10x,y乙=2x,若该公司在甲、乙两地共销售15辆该品牌的汽车,则能获得的最大利润为____万元.三.解答题(共7小题,46分)17.(6分) 将进货单价为80元的商品按90元一个售出时,能卖出400个,已知这种商品每涨价1元,其销售量就要减少20个.为了获得最大利润,每个售价应定为多少元?18. (6分) 为早日实现脱贫奔小康的宏伟目标,我市结合本地丰富的山水资源,大力发展旅游业,王家庄在当地政府的支持下,办起了民宿合作社,专门接待游客,合作社共有80间客房.根据合作社提供的房间单价x(元)和游客居住房间数y(间)的信息,乐乐绘制出y与x 的函数图象如图所示:(1)求y与x之间的函数关系式;(2)合作社规定每个房间价格不低于60元且不超过150元,对于游客所居住的每个房间,合作社每天需支出20元的各种费用,房价定为多少时,合作社每天获利最大?最大利润是多少?19. (6分) 某商场将每件进价为80元的A商品按每件100元出售,一天可售出128件,经过市场调查,发现这种商品的销售单价每降低1元,其日销售量可增加8件,设该商品每件降价x元,商场一天可通过A商品获利润y元.(1)求y与x之间的函数解析式;(不必写出自变量x的取值范围)(2)A商品销售单价为多少时,该商品每天通过A商品所获的利润最大?(1)请直接写出S与x之间的函数关系式;(不要求写出自变量x的取值范围)20.(6分) 俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2)当每本足球纪念册销售单价是多少元时,商店每天获利2400元?(3)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元?21.(6分) 某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系,关于销售单价,日销售量,日销售利润的几组对应值如表:(注:日销售利润=日销售量×(销售单价-成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是80元,当销售单价x=100元时,日销售利润w最大,最大值是2000元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?22.(8分) 鹏鹏童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销,该店决定降价销售,经市场调查反应:每降价1元,每星期可多卖10件.已知该款童装每件成本30元.设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(不求自变量的取值范围)(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少?(3)①当每件童装售价定为多少元时,该店一星期可获得3 910元的利润?②若该店每星期想要获得不低于3 910元的利润,则每星期至少要销售该款童装多少件?23.(8分) ) 我市某乡镇在“精准扶贫”活动中销售一农产品,经分析发现月销售量y(万件)与月份x(月)的关系为:y =⎩⎪⎨⎪⎧x +4(1≤x≤8,x 为整数),-x +20(9≤x≤12,x 为整数),每件产品的利润z(元)与月份x(月)的关系如下表:(1)请你根据表格求出每件产品利润z(元)与月份x(月)的关系式;(2)若月利润w(万元)=当月销售量y(万件)×当月每件产品的利润z(元),求月利润w(万元)与月份x(月)的关系式;(3)当x 为何值时,月利润w 有最大值,最大值为多少?参考答案1-5 BDAAA6-10 ACACC11. 2512. 20513. 5014. 3515. (30-x),(20+x),-x2+10x+60016. 4617.解:设售价在90元的基础上上涨x元,总利润为y元,由题意得:y=(10+x)(400-20x)=-20x2+200x+4 000=-20(x-5)2+4 500,∴当x=5时,y有最大值,最大值为4 500.此时90+x=95.即售价为95元时可获得最大利润18.解:(1)设y与x之间的函数关系式为y=kx+b,则⎩⎪⎨⎪⎧70k +b =75,80k +b =70, 解得⎩⎪⎨⎪⎧k =-0.5,b =110即y 与x 之间的函数关系式是y =-0.5x +110(2)设合作社每天获得的利润为w 元,w =x(-0.5x +110)-20(-0.5x +110)=-0.5x 2+120x -2 200=-0.5(x -120)2+5 000,∵60≤x ≤150,∴当x =120时,w 取得最大值,此时w =5 000,答:房价定为120元时,合作社每天获利最大,最大利润是5 000元19. 解:(1)由题意得,商品每件降价x 元时单价为(100-x)元,销售量为(128+8x)件, 则y =(128+8x)(100-x -80)=-8x 2+32x +2 560,即y 与x 之间的函数解析式是y =-8x 2+32x +2 560(2)∵y =-8x 2+32x +2 560=-8(x -2)2+2 592,∴当x =2时,y 获得最大值,此时y =2 592,∴销售单价为100-2=98(元),答:A 商品销售单价为98元时,该商场每天通过A 商品所获的利润最大20. 解:(1)y =300-10(x -44),即y =-10x +740(44≤x ≤52)(2)根据题意得(x -40)(-10x +740)=2400,解得x 1=50,x 2=64(舍去),答:当每本足球纪念册销售单价是50元时,商店每天获利2400元(3)w =(x -40)(-10x +740)=-10x 2+1140x -29600=-10(x -57)2+2890,当x <57时,w 随x 的增大而增大,而44≤x ≤52,所以当x =52时,w 有最大值,最大值为-10(52-57)2+2890=2640, 答:将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w 元最大,最大利润是2640元21. 解:(1)设y 关于x 的函数解析式为y =kx +b ,则⎩⎪⎨⎪⎧85k +b =175,95k +b =125, 解得⎩⎪⎨⎪⎧k =-5,b =600,即y 关于x 的函数解析式是y =-5x +600,当x =115时,y =-5×115+600=25,即m 的值是25(2)设成本为a 元/个,当x =85时,875=175×(85-a),得a =80,w =(-5x +600)(x -80)=-5x 2+1000x -48000=-5(x -100)2+2000,∴当x =100时,w 取得最大值,此时w =2000,故答案为:80,100,2000(3)设科技创新后成本为b 元,当x =90时,(-5×90+600)(90-b)≥3750, 解得b ≤65,答:该产品的成本单价应不超过65元22. 解:(1)y =100+10(60-x)=-10x +700(2)设每星期利润为W 元,W =(x -30)(-10x +700)=-10(x -50)2+4 000. ∴x =50时,W 最大值=4 000.∴每件售价定为50元时,每星期的销售利润最大,最大利润是4 000元(3)①由题意:-10(x -50)2+4 000=3 910,解得x =53或47,∴当每件童装售价定为53元或47元时,该店一星期可获得3 910元的利润. ②由题意:-10(x -50)2+4 000≥3 910,解得47≤x ≤53,∵y =100+10(60-x)=-10x +700.∴170≤y ≤230,∴每星期至少要销售该款童装170件23. 解:(1)当1≤x≤9时,设每件产品利润z(元)与月份x(月)的关系式为z =kx +b ,⎩⎪⎨⎪⎧k +b =19,2k +b =18,得⎩⎪⎨⎪⎧k =-1,b =20,即当1≤x≤9时, 每件产品利润z(元)与月份x(月)的关系式为z =-x +20,当10≤x≤12时,z =10,由上可得,z =⎩⎪⎨⎪⎧-x +20(1≤x≤9,x 取整数)10(10≤x≤12,x 取整数) (2)当1≤x≤8时,w =(x +4)(-x +20)=-x 2+16x +80,当x =9时,w =(-9+20)×(-9+20)=121,当10≤x≤12时, w =(-x +20)×10=-10x +200,由上可得,w =⎩⎪⎨⎪⎧-x 2+16x +80(1≤x≤8,x 取整数)121(x =9)-10x +200(10≤x≤12,x 取整数)(3)当1≤x ≤8时,w =-x 2+16x +80=-(x -8)2+144,∴当x =8时,w 取得最大值,此时w =144;当x =9时,w =121, 当10≤x ≤12时,w =-10x +200,则当x =10时,w 取得最大值, 此时w =100,由上可得,当x 为8时,月利润w 有最大值,最大值144万元。

人教九年级数学上册- 最大利润问题(附习题)

人教九年级数学上册- 最大利润问题(附习题)

即降价情况下,定价57.5元时,有最大利润6125元.
(1)涨价情况下,定价65元时,有最大利润6250元. (2)降价情况下,定价57.5元时,有最大利润6125元.
综上可知: 该商品的价格定价为65元时,可获得最大利润6250元.
基础巩固
随堂演练
1.下列抛物线有最高点或最低点吗?如果有,写出这些
综合应用
3.某种文化衫以每件盈利20元的价格出售,每天可售出40 件. 若每件降价1元,则每天可多售10件,如果每天要盈利 最多,每件应降价多少元?
解:设每件应降价x元,每天的利润为y元, 由题意得:y=(20-x)(40+10x)
=-10x2+160x+800 =-10(x-8)2+1440 (0<x<20). 当x=8时,y取最大值1440. 即当每件降价8元时,每天的盈利最多。
点的坐标(用公式):
(1)y=-4x2+3x;
(2)y=3x2+x+6.
解:b 2a
3
2 4
3 8
,
4ac b2 4a
32
4 4
9, 16
最高点为
3 8
,
9 16
.
解:b 1 1 , 2a 2 3 6
4ac b2 4 3 6 12 71
,
4a
43
12
最低点为
1 6
,
71 12
课堂小结
利用二次函数解决利润问题的一般步骤: (1)审清题意,理解问题; (2)分析问题中的变量和常量以及数量之间的关系; (3)列出函数关系式; (4)求解数学问题; (5)求解实际问题.
分析:(1)根据题意,设平均每天销售A种礼盒 为x盒,B种礼盒为y盒,列二元一次方程组解 答;(2)根据题意,设A种礼盒降价m元/盒,则A 种礼盒的销售量为(10+m3 )盒,再根据总利润 =每件商品的利润×销售量”列出解析式即 可.

22.3.2商品利润最大问题(第2课时)(课件)2024-2025学年九年级数学上册(人教版)

22.3.2商品利润最大问题(第2课时)(课件)2024-2025学年九年级数学上册(人教版)
银行家说:“你看你的手指上是不是有油。”
服装厂生产某品牌的 T 恤衫成本是每件 10 元.根据市场调查,
以单价 13 元批发给经销商,经销商愿意经销 5000 件 ,并且表
示单价每降价 0.1 元,愿意多经销 500 件.
请你帮助分析,厂家批发单价是多少时可以获利最多?
总利润 = (销售单价 - 成本单价)×销量 = 单利润×销量
= −4x2 + 140x − 864
∴当
答:当
时,利润 w 有最大值,最大值为 361.
时,利润最大.
某网络玩具店引进一批进价为20元/件的玩具,如果以单价30元出
售,那么一个月内售出180件,根据销售经验,提高销售单价会导
致销售量的下降,即销售单价每上涨1元,月销售量将相应减少10
件,当销售单价为多少元时,该店能在一个月内获得最大利润?
13
10
假设批发单价12.8 5000 +
5000
− .
500×
.
3
12.8 - 10
① 设未知数,用含未知数的代数式表示相关量
解:设厂家批发单价是为 x 元,获利 y 元.
② 根据题意,求出自变量的取值范围
还有其他的设未
知数方法吗?
∵ 13 − x≥0,且 x>10,∴ 10<x≤13.
在日常生活中存在着许许多多的与数学知识有关的实际问题.商
品买卖过程中,作为商家追求利润最大化是永恒的追求.
有一个这样的故事:
银行家的儿子问爸爸:“爸爸,银行里的钱都是客户和储户的,
那你是怎么赚来房子、奔驰和游艇的呢?”
“儿子,冰箱里有一块肥肉,你把它拿来。”
儿子拿来了。“你再把它放回去。”

人教版九年级数学上册22.3 第2课时 商品利润最大问题同步测试题附答案【2020新审】

人教版九年级数学上册22.3 第2课时 商品利润最大问题同步测试题附答案【2020新审】

第2课时 商品利润最大问题知识点1、二次函数常用来解决最优化的问题,这个问题实质是求函数的最大(小)值。

2、抛物线2(0)y ax bx c a =++≠的顶点是它的最高(低)点,当x=2b a - 时,二次函数有最大(小)值y=244ac b a-。

一、选择题1、进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价。

若设平均每次降价的百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数关系式为( )A 、2(1)y a x =-B 、2(1)y a x =-C 、2(1)y a x =-D 、2(1)y a x =-2、某商店从厂家以每件21元的价格购进一批商品,该商品可以自行定价。

若每件商品的售价为x元,则可卖处(350-10x)件商品。

商品所获得的利润y 元与售价x 的函数关系为( )A 、2105607350y x x =--+B 、2105607350y x x =-+-C 、210350y x x =-+D 、2103507350y x x =-+-3、某产品的进货价格为90元,按100元一个售出时,能售500个,如果这种商品每涨价1元,其销售量就减少10个,为了获得最大利润,其定价应定为( )A 、130元B 、120元C 、110元D 、100元4、小明在跳远比赛中跳出了满意的一跳,函数23.54.9h t t =-(t 单位s ,h 单位m )可用来描述她的重心的高度变化,则她从起跳后到重心处于最高位置时所用的时间是( )A 、0.71sB 、0.70sC 、0.63sD 、0.36s5、如图,正△ABC 的边长为3cm ,动点P 从点A 出发,以每秒1cm 的速度,沿A →B →C 的方向运动,到达点C 时停止,设运动时间为x (秒),2y PC =,则y 关于x 的函数图像大致为( )A B 第5题 C D6、已知二次函数2(0)y ax bx c a =++≠的图像如图所示,现有下列结论:①abc >0;②24b ac -<0;③c <4b ;④a+b >0.则其中正确的结论的个数是( )A 、1B 、2C 、3D 、47、如图,已知:正方形ABCD 边长为1,E 、F 、G 、H 分别为各边上的点,且AE=BF=CG=DH ,设小正方形EFGH 的面积为s ,AE 为x ,则s 关于x 的函数图象大致是( )A B C 第7题 D8、某厂有许多形状为直角梯形的铁皮边角料,为节约资源,现要按图中所示的方法从这些边角料上截取矩形(阴影部分)片备用,当截取的矩形面积最大时,矩形两边长x 、y 应分别为( )A 、x=10,y=14B 、x=14,y=10C 、x=12,y=15D 、x=15,y=12第6题 第8题二、填空题1、已知卖出盒饭的盒数x (盒)与所获利润y (元)满足关系式:21200357600y x x =-+-,则卖出盒饭数量为 盒时,获得最大利润为 元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时 商品利润最大问题知识点1、二次函数常用来解决最优化的问题,这个问题实质是求函数的最大(小)值。

2、抛物线2(0)y ax bx c a =++≠的顶点是它的最高(低)点,当x=2b a - 时,二次函数有最大(小)值y=244ac b a-。

一、选择题1、进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价。

若设平均每次降价的百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数关系式为( )A 、2(1)y a x =-B 、2(1)y a x =-C 、2(1)y a x =-D 、2(1)y a x =-2、某商店从厂家以每件21元的价格购进一批商品,该商品可以自行定价。

若每件商品的售价为x元,则可卖处(350-10x)件商品。

商品所获得的利润y 元与售价x 的函数关系为( )A 、2105607350y x x =--+B 、2105607350y x x =-+-C 、210350y x x =-+D 、2103507350y x x =-+-3、某产品的进货价格为90元,按100元一个售出时,能售500个,如果这种商品每涨价1元,其销售量就减少10个,为了获得最大利润,其定价应定为( )A 、130元B 、120元C 、110元D 、100元4、小明在跳远比赛中跳出了满意的一跳,函数23.54.9h t t =-(t 单位s ,h 单位m )可用来描述她的重心的高度变化,则她从起跳后到重心处于最高位置时所用的时间是( )A 、0.71sB 、0.70sC 、0.63sD 、0.36s5、如图,正△ABC 的边长为3cm ,动点P 从点A 出发,以每秒1cm 的速度,沿A →B →C 的方向运动,到达点C 时停止,设运动时间为x (秒),2y PC =,则y 关于x 的函数图像大致为( )A B 第5题 C D6、已知二次函数2(0)y ax bx c a =++≠的图像如图所示,现有下列结论:①abc >0;②24b ac -<0;③c <4b ;④a+b >0.则其中正确的结论的个数是( )A 、1B 、2C 、3D 、47、如图,已知:正方形ABCD 边长为1,E 、F 、G 、H 分别为各边上的点,且AE=BF=CG=DH ,设小正方形EFGH 的面积为s ,AE 为x ,则s 关于x 的函数图象大致是( )A B C 第7题 D8、某厂有许多形状为直角梯形的铁皮边角料,为节约资源,现要按图中所示的方法从这些边角料上截取矩形(阴影部分)片备用,当截取的矩形面积最大时,矩形两边长x 、y 应分别为( )A 、x=10,y=14B 、x=14,y=10C 、x=12,y=15D 、x=15,y=12第6题 第8题二、填空题1、已知卖出盒饭的盒数x (盒)与所获利润y (元)满足关系式:21200357600y x x =-+-,则卖出盒饭数量为 盒时,获得最大利润为 元。

2、人民币存款一年期的年利率为x ,一年到期后,银行会将本金和利息自动按一年期定期存款储蓄转存。

如果存款额是a 元,那么两年后的本息和y 元的表达式为(不考虑利息税)。

11、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元。

为了扩大销售,增加利润,尽快减少库存,商场决定采取适当的降价措施。

经调查发现:若这种衬衫每降价2元,商场平均每天可多售出4件,则商场降价后每天的盈利y (元)与降价x (元)的函数关系式 。

3、已知正方形ABCD 的边长是1,E 为CD 边的中点,P 为正方形ABCD 边上的一个动点,动点P 从点A 出发,沿A →B →C →E 运动,到达E 点.若点P 经过的路程为自变量x ,△APE 的面积为函数y ,则当13y =时,x 的值= .4、如图,抛物线y=ax2-4和y=-ax2+4都经过x轴上的A、B两点,两条抛物线的顶点分别为C、D.当四边形ACBD的面积为40时,a的值为14、如图,点P在抛物线y=x2-4x+3上运动,若以P为圆心,为半径的⊙P与x轴相切,则点P的坐标为。

5、如图,在△ABC中,∠B=90°,AB=12mm,BC=24mm,动点P从点A开始沿边AB向B 以2mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4mm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过秒,四边形APQC的面积最小.三、解答题1、某旅馆有30个房间供旅客住宿。

据测算,若每个房间的定价为60元/天,房间将会住满;若每个房间的定价每增加5元/天,就会有一个房间空闲。

该旅馆对旅客住宿的房间每间要支出各种费用20元/天(没住宿的不支出)。

当房价定为每天多少时,该旅馆的利润最大?2、最近,某市出台了一系列“三农”优惠政策,使农民收入大幅度增加。

某农户生产经销一种农副产品,已知这种产品的成本价为20元每千克。

经市场调查发现,该产品每天的销售量w(千克)与销售量x(元)有如下的关系:w=-2x+80。

设这种产品每天的销售利润为y(元)。

(1)求y与x之间的函数关系式;(2)当销售价定为多少元每千克时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元每千克,该农户想要每天获得150元的销售利润,销售价应定为多少?3、与某雪糕厂由于季节性因素,一年之中产品销售有淡季和旺季,当某月产品无利润时就停产。

经调查分析,该厂每月获得的利润y (万元)和月份x 之间满足函数关系式2y x ax b =-++,已知3月份、4月份的利润分别是9万元、16万元。

问(1)该厂每月获得的利润y (万元)和月份x 之间的函数关系式;(2)该厂在第几个月份获得最大利润?最大利润为多少?(3)该厂一年中应停产的是哪几个月份?通过计算说明。

4、(黄冈)某技术开发公司研制出一种新型产品,每件产品的成本为2400元,销售单价定为3000元,在该产品的试销期间,为了促销,鼓励商家购买这种新型产品,公司决定商家一次性购买这种新型产品不超过10件时,每件按3000元销售;若一次性购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低10元,但销售单价均不低于2600元。

(1)商家一次购买这种产品多少件时,销售单价恰好为2600元?(2)设商家一次购买这种产品x 件,开发公司所获得的利润为y 元,求y (元)与x (元)之间的函数关系式,并写出自变量的取值范围;(3)该公司的销售人员发现:当商家一次性购买产品的件数超过某一数量时,,会出现随着一次购买数量的增多,公司所获的利润反而减少这一情况。

为使商家一次购买的数量越来越多,公司所获的利润越大,公司应将最低销售单价调整为多少元?(其他销售条件不变)5、(长沙)在长株潭建设两型社会的过程中。

为推进节能减排,发展低碳经济,我市某公司以25万元购得某项节能产品的生产技术后,再投入100万元购买生产设备 ,进行该产品的生产加工。

已知生产这种产品的成本价为每件20元。

经过市场调查发现,该产品的销售单价定为25元到30元之间较为合理,并且该产品的年销售量y (万件)与销售单价x (元)之间的函数关系式为:40(2530)250.5(3035)x x y x x -≤≤⎧=⎨-≤⎩<。

(年获利=年销售收入-生产成本-投资成本) (1)当销售单价定为28元时,该产品的年销售量为多少万件?(2)求该公司第一年的年获利W (万元)与销售单价x (件)之间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最少亏损是多少?(3)第二年,该公司决定给希望工程捐款Z 万元,该项捐款由两部分组成:一部分是10万元的固定捐款;另一部分则是每销售一件产品,就抽出一元作为捐款。

若出去第一年的最大获利(或是最小亏损)以及第二年的捐款后,到第二年底,两年的总盈利不低于67.5万元,请你确定此时销售单价的单位。

(选 作)参考答案选择题1、D 2、B 3、B 4、D 5、D 6、B 7、B 8、D二.填空题 1、600 240000 2、()21y a x =+ 3、226080y x x =-++ 4、2533或 5、0.166、(-2,1)()2()2 7、3三.解答题1、解:设每天的房价为60+5x 元,则有x 个房间空闲,已住宿了30-x 个房间.∴度假村的利润y=(30-x )(60+5x )-20(30-x ),其中0≤x ≤30.∴y=(30-x )•5•(8+x )=5(240+22x-x2)=-5(x-11)2+1805.因此,当x=11时,y 取得最大值1805元,即每天房价定为115元∕间时,度假村的利润最大。

2、解:(1)y=(x-20)w=(x-20)(-2x+80)=-2x2+120x-1600,∴y 与x 的函数关系式为:y=-2x2+120x-1600;(3分)(2)y=-2x2+120x-1600=-2(x-30)2+200,∴当x=30时,y 有最大值200,∴当销售价定为30元/千克时,每天可获最大销售利润200元;(6分)(3)当y=150时,可得方程:-2(x-30)2+200=150,解这个方程,得x1=25,x2=35,(8分)根据题意,x2=35不合题意,应舍去,∴当销售价定为25元/千克时,该农户每天可获得销售利润150元.3、解:(1)把点(3,9),(4,16)代入函数关系式:99316164a b a b =-++⎧⎨=-++⎩解得:1424a b =⎧⎨=-⎩∴y=-x2+14x-24(2)当1472(1)x =-=⨯-时,=25y 最大∴7月份获得最大利润,最大利润是25万元.(3)当y=0时,有方程:x2-14x+24=0解得:x1=2,x2=12.所以第二月和第十二月份无利润,根据二次函数的性质,第一月份的利润为负数, 因此一年中应停产的是第一月份,第二月份和第十二月份.4、解:(1)设件数为x ,依题意,得3000-10(x-10)=2600,解得x=50,答:商家一次购买这种产品50件时,销售单价恰好为2600元;(2)当0≤x≤10时,y=(3000-2400)x=600x,当10<x≤50时,y=[3000-10(x-10)-2400]x,即y=-10x2+700x 当x>50时,y=(2600-2400)x=200x∴y=⎧⎪⎨⎪⎩600x(0≤x≤10,且x为整数)−10x2+700x(10<x≤50,且x为整数)200x(x>50,且x为整数)(3)由y=-10x2+700x可知抛物线开口向下,当x=35时,利润y有最大值,此时,销售单价为3000-10(x-10)=2750元,答:公司应将最低销售单价调整为2750元.5、解:(1)∵25<28<30,y=⎧⎨⎩40−x(25≤x≤30)25−0.5x(30<x≤35)∴把x=28代入y=40-x得,∴y=12(万件),答:当销售单价定为28元时,该产品的年销售量为12万件;(2)①当25≤x≤30时,W=(40-x)(x-20)-25-100=-x2+60x-925=-(x-30)2-25,故当x=30时,W最大为-25,即公司最少亏损25万;②当30<x≤35时,W=(25-0.5x)(x-20)-25-100=21356252x x-+-=21(35)12.52x---故当x=35时,W最大为-12.5,即公司最少亏损12.5万;对比①,②得,投资的第一年,公司亏损,最少亏损是12.5万;答:投资的第一年,公司亏损,最少亏损是12.5万;(3)①当25≤x≤30时,W=(40-x)(x-20-1)-12.5-10=-x2+61x-862.5≥67.5,-x2+61x-862.5≥67.5,化简得:x2-61x+930≤0解得:30≤x≤31,当两年的总盈利不低于67.5万元时,x=30;②当30<x≤35时,W=(25-0.5x)(x-20-1)-12.5-10=2135.5547.567.5 2x x-+-≥-化简得:x2-71x+1230≤0解得:30≤x≤41,当两年的总盈利不低于67.5万元时,30≤x≤35,答:到第二年年底,两年的总盈利不低于67.5万元,此时销售单价的范围是30≤x≤35.。

相关文档
最新文档