集合与充要条件测试题

合集下载

(完整版)集合与充要条件练习题

(完整版)集合与充要条件练习题

(完整版)集合与充要条件练习题一、选择题1.下列语句能确定一个集合的是()A 浙江公路技师学院高个子的男生B 电脑上的容量小的文件全体C 不大于3的实数全体D 与1接近的所有数的全体2.下列集合中,为无限集的是()A 比1大比5小的所有数的全体B 地球上的所有生物的全体C 超级电脑上所有文件全体D 能被百度搜索到的网页全体3.下列表示方法正确的是()2.0 (3)A NB QC RD Z Q π*∈-∈∈∈ 4.下列对象能组成集合的是()A.大于5的自然数B.一切很大的数C.路桥系优秀的学生D.班上考试得分很高的同学5.下列不能组成集合的是()A. 不大于8的自然数B. 很接近于2的数C.班上身高超过2米的同学D.班上数学考试得分在85分以上的同学6.下列语句不正确的是()A.由3,3,4,5构成一个集合,此集合共有3个元素B.所有平行四边形构成的集合是个有限集C.周长为20cm 的三角形构成的集合是无限集D.如果,,a Q b Q a b Q ∈∈+∈则7.下列集合中是有限集的是(){}{}{}{}2.|3..|2,.|10A x Z x B C x x n n Z D x R x ∈<=∈∈-=三角形8.下列4个集合中是空集的是() {}{}{}{}2222.|10.|.|0.|10A x R x B x x x C x x D x x ∈-=<-=+=9.下列关系正确的是().0.0.0.0A B C D ∈≠?10.用列举法表示集合{}2|560x x x -+=,结果是()A.3B.2C.{}3,2 D.3,211.绝对值等于3的所有整数组成的集合是()A.3B.{}3,3- C.{}3 D.3,-312.用列举法表示方程24x =的解集是(){}{}{}{}2.|4.2,2.2.2A x x B C D =--13.集合{}1,2,3,4,5也可表示成(){}{}{}{}.|5.|05.|05,.|05,A x x B x x C x x x N D x x x N <<<<<∈<≤∈14.下列不能表示偶数集的是(){}{}{}{}.|2,.|.,4,2,0,2,4,.|2,A x x k k Z B x x C D x x n n N =∈--=∈L L 是偶数15.下列表示集合{}1,1-不正确的是(){}{}{}{}22.|1.1.|1.|1A x x B x C x x D x ====16.对于集合{}{}2,6,2,4,6A B ==,则下列关系不正确的是()....A A B B A B C B A D A B ≠17.若,x A ∈则,x B ∈那么集合A,B 的关系可能是()....A A B B B A C A B D B A ∈∈??18.集合{},,a b c 的子集个数为().3.7.8.9A B C D 个个个个19.已知集合{}1,2,3,4,下列集合中,不是它的子集的是() {}{}{}.1234.3..012A B C D ?,,,,,20.已知{}{}24734,5(A B A B ==?=,,,,,则).{}{}{}{}.2,3.4.5,7.2,3,4,5A B C D21.若N={自然数},Z={整数},则()N Z ?=A.NB.Z C{0} D.{正整数}22.设集合{}{}|14,|05,M x x N x x =-≤<=≤≤则()M N =I {}{}{}{}.|45.|10.|15.|04A x x B x x C x x D x x ≤≤-≤≤-≤≤≤< 23.设集合{}{}|14,|05,M x x N x x =-≤<=≤≤则()M N =U {}{}{}{}.|45.|10.|15.|04A x x B x x C x x D x x ≤≤-≤≤-≤≤≤< 24.若全集U={整数},集合A={奇数},则()U A =eA.{偶数}B.{整数}C.{自然数} D{奇数}25.()21010x x -=-=是的 A 充分但非必要条件 B.必要但非充分条件C.充要条件 D 既非充分条件也非必要条件26.()0"0b 0ab a ==="是“且”的A 充分但非必要条件 B.必要但非充分条件C.充要条件 D 既非充分条件也非必要条件27.x>5是x>3的( )A 充分但非必要条件 B.必要但非充分条件C.充要条件 D 既非充分条件也非必要条件二、填空题:1.自然数集用大写字母______表示;整数集用大写字母______表示;有理数集用大写字母______表示;实数集用大写字母______表示;自然数集内排除0的集合用______表示;2.用符号“∈”或“?”填空11)3.14__;3)__;4)2__;6)__2R R N N Q Q π- 3.不大于4的实数全体,用性质描述法可表示为____;4.所有奇数组成的集合________;所有被3除余1的数组成的集合_______;5.绝对值小于6的实数组成的集合_______________;6.大于0而小于10的奇数组成的集合__________________;7.小于7的正整数组成的集合__________________;8.不含任何元素的集合叫做__________;记做___________;它是任何的集合的___________.9.{}a 与a 是完全不同的,a 表示一个________;而{}a 表示一个__________.10.用适当的符号填空: {}{}{}{}{}{}{}{}__,,;,,__,,;__0;__0;______.a a b c a b c c a b ??正三角形等腰三角形;平行四边形梯形已知{,,,},{,,},A a b c d B c d e ==则_______,_______,A B A B ==I U 已知A={10以内的质数},B={偶数},则______.A B =I用“充分条件”,“必要条件”或“充要条件”填空:1)416________;x ==2是x 的2)240b ac ->是方程20(0)ax bx c a ++=≠有实根的 __________; 3)0b =是直线y kx b =+过原点的______________;4)24a b >是方程20x ax b ++=有实根的 __________;5)若,,a b R ∈则220a b +=是0a b +=的_____________;解答题写出{1,2,3}的所有子集,并指出哪些不是真子集。

高三数学充分条件与必要条件试题答案及解析

高三数学充分条件与必要条件试题答案及解析

高三数学充分条件与必要条件试题答案及解析1.在△中,“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【解析】由已知,当A,B都为锐角,且A<B时,正弦函数在(0,90°)单调递增,所以,故;当A为锐角,B为钝角时,A+B<180°,所以,所以,故选:C.【考点】充要条件.2.若实数满足,且=0,则称a与b互补.记φ(a,b)=-a-b,那么φ(a,b)=0是a与b互补的()A.必要而不充分的条件B.充分而不必要的条件C.充要条件D.既不充分也不必要的条件【答案】C【解析】由φ(a,b)=0得-a-b=0且;所以φ(a,b)=0是a与b互补的充分条件;再由a与b互补得到:,且=0;从而有,所以φ(a,b)=0是a与b互补的必要条件;故得φ(a,b)=0是a与b互补的充要条件;故选C.【考点】充要条件的判定.3.在中,角、、所对应的变分别为、、,则是的()A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件【答案】A【解析】由正弦定理得(其中为外接圆的半径),则,,,因此是的充分必要必要条件,故选A.【考点】本题考查正弦定理与充分必要条件的判定,属于中等题.4.已知条件:,条件:,则是的()A.充分不必要条件B.必要不充分条件C.充要条件D.既非充分也非必要条件【答案】A【解析】解:因为::,所以:而:所以是的充分不必要条件,故选A.【考点】1、一元二次不等式及分式不等式的解法;2、充要条件.5.求证:方程x2+ax+1=0的两实根的平方和大于3的必要条件是|a|>,这个条件是其充分条件吗?为什么?【答案】必要条件但不是充分条件,见解析【解析】证明:设x2+ax+1=0的两实根为x1,x2,则平方和大于3的等价条件是即a>或a<-.∵{a|a>或a<-},{a||a|>},∴|a|>这个条件是必要条件但不是充分条件.6.(2011•浙江)若a、b为实数,则“0<ab<1”是“a<”或“b>”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】∵a、b为实数,0<ab<1,∴“0<a<”或“0>b>”∴“0<ab<1”⇒“a<”或“b>”.“a<”或“b>”不能推出“0<ab<1”,所以“0<ab<1”是“a<”或“b>”的充分而不必要条件.故选A.7.设,则“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】【解析】若,则知即所以即;令,满足,但.所以是的充分而不必要条件.选.【考点】充要条件.8.(2013•浙江)若α∈R,则“α=0”是“sinα<cosα”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】∵“α=0”可以得到“sinα<cosα”,当“sinα<cosα”时,不一定得到“α=0”,如α=等,∴“α=0”是“sinα<cosα”的充分不必要条件,故选A.9.设a>0且a≠1,则“函数f(x)=a x在R上是减函数”,是“函数g(x)=(2﹣a)x3在R上是增函数”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解析】a>0 a≠1,则“函数f(x)=a x在R上是减函数”,所以a∈(0,1),“函数g(x)=(2﹣a)x3在R上是增函数”所以a∈(0,2);显然a>0 a≠1,则“函数f(x)=a x在R上是减函数”,是“函数g(x)=(2﹣a)x3在R上是增函数”的充分不必要条件.故选A.10.已知向量,,则的充要条件是()A.B.C.D.【答案】A【解析】,,由于,则,即,即,故选A.【考点】平面向量垂直的等价条件11.设,则是的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要【答案】B【解析】当时,,而当时,;当时,,∴,∴综上可知:是的必要而不充分条件.【考点】充分必要条件.12.设则是“”成立的 ( )A.充分必要条件B.充分不必要条件C.必要不充分条件D.既非充分也非必要条件【答案】C【解析】,,由于,因此应选C.【考点】解不等式,充要条件.13.“”是“” 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】因为,,所以“”是“” 的必要不充分条件.【考点】充分与必要条件.14.设点P(x,y),则“x=2且y=-1”是“点P在直线l:x+y-1=0上”的 ().A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解析】当x=2且y=-1时,满足方程x+y-1=0,但方程x+y-1=0有无数多个解,不能确定x=2且y=-1,∴“x=2且y=-1”是“点P在直线l上”的充分不必要条件.15.“m=1”是“直线x-my=1和直线x+my=0互相垂直”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】因为m=1时,直线x-my=1和直线x+my=0即可化为x-y=1和x+y=0.即y=x-1和y=-x所以斜率积为-1,所以这两条直线垂直.所以充分性成立.若直线x-my=1和直线x+my=0互相垂直,因为m=0显然不成立.所以两条直线分别为和.所以由斜率乘积为-1可得.所以即.所以必要条件不存在.故选A.【考点】1.充分必要条件.2.直线的位置关系.3.含参数的讨论.16.“”是“函数为奇函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】函数为奇函数,则当时,,即,因此“”是“函数为奇函数” 的充分不必要条件,故选A.【考点】1.三角函数的奇偶性;2.充分必要条件17.已知,则“”是“”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】解不等式得;解不等式得;因为,而,所以“”是“”的必要不充分条件,故选B【考点】1、一元一次、二次不等式的解法;2、充要条件.18.设命题甲:关于的不等式对一切恒成立,命题乙:对数函数在上递减,那么甲是乙的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】若的不等式对一切恒成立,则,解得;在上递减,则,解得,易知甲是乙的必要不充分条件,故选B.【考点】1.充分条件与充要条件;2.二次函数与对数函数的性质.19.设数列是首项大于零的等比数列,则“”是“数列是递增数列”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【解析】若已知,则设数列的公比为,因为,所以有,又,解得,所以数列是递增数列;反之,若数列是递增数列,则公比且,所以,即,所以是数列是递增数列的充分必要条件.故选C.【考点】等比数列的通项公式,充要条件.20.两个非零向量的夹角为,则“”是“为锐角”的( )A.充分不必要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件【答案】B【解析】由可得,所以“”是“为锐角”的必要不充分条件.【考点】充分必要条件.21.或是的条件.【答案】必要不充分【解析】若,,则,故或是的必要不充分条件.【考点】充要条件的判断.22.“”是“”的条件.(填“充分不必要”、“必要不充分”、“充分必要”、“既不充分也不必要”之一)【答案】充分不必要【解析】如果时,那么,所以“”是“”的充分条件,如果,那么,或,所以“”是“”的不必要条件,综上所以“”是“”的充分不必要条件.【考点】充分条件和必要条件.23.“函数在区间上存在零点”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】函数在区间上存在零点,则:.即.所以“函数在区间上存在零点”是“”的必要不充分条件.【考点】1、函数的零点;2、充分条件与必要条件.24.“a≥0”是“函数在区间(-∞,0)内单调递减”的()A.充要条件B.必要不充分条件C.充分不必要条件D.即不充分也不必要条件【答案】A【解析】令t=(ax-1)x=ax2-x,则,设=0,解得x=,所以,当a≥0时,函数t=(ax-1)x在(-∞,)上是减函数,在(,+∞)上是增函数,即极小值为-,当x<0时,t>0,所以a≥0时,函数在区间(-∞,0)内单调递减;若函数在区间(-∞,0)内单调递减,则x时,<0,即成立,所以2a ≥0,故选A.【考点】1.导数的应用;2.充分必要条件的判断.25.若数列满足(为正常数,),则称为“等方比数列”.甲:数列是等方比数列;乙:数列是等比数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【答案】B【解析】显然是等比数列一定是等方比数列,是等方比数列不一定是等比数列,故甲是乙的必要不充分条件,选B.【考点】充要条件.26.已知“命题”是“命题”成立的必要不充分条件,则实数的取值范围为_________________.【答案】【解析】将两个命题化简得,命题,命题.因为是成立的必要不充分条件,所以或,故的取值范围是.【考点】1.一元二次不等式的解法;2.必要不充分条件.27.已知是实数,则“且”是“且”的()条件A.充分不必要B.必要不充分C.充要D.既不充分也不必要【答案】C【解析】因为,且,所以,且;反之,当且时,说明a,b同号,而若a,b均为负数,与a+b>0矛盾,所以且。

《集合与充要条件的关系综合题》【高中数学人教版同步测试】

《集合与充要条件的关系综合题》【高中数学人教版同步测试】

集合与充要条件的关系综合题1.若集合A ={x |x 2-5x +4<0},B ={x ||x -a |<1},则“a ∈(2,3)”是“B ⊆A ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A .【解析】 由题意知A ={x |1<x <4},B ={x |-1+a <x <1+a },若B ⊆A ,则1411 , ,a a +≤⎧⎨-+≥⎩解得2≤a ≤3,所以必要性不成立.反之,若2<a <3,则必有B ⊆A 成立,所以充分性成立,故选A .2. 已知集合233|1224 , , A y y x x x ⎧⎫⎡⎤==-+∈⎨⎬⎢⎥⎣⎦⎩⎭,{}2|1B x x m =+≥;p :x ∈A ,q :x ∈B ,且p 是q 的充分条件,求实数m 的取值范围. 【答案】3344 , , + ⎛⎤⎡⎫-∞-∞ ⎪⎥⎢⎝⎦⎣⎭. 【解析】 由2312y x x =-+,配方得237416y x ⎛⎫=-+ ⎪⎝⎭. ∵x ∈[34,2],∴y min =716,y max =2.∴A ={y |716≤y ≤2}. 由x +m 2≥1,∴x ≥1-m 2, B ={x |x ≥1-m 2}. ∵p 是q 的充分条件, ∴A ⊆B .∴1-m 2≤716,得m ≥34或m ≤-34. ∴实数m 的取值范围是3344 , , + ⎛⎤⎡⎫-∞-∞ ⎪⎥⎢⎝⎦⎣⎭. 3.已知集合M ={x |x <-3或x >5},P ={x |(x -a )·(x -8)≤0},求实数a 的取值范围,使它成为M ∩P ={x |5<x ≤8}的充要条件.【答案】-3≤a ≤5【解析】由题意知,a ≤8.M ∩P ={x |5<x ≤8}的充要条件-3≤a ≤5.4.关于x 的不等式22(1)(1)22a a x +--≤与x 2-3(a +1)x +2(3a +1)≤0的解集分别为A 与B ,则“A ⊆B ”是“1≤a ≤3或a =-1”的充要条件吗?【答案】是【解析】由题意知A ={x |2a ≤x ≤a 2+1},B ={x |(x -2)[x -(3a +1)]≤0}.当2≤3a +1,即13a ≥时,B ={x |2≤x ≤3a +1}. 22213131a A B a a a ≥⎧⊆⇔⇔≤≤⎨+≤+⎩,.当2>3a +1,即13a <时,B ={x |3a +1≤x ≤2}. 2231112a a A B a a ≥+⎧⊆⇔⇔=-⎨+≤⎩,. 综上所述,A ⊆B ⇔a =-1或1≤a ≤3.∴“A ⊆B ”是“1≤a ≤3或a =-1”的充要条件.。

第一章集合与充要条件测试题

第一章集合与充要条件测试题

第一章集合与充要条件测试题班级:姓名:得分:一、选择题(每小题5分,共50分)1、下列各项中,可以组成集合的是()A、某班所有高个子的学生B、地球上的四大洋C、某班视力较差的学生D、上海所有高楼2.已知集合M={x|x是平行四边形},N={x|x是矩形},P={x|x是正方形},Q={x|x是菱形},则( )A.M⊆NB.P⊆NC.Q⊆PD.Q⊆N3、已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B=( )A.{0} B.{-1,0} C.{0,1} D.{-1,0,1}4、.已知集合A={x|x>1},B={x|-1<x<2},则A∪B=( )A.{x|-1<x<2}B.{x|x>-1}C.{x|-1<x<1}D.{x|1<x<2}5、已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=( )A.{1,3,4} B.{3,4} C.{3} D.{4}6.同时满足(1)M⊆{1,2,3,4,5},(2)若a∈M,则6-a∈M的非空集合M有( )A.32个B.15个C.7个D.6个7、x>0是点(x,y)在第一象限的()A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件8、若集合A={0,1,2,x},B={1,x2},A∪B=A,则满足条件的实数x有()A.1个B.2个C.3个D.4个9、已知集合P={x|x2≤1},M={a}.若P∪M=P,则a的取值范围为()A.(-∞,-1] B.[1,+∞) C.[-1,1]D.(-∞,-1]∪[1,+∞)10、若集合P={x|3<x≤22},非空集合Q={x|2a+1≤x<3a-5},则能使Q⊆(P∩Q)成立的所有实数a的取值范围为()A.(1,9) B.[1,9] C.[6,9) D.(6,9]二、填空题(每小题5分,共25分)11、已知集合B={x∈Z|-3<2x-1<3},用列举法表示集合B=12、.已知集合A={x|x-3>0},B={x|2x-5≥0},则这两个集合的关系是.13、已知集合A={-1,3,2m-1},集合B={3,m2}.若B⊆A,则实数m=.14、满足条件M ∪{1}={1,2,3}的集合M的个数是.15、设a,b是实数,则“a>b”是“a2>b2”的三、解答题(共75分)16(12分)、用适当的方法表示下列集合(1)所有小于5的正奇数组成的集合。

第3课 充要条件(经典例题练习、附答案)

第3课  充要条件(经典例题练习、附答案)

第3课 充要条件◇考纲解读掌握充分必要条件的意义,能够判定给定的两个命题的充要关系.◇知识梳理判断充要条件关系的三种方法:①定义法:若B A ⇒,则A 是B 的_______条件,B 是A 的_______条件;若B A ⇒,则A 是B 的_______条件,B 是A 的_______条件;若B A ⇔,则A 是B 的_______条件.②利用原命题和逆否命题的_______来确定.③利用集合的包含关系:若,B A ⊆则A 是B 的_______条件,B 是A 的_______条件;若A=B ,则A 是B 的_______条件.◇基础训练1.(2006安徽卷)“3x >”是24x >“的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件 2“x 是2的倍数或是3的倍数”是“x 是6的倍数”的( ) A 充要条件 B 充分不必要条件 C 必要不充分条件 D 既不充分又不必要条件3.(2008中山一模)设集合}30|{≤<=x x M ,}20|{≤<=x x N ,那么“M a ∈”是“N a ∈”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.(2008佛山)“2a =” 是“函数()f x x a =-在区间[2,)+∞上为增函数”的( ). A .充分条件不必要 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 ◇典型例题例1.设集合{2},{3},M x x P x x =>=<""x M x P ∈ ∈那么或""x M P ∈ 是的( ) A 充分不必要条件 B 必要不充分条件 C 充要条件 D 既不充分又不必要条件 例2.已知p :-2≤x ≤10,q :x 2-2x +1-m 2≤0(m >0),若⌝p 是⌝q 的必要而不充分条件,求实数m 的取值范围.◇能力提升1.如果y x ,是实数,那么“0>xy ”是“y x y x +=+”的( ) A 充分不必要条件 B 必要不充分条件 C 充要条件 D 既不充分又不必要条件2.已知命题A,B ,如果⌝A 是⌝B 的充分而不必要条件,那么B 是A 的 ( ) A 充分不必要条件 B 必要不充分条件 C 充要条件 D 非充分非必要条件3.若p :⎩⎨⎧>>+44αββα ,q :⎩⎨⎧>>22βα ,则p 是q 的( ) A 充分不必要条件 B 必要不充分条件 C 充要条件 D 既不充分又不必要条件4.(2008惠州一模) “p 或q 是假命题”是“非p 为真命题”的( )A .充分条件不必要B .必要不充分条件C .充要条件D .既不充分也不必要条件5. 若c b a 、、是常数,则“0402<->c a b a 且”是“对任意R ∈x ,有02>++c x b x a ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知真命题“a b c d ≥⇒>”和“a b e f <⇔≤”,那么“c d ≤”是“e f ≤”的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件第3课 充要条件◇知识梳理1.①充分,必要, 必要,充分,充要.② 逆否命题.③ 充分,必要,充要.◇基础训练1. B2. C3. B4. A◇典型例题例1.解:"}3{}2{"""R x x x x M P x N x M x =<>=∈∈∈ 即或M P x M P x x x x M P x ∈⇐∈<<∈∈显然即},32{"",所以选B例2.解:由题意知,命题若⌝p 是⌝q 的必要而不充分条件的等价命题即逆否命题为:p 是q 的充分不必要条件p :-2≤x ≤10q : x 2-2x +1-m 2≤0⇒[x -(1-m )][x -(1+m )]≤0 *∵p 是q 的充分不必要条件,∴不等式-2≤x ≤10的解集是x 2-2x +1-m 2≤0(m >0)解集的子集又∵m >0∴不等式*的解集为1-m ≤x ≤1+m∴⎩⎨⎧≥≥⇒⎩⎨⎧≥+-≤-9110121m m m m ,∴m ≥9, 实数m 的取值范围是[9,+∞)◇能力提升1.A2. C3. B4.A5. A6.A。

充要条件练习题

充要条件练习题

课时作业(三)[学业水平层次]一、选择题1.(2013·福建高考)已知集合A ={1,a },B ={1,2,3},则“a =3”是“A ⊆B ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解析】 ∵A ={1,a },B ={1,2,3},A ⊆B ,∴a ∈B 且a ≠1,∴a =2或3,∴“a =3”是“A ⊆B ”的充分而不必要条件.【答案】 A2.(2014·镇海高二检测)已知命题甲:“a ,b ,c 成等差数列”,命题乙:“a b +c b =2”,则命题甲是命题乙的( )A .必要而不充分条件B .充分而不必要条件C .充要条件D .既不充分也不必要条件【解析】 若a b +c b =2,则a +c =2b ,由此可得a ,b ,c 成等差数列;当a ,b ,c 成等差数列时,可得a +c =2b ,但不一定得出a b +c b=2,如a =-1,b =0,c =1.所以命题甲是命题乙的必要而不充分条件.【答案】 A3.(2014·湖南省株洲二中期中考试)设φ∈R,则“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】若φ=0,则f(x)=cos(x+φ)=cos x为偶函数,充分性成立;反之,若f(x)=cos(x+φ)为偶函数,则φ=kπ(k∈Z),必要性不成立,故选A.【答案】 A4.(2014·山东省实验中学月考)“a=-1”是“函数f(x)=ax2+2x-1只有一个零点”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【解析】本题综合考查函数零点与充要条件的判断.当a=-1时,函数f(x)=ax2+2x-1=-x2+2x-1只有一个零点1;但若函数f(x)=ax2+2x-1只有一个零点,则a=-1或a=0.所以“a=-1”是“函数f(x)=ax2+2x-1只有一个零点”的充分不必要条件,故选B.【答案】 B二、填空题5.“b2=ac”是“a、b、c成等比数列”的________条件.【解析】“b2=ac”“a,b,c成等比数列”,如b2=ac=0;而“a,b,c成等比数列”⇒“b2=ac”.【答案】必要不充分6.“a=-1”是“l1:x+ay+6=0与l2:(3-a)x+2(a-1)y+6=0平行”的________条件.【解析】若直线l1:x+ay+6=0与l2:(3-a)x+2(a-1)y+6=0平行,则需满足1×2(a-1)-a×(3-a)=0,化简整理得a2-a-2=0,解得a=-1或a=2,经验证得当a=-1时,两直线平行,当a=2时,两直线重合,故“a=-1”是“l1:x+ay+6=0与l2:(3-a)x+2(a-1)y+6=0平行”的充要条件.【答案】充要7.在下列各项中选择一项填空:①充分不必要条件;②必要不充分条件;③充要条件;④既不充分也不必要条件.(1)记集合A={-1,p,2},B={2,3},则“p=3”是“A∩B=B”的________;(2)“a=1”是“函数f(x)=|2x-a|在区间[12,+∞)上是增函数”的________.【解析】本题考查命题的充要条件的判断.(1)当p=3时,A={-1,2,3},此时A∩B=B;若A∩B=B,则必有p=3.因此“p=3”是“A∩B=B”的充要条件.(2)当a =1时,f (x )=|2x -a |=|2x -1|在[12,+∞)上是增函数;但由f (x )=|2x -a |在区间[12,+∞)上是增函数不能得到a =1,如当a =0时,函数f (x )=|2x -a |=|2x |在区间[12,+∞)上是增函数.因此“a =1”是“函数f (x )=|2x -a |在区间[12,+∞)上是增函数”的充分不必要条件.【答案】 (1)③ (2)①三、解答题8.(2014·陕西省西工大附中月考)下列各题中,p 是q 的什么条件,q 是p 的什么条件,并说明理由.(1)p :|x |=|y |,q :x =y ;(2)在△ABC ,p :sin A >12,q :A >π6.【解】 (1)因为|x |=|y |⇒x =y 或x =-y ,但x =y ⇒|x |=|y |, 所以p 是q 的必要不充分条件,q 是p 的充分不必要条件.(2)因为A ∈(0,π)时,sin A ∈(0,1],且A ∈⎝ ⎛⎦⎥⎤0,π2时,y =sin A 单调递增,A ∈⎣⎢⎡⎭⎪⎫π2,π时,y =sin A 单调递减,所以sin A >12⇒A >π6,但A >π6 sin A >12.所以p 是q 的充分不必要条件,q 是p 的必要不充分条件.9.设a ,b ,c 分别是△ABC 的三个内角A 、B 、C 所对的边,证明:“a 2=b (b +c )”是“A =2B ”的充要条件.【证明】 充分性:由a 2=b (b +c )=b 2+c 2-2bc cos A 可得1+2cos A =c b =sin C sin B .即sin B +2sin B cos A =sin(A +B ).化简,得sin B =sin(A -B ).由于sin B >0且在三角形中,故B =A -B ,即A =2B .必要性:若A =2B ,则A -B =B ,sin(A -B )=sin B ,sin(A +B )=sin A cos B +cos A sin B ,sin(A -B )=sin A cos B -cos A sin B .∴sin(A +B )=sin B (1+2cos A ).∵A 、B 、C 为△ABC 的内角,∴sin(A +B )=sin C ,即sin C =sin B (1+2cos A ).∴sin C sin B =1+2cos A =1+b 2+c 2-a 2bc =b 2+c 2-a 2+bc bc, 即c b =b 2+c 2+bc -a 2bc. 化简得a 2=b (b +c ).∴“a2=b(b+c)”是“A=2B”的充要条件.[能力提升层次]1.如果A是B的必要不充分条件,B是C的充要条件,D是C 的充分不必要条件,那么A是D的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件【解析】由条件,知D⇒C⇔B⇒A,即D⇒A,但A D,故选A.【答案】 A2.(2014·马鞍山四校联考)设有如下命题:甲:相交两直线l、m 在平面α内,且都不在平面β内.乙:l、m中至少有一条与β相交.丙:α与β相交.那么当甲成立时()A.乙是丙的充分不必要条件B.乙是丙的必要不充分条件C.乙是丙的充分必要条件D.乙既不是丙的充分条件,又不是丙的必要条件【解析】当l、m中至少有一条与β相交时,α与β有公共点,则α与β相交,即乙⇒丙,反之,当α与β相交时,l、m中也至少有一条与β相交,否则若l、m都不与β相交,又都不在β内,则l∥β,m∥β,从而α∥β,与α与β相交矛盾,即丙⇒乙,故选C.【答案】 C3.已知f(x)是R上的增函数,且f(-1)=-4,f(2)=2,设P={x|f(x+t)<2},Q={x|f(x)<-4},若“x∈P”是“x∈Q”的充分不必要条件,则实数t 的取值范围是________.【解析】 因为f (x )是R 上的增函数,f (-1)=-4, f (x )<-4,f (2)=2,f (x +t )<2,所以x <-1,x +t <2,x <2-t .又因为“x ∈P ”是“x ∈Q ”的充分不必要条件, 所以2-t <-1,即t >3.【答案】 (3,+∞)4.已知数列{a n }的前n 项和S n =p n +q (p ≠0且p ≠1),求证:数列{a n }为等比数列的充要条件为q =-1.【证明】 充分性:因为q =-1,所以a 1=S 1=p -1. 当n ≥2时,a n =S n -S n -1=p n -1(p -1),显然,当n =1时,也成立.因为p ≠0,且p ≠1,所以a n +1a n =p n (p -1)p n -1(p -1)=p ,即数列{a n }为等比数列,必要性:当n =1时,a 1=S 1=p +q .当n ≥2时,a n =S n -S n -1=p n -1(p -1).因为p ≠0,且p ≠1,所以a n +1a n =p n (p -1)p n -1(p -1)=p .。

专题5 充要条件(解析版)

专题5 充要条件题组1 充要条件的判断1.设集合A={x∈R|x-2>0},B={x∈R|x<0},C={x∈R|x(x-2)>0},则“x∈(A∪B)”是“x∈C”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C【解析】A∪B={x∈R|x<0或x>2},C={x∈R|x<0或x>2},∵A∪B=C,∴x∈(A∪B)是x∈C的充要条件.2.若实数a,b满足a≥0,b≥0,且ab=0,则称a与b互补.记φ(a,b)=-a-b,那么φ(a,b)=0是a与b互补的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件【答案】C【解析】若φ(a,b)=0,即=a+b,两边平方得ab=0,故具备充分性.若a≥0,b≥0,ab=0,则不妨设a=0.φ(a,b)=-a-b=-b=0,故具备必要性.故选C.3.方程ax2+2x+1=0至少有一个负实根的充要条件是()A.0<a≤1B.a<1C.a≤1D.0<a≤1或a<0【答案】C【解析】方法一(直接法):当a=0时,x=-,符合题意;当a≠0时,若方程两根一正一负(没有零根),解得a<0; 若方程两根均负,解得0<a≤1.综上所述,充要条件是a≤1.方法二 (排除法):当a =0时,原方程有一个负实根,可以排除A ,D ;当a =1时,原方程有两个相等的负实根,可以排除B.故选C.4.在下列三个结论中,正确的有( )①x 2>4是x 3<-8的必要不充分条件;②在ABC 中,AB 2+AC 2=BC 2是ABC 为直角三角形的充要条件;③若a ,b ∈R ,则“a 2+b 2≠0”是“a ,b 不全为0”的充要条件.A .①②B .②③C .①③D .①②③【答案】C【解析】①,x 2>4即2x >或2x <-,x 3<-8即2x <-,因为2x >或2x <-成立时,2x <-不一定成立,所以x 2>4是x 3<-8的不充分条件;因为2x <-成立时,2x >或2x <-一定成立,所以x 2>4是x 3<-8的必要条件.即x 2>4是x 3<-8的必要不充分条件.所以该命题正确.②,AB 2+BC 2=AC 2成立时,ABC 为直角三角形一定成立;当ABC 为直角三角形成立时,AB 2+BC 2=AC 2不一定成立,所以在ABC 中,AB 2+AC 2=BC 2是ABC 为直角三角形的充分不必要条件,所以该命题错误.③,即判断“0,0a b ==”是“a 2+b 2=0”的什么条件,由于a 2+b 2=0即0,0a b ==,所以“0,0a b ==”是“a 2+b 2=0”的充要条件,所以“a 2+b 2≠0”是“a ,b 不全为0”的充要条件,所以该命题正确.故选:C. 题组2 寻求充要条件5.设集合U ={(x ,y )|x ∈R ,y ∈R },若A ={(x ,y )|2x -y +m >0},B ={(x ,y )|x +y -n ≤0},则点P (2,3)∈A ∩(∁U B )的充要条件是( )A.m >-1,n <5B.m <-1,n <5C.m >-1,n >5D.m <-1,n >5【答案】A【解析】A ∩(∁U B )满足∵P (2,3)∈A ∩(∁U B ),则∴6.已知关于x 的一元二次方程mx 2-4x +4=0①,x 2-4mx +4m 2-4m -5=0②,求使方程①②都有实数根的充要条件.【答案】方程①有实数根的充要条件是即m ≤1且m ≠0.方程②有实数根的充要条件是Δ2=(-4m )2-4(4m 2-4m -5)≥0,即m ≥-.∴方程①②都有实数根的充要条件是-≤m ≤1,且m ≠0,即-≤m <0或0<m ≤1. 题组3 充要条件的证明7.求证:方程mx 2-2x +3=0有两个同号且不相等的实根的充要条件是0<m <.【答案】证明 (1)充分性:当0<m <时,Δ=4-12m >0,所以方程mx 2+2x +3=0有两个不相等的实根,设为x 1,x 2.由一元二次方程根与系数的关系可知,x 1x 2=>0,故方程mx 2-2x +3=0有两个同号且不相等的实根.即0<m <⇒方程mx 2-2x +3=0有两个同号且不相等的实根.(2)必要性:若方程mx 2-2x +3=0有两个同号且不相等的实根,则∴0<m <,即方程mx 2-2x +3=0有两个同号且不相等的实根⇒0<m <.综上可知,方程mx 2-2x +3=0有两个同号且不相等的实根的充要条件是0<m <.8.求证:一元二次方程ax 2+bx +c =0有一正根和一负根的充要条件是ac <0.【答案】见解析.【解析】充分性:若0ac <,则240b ac ->,且0c a<,∴方程20ax bx c ++=方程有一正根和一负根;必要性:若一元二次方程20ax bx c ++=有一正根和一负根,则240b ac ∆=->,12,0,0c x x ac a =<∴<,即可得结论.试题解析:(1)必要性:因为方程20ax bx c ++=有一正根和一负根,所以240b ac ∆=->为12120(,c x x x x a=<方程的两根),所以ac <0. (2)充分性:由ac <0可推得Δ=b 2-4ac >0及x 1x 2=<0(x 1,x 2为方程的两根).所以方程ax 2+bx +c =0有两个相异实根,且两根异号,即方程ax 2+bx +c =0有一正根和一负根.综上所述,一元二次方程ax 2+bx +c =0有一正根和一负根的充要条件是ac <0.9.已知,a b 是实数,求证:44221a b b --=成立的充分条件是221a b -=,该条件是否为必要条件?试证明你的结论.【答案】必要条件,证明见解析.【解析】由44221a b b --=,即442210a b b ---=由()()()()244242222221111a b b a b a b a b -++=-+=++--则由()()222222442111021a b a b a b a b b -=⇒++--=⇒--=所以44221a b b --=成立的充分条件是221a b -=另一方面如果()()442222221110a b b a b a b --=⇒++--=因为2210a b ++≠,故()()2222221101a b a b a b ++--=⇒-=,所以44221a b b --=成立的必要条件是221a b -=.题组4 由充分、必要条件求参数的范围10.已知p :<1,q :x 2+(a -1)x -a >0,若p 是q 的充分不必要条件,则实数a 的取值范围是() A.(-2,-1]B.[-2,-1]C.[-3,1]D.[-2,+∞)【答案】A 【解析】不等式<1等价于-1<0,即>0,解得x >2或x <1,所以p 为(-∞,1)∪(2,+∞).不等式x 2+(a -1)x -a >0可以化为(x -1)(x +a )>0,当-a ≤1时,解得x >1或x <-a ,即q 为(-∞,-a )∪(1,+∞),此时a =-1;当-a >1时,不等式(x -1)(x +a )>0的解集是(-∞,1)∪(-a ,+∞),此时-a <2,即-2<a <-1.综上可知,a 的取值范围为(-2,-1].11.已知p :|x -4|>6,q :x 2-2x +1-a 2>0(a >0),若p 是q 的充分不必要条件,则实数a 的取值范围为________.【答案】0<a ≤3【解析】依题意,可得p :A ={x |x <-2或x >10},q :B ={x |x <1-a 或x >1+a ,a >0}.∵p 是q 的充分不必要条件,∴A ⊆B 且A ≠B ,⇒0<a ≤3,∴实数a 的取值范围是0<a ≤3.12.已知p :,q :{x |1-m ≤x ≤1+m ,m >0},若q 是p 的必要不充分条件,则实数m的取值范围是________.【答案】[9,+∞) 【解析】由已知,p ⇒q ,q ⇏p . 13.已知M ={x |(x +3)(x -5)>0},P ={x |x 2+(a -8)x -8a ≤0}.(1)求a 的一个值,使它成为M ∩P ={x |5<x ≤8}的一个充分不必要条件;(2)求a 的一个取值范围,使它成为M ∩P ={x |5<x ≤8}的一个必要不充分条件.【答案】M ={x |x <-3或x >5},P ={x |(x +a )(x -8)≤0}.(1)显然,当-3≤-a ≤5,即-5≤a ≤3时,M ∩P ={x |5<x ≤8}.取a =0,由M ∩P ={x |5<x ≤8}不能推出a =0.所以a =0是M ∩P ={x |5<x ≤8}的一个充分不必要条件.(2)当M ∩P ={x |5<x ≤8}时,-5≤a ≤3,此时有a ≤3,但当a ≤3时,推不出M ∩P ={x |5<x ≤8}.所以a ≤3是M ∩P ={x |5<x ≤8}的一个必要不充分条件.14.命题2:03x P x ->-;命题2:2210q x ax a b +++-> (1)若4b =时,22210x ax a b +++->在x R ∈上恒成立,求实数a 的取值范围;(2)若p 是q 的充分必要条件,求出实数a ,b 的值【答案】(1)(1,3)-;(2)52a =-,12b =. 【解析】(1)若22230x ax a +++>在x R ∈上恒成立,则()244230a a ∆=-+<, 所以有13a -<<,所以实数a 的范围为()1,3-;(2)()()2023033x x x x x ->⇔-->⇒>-或2x <, 根据条件22210x ax a b +++->的解集是()(),23,-∞⋃+∞,即方程22210x ax a b +++-=的二根为2和3, 根据韦达定理有525,221612a a ab b ⎧-==-⎧⎪⇒⎨⎨+-=⎩⎪=⎩, 所以52a =-,12b =. 15.已知{}2320P x x x =-+≤,{}11S x m x m =-≤≤+.(1)是否存在实数m ,使x P ∈是x S ∈的充要条件?若存在,求出m 的取值范围,若不存在,请说明理由;(2)是否存在实数m ,使x P ∈是x S ∈的必要条件?若存在,求出m 的取值范围,若不存在,请说明理由.【答案】(1)不存在实数m ,使x P ∈是x S ∈的充要条件(2)当实数0m ≤时,x P ∈是x S ∈的必要条件【解析】(1){}{}232012P x x x x x =-+≤=≤≤. 要使x P ∈是x S ∈的充要条件,则P S =,即11,12,m m -=⎧⎨+=⎩此方程组无解,则不存在实数m ,使x P ∈是x S ∈的充要条件;(2)要使x P ∈是x S ∈的必要条件,则S ⊆P ,当S =∅时,11m m ->+,解得0m <;当S ≠∅时,11m m -≤+,解得0m ≥要使S ⊆P ,则有11,1+2m m -≥⎧⎨≤⎩,解得0m ≤,所以0m =, 综上可得,当实数0m ≤时,x P ∈是x S ∈的必要条件.题组5 含有否定性语句的命题处理16.设命题p:(4x-3)2≤1;命题q:x2-(2a+1)x+a(a+1)≤0,若p是q的必要不充分条件,求实数a的取值范围.【答案】设A={x|(4x-3)2≤1},B={x|x2-(2a+1)x+a(a+1)≤0},易知A=,B={x|a≤x≤a+1}.由p是q的必要不充分条件,从而p是q的充分不必要条件,即AB,∴或故所求实数a的取值范围是.17.已知p:2x2-9x+a<0,q:且p是q的充分条件,求实数a的取值范围.【答案】由得即2<x<3.∴q:2<x<3.设A={x|2x2-9x+a<0},B={x|2<x<3},∵p⇒q,∴q⇒p.∴B⊆A.∴2<x<3满足不等式2x2-9x+a<0.设f(x)=2x2-9x+a,要使2<x<3满足不等式2x2-9x+a<0,需即∴a≤9.故所求实数a的取值范围是(-∞,9].17.设p:实数x满足x2-4ax+3a2<0,其中a<0,q:实数x满足x2-x-6≤0或x2+2x-8>0,且p是q 的必要不充分条件,求a的取值范围.【答案】设A={x|x满足p}={x|x2-4ax+3a2<0,a<0}={x|3a<x<a,a<0},B={x|x满足q}={x|x2-x-6≤0或x2+2x-8>0}={x|x2-x-6≤0}∪{x|x2+2x-8>0}={x|-2≤x≤3}∪{x|x<-4或x>2}={x|x<-4或x≥-2}.∵p是q的必要不充分条件,∴q⇒p,且p⇏q.则{x|x满足q}{x|x满足p},而{x|x满足q}=∁R B={x|-4≤x<-2},{x|x满足p}=∁R A={x|x≤3a或x≥a(a<0)},∴{x|-4≤x<-2}{x|x≤3a或x≥a(a<0)},则或即-≤a<0或a≤-4.∴a的取值范围为.。

集合考点充分条件与必要条件教案以及练习

1.4集合充分条件与必要条件1.4.1充分条件与必要条件充分条件与必要条件命题真假“若p,则q”为真命题“若p,则q”为假命题推出关系指由p通过推理可以得出q,即由p可以推出q,记作p⇒q由条件p不能推出结论q,记作p⇏q续表命题真假“若p,则q”为真命题“若p,则q”为假命题条件关系p是q的充分条件q是p的必要条件p不是q的充分条件q不是p的必要条件1.“x>0”是“x≠0”的()A.充分条件B.必要条件C.既不是充分也不是必要条件D.不确定A解析:x>0⇒x≠0;x≠0时,x可为正值或负值,故选A.2.“-12<x<3”的一个必要条件是()A.-12<x<3B.-12<x<0C .-3<x <12D .-1<x <6D 解析:因为-12<x <3⇒-1<x <6,但-1<x <6D ⇒/-12<x <3,所以“-12<x <3”的一个必要条件是“-1<x <6”.3.“角A =60°”是“三角形ABC 是等边三角形”的________条件. 必要 解析:角A =60°D ⇒/三角形ABC 是等边三角形,但三角形ABC 是等边三角形⇒角A =60°,所以“角A =60°”是“三角形ABC 是等边三角形”的必要条件.4.“△ABC 为直角三角形”是“其三边关系为a 2+b 2=c 2”的________条件.必要 解析:△ABC 为直角三角形,则三边符合勾股定理,但须知哪个角为直角,若a 2+b 2=c 2,则△ABC 为以C 为直角的三角形.5.“x <0”是“x >2或x <1”的________条件.充分 解析:因为x <0⇒ x >2或x <1,但x >2或x <1D ⇒/x <0,所以“x <0”是“x >2或x <1”的充分条件.【例1】给出下列四组命题:(1)p :两个三角形相似,q :两个三角形全等; (2)p :一个四边形是矩形,q :四边形的对角线相等; (3)p :A ⊆B ,q :A ∩B =A . 试分别指出p 是q 的什么条件.解:(1)∵两个三角形相似D ⇒/两个三角形全等,但两个三角形全等⇒两个三角形相似,∴p 是q 的必要条件. (2)∵矩形的对角线相等,∴p ⇒q ,而对角线相等的四边形不一定是矩形,∴qD⇒/p.∴p是q的充分条件.(3)∵p⇒q,且q⇒p,∴p既是q的充分条件,又是q的必要条件.充分条件、必要条件的判断方法在判定p是q的什么条件时,首先分清什么是p,什么是q,再分清谁推谁.例如p⇒q,则称p是q的充分条件,q是p的必要条件.下列哪些命题中,p是q的充分条件?(1)在△ABC中,p:∠A>∠B,q:BC >AC.(2)对于实数x,y,p:x=2且y=6,q:x+y=8.(3)已知x,y∈R,p:x=1,q:(x-1)(x-2)=0.解:(1)在△ABC中,由大角对大边知,∠A>∠B⇒BC>AC,所以p是q的充分条件.(2)对于实数x,y,因为x=2且y=6⇒x+y=8,所以p是q的充分条件.(3)由x=1⇒(x-1)(x-2)=0,故p是q的充分条件.故(1)(2)(3)命题中p是q的充分条件.【例2】是否存在实数p,使4x+p<0是x>2或x<-1的充分条件?若存在,求出p的取值范围;若不存在,说明理由.解:令A={x|x>2或x<-1};由4x+p<0,得x<-p4,令B=⎩⎨⎧⎭⎬⎫x⎪⎪⎪x<-p4,当B⊆A时,即-p4≤-1,即p≥4,此时x <-p4≤-1,∴当p ≥4时,4x +p <0是x >2或x <-1的充分条件.【例3】已知P ={x |a -4<x <a +4},Q ={x |1<x <3},“x ∈P ”是“x ∈Q ”的必要条件,则实数a 的取值范围是________.{a |-1≤a ≤5} 解析:因为“x ∈P ”是“x ∈Q ”的必要条件,所以Q ⊆P , 所以⎩⎨⎧a -4≤1,a +4≥3,即⎩⎨⎧a ≤5,a ≥-1,所以-1≤a ≤5.集合法判断充分条件和必要条件的技巧设集合A ={x |x 满足条件p },B ={x |x 满足条件q },则有:(1)若A ⊆B ,则p 是q 的充分条件,若A⃘B ,则p 不是q 的充分条件. (2)若B ⊆A ,则p 是q 的必要条件,若B⃘A ,则p 不是q 的必要条件.已知M ={x | a -1<x <a +1},N ={x |-3<x <8},若M 是N 的充分条件,求a 的取值范围.解:∵M 是N 的充分条件,∴M ⊆N ,∴⎩⎨⎧a -1≥-3,a +1≤8,解得-2≤a ≤7.故a 的取值范围是{a |-2≤a ≤7}.课时分层作业(六)(25分钟50分)1.(5分)设x,y是两个实数,命题:“x,y中至少有一个数大于1”成立的充分条件是()A.x+y=2B.x+y>2C.x2+y2>2D.xy>1B解析:对于选项A,当x=1,y=1时,满足x+y=2,但命题不成立;对于选项C,D,当x=-2,y=-3时,满足x2+y2>2,xy>1,但命题不成立,也不符合題意.2.(5分)设x,y∈R,则“x≥2且y≥2”是“x2+y2≥4”的()A.充分条件B.必要条件C.既是充分条件也是必要条件D.既不是充分条件也不是必要条件A解析:当x≥2且y≥2时,x2+y2≥4,但是x=0,y=4时,满足x2+y2≥4,但不满足x≥2且y≥2,所以“x≥2且y≥2”是“x2+y2≥4”的充分条件.3.(5分)设a,b∈R,则“(a-b)a2<0”是“a<b”的()A.充分条件B.必要条件C.既是充分条件也是必要条件D.既不是充分条件也不是必要条件A解析:由(a-b)a2<0知,a2>0,a-b<0,即a<b成立;反之,当a<b时,由于a2可能为0,故(a-b)·a2≤0.因此“(a-b)a2<0”是“a<b”的充分条件,但不是必要条件.4.(5分)下列不等式:①x<1;②0<x <1; ③-1<x <0; ④-1<x <1.其中,可以为-1<x ≤1的充分条件的所有序号为________.②③④ 解析:由于-1<x ≤1,①显然不能使-1<x ≤1一定成立,②③④满足题意.5.(5分)设集合A ={x ∈R|x -2>0},B ={x ∈R|x <0},C ={x ∈R|x <0或x >5},则“x ∈A ∪B ”是“x ∈C ”的________条件.必要 解析:∵A ∪B ={x ∈R|x <0或x >2},C ={x ∈R|x <0或x >5}, ∴“x ∈A ∪B ”是“x ∈C ”的必要条件.6.(5分)若不等式a -1<x <a +1成立的充分条件是12<x <32,则实数a 的取值范围是________.12≤a ≤32 解析:因为不等式a -1<x <a +1成立的充分条件是12<x <32, ∴⎩⎪⎨⎪⎧12≥a -1,32≤a +1,∴12≤a ≤32. 7.(5分)若“x <m ”是“x >2或x <1”的充分不必要条件,则实数m 的取值范围是________.m ≤1 解析:由已知条件,知{x |x <m }{x |x >2或x <1},∴m ≤1.8.(5分)已知P ={x |a -4<x <a +4},Q ={x |1<x <3},“x ∈P ”是“x ∈Q ”的必要条件,则实数a 的取值范围是________.-1≤a ≤5 解析:因为“x ∈P ”是“x ∈Q ”的必要条件,所以Q ⊆P , 所以⎩⎨⎧a -4≤1,a +4≥3,即⎩⎨⎧a ≤5,a ≥-1,所以-1≤a ≤5.9.(10分)已知条件p :x <1-a 或x >1+a 和条件q :x <12或x >1,求使p 是q 的充分条件的a 的取值范围.解:要使p 是q 的充分条件,应有⎩⎪⎨⎪⎧1-a ≤12,1+a ≥1, 解得a ≥12.∴p 是q 的充分条件的a 的取值范围是⎩⎨⎧⎭⎬⎫a |a ≥12.。

充要条件的测试题及答案

充要条件的测试题及答案一、选择题1. 以下哪个选项正确描述了充要条件?A. 条件A是条件B的充分条件B. 条件A是条件B的必要条件C. 条件A是条件B的充要条件D. 条件A是条件B的既不充分也不必要条件答案:C2. 如果A⇒B,B⇒A,则A和B的关系是:A. A是B的充分条件B. A是B的必要条件C. A是B的充要条件D. A与B互为独立条件答案:C二、判断题1. 如果A是B的充分条件,那么B也是A的必要条件。

()答案:错误2. 如果A是B的必要条件,那么B是A的充分条件。

()答案:正确三、简答题1. 解释什么是充要条件,并给出一个例子。

答案:充要条件指的是两个条件之间存在一种相互依赖的关系,即一个条件的存在必然导致另一个条件的存在,反之亦然。

例如,一个数是偶数(条件A)是它能够被2整除(条件B)的充要条件。

2. 区分“充分条件”和“必要条件”并给出各自的例子。

答案:充分条件指的是一个条件的存在足以保证另一个条件的存在,但不是唯一的保证。

例如,一个数是偶数是它能够被2整除的充分条件。

必要条件指的是一个条件的存在是另一个条件存在所必需的,但不是充分的。

例如,一个数能够被2整除是它为偶数的必要条件。

四、应用题1. 如果x > 0是x² > 0的充分条件,判断x < 0是否是x² > 0的必要条件。

答案:不是。

因为x < 0时,x²仍然是正数,但x > 0是x² > 0的充分条件,意味着x² > 0时,x一定大于0,但x < 0时x² > 0并不成立,所以x < 0不是x² > 0的必要条件。

2. 证明如果A是B的充要条件,那么B也是A的充要条件。

答案:如果A是B的充要条件,根据充要条件的定义,A⇒B且B⇒A。

这意味着如果A成立,则B必然成立;反之,如果B成立,则A也必然成立。

(完整版)广东高职高考集合与充要条件测试

高职高考集合与充要条件1、①“全体著名文学家”构成一个集合;②集合{0}中不含元素;③{1,2},{2,1}是不同的集合;上面三个叙述中,正确的个数是( )A 、0B 、1C 、2D 、32、已知集合}12|{<<-=x x M ,则下列关系式正确的是() M A 、∈5 M B 、∉0 M C 、∈1 M D 、∈-2π3、在下列式子中,①}210{1,,∈ ②}210{}1{,,∈ ③}210{}210{,,,,⊆ ④{0,1,2}⊂∅≠ ⑤{0,1,2}={2,1,0},其中错误的个数是( )A 、1个B 、2个C 、3个D 、4个4、}3,2,1,0{}1,0{⊆⊆A ,则集合A 的个数有( )A 、2个B 、3个C 、4个D 、5个5、下列各式中,不正确的是( )A 、A A =B 、A A ⊆C 、A A ⊂≠D 、A A ⊇6、集合A={0,1,2,3,4,5},B={2,3,4},A B ⋃=( )A 、{0,1,2,3,4,5}B 、{2,3,4}C 、{0,1,2,2,3,3,4,4,5}D 、{1,2,3,4} 7、设全集{0,123456}U =,,,,,,集合{3456}A =,,,,则U C A =( ) A 、{0,3,4,5,6} B 、{3,4,5,6} C 、∅ D 、{0,1,2}8、225x =的充分必要条件是( )A 、55x x ==-且B 、55x x ==-或C 、5x =D 、5x =-9、设3{|23},{|},2A x xB x x =-≤<=≥则A B ⋃=( ) A 、{|2}x x <- B 、{|23}x x x <-≤或C 、{|23}x x x <->或D 、}2|{-≥x x 10、用适当的符号(,,,,⊂⊃∈∉=≠≠)填空:(1) a{,}a ba b(2) {a} {,}(3) {2,4,6,8} {4,6} (4) {2,3,4} {4,3,2}11、已知集合A={1,2,3,4},B={2,4,6},C={3,5,7},则A B⋂= 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合与充要条件测试题
班级: 姓名: 得分:
一、选择题(每小题2分,共30分) 1、①“全体著名文学家”构成一个集合;②集合{0}中不含元素;③{1,2},{2,1}是不同的集合;上面三个叙述中,正确的个数是( )

A 、0
B 、1
C 、2
D 、3
2、已知集合}12|{<<-=x x M ,则下列关系式正确的是(
) M A 、∈5 M B 、∉0 M C 、∈1 M D 、∈-2π
3、在下列式子中,①}210{1,,∈ ②}210{}1{,,∈ ③}210{}210{,,,,⊆ ④{0,1,2}⊂∅≠
⑤{0,1,2}={2,1,0},其中错误的个数是( )
A 、1个
B 、2个
C 、3个
D 、4个
4、}3,2,1,0{}1,0{⊆⊆A ,则集合A 的个数有( )
A 、2个
B 、3个
C 、4个
D 、5个 &
5、下列各式中,不正确的是( )
A 、A A =
B 、A A ⊆
C 、A A ⊂≠
D 、A A ⊇
6、已知集合*{|2}A x x x N =≥∈且,*{|6}B x x x N =≤∈且,则B A ⋂等于( )
A 、{1,2,3,4,5,6}
B 、{2,3,4,5,6}
C 、{2,6}
D 、{|26}x x ≤≤
7、集合A={0,1,2,3,4,5},B={2,3,4},A B ⋃=( )
A 、{0,1,2,3,4,5}
B 、{2,3,4}
C 、{0,1,2,2,3,3,4,4,5}
D 、{1,2,3,4} )
8、设{|A x x a =≤=( )
A 、{}a A ∉
B 、{}a A ∈
C 、a A ∉
D 、a A ∈
9、设{}()M 1{1,2},{1,2,3},S P M S P ===⋃⋂,则等于( )
A 、{1,2,3}
B 、{1,2}
C 、{1}
D 、{3}
10、满足条件{}M 1{1,2,3}⋃=的集合M 的个数是( )
A 、4
B 、3
C 、2
D 、1
11、设全集{0,123456}U =,,,,,,集合{3456}A =,,,,则U C A =( )
A 、{0,3,4,5,6}
B 、{3,4,5,6}
C 、∅
D 、{0,1,2}
{
12、225x =的充分必要条件是( )
A 、55x x ==-且
B 、55x x ==-或
C 、5x =
D 、5x =-
13、设3
{|23},{|},2A x x B x x =-≤<=≥则A B ⋃=( )
A 、{|2}x x <-
B 、{|23}x x x <-≤或
C 、{|23}x x x <->或
D 、}2|{-≥x x
14、下列集合是无限集的是( )
A 、{|01}x x ≤≤
B 、2{|10}x x +=
C 、2{|60}x x x --=
D 、{|(1),}n x x n N =-∈
@
15、下列四个推理:①()a A B a A ∈⋃⇒∈ ; ② ()()a A B a A B ∈⋂⇒∈⋃;
③ A B A B B ⊆⇒⋃=; ④A B A A B B ⋃=⇒⋂=。

其中正确的个数为( )
A 、1个
B 、2个
C 、3个
D 、4个
二、填空题(每小题2分,共20分)
16、用适当的符号(,,,,⊂⊃∈∉=≠≠)填空:
(1) a {,}a b (2) {a } {,}a b
(3) {2,4,6,8} {4,6} (4) {2,3,4} {4,3,2}
17、将集合A={1,2,3,4,5,6}用描述法表示,则A=
18、{|2}{|2}x x x x >-⋂≤=
-
19、设U 是一个全集,A 、B 为U 的两个子集,试用阴影线在下图中分别标出下列集合:
(1)U C B A ⋂ (2)()()U C A B A B ⋃⋃⋂
20、已知集合A={1,2,3,4},B={2,4,6},C={3,5,7},则A B ⋃= ,A C ⋂= 。

21、已知全集{|9,}U x x x N =<∈,A={3,4,5},B={1,3,6},则U U C A C B ⋂= 。

22、方程2560x x -+=的解集用列举法表示是: 。

23、设{(,)|0},{(,)|4},A x y x y B x y x y =+==-=则A B ⋂= 。

24、坐标平面内,不在第一、三象限的点用集合表示为: 。

'
25、已知集合{|13},{|2}A x x B x x =≤<=>,则A B ⋂= ,A B ⋃= 。

三、解答题(共50分)
26、(8分)若
,求实数的值。

27、(8分)已知集合{,2,3,4},{1,3,5,}A a B b ==,若{1,2,3}A B ⋂=,求a 和b 。


28、(12分)设全集合
,,,求,,

29、(10分)设全集{,,,,,},{,,,},{,}U a b c d e f A a c e f B c d ===,求:(1),U U C A C B ;
(2)()()U U C A C B ⋃;(3)()()U U C A C B ⋂
&
30、(12分)设全集1{,5,3}3
U =--,集合2{|350}A x x px =+-=与集合,且1{}3
A B ⋂=-,求,。

相关文档
最新文档