《相反数》教学设计经典.doc

合集下载

相反数教案(优秀4篇)

相反数教案(优秀4篇)

相反数教案(优秀4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!相反数教案(优秀4篇)相反数是一个数学术语,指绝对值相等,正负号相反的两个数互为相反数。

1.2.2相反数教学设计2024-2025学年湘教版数学七年级上册

1.2.2相反数教学设计2024-2025学年湘教版数学七年级上册
2.教学难点:
本节课的难点在于理解相反数的对称性和应用。具体难点包括:
(1)相反数的对称性:学生需要理解为什么每个数都有唯一的相反数,以及相反数与原数的对称性如何体现在数学运算中。
(2)相反数在乘法和除法运算中的应用:学生需要掌握如何在乘法和除法运算中正确地运用相反数,例如,如何利用相反数简化计算过程。
了解了相反数的定义和性质之后,我们来看一下它们在运算中的应用。
-在加法运算中,两个数相加,如果其中一个是负数,我们可以通过找到它的相反数,将问题转化为加法运算。
-在减法运算中,我们可以将减法问题转化为加法问题,即减去一个数等于加上它的相反数。
-在乘法运算中,两个负数相乘得到正数,而一个正数与一个负数相乘得到负数。这是因为负数是正数的相反数,它们相乘相当于正数与正数相乘。
(2)针对学生运算能力有待提高的问题,可以设计一些有针对性的练习题,加强学生的运算训练,提高学生的运算速度和准确性。
(3)针对学生学习积极性不高的问题,可以引入一些有趣的数学故事和实例,激发学生的学习兴趣,提高学生的学习积极性。
(4)可以组织一些数学竞赛和活动,鼓励学生积极参与,提高学生的学习动力和积极性。
(2)家庭作业:可以布置一些与相反数相关的家庭作业,让学生在课后巩固所学知识,例如,让学生设计一个关于相反数的数学小报。
(3)数学日记:鼓励学生写数学日记,记录自己在学习相反数过程中的所思所感,以及如何将相反数知识应用于生活。
(4)课后辅导:可以为学有余力的学生提供课后辅导,帮助他们更深入地学习相反数的相关知识,例如,介绍相反数在高等数学中的应用。
(5)可以加强与学生的交流和沟通,了解学生的学习需求和困难,提供个性化的辅导和指导,帮助学生更好地掌握相反数知识。

相反数教案(6篇)

相反数教案(6篇)

相反数教案(6篇)相反数篇一教学目标1.了解相反数的意义,会求有理数的相反数;2.进一步培养学生分类讨论的思想和观察、归纳与概括的能力.3.初步认识对立统一的规律。

教学建议一、重点、难点分析本节的重点是了解相反数的意义,理解相反数的代数定义与几何定义的一致性.难点是多重符号的化简.“只有符号不同的两个数”中的“只有”指的是除了符号不同以外完全相同(也就是下节课要学的绝对值相同)。

不能理解为只要符号不同的两个数就互为相反数。

另外,“0的相反数是0”也是相反数定义的一部分。

关于“数a的相反数是-a”,应该明确的是-a不一定是正数,a不一定是正数。

关于多重符号的化简,如果一个正数前面有偶数个“-”号,可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简符号后只剩一个“-”号。

二、知识结构相反数的定义相反数的性质及其判定相反数的应用三、教法建议这节课教学的主要内容是互为相反数的概念。

由于教材先讲相反数,后讲绝对值,所以相反数的定义只是形式上的描述,主要通过相反数的几何意义理解相反数的概念。

教学中建议,直接给出相反数的几何定义,通过实例了解求一个数的相反数的方法。

按着数轴――相反数――绝对值的顺序教学,可充分利用数轴使数与形更好地结合起来。

四、相反数的相关知识1.相反数的意义(1)只有符号不同的两个数叫做互为相反数,如-1999与1999互为相反数。

(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。

如5与-5是互为相反数。

(3)0的相反数是0。

也只有0的相反数是它的本身。

(4)相反数是表示两个数的相互关系,不能单独存在。

2.相反数的表示在一个数的前面添上“-”号就成为原数的相反数。

若表示一个有理数,则的相反数表示为-。

在一个数的前面添上“+”号仍与原数相联系同。

例如,+7=7,特别地,+0=0,-0=0。

3.相反数的特性若互为相反数,则,反之若,则互为相反数。

4.多重符号化简(1)相反数的意义是简化多重符号的依据。

《相反数》精品教案

《相反数》精品教案

《相反数》精品教案教学目标课题 1.2.3 相反数授课人素养目标1.借助数轴理解相反数的意义,掌握相反数的概念及求有理数的相反数的方法,进一步体会数形结合思想.2.理解相反数的性质,会进行多重符号的化简,感受数学知识的严谨性.教学重点1.理解相反数的概念.2.求一个数的相反数.教学难点根据相反数的意义进行多重符号的化简.教学活动教学步骤师生活动活动一:问题导入,引出新课【问题导入】让甲、乙两名学生在讲台前背靠背站好(分左右),然后乙向右走3步,甲向左走3步(两人的步子大小相同).规定两个同学最开始站立的点为原点,向右为正,用上一节课学习的数轴将甲、乙两人所走的步数表示出来(如图所示).从数轴上观察,这两个数具有什么特点?带着这个问题,我们一起进入本课时的学习!【教学建议】教学时可让学生上台示范下,进而引导学生观察数轴上相反意义的数对,观察每组数所对应的两个点的位置关系,引发对相反数的思考.设计意图提出问题,为引出相反数的概念做铺垫.活动二:实践探究,获取新知探究点1相反数的概念问题1(教材P11探究)结合活动一的内容,想一想:在数轴上,与原点的距离是3的点有几个?这些点分别表示什么数?这些数之间有什么关系?与原点的距离是12的点呢?如图,均有两个,这些点表示的数分别是3,-3;12,-12.两组数之间的关系分别如下:问题2设a是一个正数,数轴上与原点的距离等于a的点有几个?这些点表示的数之间有什么关系?如图,也有两个,表示a,-a,这两个数也只有符号不同.【教学建议】(1)引导学生多举几个具体数字,充分感受“互为相反数”的两个数之间的关系以及它们在数轴上的位置关系.(2)要确定一个有理数(还有以后要学的实数),一是符号,二是绝对值.3和-3,符号不同,绝对值相同.当然,绝对值的相关内容下一节才介绍,所以这里说“只有符号不同”,避开了绝对值.设计意图问题引入,借助数轴这个“工具”,采取从具体到抽象的方法,引导学生观察数轴上与原点的距离相等的点,发现这样的点有两个,而且这两个点表示的数只有符号不同,通过归纳引导学生得出“与原点的距离是a的点”的个数及其表示的数之间的关系,由此引出相反数的概念.归纳:一般地,设a是一个正数,数轴上与原点的距离是a的点有两个,它们分别在正、负半轴上,表示a和-a(如上图),这两个数只有符号不同.概念引入:【对应训练】教材P12练习第1题.(3)提醒学生:①相反数一定成对出现,不能单独存在.②只有符号不同说明其他都完全相同.③“0的相反数是0”也是概念的组成部分,0是唯一一个相反数等于它本身的数. (4)此外,这里可结合数轴向学生介绍相反数的几何意义:互为相反数的两个数分别位于原点的两侧(0除外),且到原点的距离相等.设计意图探究点2 相反数的性质及双重符号的化简问题1结合探究点1中的相关知识,若设a表示一个数,则a的相反数如何表示?你能在数轴上把a和a的相反数表示出来吗?a的相反数是-a.追问从上面的表示可以看出,a可以是什么数?a表示任意一个数,可以是正数、负数或0.问题2设a表示一个数,-a一定是负数吗?不一定.比如当a是负数或0时,-a相应地就是正数或0.(如a是-1,-a就是1)通过以上探究,我们还可以知道相反数有一些这样的性质:一般地,a和-a互为相反数.这里,a表示任意一个数,可以是正数、负数,也可以是0.正数的相反数是负数,负数的相反数是正数,0的相反数是0.问题3想一想,如何求一个数的相反数?在正数前面添上“-”号,就得到这个正数的相反【教学建议】教师要特别注意,教学时应让学生通过对a赋值,熟悉正数的相反数是负数,负数的相反数是正数,进而说明,由于a既可以是正数,也可以是负数,因此由相反数的概念引出相反数的性质和求相反数的方法,从而得出多重符号的化简方法,巩固所学知识,提高学生全面分析问题的能力.数.在任意一个数前面添上“-”号,新的数就表示原数的相反数.问题4 (1)根据上面的求法试一试:(2)你能借助数轴说明-(-5)=+5吗?-(-5)表示-5的相反数,如图,-5的相反数是+5.例1 (教材P12例3) (1)分别写出-7和43的相反数;(2)a 的相反数是2.4,写出a 的值.解:(1)-7的相反数是7,43 的相反数是-A43 .(2)因为2.4与-2.4互为相反数,所以a 的值是-2.4.例2 化简下列各数:(1)-(+2 025);(2)-(-14);(3)-(+125);(4)-(-2.7). 解:(1)-(+2 025)=-2 025;(2)-(-14)=14;(3)-(+125)=-125;(4)-(-2.7)=2.7.方法总结:化简双重符号时,只需看数字前面的正负号,若符号相同则结果为正;若符号不同,则结果为负.(同号得正,异号得负) 【对应训练】教材P12练习第2,3,4题.-a 不一定是负数.这是培养学生抽象思维的机会.活动三:典例精讲,巩固提升 例3 如图,数轴上有A ,B ,C ,D 四个点,其中表示-2的相反数的点是哪个?分析:此题是数轴与相反数的综合题,需要先确定数轴上表示-2的点在哪,再在图上找到表示其相反数(即2)的点即可.解:点D . 【对应训练】如图,数轴上表示数3的相反数的点是点 M .【教学建议】教师点拨:在数轴上找相反数的点,可以先求其相反数,再在数轴上找到相应的点,也可以直接在图上根据“互为相反数的点到原点的距离相等”找点.设计意图对于数轴和相反数结合的常考题进行补充.活动四:随堂训练,课堂总结【随堂训练】见《创优作业》“随堂小练”册子相应课时随堂训练. 【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:1.什么样的数互为相反数?如何表示?2.0的相反数是什么?3.如何进行双重符号的化简?【知识结构】【作业布置】1.教材P17习题1.2第3,8,9题.2.《创优作业》主体本部分相应课时训练.板书设计1.2.3 相反数1.相反数的概念:只有符号不同的两个数,互为相反数;0的相反数是02.-a表示a的相反数3.相反数的性质:正数的相反数是负数,负数的相反数是正数,0的相反数是0教学反思利用数轴引导学生感受相反数的意义.通过教师的层层设问,充分展示学生的思维过程,让学生学会“理性”思考,从而归纳出互为相反数的意义.在认识相反数的意义的过程中,通过数形结合灵活教学,旨在让学生领会归纳相反数意义的多样性、概括性.解题大招一相反数的几何意义解此类题时应从相反数的意义入手,明确互为相反数的两个数到原点的距离相等,这种“利用概念解题,回到概念中去”的思路是一种常用的解题技巧.例1(1)数轴上离原点3个单位长度的点所表示的数是3或-3 ,它们的关系为互为相反数.(2)在如图所示的数轴上,若点A和点B分别表示互为相反数的两个数,点A在点B 的左侧,并且这两个点之间的距离是12.8,则点A表示的数为-6.4 ,点B表示的数为 6.4 .解析:(1)原点左边距离原点3个单位长度的点表示的数是-3,原点右边距离原点3个单位长度的点表示的数是3,所以距离原点3个单位长度的点所表示的数是3或-3,它们互为相反数.(2)因为点A和点B分别表示互为相反数的两个数,所以原点到点A与点B的距离相等.因为A ,B 两点间的距离是12.8,所以原点到点A 和点B 的距离都等于6.4.因为点A 在点B 的左侧,所以这两点所表示的数分别是-6.4,6.4.解题大招二 化简多重符号的方法多重符号化简:“-”有奇数个,结果只保留一个“-”;“-”有偶数个,结果无“-”;“-”有0个,结果无“-”;0前无论有多少“-”,结果仍是0.例2 化简下列各数:解:(1)-8(2)1518(3)6 (4)-23培优点 相反数与数轴相结合的问题例 如图,图中数轴(缺原点)的单位长度为1,点A ,B 表示的两数互为相反数,求点C 表示的数.解:数轴向右为正方向,数轴(缺原点)的单位长度为1,所以点A ,B 相距6个单位长度.由互为相反数的两个点到原点的距离相等,可得点B 到原点的距离为3,所以可以确定原点的位置如图:所以点C 表示的数为-1.方法总结:解此类题首先要在数轴上找到原点,从而确定已知点所表示的数.牢记互为相反数的两个点到原点的距离相等是解决此类题的关键.课后·知能演练一、基础巩固1.-2 024的相反数是( ) A.-2 024 B.2 024C.-D.2.在下列各组数中,互为相反数的是( ) A.-与-2B.-1与-(+1)C.-(-3)与-3D.2与3.如图,数轴上A ,B 两点表示的数互为相反数,且点A 与点B 之间的距离为4个单位长度,则点A表示的数是________.4.化简:-=________;+=________________;-=________________;-=________.二、能力提升5.数学课上,李老师和同学们玩一个找原点的游戏.(1)如图1,在数轴上标有A,B两点,已知A,B两点所表示的数互为相反数.图1①如果点A所表示的数是-5,那么点B所表示的数是________;②请在图1中标出原点O的位置;(2)图2是小敏所画的数轴,请你帮她标出隐藏的原点O的位置,此时点C表示的数是________.图2三、思维拓展6.小明在一张纸上画了一条数轴(原点未标出),有理数a,b,c在数轴上的位置如图所示.表示数a的点与表示数c的点到原点的距离相等,表示数b与-b的点相距30个单位长度,若表示数a 的点与原点的距离是表示数b的点与原点距离的,则c的值为()A.-2B.-10C.-6D.-5【课后·知能演练】1.B2.C3.-24.3-4- 35.解:(1)①5②如图所示.(2)原点O的位置如图所示.点C所表示的数是4.6.D解析:由表示数a的点与表示数c的点到原点的距离相等,知a与c互为相反数,即原点在数a和数c对应的点中间,如图所示.由b与-b互为相反数,且表示数b与数-b的点相距30个单位长度,知表示数b的点到原点的距离为15,表示数a的点与原点的距离是表示数b的点与原点距离的,故a=×15=5,故c=-5.。

《相反数》教学设计

《相反数》教学设计

《相反数》教学设计教学目标:1.知识目标:学生掌握相反数的基本概念和性质,了解相反数的应用领域。

2.能力目标:培养学生对数的运算性质的理解和运用能力。

3.情感目标:培养学生合作学习和积极思考的习惯。

教学重点:1.相反数的基本概念和性质。

2.相反数的计算和应用。

教学难点:1.相反数的概念和性质的理解和运用。

教学准备:1.教师准备:多媒体课件,白板,黑板,书本相关资料。

2.学生准备:纸和笔。

教学过程:Step 1 引入新知识(10分钟)教师通过提问的方式引入新的知识,如:你们知道什么是相反数吗?相反数有什么特点?教师带领学生讨论相反数的定义和特点,引导学生认识到两个数互相取反就是相反数,并指出相反数在数轴上的位置。

Step 2 相反数的计算(20分钟)教师通过多种计算方式向学生介绍相反数的计算方法。

1.教师示范:2的相反数是-2,-2的相反数是22.学生练习:自主完成以下计算题目:a)5的相反数是多少?b)-10的相反数是多少?c)一个数的相反数与这个数的和是多少?d)两个互为相反数的数的和是多少?Step 3 相反数的性质(20分钟)教师通过讲解和例题的方式向学生介绍相反数的性质。

1.相反数和为0。

2.相反数的积为-13.相反数的和等于原数与0的差。

Step 4 相反数的应用(20分钟)教师向学生介绍相反数在实际问题中的应用。

1.教师示范:一个地点距离一些起点5公里,另一个地点距离起点7公里,两地点之间的距离是多少?2.学生练习:自主完成以下应用题目:a)一对相反数的和是-10,这对数分别是多少?b)一个温度计的指针指示-5度,过了一小时指示了多少度?c)在负数轴上点A、B的坐标分别是-3和5,求A、B的距离。

Step 5复习与总结(10分钟)教师与学生一起复习和总结相反数的概念、性质和应用。

教学延伸:教师可以通过为学生布置作业来巩固所学内容,如编写更多的应用题目来提高学生对相反数的运用能力。

教学反思:通过本节课的教学,学生能够掌握相反数的基本概念和性质,并能够应用相反数解决实际问题。

相反数教学设计

相反数教学设计

相反数教学设计一、教学目标1、知识与技能目标理解相反数的概念,能求出一个数的相反数。

掌握相反数的性质,能运用相反数的性质解决简单的问题。

2、过程与方法目标通过观察、比较、分析等活动,培养学生的观察能力、归纳能力和语言表达能力。

经历从具体情境中抽象出相反数概念的过程,体会数学与生活的密切联系,提高学生的数学思维能力。

3、情感态度与价值观目标让学生在探索相反数的过程中,感受数学的严谨性和趣味性,激发学生学习数学的兴趣。

培养学生合作交流的意识和勇于探索的精神。

二、教学重难点1、教学重点相反数的概念和性质。

求一个数的相反数。

2、教学难点理解相反数的几何意义。

相反数在数轴上的表示及应用。

三、教学方法讲授法、启发式教学法、讨论法、练习法四、教学过程1、导入新课展示一组数:5 和-5,2 和-2,05 和-05 等。

提问:观察这些数,它们有什么特点?2、讲授新课引导学生观察并发现:这两组数只有符号不同,数字相同。

给出相反数的定义:像 5 和-5,2 和-2 这样,只有符号不同的两个数叫做互为相反数。

强调:零的相反数是零。

举例说明:如+3 的相反数是-3,-10 的相反数是 10。

探究相反数的性质:让学生在数轴上表示出一对相反数,如 3 和-3。

观察发现:互为相反数的两个数到原点的距离相等。

总结性质:互为相反数的两个数的和为 0。

练习巩固:说出下列各数的相反数:8-7a化简下列各式:(+5)(-7)+(-2)3、课堂小结回顾相反数的概念、性质。

强调求相反数的方法。

4、布置作业课本练习题。

思考:如果 a、b 互为相反数,那么 a + b =?五、教学反思在教学过程中,通过具体的例子和数轴的直观演示,帮助学生较好地理解了相反数的概念和性质。

但在练习环节中,发现部分学生在求负数的相反数时容易出错,需要在后续的教学中加强针对性的练习和辅导。

同时,在教学中要更加注重引导学生自主思考和探索,培养学生的数学思维能力。

教学设计《相反数》精编完整版

教学设计《相反数》精编完整版

教学过程设计分析备注第二章有理数§ 相反数教学目的:1、使学生能理解“两数互为相反数”的意义;2、会写出已知数的相反数;3、懂得简单的简化符号的运算。

教学分析:重点:能准确写出任意数的相反数,对简化符号能正确应用。

难点:相反数的意义及有理数的组成。

教学过程:一、知识导向:通过举出两个相反数,进行其表现形式的特点,及两数在数轴上的位置特点,来说明所谓相反数的特征及求法。

二、新课拆析:1、设疑:其一:-3与3 (+3)在数的形式上有何异同点其二:.3与3 (+3)在数轴上的位置有何异同点其三:如果从数轴上的0点出发,分别向左右移动3个单位,会得到什么结果2、两个数互为相反数的意义及相反数的求法:概括:只有符号不同的两个数称互为相反数特点:在数轴上表示互为相反数的两个数的点分别位于原点的旁,且与原点的距离相等求法:通常在一个数的前面添上号,得到的这个新数表示原数的相反数,即表示a的相反数同样,在一个数前面添上“ + ”号,表示这个数本身概括:正数的相反数是负数零的相反数是零(即零的相反数是其本身)负数的相反数是正数置疑:一个数的相反数与其本身的大小关系例:分别写出下列各数的相反数:5、-7、-3-> +2例:化简下列各数:(1) - ( + 10) (2) + ()(3) + (+3) (4) - (-20)三、巩固训练:P28 1、2、3四、知识小结:通过对相反数的学习,必须掌握两个数互为相反数的意义,能准确地写出任意一个有理数的相反数。

五、作业:P28 1、2、3、4六、每日预题:1、观察-6、+6与数轴原点的位置关系,分别说出两数与原点的距离。

2、什么是绝对值如何求任何一个数的绝对值结束语内容说明:该文档为word版本,可重复编辑,希望能够帮助您解决遇到的实际问题。

提示:您的所见即为文档全部内容,整理的工作计戈U、总结报告、策划方案、心得体会、演讲发言、党团资料、合同协议、规章制度、说课教案、其他范文等等均可以根据实际需要进行调整和使用,谢谢!Download tips:This document is carefully compiled by thiseditor. I hope that after you download it, it can help you solvepractical problems. The document can be customized and modified after downloading, please adjust and use itaccording to actual needs, thank you!In addition, this shop provides you with various types of practical sample essays, such as work plans,summary reports, planning schemes, experiences, speeches, party information, contracts and agreements, rules and regulations, lecture plans, other sample essays, etc.if you want to know the difference Please pay attention to theformat and writing of the sample essay!。

《相反数》参考教案

《相反数》参考教案

《相反数》参考教案第一章:相反数的定义与性质1.1 教学目标了解相反数的定义及其性质能够找出任意一个数的相反数理解相反数在数轴上的表示方法1.2 教学内容相反数的定义:一个数的相反数是与它的数值相等,但符号相反的数。

相反数的性质:1. 每个数都有唯一的相反数。

2. 一个数与其相反数相加等于零。

3. 一个数的相反数的相反数等于它本身。

1.3 教学步骤引入概念:通过实际例子,如2的相反数是-2,解释相反数的定义。

讲解性质:通过数学公式和示例,讲解相反数的性质。

练习:让学生找出不同数字的相反数,并验证相反数的性质。

1.4 作业练习找出不同数字的相反数,并运用相反数的性质进行计算。

第二章:相反数在数轴上的表示2.1 教学目标能够在数轴上表示相反数理解数轴上相反数的位置关系数轴:一条水平直线,用于表示数的大小关系。

相反数在数轴上的表示:一个数的相反数在数轴上与它的位置相对称。

2.3 教学步骤引入数轴:简单介绍数轴的概念和表示方法。

讲解相反数在数轴上的表示:通过数轴示例,展示相反数的位置关系。

练习:让学生在数轴上表示不同数字的相反数。

2.4 作业练习在数轴上表示不同数字的相反数,并描述它们的位置关系。

第三章:相反数与加法3.1 教学目标理解相反数在加法运算中的作用能够运用相反数进行加法计算3.2 教学内容相反数与加法的关系:在加法运算中,两个数相加等于零时,它们互为相反数。

3.3 教学步骤引入加法:回顾加法运算的基本规则。

讲解相反数在加法中的作用:通过示例,解释如何利用相反数进行加法计算。

练习:让学生运用相反数进行加法计算。

3.4 作业练习运用相反数进行加法计算,并验证结果的正确性。

第四章:相反数与减法理解相反数在减法运算中的作用能够运用相反数进行减法计算4.2 教学内容相反数与减法的关系:在减法运算中,减去一个数等于加上它的相反数。

4.3 教学步骤引入减法:回顾减法运算的基本规则。

讲解相反数在减法中的作用:通过示例,解释如何利用相反数进行减法计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2.3 相反数教学设计
教学目标
(一)知识技能
1.了解相反数的概念。

2.能在数轴上表示出两个互为相反数的数,并且发现表示互为相反数的两点在原点的两侧,到原点的距离相等。

3.利用互为相反数符号表示方法化简多重符号。

(二)过程方法
1.利用数轴,直观认识互为相反数的位置特点,理解相反数的代数定义和几何定义的一致性。

2.渗透数形结合等思想方法,并注意培养学生的概括能力。

3.会正确求一个数的相反数并知道它们之间的关系。

(三)情感态度
通过相反数的学习,体会数学符号化和数形结合的思想,进而进一步认识事物之间的联系。

教学重点
1.相反数的概念及其表示方法,理解相反数的代数定义和几何定义的一致性。

2.能准确写出任意数的相反数,对简化符号能正确应用。

教学难点
负数的相反数的表示方法,化简多重符号。

【复习引入】
1.在数轴上分别找出表示各数的点。

3与-3,-5与5,-1.5与1.5
想一想:在数轴上,表示每对数的点有什么相同?有什么不同?
2.观察数3与-3,-5与5,-1.5与1.5有何特点?,观察每组数所对应的两个点的位置关系有什么规律?
再提思考问題:
(1)数轴上与原点的距离是2的点有个?这些点表示的数是.
(2)数轴上与原点的距离是5的点有个?这些点表示的数是.
学生归纳:每组中的两个数只有符号不同,他们所对应的两点分别在原点的两侧,到原点的距离相等。

【教学过程】
1.归纳相反数的定义:
像3与-3,-5与5,-1.5与1.5这样只有符号不同的两个数称互为相反数。

代数概念:只有符号不同的两个数称互为相反数。

0的相反数是0.。

几何意义:在数轴上,表示互为相反数的两个数分别位于原点两侧,且与原点的距离相等。

辩析:(1)符号不同的两个数叫做互为相反数。

(2)3.5是相反数,(3)+3和-3是相反数。

说明:(1)相反数是指只有符号不同的两个数。

(2)相反数是成对出现的,不能单独存在,因而不能说“-6是相反数”。

特别强调的是0的相反数为0,因为0既不是正数,也不是负数,它到原点的距离就是0,这是相反数等于本身的唯一的数。

因此,求一个数的相反数的方法:根据相反数的定义,只要改变一下这个数的符号,即将正号改变为负号,负号改变为正号.如2的相反数是-2,-5的相反数是5。

2.一般地,数a的相反数是-a,其中a可是正数和负数和0.
(1)当a=7时,-a=-7,7的相反数是-7.
(2)a=-5时,-a=-(-5)=5,-5的相反数是5.
(3)当a=0时,0的相反数是0,因此-0=0.
小结:当a>0时,a-<0;
当a=0时,a-=0;
当a<0时,a->0.
[注意]a不一定是正数,同样-a也不一定是负数。

例1 分别说出6.9,-12,
4
5
-的相反数.
解:6.9的相反数是-6.9;-12的相反数是12 ;
4
5
-的相反数就是
4
5
.
例2分别说出-(+20),-(-0.7),-(+2
9
)各是什么数的相反数?
解:-(+20)是+20的相反数;
-(-0.7)是-0.7的相反数;
-(+2
9
)是+
2
9
的相反数.
3.规定:在任何一个数的前面添上一个"+"号,表示这个数本身;添上一个"-"号,就表示这个数的相反数.
想一想:按照这样的规定,+(-7) 表示什么意思?它的值等于多少? -(-7)表示什么意思?它的值等于多少?
提示:+(-7)不能记为+-7,- (-7)也不能记为--7.
4.思考:在式子“7-3 = 4”中,“-”号一般表示___________;在式子“-7”中,“-”号一般表示______;式子“-a”中,“-”号表示_______.
“-”号的三种主要意义:
(1)性质符号:写在一个数值的前面,表示这个数是负数. 比如,-5表示“负5”这个负数,在这里的“-”号就是表示负数的一种符号,它表明“-5”的性质是负数. (2)相反数符号:表示一个数的相反数时,我们常在这个数的前面添上“-”号. 比如,-(-5)=5,就表示-5的相反数是5.
(3)运算符号:这点和小学的意义是相同的,用“-”号表示减号. 比如,2-3表示“2减3”,其中的“-”号就表示了减法运算.
例3 根据相反数的意义,化简下列各数:
(1) - (-48) (2) - (+2.56)
解:(1) - (-48)=48 (2) - (+2.56)=-2.56
(4) - [- (-91)]=- (+91)=-91
注意:化简一个数前面的“多重符号”的规则是:只要这个数前面的“-”号的个数是奇数个时,化简结果的符号为“-”,当“-”号的个数为偶数时,化简结果的符号为“+”.
例如:-{+[-(+5)]}=5 (个数为偶数2,结果应为正)
-〔-〔+(-5)〕〕=-5(“-”号个数为奇数3,结果应为负)
例4 说出下列各式表示的意义并化简:
(1))2(--; (2))8(-+; (3))4(+-; (4))m (--;
(5))]a ([---;(6))]a ([+--; (7))b a (--; (8))b a (+-。

解析:(1)求-2的相反数,结果为2(也可以简化为“负负得正”来确定符号,但要清楚可以这么求解的原因);
(2)-8的前面加上“+”号,还得原数-8;
(3)+4的相反数为-4;
(4)m -的相反数为m (可简化记忆为奇数个负号结果取负号,偶数个负号结果取正号);
(5)a -的相反数的相反数为a -(有3个“-”号结果仍取“-”号);
(6)+a 的相反数的相反数为a (有2个“-”号结果取“+”号);
(7)b a -的相反数为a b -;
(8)b a +的相反数为b a --。

【课堂作业】
1.判断题
(1)-a 是负数. ( )
(2) 一个负数的相反数一定比它本身大. ( )
2.分别写出下列各数的相反数:
-5,1,-3,0,-1
6,-0.2,41,-0.5 3.填空:
(1) -1.6是____的相反数,_______的相反数是-0.2
(2) 3
1与______互为相反数,x+1的相反数是_____________ (3)一个数的相反数是最小的正整数,那么这个数是__________
(4) a 的相反数是 ,+(-a )= ,-(-a )的相反数是 , ____________的相反数大于本身; ____________的相反数等于本身; ____________的相反数小于本身.
4.化简下列各数:
(1)-(-16); (2)-(+20); (3)+(+50); (4)-(-32
1);
(5)+(-6.09); (6)-[-(+3)]; (7)+[-(-1)]; (8)-[-(-10
1)] (9)-(+7) (10) +(-5) (11)-(-3.1) (12) -[+(-2)] (13)-[-(+5)] (14) -[-(+5
2)] (15) +[-(-8)] (16) -[-(-43
)] 5.填空:
(1)如果a=-13,那么-a=______;(2)如果a=-54,那么-a=_____;
(3)如果-x=-6,那么x=_____; (4)如果-x=9,那么x_________
参考答案:
1.(1)× (2)√
2. -5的相反数是5; 1的相反数是-1; -3的相反数是3;
0的相反数是0; -1的相反数是1;
6的相反数是-6; -0.2相反数是0.2; 41的相反数是-4
1; -0.5的相反数是0.5 3.(1)1.6 0.2 (2)-3
1 -(x+1) (3)-1 (4)-a -a -a 负数 0 正数
4. (1)+16; (2)- 20; (3)50; (4)32
1; (5) -6.09; (6) 3; (7) 1; (8) -10
1 (9)-7 ; (10) -5; (11) 3.1; (12) 2;
(13) 5; (14)
5
2; (15) 8; (16)-43。

【教学反思】
相反数的概念使有理数的各个运算法则容易表述,也揭示了两个特殊数的特征.这两个特殊数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有广泛的应用.所以本节课要围绕数量和几何意义展开,渗透数形结合的思想.。

相关文档
最新文档