2020年秋浙教版九年级数学上册第3章圆的基本性质单元培优 测试卷(Word版 含解析
2020-2021学年浙教新版九年级上册数学《第3章 圆的基本性质》单元测试卷

2020-2021学年浙教新版九年级上册数学《第3章圆的基本性质》单元测试卷一.选择题1.下列说法中,不正确的是()A.直径是最长的弦B.同圆中,所有的半径都相等C.圆既是轴对称图形又是中心对称图形D.长度相等的弧是等弧2.平面上有四个点,过其中任意3个点一共能确定圆的个数为()A.0或3或4B.0或1或3C.0或1或3或4D.0或1或4 3.如图,△ABC中,∠ACB=90°,AC=3.将△ABC绕点B逆时针旋转得到△A'BC′,点C的对应点C'落在AB边上,A'B=5,连接AA′.则AA'长为()A.2B.C.3D.44.如图是一个标准的五角星,若将它绕旋转中心旋转一定角度后能与自身重合,则至少应将它旋转的度数是()A.144°B.90°C.72°D.60°5.如图是一个隧道的横截面,它的形状是以O为圆心的圆的一部分,CM=DM=2,直线MO交圆于E,EM=8,则圆的半径为()A.4B.3C.D.6.如图,MN是⊙O的直径,点A是半圆上一个三等分点,点B是的中点,点B'是点B 关于MN的对称点,⊙O的半径为1,则AB'的长等于()A.1B.C.D.27.如图,⊙O的直径AB过弦CD的中点E,∠COB=40°,则∠BAD等于()A.80°B.50°C.40°D.20°8.如图,四边形ABCD内接于⊙O上,∠A=60°,则∠BCD的度数是()A.15°B.30°C.60°D.120°9.如图,⊙O是正八边形ABCDEFGH的外接圆,则下列结论:①弧DF的度数为90°;②AE=DF;③S=AE•DF.正八边形ABCDEFGH其中所有正确结论的序号是()A.①②B.①③C.②③D.①②③10.如图,已知扇形的圆心角为60°,直径为6,则图中弓形(阴影部分)的面积为()A.6π﹣9B.6π﹣3C.D.二.填空题11.如图,正六边形ABCDEF内接于半径为5的圆,则B、E两点间的距离为.12.已知四边形ABCD为⊙O的内接四边形,点E、F分别为AB、CD的中点,若AB=8,CD=6,⊙O的半径为5,则线段EF长的最大值为.13.如图,AB是⊙O的直径,点C、D在圆上,∠D=67°,则∠ABC的度数为.14.圆上有四个点,若它们两两连结后得到的所有线段只有两个不同的长度,则这四个点依次分圆弧的比为.15.如图,香港特别行政区区徽由五个相同的花瓣组成,它是以一个花瓣为“基本图案”通过连续四次旋转所组成,这四次旋转中,旋转角度最小是度.16.如图,四角星的顶点是一个正方形的四个顶点,将这个四角星绕其中心旋转,当第一次与自身重合时,其旋转角的大小是度.17.若⊙O的半径为3cm,点A与圆心O的距离为4cm,则点A与⊙O的位置关系是.18.已知一个扇形的半径为6,面积为10π,该扇形的圆心角是°.19.如图,AB是圆O的弦,半径OC⊥AB于点D,且OC=5cm,DC=2cm,则AB=.20.如图,AB是半圆O的直径,AC=,∠BAC=30°,则的长为.三.解答题21.如图,AB是半圆O的直径,D是半圆上的一点,∠DOB=75°,DC交BA的延长线于E,交半圆于C,且CE=AO,求∠E的度数.22.如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=BD=2,求AB的长.23.如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.(1)若∠AOD=56°,求∠DEB的度数;(2)若DC=2,OA=5,求AB的长.24.如图1,AC⊥CH于点C,点B是射线CH上一动点,将△ABC绕点A逆时针旋转60°得到△ADE(点D对应点C).(1)延长ED交CH于点F,求证:FA平分∠CFE;(2)如图2,当∠CAB>60°时,点M为AB的中点,连接DM,请判断DM与DA、DE的数量关系,并证明.25.如图所示,BD,CE是△ABC的高,求证:E,B,C,D四点在同一个圆上.26.如图,在平面直角坐标系中,点A(2,0),点B在第一象限,AB⊥OA,AB=OA,将△OAB绕点O按逆时针方向旋转105°得到△OA'B',连接BB'.(Ⅰ)求∠OBB'的度数;(Ⅱ)求出点B'的坐标.27.如图,点A在数轴上对应的数为20,以原点O为圆心,OA为半径作优弧,使点B 在点O右下方,且∠AOB=30°,在优弧上任取一点P,过点P作直线OB的垂线,交数轴于点Q,设Q在数轴上对应的数为x,连接OP.(1)若优弧上一段的长为10π,求∠AOP的度数及x的值;(2)求x的最小值,并指出此时直线PQ与所在圆的位置关系.参考答案与试题解析一.选择题1.解:A、直径是最长的弦,说法正确;B、同圆中,所有的半径都相等,说法正确;C、圆既是轴对称图形又是中心对称图形,说法正确;D、长度相等的弧是等弧,说法错误;故选:D.2.解:如图,当四点在同一条直线上时,不能确定圆,当四点共圆时,只能作一个圆,当三点在同一直线上时,可以作三个圆,当四点不共圆时,且没有三点共线时,能确定四个圆.故选:C.3.解:根据旋转可知:∠A′C′B=∠C=90°,A′C′=AC=3,AB=A′B=5,根据勾股定理,得BC==4,∴BC′=BC=4,∴AC′=AB﹣BC′=1,在Rt△AA′C′中,根据勾股定理,得AA′==.故选:B.4.解:如图,设O的是五角星的中心,∵五角星是正五角星,∴∠AOB=∠BOC=∠COD=∠DOE=∠AOE,∵它们都是旋转角,而它们的和为360°,∴至少将它绕中心顺时针旋转360÷5=72°,才能使正五角星旋转后与自身重合.故选:C.5.解:连接OC,∵M是⊙O弦CD的中点,根据垂径定理:EM⊥CD,设圆的半径是x米,在Rt△COM中,有OC2=CM2+OM2,即:x2=22+(8﹣x)2,解得:x=,所以圆的半径长是.故选:C.6.解:连接OB、OB′,∵点A是半圆上一个三等分点,∴∠AON=60°,∵点B是的中点,∴∠BON=30°,∵点B'是点B关于MN的对称点,∴∠B′ON=30°,∴∠AOB′=90°,∴AB′==,故选:B.7.解:∵直径AB过弦CD的中点E,∴AB⊥CD,∴=,∴∠BAD=∠COB=×40°=20°.故选:D.8.解:∵四边形ABCD是⊙O的内接四边形,∠A=60°,∴∠BCD=180°﹣∠A=120°,故选:D.9.解:设圆心为O,连接OD,OF,∵∠DOE=∠EOF==45°,∴∠DOF=90°,∴弧DF的度数为90°,∴①正确;∵∠DOF=90°,OD=OF,∴2OD2=DF2,∴OD=,∵AE=2DF,∴AE=DF,∴②正确;∵S=DF•OE,四边形ODEF∴S 正八边形ABCDEFGH =4S 四边形ODEF =2DF •OE , ∵OE =AE ,∴S 正八边形ABCDEFGH =AE •DF ,∴③正确;故选:D .10.解:S 弓形=﹣×32=,故选:C .二.填空题 11.解:连接BE 、AE ,如右图所示, ∵六边形ABCDEF 是正六边形,∴∠BAF =∠AFE =120°,FA =FE , ∴∠FAE =∠FEA =30°,∴∠BAE =90°,∴BE 是正六边形ABCDEF 的外接圆的直径, ∵正六边形ABCDEF 内接于半径为5的圆, ∴BE =10,即B 、E 两点间的距离为10,故答案为:10.12.解:连接OA 、OD 、OE 、OF ,∵点E、F分别为AB、CD的中点,∴OE⊥AB,AE=AB=4,OF⊥CD,DF=CD=3,由勾股定理得,OE===3,OF===4,当E、O、F在同一条直线上时,EF最大,最大值为3+4=7,故答案为:7.13.解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠A=∠D=67°,∴∠ABC=90°﹣67°=23°.故答案为23°.14.解:∵四个点两两连结后得到的所有线段只有两个不同的长度,∴圆上的四个点构成了圆的内接正方形,∵正方形的边长相等,即四条弦长相等,∴这四个点依次分圆弧的比为1:1:1:1.故答案为1:1:1:1.15.解:观察图形可知,中心角是由五个相同的角组成,∴旋转角度是360°÷5=72°,∴这四次旋转中,旋转角度最小是72°.16.解:该图形被平分成四部分,旋转90°的整数倍,就可以与自身重合,故当此图案第一次与自身重合时,其旋转角的大小为90°.故答案为:90.17.解:∵⊙O的半径为3cm,点A与圆心O的距离为4cm,∴点A在⊙O外,故答案为:圆外.18.解:设这个扇形的圆心角为n°,根据题意得:=10π,解得,n=100,故答案为:100.19.解:连接OA,如图所示:∵半径OC⊥AB,∴∠ODA=90°,AD=BD=AB,∵OD=OC﹣CD=3,OA=OC=5cm,∴AD===4(cm),∴AB=2AD=8cm,故答案为:8cm.20.解:如图,连接BC.∵AB是直径,∴∠ACB=90°,∵∠A=30°,∴∠B=60°,∵OC=OB,∴△OBC是等边三角形,∵BC=AC•tan∠BAC=1,∴OC=OB=1,∠BOC=60°,∴的长==,故答案为.三.解答题21.解:连结OC,如图,∵CE=AO,而OA=OC,∴OC=EC,∴∠E=∠1,∴∠2=∠E+∠1=2∠E,∵OC=OD,∴∠D=∠2=2∠E,∵∠BOD=∠E+∠D,∴∠E+2∠E=75°,∴∠E=25°.22.解:∵AB⊥CD,∴CH=DH=CD=1,在Rt△BDH中,∵sin B=,∴∠B=30°,连接OD,如图,∵∠HOD=2∠B=60°,∴OH=DH=,∴OD=2OH=,∴AB=2OD=.23.解:(1)∵OD⊥AB,∴=,∴∠DEB=∠AOD=×56°=28°;(2)∵OD⊥AB,∴AC=BC,∵DC=2,OA=5,∴OC=3,在Rt△OAC中,AC==4,∴AB=2AC=8.24.证明:(1)如图1中,∵△ADE由△ABC旋转得到,∴AC=AD,∠ACF=∠ADE=∠ADF=90°,∴FA平分∠CFE;(2)结论:2DM+AD=DE,理由如下:如图2中,延长AD交BC于F,连接CD,∵AC=AD,∠CAD=60°,∴△ACD为等边三角形,∴AD=CD=AC,∵∠ACF=90°,∴∠AFC=30°,∴AC=AF,∴AD=DF,∴D为AF的中点,又∵M为AD的中点,∴DM=FB,在Rt△AFC中,FC=AC,∴DM=FB=(BC﹣CF)=(BC﹣AC)=(DE﹣AD),∴2DM+AD=DE.25.证明:如图所示,取BC的中点F,连接DF,EF.∵BD,CE是△ABC的高,∴△BCD和△BCE都是直角三角形.∴DF,EF分别为Rt△BCD和Rt△BCE斜边上的中线,∴DF=EF=BF=CF.∴E,B,C,D四点在以F点为圆心,BC为半径的圆上.26.解:(Ⅰ)∵△OAB≌△OA′B′,∴OB=OB′,又∠BOB′=105°,∴∠OBB′=∠OB′B=(180°﹣105°)=37.5°.(Ⅱ)过点B′作B′C垂直于x轴,垂足为C.∵OA=AB=2,∠OAB=90°,∴∠AOB=45°,OB=OA=2,∴∠COB′=180°﹣105°﹣45°=30°,在Rt△OCB′中,B′C=OB′=,∴OC=CB′=,∴B′(﹣,).27.解:(1)如图1,由=10π,解得n=90°,∴∠POQ=90°,∴∠AOP=180°﹣∠POQ=90°,∵PQ⊥OB,∴∠PQO=60°,∴tan∠PQO==,∴OQ=∴x=﹣;(2)如备用图,当直线PQ与所在圆的位置关系相切时,x有最小值,则∠QPO=90°,∵∠POQ=∠AOB=30°,OP=20,∴OQ=OP=,∴x=﹣.。
2020年秋浙教版九年级数学上册第3章圆的基本性质单元培优 测试卷(Word版 含解析

2020年秋浙教版九年级数学上册第3章圆的基本性质单元培优测试卷解析版一、选择题(共10题;共30分)1.已知⊙O的半径为3,A为线段PO的中点,则当OP=5时,点A与⊙O的位置关系为()A. 点在圆内B. 点在圆上C. 点在圆外D. 不能确定2.在绿色食品、回收、节能、节水四个标志中,是由某个基本图形经过旋转得到的是()A. B. C. D.3.往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB=48cm,则水的最大深度为()A. 8cmB. 10cmC. 16cmD. 20cm4.如图,AB是⊙O的直径,点C、D在⊙O上,∠BDC=20°,则∠AOC的大小为()A. 40°B. 140°C. 160°D. 170°5.如图,点A,B,C,D在⊙O上,∠AOC=120°,点B是AC的中点,则∠D的度数是()A. 30°B. 40°C. 50°D. 60°6.如图,四边形ABCD是菱形,⊙O经过点A,C,D,与BC相交于点E,连接AC,AE。
若∠D=80°,则∠EAC的度数是( )A. 20°B. 25°C. 30°D. 35°7.如图中有两张型号完全一样的折叠式饭桌,将正方形桌面边上的四个弓形翻折起来后,就能形成一个圆形桌面(可以近似看作正方形的外接圆),正方形桌面与翻折成圆形桌面的面积之比最接近()A. 45B. 34C. 23D. 128.如图,放置在直线l上的扇形OAB.由图①滚动(无滑动)到图②,再由图②滚动到图③.若半径OA =2,∠AOB=45°,则点O所经过的最短路径的长是()A. 2π+2B. 3πC. 5π2D. 5π2+29.如图,在扇形OAB中,已知∠AOB=90°,OA=√2,过AB的中点C作CD⊥OA,CE⊥OB,垂足分别为D、E,则图中阴影部分的面积为()A. π−1B. π2−1 C. π−12D. π2−1210.如图,在平面直角坐标系中,Q是直线y=﹣12x+2上的一个动点,将Q绕点P(1,0)顺时针旋转90°,得到点Q′,连接OQ′,则OQ′的最小值为( )A. 4√55B. √5 C. 5√23D. 6√55二、填空题(共6题;共24分)11.在⊙O中,若弦BC垂直平分半径OA,则弦BC所对的圆周角等于________°.12.如图,AB为⊙O的直径,弦CD⊥AB于点H,若AB=10,CD=8,则OH的长度为________.13.小明在手工制作课上,用面积为150πcm2,半径为15cm的扇形卡纸,围成一个圆锥侧面,则这个圆锥的底面半径为________ cm.14.如图,已知锐角三角形ABC内接于半径为2的⊙O,OD⊥BC于点D,∠BAC=60°,则OD= ________.15.如图,正方形ABCD的边长为1,将其绕顶点C按逆时针方向旋转一定角度到CEFG位置,使得点B落在对角线CF上,则阴影部分的面积是________.16.如图,点C、D分别是半圆AOB上的三等分点,若阴影部分的面积为32π,则半圆的半径OA的长为________.三、解答题(共8题;共66分)17.如图,在△ABC中,∠BAC=100°,将△ABC绕点A逆时针旋转150°,得到△ADE,使得点B、C、D恰好在同一条直线上,求∠E的度数.18.如图,△ABC的三个顶点都在⊙O上,直径AD=6cm,∠DAC=2∠B,求AC的长.19.如图,△ABC中,AB=AC,⊙O是△ABC的外接圆,BO的延长交边AC于点D.(1)求证:∠BAC=2∠ABD;(2)当△BCD是等腰三角形时,求∠BCD的大小;(3)当AD=2,CD=3时,求边BC的长.20.如图,将△ABC绕点B顺时针旋转60度得到ΔDBE,点C的对应点E恰好落在AB的延长线上,连接AD.(1)求证:BC//AD;(2)若AB=4,BC=1,求A,C两点旋转所经过的路径长之和.21.如图,在△ABC中,AC=BC,D是AB上一点,⊙O经过点A、C、D,交BC于点E,过点D作DF//BC,交⊙O于点F,求证:(1)四边形DBCF是平行四边形(2)AF=EF22.如图,点M,N分别在正方形ABCD的边BC,CD上,且∠MAN=45°,把△ADN绕点A 顺时针旋转90°得到△ABE .(1)求证:△AEM≌△ANM .(2)若BM=3,DN=2,求正方形ABCD的边长.23.如图所示,已知A,B两点的坐标分别为(2 √3,0),(0,10),P是△AOB外接圆⊙C上的一点,OP交AB于点D.(1)当OP⊥AB时,求OP;(2)当∠AOP=30°时,求AP.24.如图,四边形ABCD内接于⊙O,AC为直径,AC和BD交于点E,AB=BC.(1)求∠ADB的度数;(2)过B作AD的平行线,交AC于F,试判断线段EA,CF,EF之间满足的等量关系,并说明理由;(3)在(2)条件下过E,F分别作AB,BC的垂线,垂足分别为G,H,连接GH,交BO于M,若AG=3,S四边形AGMO:S四边形CHMO=8:9,求⊙O的半径.答案一、选择题1.解:∵OA = 12 OP =2.5,⊙O 的半径为3, ∴OA <⊙O 半径,∴点A 与⊙O 的位置关系为:点在圆内.故答案为:A.2.解:ACD 、 不是由某个基本图形经过旋转得到的,故ACD 不符合题意; B 、是由一个基本图形经过旋转得到的,故B 符合题意. 故答案为:B.3.解:过点O 作OD ⊥AB 于D ,交⊙O 于E ,连接OA , 由垂径定理得: AD =12AB =12×48=24cm , ∵⊙O 的直径为 52cm , ∴ OA =OE =26cm ,在 RtΔAOD 中,由勾股定理得: OD =√OA 2−AD 2=√262−242=10cm , ∴ DE =OE −OD =26−10=16cm , ∴油的最大深度为 16cm , 故答案为: C . 4.解:∵∠BDC=20° ∴∠BOC=2×20°=40° ∴∠AOC=180°-40°=140° 故答案为:B. 5.连接OB ,∵点B 是弧AC 的中点, ∴∠AOB = 12 ∠AOC =60°,由圆周角定理得,∠D = 12 ∠AOB =30°, 故答案为:A .6.∵四边形ABCD 是菱形,∠D=80°, ∴∠ACB=12∠DCB=12(180°-∠D )=50°, ∵四边形AECD 是圆内接四边形,∠D=80°,∴∠AEB=∠D=80°, ∴∠EAC=∠AEB-∠ACB=30°. 故答案为:C. 7.连接AC ,设正方形的边长为a , ∵四边形ABCD 是正方形, ∴∠B=90°, ∴AC 为圆的直径, ∴AC= √2 AB= √2 a ,则正方形桌面与翻折成的圆形桌面的面积之比为: 2π×(√22a)=2π≈23 ,故答案为:C. 8.解:如图,点O 的运动路径的长= 的长+O 1O 2+ 的长=90·π·2180+45·π·2180+90·π·2180= 5π2 ,故答案为:C . 9.连接OC∵ 点C 为弧AB 的中点 ∴∠AOC =∠BOC在 △CDO 和 △CEO 中 {∠AOC =∠BOC∠CDO =∠CEO =90°CO =CO∴△CDO ≅△CEO(AAS) ∴OD =OE,CD =CE 又 ∵∠CDO =∠CEO =∠DOE =90°∴ 四边形CDOE 为正方形 ∵OC =OA =√2 ∴OD =OE =1 ∴S 正方形CDOE =1×1=1由扇形面积公式得 S 扇形AOB =90π×(√2)2360=π2 ∴S 阴影=S 扇形AOB −S 正方形CDOE =π2−1故答案为:B.10.解:作QM ⊥x 轴于点M ,Q ′N ⊥x 轴于N ,设Q( m , −12m +2 ),则PM= m ﹣1 ,QM= −12m +2 , ∵∠PMQ=∠PNQ ′=∠QPQ ′=90°, ∴∠QPM+∠NPQ ′=∠PQ ′N+∠NPQ ′, ∴∠QPM=∠PQ ′N , 在△PQM 和△Q ′PN 中,{∠PMQ =∠PNQ ′=90°∠QPM =∠PQ ′NPQ =Q ′P,∴△PQM ≌△Q ′PN(AAS),∴PN=QM= −12m +2 ,Q ′N=PM= m ﹣1 , ∴ON=1+PN= 3−12m , ∴Q ′( 3−12m , 1﹣m ),∴OQ ′2=( 3−12m )2+( 1﹣m )2= 54 m 2﹣5m+10= 54 (m ﹣2)2+5,当m=2时,OQ ′2有最小值为5, ∴OQ ′的最小值为 √5 , 故答案为:B. 二、填空题11.设弦 BC 垂直平分半径 OA 于点E ,连接OB 、OC 、AB 、AC ,且在优弧BC 上取点F ,连接BF 、CF ,∴OB=AB ,OC=AC ,∵OB=OC ,∴四边形OBAC 是菱形, ∴∠BOC=2∠BOE , ∵OB=OA ,OE= 12 , ∴cos ∠BOE= 12 , ∴∠BOE=60°, ∴∠BOC=∠BAC=120°, ∴∠BFC= 12 ∠BOC=60°,∴ 弦 BC 所对的圆周角为120°或60°, 故答案为:120或60. 12.连接OC ,Rt △OCH 中,OC= 12 AB=5,CH= 12 CD=4;由勾股定理,得:OH= √OC 2−CH 2=√52−42=3 ; 即线段OH 的长为3. 故答案为:3.13.由 S 扇形=12lR 得:扇形的弧长= 2×150π÷15=20π (厘米),圆锥的底面半径= 20π÷π÷2=10 (厘米). 故答案是:10. 14.解:连接OB 和OC ,∵△ABC 内接于半径为2的圆O ,∠BAC=60°, ∴∠BOC=120°,OB=OC=2, ∵OD ⊥BC ,OB=OC , ∴∠BOD=∠COD=60°, ∴∠OBD=30°,∴OD= 12 OB=1,故答案为:1.15.解:过E 点作MN ∥BC 交AB 、CD 于M 、N 点,设AB 与EF 交于点P 点,连接CP,如下图所示,∵B 在对角线CF 上,∴∠DCE=∠ECF=45°,EC=1,∴△ENC 为等腰直角三角形,∴MB=CN= √22 EC= √22 , 又BC=AD=CD=CE ,且CP=CP ,△PEC 和△PBC 均为直角三角形,∴△PEC ≌△PBC(HL),∴PB=PE ,又∠PFB=45°,∴∠FPB=45°=∠MPE ,∴△MPE 为等腰直角三角形,设MP=x , 则EP=BP= √2x ,∵MP+BP=MB ,∴ x +√2x =√22,解得 x =2−√22 ,∴BP= √2x =√2−1 ,∴阴影部分的面积= 2S ΔPBC =2×12×BC ×BP =1×(√2−1)=√2−1 .故答案为: √2−1 .16.解:如图,连接 OC,OD,CD,∵ 点C 、D 分别是半圆AOB 上的三等分点,∴∠AOC =∠COD =∠DOB =60°,∵OC =OD,∴△COD 为等边三角形,∴∠OCD=60°,∴∠AOC=∠DCO,∴CD//AB,∴S△COD=S△BCD,∴S扇形OCD =S阴影=3π2,∴60π•OA2360=3π2,解得:OA=3,(负根舍去),故答案为:3三、解答题17. 解:∵将△ABC绕点A逆时针旋转150°,得到△ADE,∴∠BAD=150°,AD=AB,∠E=∠ACB .∵点B、C、D恰好在同一条直线上∴△BAD是顶角为150°的等腰三角形,∴∠B=∠BDA,∴∠B=12(180°−∠BAD)=15°,∴∠E=∠ACB=180°−∠BAC−∠B=180°−100°−15°=65° .18. 解:如图,连接OC,∵∠AOC=2∠B,∠DAC=2∠B,∴∠AOC=∠DAC,∴AO=AC,又∵OA=OC,∴△AOC是等边三角形,∴AC=AO=12AD=3cm.19. (1)连接OA,如下图1所示:∵AB=AC,∴AB = AC,∴OA⊥BC,∴∠BAO=∠CAO.∵OA=OB,∴∠ABD=∠BAO,∴∠BAC=2∠ABD.(2)如图2中,延长AO交BC于H.①若BD=CB,则∠C=∠BDC=∠ABD+∠BAC=3∠ABD.∵AB=AC,∴∠ABC=∠C,∴∠DBC=2∠ABD.∵∠DBC+∠C+∠BDC=180°,∴8∠ABD=180°,∴∠C=3∠ABD=67.5°.②若CD=CB,则∠CBD=∠CDB=3∠ABD,∴∠C=4∠ABD.∵∠DBC+∠C+∠CDB=180°,∴10∠ABD=180°,∴∠BCD=4∠ABD=72°.③若DB=DC,则D与A重合,这种情形不存在.综上所述:∠C的值为67.5°或72°.(3)如图3中,过A点作AE // BC交BD的延长线于E.则AEBC = ADDC= 23,且BC=2BH,∴AOOH = AEBH= 43,设OB=OA=4a,OH=3a.则在Rt△ABH和Rt△OBH中,∵BH2=AB2﹣AH2=OB2﹣OH2,∴25 - 49a2=16a2﹣9a2,∴a2= 2556,∴BH= 5√24,∴BC=2BH= 5√22.故答案为:5√22.20. (1)证明:由旋转性质得:ΔABC≅ΔDBE,∠ABD=∠CBE=60°∴AB=BD,∴ΔABD是等边三角形所以∠DAB=60°∴∠CBE=∠DAB,∴BC//AD;(2)解:依题意得:AB=BD=4,BC=BE=1,所以A,C两点经过的路径长之和为60π×4180+60π×1180=53π .21. (1)证明:∵AC=BC,∴∠BAC=∠B,∵DF//BC,∴∠ADF=∠B,又∠BAC=∠CFD ,∴∠ADF=∠CFD,∴BD//CF,四边形DBCF是平行四边形.(2)证明:如图,连接AE∵∠ADF=∠B,∠ADF=∠AEF∴∠AEF=∠B四边形AECF是⊙O的内接四边形∴∠ECF+∠EAF=180°∵BD//CF∴∠ECF+∠B=180°∴∠EAF=∠B∴∠AEF=∠EAF∴AF=EF22. (1)证明:由旋转的性质得:AE=AN,∠BAE=∠DAN ∵四边形ABCD是正方形∴∠BAD=90°,即∠BAN+∠DAN=90°∴∠BAN+∠BAE=90°,即∠EAN=90°∵∠MAN=45°∴∠MAE=∠EAN−∠MAN=90°−45°=45°在△AEM和△ANM中,{AE=AN∠MAE=∠MAN=45°AM=AM∴△AEM≅△ANM(SAS);(2)解:设正方形ABCD的边长为x,则BC=CD=x∵BM=3,DN=2∴CM=BC−BM=x−3,CN=CD−DN=x−2由旋转的性质得:BE=DN=2∴ME=BE+BM=2+3=5由(1)已证:△AEM≅△ANM∴MN=ME=5又∵四边形ABCD是正方形∴∠C=90°则在Rt△CMN中,CM2+CN2=MN2,即(x−3)2+(x−2)2=52解得x=6或x=−1(不符题意,舍去)故正方形ABCD的边长为6.23. (1)解:∵A,B两点的坐标分别为(2 √3,0),(0,10),∴AO=2 √3,OB=10,∵AO⊥BO,∴AB=√100+12=4 √7,∵OP⊥AB,∴10×2√32=4√7×CD2,CD=DP,∴CD=5√217,∴OP=2CD=10√21;7(2)解:连接CP,如图所示:∵∠AOP=30°,∴∠ACP=60°,∵CP=CA,∴△ACP为等边三角形,AB=2 √7.∴AP=AC=1224. (1)解:如图1,∵AC为直径,∴∠ABC=90°,∴∠ACB+∠BAC=90°,∵AB=BC,∴∠ACB=∠BAC=45°,∴∠ADB=∠ACB=45°;(2)解:线段EA,CF,EF之间满足的等量关系为:EA2+CF2=EF2.理由如下:如图2,设∠ABE=α,∠CBF=β,∵AD ∥BF ,∴∠EBF =∠ADB =45°,又∠ABC =90°,∴α+β=45°,过B 作BN ⊥BE ,使BN =BE ,连接NC , ∵AB =CB ,∠ABE =∠CBN ,BE =BN , ∴△AEB ≌△CNB (SAS ),∴AE =CN ,∠BCN =∠BAE =45°, ∴∠FCN =90°.∵∠FBN =α+β=∠FBE ,BE =BN ,BF =BF , ∴△BFE ≌△BFN (SAS ),∴EF =FN ,∵在Rt △NFC 中,CF 2+CN 2=NF 2 , ∴EA 2+CF 2=EF 2;(3)解:如图3,延长GE ,HF 交于K ,由(2)知EA 2+CF 2=EF 2 ,∴ 12 EA 2+ 12 CF 2= 12 EF 2,∴S △AGE +S △CFH =S △EFK ,∴S △AGE +S △CFH +S 五边形BGEFH =S △EFK +S 五边形BGEFH , 即S △ABC =S 矩形BGKH ,∴ 12 S △ABC = 12 S 矩形BGKH ,∴S △GBH =S △ABO =S △CBO ,∴S △BGM =S 四边形COMH , S △BMH =S 四边形AGMO , ∵S 四边形AGMO :S 四边形CHMO =8:9,∴S △BMH :S △BGM =8:9,∵BM平分∠GBH,∴BG:BH=9:8,设BG=9k,BH=8k,∴CH=3+k,∵AG=3,∴AE=3 √2,∴CF=√2(k+3),EF=√2(8k﹣3),∵EA2+CF2=EF2,∴(3√2)2+[√2(k+3)]2=[√2(8k−3)]2,整理得:7k2﹣6k﹣1=0,(舍去),k2=1.解得:k1=﹣17∴AB=12,∴AO=√2AB=6 √2,2∴⊙O的半径为6 √2.。
浙教版九上数学第3章《圆的基本性质》培优测试卷(解析版)

浙教版九上数学第3章《圆的基本性质》培优测试卷(解析版)一、单选题1.若圆的半径是,圆心的坐标是,点的坐标是,则点与的位置关系是( )A. 点P在⊙O外B. 点P在⊙O内C. 点P在⊙O上D. 点P在⊙O外或⊙O上【答案】C【考点】点与圆的位置关系【解析】【解答】解:由勾股定理得:OP= =5.∵圆O的半径为5,∴点P在圆O上.故答案为:C【分析】利用勾股定理求出点P到圆心的距离OP,再根据点与圆的位置关系,就可得出点P与圆O的位置关系。
2.如图,△ABC内接于⊙O,∠A=68°,则∠OBC等于()A. 22°B. 26°C. 32°D. 34°【答案】A【考点】等腰三角形的性质,圆周角定理【解析】【解答】解:连接OC,∵∠A=68°,∴∠BOC=2∠A=136°,∵OB=OC,∴∠OBC ==22°;故答案为:A。
【分析】根据同弧所对的圆心角等于圆周角的2倍求出∠BOC,再根据三角形的内角和及等腰三角形的两底角相等即可算出答案。
3.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为4,∠B=135°,则的长()A. B. C. D.【答案】B【考点】圆周角定理,圆内接四边形的性质,弧长的计算【解析】【解答】解:连接OA、OC∵四边形ABCD是⊙O的内接四边形,∠B=135°∴∠B+∠D=180°∴∠D=180°-135°=45°∴∠AOC=2∠D=2×45°=90°∵⊙O的半径为4,∴弧AC的长为:故答案为:B【分析】连接PA、OC,利用圆内接四边形的性质求出∠D的度数,再利用圆周角定理求出∠AOC的度数,然后利用弧长公式就可求出弧AC的长。
4.小明在学了尺规作图后,通过“三弧法”作了一个△ACD,其作法步骤是:①作线段AB,分别以A,B为圆心,AB长为半径画弧,两弧的交点为C;②以B为圆心,AB长为半径画弧交AB的延长线于点D;③连结AC,BC,CD.下列说法不正确的是()A. ∠A=60°B. △ACD是直角三角形(第,爱画)C. BC= CDD. 点B是△ACD的外心【答案】C【考点】等边三角形的性质,三角形的外接圆与外心,作图—复杂作图,锐角三角函数的定义【解析】【解答】解:∵分别以A,B为圆心,AB长为半径画弧,两弧的交点为C∴AB=AC=CB∴△ACB是等边三角形∴∠A=60°,故A不符合题意;∵以B为圆心,AB长为半径画弧交AB的延长线于点D∴AB=CB=BD∴∠D=∠BCD∵∠ABC=∠D+∠BCD=60°∴∠BCD=30°∴∠ACD=∠ADB+∠BCD=60°+30°=90°∴∠ACD=90°∴△ACD是直角三角形,故B不符合题意;在Rt△ADC中,∠A=60°∴tan∠A=∴故C符合题意;∵AB=CB=BD∴点B是△ACD的外心故D不符合题意;故答案为:C【分析】由已知条件:分别以A,B为圆心,AB长为半径画弧,两弧的交点为C,易证△ACB是等边三角形,因此可求出∠A的度数,可对A作出判断;再由以B为圆心,AB长为半径画弧交AB的延长线于点D,可知AB=CB=BD,可证得点B是△ACD的外心,可对D作出判断;利用等腰三角形的性质,及三角形外角的性质求出∠D的度数,就可求出∠ACD的度数,可对B作出判断,然后利用解直角三角形就可得到BC 与CD的数量关系,可对C作出判断,综上所述,可得出答案。
浙教版九年级数学上册第三章圆的基本性质单元培优试卷解析版

2019-2020浙教版九年级数学上册第三章圆的基本性质单元培优试卷一、选择题(每小题3分,共30分)1.△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80°B.160°C.100°D.80°或100°2.如图,将△OAB绕点O逆时针旋转80°,得到△OCD.若∠A=2∠D=100°,则∠α的度数是( )A. 50°B. 60°C. 40°D. 30°3.如图,平面直角坐标系中,已知点B ,若将△ABO绕点O沿顺时针方向旋转90°后得到△A1B1O,则点B的对应点B1的坐标是( )A. (3,1)B. (3,2) C. (1,3) D. (2,3)4.如图,四边形是⊙的内接正方形,点是劣弧上任意一点(与点不重合),则∠的度数为()A. 30°B. 45°C. 60°D. 无法确定5.已知圆的半径为3,扇形的圆心角为,则扇形的面积为()A. B.C.D.6.如图,在正方形ABCD中,分别取AD、BC的中点E、F,并连接EF;以点F为圆心,FD的长为半径画弧,交BC的延长线于点G;作GH⊥AD,交AD的延长线于点H,则的值为()A. .C. D.7.如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,点M,N分别是AB,AC的中点,则线段MN长的最大值为()A. 5B.C. 5D.8.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB’C’D’,图中阴影部分的面积为().A. B.C. D.9.如图,已知圆O的半径为10,AB⊥CD,垂足为P,且AB=CD=16,则OP的长为()A. 6B. 6C. 8D. 810.如图,在⊙O中,AB是⊙O的直径,AB=10, = = ,点E是点D关于AB的对称点,M是AB上的一动点,下列结论:①∠BOE=60°;②∠CED=∠DOB;③DM⊥CE;④CM+DM的最小值是10,上述结论中正确的个数是()A. 1B. 2C. 3D. 4二、填空题(每小题4分,共24分)11.如图,O是⊙O的圆心,点A、B、C在⊙O上,AO∥BC,∠AOB=38º,则∠OAC的度数是________.12.如图,⊙O的半径为5,AB为弦,OC⊥AB,垂足为E,如果CE=2,那么AB的长是________ 13.某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知AB=16m,半径OA=10m,则中间柱CD的高度为________m.14.为庆祝祖国华诞,某单位排练的节目需用到如图所示的扇形布扇,布扇完全打开后,外侧两竹条AB,AC夹角为120°,AB的长为30cm,贴布部分BD的长为20cm,则贴布部分的面积约为________cm2.15.如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,过E点作EH⊥CD于H,则EH的长为________.16.如图,在四边形ABCD中,∠BAD=∠CDA=90°,AB=1,CD=2,过A,B,D三点的⊙O分别交BC,CD于点E,M,下列结论:①DM=CM;②;③⊙O的直径为2;④AE=AD.其中正确的结论有________(填序号).三、解答题(每小题6分,共18分)17.如图,AB、CD是⊙O的直径,弦CE∥AB,弧的度数为50°,求∠AOC的度数.18.如图,AB是⊙O的直径,点D在⊙O上,∠DAB=45°,BC∥AD,CD∥AB.若⊙O的半径为1,求图中阴影部分的面积(结果保留π).19.如图为桥洞的形状,其正视图是由和矩形ABCD构成.O点为所在⊙O的圆心,点O又恰好在AB为水面处.若桥洞跨度CD为8米,拱高(OE⊥弦CD于点F)EF为2米.求所在⊙O的半径DO.四,解答题(每小题8分,共48分)20.如图,已知等腰直角△ABC,点P是斜边BC上一点(不与B,C重合),PE是△ABP的外接圆⊙O的直径(1)求证:△APE是等腰直角三角形;(2)若⊙O的直径为2,求的值21.如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,其中点A(5,4),B(1,3),将△AOB绕点O逆时针旋转90°后得到△A1OB1.(1)画出△A1OB1;(2)在旋转过程中点B所经过的路径长为;(3)求在旋转过程中线段AB、BO扫过的图形的面积之和.22.如图,正方形ABCD的外接圆为⊙O,点P在劣弧上(不与C点重合).(1)求∠BPC的度数;(2)若⊙O的半径为8,求正方形ABCD的边长.23.已知:⊙O为Rt△ABC的外接圆,点D在边AC上,AD=AO;(1)如图1,若弦BE∥OD,求证:OD=BE;(2)如图2,点F在边BC上,BF=BO,若OD=2 , OF=3,求⊙O的直径.24.如图,四边形ACBE内接于⊙O,AB平分∠CAE,CD⊥AB交AB、AE分别于点H、D.(1)如图①,求证:BD=BE;(2)如图②,若F是弧AC的中点,连接BF,交CD于点M,∠CMF=2∠CBF,连接FO、OC,求∠FOC的度数;(3)在(2)的条件下,连接OD,若BC=4 ,OD=7,求BF的长.25.如图,在平面直角坐标系中,△AOB是直角三角形,∠AOB=90°,边AB与y轴交于点C.(1)若∠A=∠AOC,试说明:∠B=∠BOC;(2)延长AB交x轴于点E,过O作OD⊥AB,若∠DOB=∠EOB,∠A=∠E,求∠A的度数;(3)如图,OF平分∠AOM,∠BCO的平分线交FO的延长线于点P,∠A=40°,当△ABO绕O点旋转时(边AB与y轴正半轴始终相交于点C),问∠P的度数是否发生改变?若不变,求其度数;若改变,请说明理由.答案一、选择题(每小题3分,共30分)1. 解:∠ABC =∠AOC =×160°=80°或∠ABC =×(360°-160°)=100°. 故答案为:D.2.解:根据旋转的意义,图片按逆时针方向旋转80°,可得∠AOC=80°,∠C=∠A , ∵∠A =2∠D =100° ∴∠A=100°,∠D=50°, ∴∠DOC=180°-∠C-∠D=30°, ∴∠a=∠AOC-∠DOC=50° 故答案为:A.3.解:△A 1B 1O 如图所示,点B 1的坐标是(2,3).故答案为:D. 4.解:连接OB,OC ,∵ 四边形 是⊙ 的内接正方形 , ∴∠BOC=°=90°,∴∠BPC=∠BOC=45°; 故答案为: B.5.解: 扇形的圆心角为,其半径为3, 扇形。
浙教版九年级数学上册第三章圆的基本性质单元培优检测题教师版

2019-2020浙教版九年级数学上册第三章圆的基本性质单元培优检测题一、选择题(每小题3分,共30分)1.如图,已知△ADE是△ABC绕点A逆时针旋转所得,其中点D在射线AC上,设旋转角为α,直线BC与直线DE交于点F,那么下列结论不正确的是()A.∠BAC=αB.∠DAE=αC.∠CFD=αD.∠FDC=α解:∵△DAE是由△BAC旋转得到,∴∠BAC=∠DAE=α,∠B=∠D,∵∠ACB=∠DCF,∴∠CFD=∠BAC=α,故A,B,C不符合题意,故答案为:D.2.如图,△ABC内接于⊙O,∠A=68°,则∠OBC等于()A.22°B.26°C.32°D.34°解:连接OC,∵∠A=68°,∴∠BOC=2∠A=136°,∵OB=OC,∴∠OBC =°°=22°;故答案为:A。
3.如图,△ABC中,∠B=70°,则∠BAC=30°,将△ABC绕点C顺时针旋转得△EDC.当点B的对应点D 恰好落在AC上时,∠CAE的度数是()A.30°B.40°C.50°D.60°解:∵∠B=70°,∠BAC=30°∴∠ACB=80°∵将△ABC绕点C顺时针旋转得△EDC.∴AC=CE,∠ACE=∠ACB=80°∴∠CAE=∠AEC=50°。
故答案为:C。
4.如图,AD是△ABC外接圆的直径.若∠B=64°,则∠DAC等于()A.26°B.28°C.30°D.32°解:如图,∵AD为直径,∴∠ACD=90°,∵∠ADC=∠B=64°,∴∠DAC=90°﹣64°=26°,故答案为:A。
5.如图,以边长为a的等边三角形各顶点为圆心,以a为半径在对边之外作弧,由这三段圆弧组成的曲线是一种常宽曲线.此曲线的周长与直径为a的圆的周长之比是( ) .A.1:1B.1:3C.3:1D.1:2解:三段弧的圆心角都等于60°,则曲线的周长=3×=πa;直径为a的圆的周长=πa;∴曲线的周长与直径为a的圆的周长之比=1:1.故答案为:A。
浙教版九年级数学上册 第3章 圆的基本性质 单元测试卷(含解析)

浙教版九年级数学上册第3章圆的基本性质单元测试卷题号一二三总分得分一、选择题(本大题共11小题,共33分)1.已知⊙O的半径为4cm,点A到圆心O的距离为3cm,则点A与⊙O的位置关系是()A. 点A在⊙O内B. 点A在⊙O上C. 点A在⊙O外D. 不能确定2.如图,AB是⊙O的直径,C、D是⊙O上两点,∠AOC=130°,则∠D等于()A. 65°B. 35°C. 25°D. 15°3.如图,已知经过原点的⊙P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=()A. 80°B. 90°C. 100°D. 无法确定4.已知正六边形的边长为6,则它的边心距()A. 3√3B. 6C. 3D. √35.如图,☉O的半径为3,四边形ABCD内接于☉O,连接OB,OD,若∠BCD=∠BOD,则BD⌢的长为()π C. 2π D. 3πA. πB. 326.如图,在圆内接正五边形ABCDE中,对角线AC和BD相交于点P,则∠APB等于()A. 36∘B. 60∘C. 72∘D. 108∘7.如图,⊙O的半径为13,弦AB的长度是24,ON⊥AB,垂足为N,则ON=()A. 5B. 7C. 9D. 118.如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5∘,OC=4,CD的长为()A. 2√2B. 4C. 4√2D. 89.半径为3,圆心角为120°的扇形的面积是()A. 3πB. 6πC. 9πD. 12π10.在Rt△ABC中,∠B=90°,BC=15,AC=17,以AB为直径作半圆,则此半圆的面积为()A. 16πB. 12πC. 10πD. 8π11.如图,C是以AB为直径的半圆O上一点,连结AC,BC,分别以AC,BC为边向外作正方形ACDE,BCFG.DE,FG,AC⏜,BC⏜的中点分别是M,N,P,Q.若MP+NQ= 14,AC+BC=18,则AB的长为()C. 13D. 16A. 9√2B. 907二、填空题(本大题共9小题,共35分)12.如图,⊙O的内接四边形ABCD中,∠BOD=140°,则∠A等于______°.13.正五边形每个外角的度数是______.14.在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为_______.15.如图,AB是⊙O的直径,弦CD⊥AB于点E,如果AC⏜=CD⏜,则∠ACD的度数是______.16.有一张矩形的纸片,AB=3cm,AD=4cm,若以A为圆心作圆,并且要使点D在⊙A内,而点C在⊙A外,⊙A的半径r的取值范围是______.17.如图,⊙O是△ABC的外接圆,∠A=45°,BC=4,则⊙O的直径为______.18.如图,在直角坐标系中,已知点A(−3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形1、2、3、4….则三角形2016的直角顶点坐标为______ .19.如图,CD是⊙O的直径,点A是半圆上的三等分点,B是弧AD的中点,P点为直线CD上的一个动点,当CD=6时,AP+BP的最小值为______.20.在Rt△ABC中,∠C=90°,AC=BC=1,将其放入平面直角坐标系,使A点与原点重合,AB在x轴上,△ABC沿x轴顺时针无滑动的滚动,点A再次落在x轴时停止滚动,则点A经过的路线与x轴围成图形的面积为______.三、解答题(本大题共4小题,共52分)21.如图,在由边长为1的小正方形组成的网格中,△ABC的顶点均落在格点上.(1)将△ABC绕点O顺时针旋转90°后,得到△A1B1C1.在网格中画出△A1B1C1;(2)求线段OA在旋转过程中扫过的图形面积;(结果保留π)22.如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD//BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.23.如图,AB是⊙O的直径,点C是圆上一点,连接CA,CB,过点O作弦BC的垂线,交BC⌢于点D,连接AD.(1)求证:∠CAD=∠BAD;(2)若⊙O的半径为1,∠B=50°,求AC⌢的长.24.如图,AB是⊙O的直径,点C是⊙O上一点,连接BC,AC,OD⊥BC于E.(1)求证:OD//AC;(2)若BC=8,DE=3,求⊙O的直径.答案和解析1.【答案】A【解析】解:∵圆的半径是4cm,点A到圆心的距离是3cm,小于圆的半径,∴点A在圆内.故选A.根据点到圆心的距离与圆的半径大小的比较,确定点与圆的位置关系.本题考查的是点与圆的位置关系,点A到圆心的距离是3cm,比圆的半径4cm小,可以判断点A就在圆内.2.【答案】C【解析】【分析】∠BOC,求出∠BOC即可.根据圆周角定理:∠D=12本题考查圆周角定理,解题的关键是熟练掌握基本知识,属于中考常考题型.【解答】解:∵∠BOC=180°−∠AOC,∠AOC=130°,∴∠BOC=50°,∠BOC=25°,∴∠D=12故选:C.3.【答案】B【解析】解:∵∠AOB与∠ACB是优弧AB所对的圆周角,∴∠AOB=∠ACB,∵∠AOB=90°,∴∠ACB=90°.故选B.由∠AOB与∠ACB是优弧AB所对的圆周角,根据圆周角定理,即可求得∠ACB=∠AOB= 90°.此题考查了圆周角定理.此题比较简单,解题的关键是观察图形,得到∠AOB与∠ACB是优弧AB所对的圆周角.【解析】解:如图所示,此正六边形中AB=6,则∠AOB=60°;∵OA=OB,∴△OAB是等边三角形,∵OG⊥AB,∴∠AOG=30°,=3√3,∴OG=OA⋅cos30°=6×√32故选:A.已知正六边形的边长为6,欲求边心距,可通过边心距、边长的一半和内接圆半径构造直角三角形,通过解直角三角形求解即可.此题主要考查正多边形的计算问题,属于常规题.解答时要注意以下问题:①熟悉正六边形和正三角形的性质;②作出半径和边心距,构造出直角三角形,利用解直角三角形的知识解答.5.【答案】C【解析】【分析】本题主要考查了弧长公式,圆内接四边形的性质,圆周角定理;熟练掌握圆内接四边形的性质和圆周角定理,求出∠BOD=120°是解决问题的关键.由圆内接四边形的性质和圆周角定理求出∠A=60°,得出∠BOD=120°,再由弧长公式即可得出答案.【解答】解:∵四边形ABCD内接于⊙O,∴∠BCD+∠A=180°,∵∠BOD=2∠A,∠BOD=∠BCD,∴2∠A+∠A=180°,解得:∠A=60°,∴∠BOD=120°,∴BD⏜的长.故选C.【解析】【分析】本题考查了正多边形和圆的知识,题目中还用到了三角形的外角的性质及正多边形的性质等,比较简单.首先根据正五边形的性质得到AB=BC,∠ABC=108°,∠ACB=36°,最后利用三角形的外角的性质得到∠APB=∠PBC+∠ACB.【解答】解:∵五边形ABCDE是正五边形,∴∠ABC=108∘,BA=BC,∴∠ACB=36∘.同理∠PBC=36∘,∴∠APB=∠PBC+∠ACB=72∘.故选C.7.【答案】A【解析】【分析】本题考查垂径定理与勾股定理的综合应用,解题的关键是明确垂径定理的内容,利用垂径定理解答问题.根据⊙O的半径为13,弦AB的长度是24,ON⊥AB,可以求得AN的长,再根据勾股定理求得ON的长.【解答】解:由题意可得,OA=13,∠ONA=90∘,AB=24,∴AN=1AB=12.在Rt△OAN中,ON=√OA2−AN2=√132−122=5.2故选A.8.【答案】C【解析】【分析】本题考查圆周角定理,垂径定理,等腰直角三角形的判定,勾股定理.先由圆周角定理求出∠BOC=45°,再由垂径定理得出∠OEC=90°,CD=2CE,则△OCE为等腰直角三角形,由勾股定理求出CE的长,即可得出CD长.【解答】解:∵∠A=22.5∘,∴∠BOC=2∠A=45∘,∵⊙O的直径AB垂直于弦CD,∴CE=DE,△OCE为等腰直角三角形,OC=2√2,∴CD=2CE=4√2.∴CE=√22故选C.9.【答案】A【解析】【分析】把已知数据代入S=nπR2,计算即可.360是解题的关键.本题考查的是扇形面积的计算,掌握扇形的面积公式:S=nπR2360【解答】=3π,解:半径为3,圆心角为120°的扇形的面积是:120π×32360故选A.10.【答案】D【解析】解:根据题意画图如下,在Rt△ABC中,AB=√AC2−BC2=√172−152=8,π⋅42=8π.则S半圆=12故选D.首先根据勾股定理求出AB的长,再根据半圆的面积公式解答即可.此题考查了勾股定理,用到的知识点是勾股定理以及圆的面积公式,关键是根据勾股定理求出半圆的半径.11.【答案】C【解析】解:连接OP,OQ,∵DE,FG,AC⏜,BC⏜的中点分别是M,N,P,Q,∴OP⊥AC,OQ⊥BC,∴H、I是AC、BC的中点,(AC+BC)=9,∴OH+OI=12∵MH+NI=AC+BC=18,MP+NQ=14,∴PH+QI=18−14=4,∴AB=OP+OQ=OH+OI+PH+QI=9+4=13,故选C.连接OP,OQ,根据DE,FG,AC⏜,BC⏜的中点分别是M,N,P,Q得到OP⊥AC,OQ⊥BC,(AC+BC)=9和从而得到H、I是AC、BC的中点,利用中位线定理得到OH+OI=12PH+QI,从而利用AB=OP+OQ=OH+OI+PH+QI求解.本题考查了中位线定理,解题的关键是正确的作出辅助线,题目中还考查了垂径定理的知识,难度不大.12.【答案】110【解析】【分析】根据圆周角定理求出∠C,根据圆内接四边形的性质计算即可.本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.【解答】∠BOD=70°,解:由圆周角定理得,∠C=12∵四边形ABCD内接于⊙O,∴∠A=180°−∠C=110°,故答案为:110.第18页,共18页 13.【答案】72°【解析】解:360°÷5=72°.故答案为:72°.利用正五边形的外角和等于360度,除以边数即可求出答案.本题主要考查了多边形的外角和定理,任何一个多边形的外角和都是360°.14.【答案】3【解析】【分析】本题考查了垂径定理和勾股定理.作OC ⊥AB 于C ,连接OA ,根据垂径定理得到AC =BC =12AB =3,然后在Rt △AOC 中利用勾股定理计算OC 即可. 【解答】解:作OC ⊥AB 于C ,连结OA ,如图,∵OC ⊥AB ,∴AC =BC =12AB =12×8=4, 在Rt △AOC 中,OA =5,∴OC =√OA 2−AC 2=3,即圆心O 到AB 的距离为3.故答案为3.15.【答案】60°【解析】解:∵AB 是⊙O 的直径,弦CD ⊥AB 于点E ,∴AC⏜=AD ⏜, ∵AC⏜=CD ⏜, ∴AC⏜=CD ⏜=AD ⏜, 即AC ⏜、CD ⏜、AD ⏜的度数是13×360°=120°,∴∠ACD=1×120°=60°,2故答案为:60°.根据垂径定理求出AC⏜=CD⏜,求出AC⏜、CD⏜、AD⏜的度数,即可求出答案.本题考查了垂径定理,圆周角定理,圆心角、弧、弦之间的关系等知识点,能求出AD⏜的度数是解决此题的关键.16.【答案】4cm<r<5cm【解析】解:∵矩形的纸片,AB=3cm,AD=4cm,∴AC=5cm,∴以A为圆心作圆,并且要使点D在⊙A内,而点C在⊙A外,⊙A的半径r的取值范围为4cm<r<5cm.故答案为4cm<r<5cm.先利用勾股数得到AC=5cm,然后根据点与圆的位置关系,要使点D在⊙A内,则r>4;要使点C在⊙A外,则r<5,然后写出它们的公共部分即可.本题考查了点与圆的位置关系:点与圆的位置关系有3种,设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.17.【答案】4√2【解析】解:如图,连接OB,OC,∵∠A=45°,∴∠BOC=90°,∴△BOC是等腰直角三角形,又∵BC=4,∴BO=CO=BC⋅cos45°=2√2,∴⊙O的直径为4√2,故答案为:4√2.连接OB,OC,依据△BOC是等腰直角三角形,即可得到BO=CO=BC⋅cos45°=2√2,进而得出⊙O的直径为4√2.本题主要考查了三角形的外接圆以及圆周角定理的运用,三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.18.【答案】(8064,0)【解析】解:∵A(−3,0),B(0,4),∴OA=3,OB=4,∴AB=√32+42=5,∴△ABC的周长=3+4+5=12,∵△OAB每连续3次后与原来的状态一样,∵2016=3×672,∴三角形2016与三角形1的状态一样,∴三角形2016的直角顶点的横坐标=672×12=8064,∴三角形2016的直角顶点坐标为(8064,0).故答案为(8064,0).先利用勾股定理计算出AB,从而得到△ABC的周长为12,根据旋转变换可得△OAB的旋转变换为每3次一个循环,由于2016=3×672,于是可判断三角形2016与三角形1的状态一样,然后计算672×12即可得到三角形2016的直角顶点坐标.本题考查了坐标与图形变化−旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.解决本题的关键是确定循环的次数.19.【答案】3√2【解析】【分析】本题考查了轴对称最短线段问题,垂径定理和勾股定理等知识,由轴对称的性质正确确定P点的位置是解题的关键.设A′是A关于CD的对称点,连接A′B,与CD的交点即为点P.此时PA+PB=A′B是最小值,可证△OA′B是等腰直角三角形,从而得出结果.【解答】解:作点A关于CD的对称点A′,连接A′B,交CD于点P,此时PA+PB=A′B是最小值,连接OA′,AA′.第18页,共18页∵点A与A′关于CD对称,点A是半圆上的一个三等分点,∴∠A′OD=∠AOD=60°,PA=PA′,∵点B是弧AD的中点,∴∠BOD=30°,∴∠A′OB=∠A′OD+∠BOD=90°,又∵OA=OA′=OB=3,∴A′B=3√2.∴PA+PB=PA′+PB=A′B=3√2.故答案为:3√2.20.【答案】π+12【解析】解:∵∠C=90°,AC=BC=1,∴AB=√12+12=√2;根据题意得:√2△ABC绕点B顺时针旋转135°,BC落在x轴上;△ABC再绕点C顺时针旋转90°,AC落在x轴上,停止滚动;∴点A的运动轨迹是:先绕点B旋转135°,再绕点C旋转90°;如图所示:∴点A经过的路线与x轴围成的图形是:一个圆心角为135°,半径为√2的扇形,加上△ABC,再加上圆心角是90°,半径是1的扇形;∴点A经过的路线与x轴围成图形的面积=135×π×(√2)2360+12×1×1+90×π×12360=π+12.故答案为:π+12.由勾股定理求出AB,由题意得出点A经过的路线与x轴围成的图形是一个圆心角为135°,半径为√2的扇形,加上△ABC,再加上圆心角是90°,半径是1的扇形;由扇形的面积和三角形的面积公式即可得出结果.本题考查了旋转的性质、扇形面积的计算公式;根据题意得出点A经过的路线与x轴围成的图形由三部分组成是解决问题的关键.21.【答案】解:(1)如图.△A1B1C1即为所求三角形;(2)由勾股定理可知OA=√22+22=2√2,线段OA在旋转过程中扫过的图形为以OA为半径,∠AOA1为圆心角的扇形,则.答:扫过的图形面积为2π.【解析】(1)根据图形旋转的性质画出旋转后的图形即可;(2)先根据勾股定理求出OA的长,再根据线段OA在旋转过程中扫过的图形为以OA为半径,∠AOA1为圆心角的扇形,利用扇形的面积公式得出结论即可;本题考查的是作图−旋转变换、扇形的面积公式,熟知图形旋转后所得图形与原图形全等的性质是解答此题的关键.22.【答案】解:(1)∵AB是半圆O的直径,∴∠ACB=90°,又∵OD//BC,∴∠AEO=90°,即OE⊥AC,∠CAB=90°−∠B=90°−70°=20°,∠AOD=∠B=70°.∵OA=OD,∴∠DAO=∠ADO=1800−∠AOD2=1800−7002=55°,∴∠CAD=∠DAO−∠CAB=55°−20°=35°;(2)在直角△ABC中,BC=√AB2−AC2=√42−32=√7.∵OE⊥AC,第18页,共18页∴AE=EC,又∵OA=OB,∴OE=12BC=√72.又∵OD=12AB=2,∴DE=OD−OE=2−√72.【解析】本题考查了圆周角定理以及三角形的中位线定理,正确证明OE是△ABC的中位线是关键.(1)根据圆周角定理可得∠ACB=90°,则∠CAB的度数即可求得,在等腰△AOD中,根据等边对等角求得∠DAO的度数,则∠CAD即可求得;(2)易证OE是△ABC的中位线,利用中位线定理求得OE的长,则DE即可求得.23.【答案】解:(1)证明:∵O是圆心,OD⊥BC,∴弧CD=弧BD,∴∠CAD=∠BAD;(2)连接CO,∵∠B=50°,∴∠AOC=100°,∴弧AC的长:nπr180=100×π×1180=5π9.【解析】本题考查了垂径定理及圆周角定理,弧长的计算.(1)利用垂径定理及圆周角定理即可证明;(2)连接CO,先求得∠AOC=100°,再利用弧长公式计算即可.24.【答案】(1)证明:∵AB是⊙O的直径,∴∠C=90°,∵OD⊥BC,∴∠OEB=∠C=90°,∴OD//AC;(2)解:令⊙O的半径为r,则OE=r−3∵OD⊥BCBC=4,根据垂径定理可得:BE=CE=12在ΔOBE中由勾股定理得:r2=42+(r−3)2,,解得:r=256.所以⊙O的直径为253【解析】本题考查了垂径定理、勾股定理、圆周角定理;熟练掌握圆周角定理和垂径定理,由勾股定理得出方程是解决问题(2)的关键.(1)由圆周角定理得出∠C=90°,再由垂径定理得出∠OEB=∠C=90°,即可得出结论;BC=4,由勾股定理得出方程,解(2)令⊙O的半径为r,由垂径定理得出BE=CE=12方程求出半径,即可得出⊙O的直径.第18页,共18页。
2020年秋浙教版九年级数学上册第3章《圆的基本性质》章末达标测试(含答案)

章末达标测试一、选择题(每题3分,共30分)1.下列四个图形中,既是轴对称图形又是中心对称图形的是( )2.在平面直角坐标系中,⊙O 的圆心在点(1,0),半径为2,则下面各点在⊙O上的是( ) A .(2,0) B .(0,2) C .(0,3)D .(3,0)3.如图,将△ABC 绕点P 顺时针旋转90°得到△A ′B ′C ′,则点P 的坐标是( )A .(1,1)B .(1,2)C .(1,3)D .(1,4)4.如图,△ABC 内接于⊙O ,BD 是⊙O 的直径.若∠DBC =33°,则∠A 等于( )A .33°B .57°C .67°D .66°5.如图,在⊙O 中,AB 是直径,BC 是弦,点P 是BC ︵上任意一点,连接AP .若AB =5,BC =3,则AP 的长不可能为( )A .3B .4C .92 D .56.如图,将边长为 2 cm的正方形ABCD沿直线l向右翻动(不滑动),当正方形连续翻动8次后,正方形的中心O经过的路线长为()A.8 2 cm B.8 cm C.3π cm D.4π cm7.如图,⊙O与正五边形ABCDE的边AB,DE分别相切于点B,D,则劣弧BD︵所对的圆心角∠BOD的度数为()A.108°B.118°C.144°D.120°8.如图,四边形ABCD内接于半圆O,已知∠ADC=140°,则∠AOC的度数是()A.40°B.60°C.70°D.80°9.如图,在半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD.已知DE=6,∠BAC+∠EAD=180°,则弦BC的弦心距等于()A.412B.342C.4 D.310.如图,AC是⊙O的弦,AC=5,点B是⊙O上的一个动点,且∠ABC=45°,若点M,N分别是AC,BC的中点,则MN的最大值是()A.5 2 B.5 2 2C. 2 D.3 2二、填空题(每题3分,共18分)11.如图,△ABC外接圆的圆心坐标是__________.12.如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是________.13.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为________.14.已知⊙O的半径是5,圆心O到直线AB的距离是2,则⊙O上有__________个点到直线AB的距离为3.15.如图,在Rt△AOB中,OA=OB=4 2.⊙O的半径为2,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则线段PQ长的最小值为________.16.如图,直线y=-34x-3交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作⊙P,当⊙P与直线AB相切时,点P的坐标为______________.三、解答题(21,22题每题10分,其余每题8分,共52分)17.如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(5,4),B(0,3),C(2,1).(1)画出△ABC关于原点成中心对称的△A1B1C1,并写出点C1的坐标;(2)画出将△A1B1C1绕点C1顺时针旋转90°所得的△A2B2C1.18.如图,在⊙O中,直径AB和弦CD相交于点E,已知AE=1,EB=5,且∠DEB=60°,求CD的长.19.如图,某窗户由矩形和弓形组成,已知弓形的跨度AB =6 m ,弓形的高EF=2 m .现计划安装玻璃,请你帮忙求出AB ︵所在⊙O 的半径.20.如图,已知点A ,B ,C ,D 均在已知圆上,AD ∥BC ,CA 平分∠BCD ,∠ADC =120°,四边形ABCD 的周长为10. (1)求此圆的半径;(2)求图中阴影部分的面积.21.如图,在平面直角坐标系中,⊙P 经过x 轴上一点C ,与y 轴相交于A ,B两点,连接AP 并延长分别交⊙P ,x 轴于点D ,E ,连接DC 并延长交y 轴于点F .若点F 的坐标为(0,1),点D 的坐标为(6,-1). (1)求证:FC =DC ;(2)判断⊙P 与x 轴的位置关系,并说明理由.22.如图,已知AB 为⊙O 的直径,AC 是⊙O 的切线,连接BC 交⊙O 于点F ,取BF ︵的中点D ,连接AD 交BC 于点E ,过点E 作EH ⊥AB 于点H . (1)求证:△HBE ∽△ABC;(2)若CF =4,BF =5,求AC 和EH 的长.答案一、1.B 2.C 3.B 4.B 5.A6.D 点拨:∵正方形ABCD 的边长为 2 cm ,∴对角线的一半长为1 cm ,则连续翻动8次后,正方形的中心O 经过的路线长为8×90π×1180=4π(cm).7.C 8.D 9.D10.B 点拨:∵点M ,N 分别是AC ,BC 的中点,∴MN =12AB ,∴当AB 取得最大值时,MN 就取得最大值,当AB 是直径时,AB 最大, 如图,连接AO 并延长交⊙O 于点B ′,连接CB ′, ∵AB ′是⊙O 的直径,∴∠ACB ′=90°. ∵∠ABC =45°,∴∠AB ′C =45°,∴AB ′=AC sin45°=522=5 2,∴MN 最大=5 22.二、11.(4,6)12.35° 点拨:如图,连接FB .∵∠AOF =40°,∴∠FOB =180°-40°=140°, ∴∠FEB =12∠FOB =70°.∵EF =EB ,∴∠EFB =∠EBF =55°. ∵FO =BO ,∴∠OFB =∠OBF =12×(180°-140°)=20°, ∴∠EFO =∠EFB -∠OFB =35°. 13.π4 14.315.2 3 点拨:连接OQ .∵PQ 是⊙O 的切线,∴OQ ⊥PQ .根据勾股定理知,PQ 2=OP 2-OQ 2, ∴当PO ⊥AB 时,PO 最短,此时线段PQ 最短.∵在Rt △AOB 中,OA =OB =4 2,∴AB = 2OA =8,∴OP =OA ·OBAB =4,∴PQ = OP 2-OQ 2=2 3. 16.⎝ ⎛⎭⎪⎫-73,0或⎝ ⎛⎭⎪⎫-173 ,0 点拨:∵直线y =-34x -3交x 轴于点A ,交y 轴于点B ,∴令x =0,得y =-3;令y =0,得x =-4, ∴A (-4,0),B (0,-3), ∴OA =4,OB =3,∴AB =5. 如图,设⊙P 与直线AB 相切于点D , 连接PD ,则PD ⊥AB ,PD =1.∵∠ADP =∠AOB =90°,∠P AD =∠BAO , ∴△APD ∽△ABO ,∴PD OB =AP AB ,∴13=AP 5, ∴AP =53,∴OP =73.同理可得OP ′=173. ∴点P 的坐标为⎝ ⎛⎭⎪⎫-73,0或⎝ ⎛⎭⎪⎫-173,0.三、17.解:(1)如图所示,△A 1B 1C 1即为所作,其中点C 1的坐标为(-2,-1).(2)如图所示,△A 2B 2C 1即为所作.18.解:如图,作OP ⊥CD 于点P ,连接OD ,则CP =PD .∵AE =1,EB =5,∴AB =6,∴OE =2, 在Rt △OPE 中,OP =OE ·sin ∠DEB = 3, ∴PD =OD 2-OP 2= 6,∴CD =2PD =2 6.19.解:∵弓形的跨度AB =6 m ,EF 为弓形的高,∴OF ⊥AB 于点F .∴AF =12AB =3 m. 设AB ︵所在⊙O 的半径为r m.∵弓形的高EF =2 m ,∴OF =(r -2)m.在Rt △AOF 中,由勾股定理可知AO 2=AF 2+OF 2, 即r 2=32+(r -2)2, 解得r =134,即AB ︵所在⊙O 的半径为134 m. 20.解:(1)∵AD ∥BC ,∠ADC =120°,∴∠BCD =60°,∠DAC =∠ACB .又∵CA 平分∠BCD ,∴∠DCA =∠ACB =∠DAC =30°. ∴AB ︵=AD ︵=CD ︵,∠B =60°.∴∠BAC =90°, ∴BC 是圆的直径,BC =2AB . ∵四边形ABCD 的周长为10,∴AB =AD =DC =2,BC =4.∴此圆的半径为2. (2)设BC 的中点为O .由(1)可知点O 即为圆心, 如图所示.连接OA ,OD ,过点O 作OE ⊥AD 于点E , 在Rt △AOE 中,易知∠AOE =30°, ∴OE =OA ·cos 30°= 3.∴S 阴影=S 扇形AOD -S △AOD =60×π×22360-12×2× 3=2π3- 3. 21.(1)证明:如图,过点D 作DH ⊥x 轴于点H ,则∠DHC =90°.∵点F 的坐标为(0,1),点D 的坐标为(6,-1), ∴HD =OF =1.在△FOC 与△DHC 中,⎩⎨⎧∠FCO =∠DCH ,∠FOC =∠DHC ,OF =HD ,∴△FOC ≌△DHC . ∴FC =DC .(2)解:⊙P 与x 轴相切.理由如下:如图,连接CP .∵AP =PD ,DC =FC ,∴CP ∥AF . ∴∠PCE =∠AOC =90°,即PC ⊥x 轴. 又∵PC 是半径,∴⊙P 与x 轴相切. 22.(1)证明:∵AC 是⊙O 的切线,∴CA ⊥AB .∵EH ⊥AB ,∴∠EHB =∠CAB =90°. ∵∠EBH =∠CBA ,∴△HBE ∽△ABC . (2)解:如图,连接AF .∵AB 是⊙O 的直径,∴∠AFB =90°. ∵∠C =∠C ,∠CF A =∠CAB ,∴△CAF ∽△CBA ,∴CA 2=CF ·CB =36, ∴CA =6,∴AB =BC 2-AC 2=3 5, ∴AF =AB 2-BF 2=2 5.∵D 为BF ︵的中点,∴DF ︵=BD ︵,∴∠EAF =∠EAH . ∵EF ⊥AF ,EH ⊥AB ,∴EF =EH . ∵AE =AE ,∴Rt △AEF ≌Rt △AEH , ∴AF =AH =2 5,设EF =EH =x ,在Rt △EHB 中,由勾股定理得(5-x )2=x 2+(3 5-2 5)2,解得x =2, ∴EH =2.。
2024-2025学年浙教版九年级上册数学 第三章 圆的基本性质 单元培优测试卷 (含详解)

圆的基本性质单元培优测试卷一、选择题(每题3分,共30分)1.如图,分别延长圆内接四边形ABCD的两组对边,延长线相交于点E,F.若∠E=54°41',∠F=43°19',则∠A的度数为( )第1题图第2题图第4题图A.42°B.41°20'C.41°D.40°20'2.如图,⊙O中,弦AB的长为43,点C在⊙O上,OC⊥AB,∠ABC=30°.⊙O所在的平面内有一点P,若OP=5,则点P与⊙O的位置关系是( )A.点P在⊙O上B.点P在⊙O内C.点P在⊙O外D.无法确定3.在平面直角坐标系中,已知点A(0,2),点B在第一象限内,AO=AB,∠OAB=120°,将△AOB绕点O逆时针旋转,每次旋转60°,则第2024次旋转后,点B的坐标为( )A.(−3,3)B.(−3,0)C.(3,3)D.(−23,0)4.如图,在半圆O中,直径AB=2,C是半圆上一点,将弧AC沿弦AC折叠交AB于D,点E是弧AD 的中点.连接OE,则OE的最小值为( )A.2−1B.2+1C.4−2D.22−25.△ABC内接于⊙O,过点A作直线EF,已知∠B=∠EAC,根据弦AB的变化,两人分别探究直线EF 与⊙O的位置关系:甲:如图1,当弦AB过点O时,EF与⊙O相切;乙:如图2,当弦AB不过点O时,EF也与⊙O相切;第5题图第6题图第7题图下列判断正确的是( )A .甲对,乙不对B .甲不对,乙对C .甲乙都对D .甲乙都不对6.如图,等圆⊙O 1和⊙O 2相交于A ,B 两点,⊙O 1经过⊙O 2的圆心O 2,若O 1O 2=2,则图中阴影部分的面积为( )A .2πB .43πC .πD .23π7.如图,正六边形ABCDEF 内接于⊙O ,点P 在边BC 上.结论Ⅰ:若⊙O 的半径为2,P 是边BC 的中点,则PE 的长为13;结论Ⅱ:连接PF .若S △PEF =32,则EF 的长为π3,关于结论Ⅰ、Ⅱ,判断正确的是( )A .只有结论Ⅰ对B .只有结论Ⅱ对C .结论Ⅰ、Ⅱ都对D .结论Ⅰ、Ⅱ都不对8.已知等腰直角三角形OAC ,∠OAC =90°,以O 为圆心,OA 为半径的圆交OC 于点F ,过点F 作AC的垂线交⊙O 于点E ,交AC 于点B.连结AE ,交OC 于点D ,若OD =1+22,则AB 的长为( )第8题图 第9题图 第10题图A .2B .22C .2+1D .2+29.如图,在扇形BOC 中,∠BOC =60°,OD 平分∠BOC 交BC 于点D ,点E 为半径OB 上一动点.若OB =3,则阴影部分周长的最小值为( )A .62+π2B .22+π3C .62+π3D .2+2π310.如图,AB 是⊙O 的直径,点C ,点D 是半圆上两点,连结AC ,BD 相交于点P ,连结AD ,OD .已知OD ⊥AC 于点E ,AB =2.下列结论其中正确的是( )①∠DBC +∠ADO =90°;②AD 2+AC 2=4;③若AC =BD ,则DE =OE ;④若点P 为BD 的中点,则DE =2OE .A .①②③B .①③④C .②③④D .①②④二、填空题(每题4分,共24分)11.如图,OA 是⊙O 的半径,BC 是⊙O 的弦,OA ⊥BC 于点D ,AE 是⊙O 的切线,AE 交OC 的延长线于点E .若∠AOC =45°,BC =2,则线段AE 的长为 .第11题图 第12题图 第13题图12.如图,在矩形ABCD 中,AB =4,AD =2.以点A 为圆心,AD 长为半径作弧交AB 于点E ,再以AB为直径作半圆,与DE 交于点F ,则图中阴影部分的面积为 .13.如图,直线l 与⊙O 相切于点A ,点C 为⊙O 上一动点,过点C 作CB ⊥l ,垂足为B ,已知⊙O 的半径为6,则BC +43AB 的最大值为 .14.如图,正方形ABCD 内接于⊙O ,线段MN 在对角线BD 上运动,若⊙O 的面积为2π,MN =1,则(1)⊙O 的直径长为 ;(2)△AMN 周长的最小值是 .第14题图 第15题图 第16题图15.如图,AB 是半圆O 的直径,C ,D 是半圆O 上的点,连接CD ,AC ,OD ,且AB =4,OD ∥AC ,设CD =x,AC =y ,则y 与x 之间的函数表达式为 .16.如图,AB 是半圆的直径,AC 是一条弦,D 是AC 的中点,DE ⊥AB 于点E ,交AC 于点F ,DB 交AC于点G ,连结AD .给出下面四个结论:①∠ABD =∠DAC ;②AF =FG ;③当DG =2,GB =3时,FG =142;④当BD =2AD ,AB =6时,△DFG 的面积是3,上述结论中,正确结论的序号有 .三、综合题(17-19每题6分,20-21每题8分,22题12分,共46分)17.如图,已知OA是⊙O的半径,过OA上一点D作弦BE垂直于OA,连接AB,AE.线段BC为⊙O的直径,连接AC交BE于点F.(1)求证:∠ABE=∠C;(2)若AC平分∠OAE,求AFFC的值18.如图,AC为⊙O的直径,BD是弦,且AC⊥BD于点E.连接AB、OB、BC.(1)求证:∠CBO=∠ABD;(2)若AE=4cm,CE=16cm,求弦BD的长.19.如图,AB是⊙O的直径,点C,D是⊙O上的点,且OD∥BC,AC分别与BD,OD相交于点E,F.(1)求证:点D为AC的中点;(2)若DF=4,AC=16,求⊙O的直径.20.如图,已知四边形ABCD内接于⊙O,对角线AC,BD交于点E,AC=BD,AC⊥BD.(1)猜想∠ACB的度数,并说明理由.(2)若⊙O的半径为10,∠BCD=60°,求四边形ABCD的面积.(3)若过圆心O作OF⊥BC于点F.求证:AD=2OF.21.已知:⊙O的两条弦AB,CD相交于点M,且AB=CD.(1)如图1,连接AD.求证:AM=DM.(2)如图2,若AB⊥CD,点E为弧BD上一点,BE=BC=α°,AE交CD于点F,连接AD、DE.①求∠E的度数(用含α的代数式表示).②若DE=7,AM+MF=17,求△ADF的面积.22.如图,在△ABC中,AB=BC,∠ABC=90°,D是AB上一动点,连接CD,以CD为直径的⊙M交AC 于点E,连接BM并延长交AC于点F,交⊙M于点G,连接BE.(1)求证:点B在⊙M上.(2)当点D移动到使CD⊥BE时,求BC:BD的值.(3)当点D到移动到使∠CMG=30°时,求证:A E2+C F2=E F2.答案解析部分1.【答案】C【解析】【解答】解:∵四边形ABCD 内接于圆O ,∴∠A+∠BCD=180°,∵∠BCD 、∠EBC 分别是△EBC 和△ABF 的一个外角,∠EBC=∠A+∠F ,∠BCD=∠E+∠EBC ,∴∠BCD=∠E+∠A+∠F ,∴∠A+∠E+∠A+∠F=180°,∴2∠A+54°41'+43°19'=180°,解之:∠A=41°.故答案为:C. 2.【答案】C【解析】【解答】解:如图,∵∠ABC=30°,∴∠AOC=2∠ABC=60°,∵OC ⊥AB ,且AB =43,∴∠ADO=90°,且AD =12AB =23,∵sin ∠AOC=sin60°=AD AO,∴AO =ADsin60°=2332=4,∵OP=5>AO=4,∴点P 在圆O 外部.故答案为:C. 3.【答案】D【解析】【解答】解:过B 作BH ⊥y 轴于H ,在Rt△ABH中,∠AHB=90°,∠BAH=180°−120°=60°,AB=OA=2,∴∠ABH=30°,∴AH=12AB=1,OH=OA+AH=3,由勾股定理得BH=AB2−AH2=3,∴B(3,3),由题意,可得:B1(−3,3),B2(−23,0),B3(−3,−3),B4(3,−3),B5(23,0),B6(3,3),⋯,6次一个循环,∵2024÷6=337……2,∴第2024次旋转后,点B的坐标为(−23,0),故答案为:D.4.【答案】A【解析】【解答】解:连接CO,如图,由三角形两边之差小于第三边,当C、O、E共线时,OE最小,设⏜AC的弧度为x,则⏜BC的弧度为180°-x,∵∠CAB=∠CAD,∴⏜CD的弧度为180°-x,由折叠知:⏜AEC=⏜AC=x,⏜AD=x-(180°-x)=2x-180°,∵点E为弧AD的中点,∴⏜AE=12⏜AD=x-90°,∴⏜CE=⏜AC-⏜AE=90°,∴⏜CE所对圆心角为90°,∵直径AB=2,∴ CE=2,∴OE= CE-OC=2−1.故答案为:A.5.【答案】C【解析】【解答】解:甲:∵AB是⊙O的直径,∴∠ACB=90°,∴∠BAC+∠B=90°,∵∠EAC=∠B,∴∠EAC+∠BAC=90°,∴EF⊥AB,∵OA是半径,∴EF是⊙O的切线;乙:作直径AM,连接CM,如图所示:即∠B=∠M(在同圆或等圆中,同弧所对的圆周角相等),∵∠EAC=∠B,∴∠EAC=∠AMC,∵AM是⊙O的直径,∴∠MCA=90°,∴∠MAC+∠AMC=90°,∴∠EAC+∠MAC=90°,∴EF⊥AM,∵OA是半径,∴EF是⊙O的切线.故答案为:C 6.【答案】D7.【答案】C【解析】【解答】解:如图,连接CE 、OB 、OC ,过点D 作DH ⊥CE 于点H ,∵六边形ABCDEF 为正六边形,∴∠BCD =∠CDE =(6−2)⋅180°6=120°,CD =DE ,∠BOC =360°6=60°,OB =OC ,∴∠DCE =∠DEC =12(180°−∠CDE)=30°,△OBC 是等边三角形,∴CH =EH =12CE =CD ⋅cos ∠DCE =3,∠PCE =∠BCD−∠DCE =90°,EF =BC =OB =OC =CD =2,∴CE =23,∵P 是边BC 的中点,∴CP =BP =12BC =1,∴PE =PC 2+CE 2=12+(23)2=13,故结论Ⅰ正确;设点N 是边BC 的中点,连接NO 并延长交EF 于点M ,连接OE 、OF ,过点D 作DH ⊥CE 于点H ,设正六边形ABCDEF 的边长为a ,∵六边形ABCDEF 为正六边形,∴NM ⊥EF ,NM ⊥BC ,FM =EM =12EF =12a ,∠EOF =360°6=60°,EF ∥BC ,∴S △NEF =S △PEF =32,由Ⅰ的解答过程可知,CH=EH=12CE=CD⋅cos∠DCE=32a,∠NCE=∠BCD−∠DCE=90°,EF=BC=OB=OC=a,∴CE=3a,四边形NCEM是矩形,∴MN=CE=3a,∴12EF⋅MN=12×a×3a=32,∴a=1,∴EF的长为60π×1180=π3,故Ⅱ正确,故答案为:C.8.【答案】C【解析】【解答】解:过点O作AE的垂线交BE于点H,连接AH,如图所示:设⊙O的半径为R∵∠OAC = 90°,OA=AC=R∴∠O=∠C=45°∴∠E=12∠O==22.5°在Rt△0AC中,由勾股定理得:OC = OA2+AC2=2R∵OD=2∴CD=OC-OD=2R−2∵EB⊥AC,∠C =45°∴△BFC为等腰直角三角形,∴∠BFC= ∠DFE=∠C = 45°∴∠ADC= ∠E + ∠DFE =22.5°+45°=67.5°在Rt△ABE中,∠E =22.5°,∠ABE = 90°∴∠CAE =90°-∠E=67.5°∴∠CAE = ∠ADC∴AC=CD,即R= 2R−2,解得:r=2+2,即OA=2+2∵OH⊥AEOH是AE的垂直平分线∴AH = EH∴∠EAH= ∠E= 22.5°∴∠HAB = ∠CAE- ∠EAH= 67.5°-22.5°=45°∴△ABH为等腰直角三角形∴AB =BH∴∠OAE= ∠OAC-∠OAE = 90° - 67.5°= 22.5°.'.∠OAH = ∠OAE + ∠EAH = 45°∴OH⊥AE,∠EAH=22.5°∴∠AHO =90°-∠EAH = 90° - 22.5°= 67.5°∴∠AOH = 180°- ∠OAH- ∠AHO=180°-45°-67.5°= 67.5°∴∠AHO = ∠AOH = 67.5°∴AH =OA=2+2,在Rt△ABH中,AB = BH,AH=2+2由勾股定理得:A B2+B H2=A H2即2A B2=(2+2)2∴AB=2+1故答案为:2+1.9.【答案】A【解析】【解答】解:由于CD是定值,要求阴影部分周长的最小值,即求CE+DE最小值即可作点D关于OB对称的对称点D′,连接CD′与直线OB交于点E,则OC=OD′,CE+DE=CD′,此时CE+DE为最小值连接OD′,∵OD平分∠BOC,∠BOC=60°,∴∠BOD =∠COD =12∠BOC =30°,∴∠BOD =∠BOD ′=30°,∠COD ′=90°,在Rt △COD ′中,CD ′=OC 2+OD ′2=2OC =2OB =32,CD =30π×3180=12π,阴影部分周长的最小值为12π+32=62+π2.故答案为:A .10.【答案】B【解析】【解答】解:∵AB 是⊙O 的直径,∴∠ADB =∠ACB =90°,∵OD ⊥AC ,∴OD ∥BC ,∴∠DBC =∠BDO ,∵∠BDO +∠ADO =90°,∴∠DBC +∠ADO =90°,①正确;∵∠ACB =90°,∴B C 2+A C 2=A B 2=4,AB =2,根据条件无法得到BC =AD ,②错误;∵AC =BD ,∴⏜AD =⏜BD ,∴⏜AD =⏜BC ,∵OD ⊥AC ,∴⏜AD =⏜CD ,∴⏜AD=⏜BC=⏜CD,∴∠AOD=13×180°=60°,∵OA=OD,∴△AOD为等边三角形∵AE⊥OD,∴DE=OE,③正确;若点P为BD的中点,则PD=PB,∵∠PED=∠BCP=90°,∠EPD=∠CPB,∴△EPD≅△CPB(AAS),∴DE=BC,∵OD⊥AC,O为AB的中点,∴BC=2OE,∴DE=2OE,④正确;故答案为:B.11.【答案】212.【答案】3+23π【解析】【解答】解:连接AF,EF,过点F作FH⊥AB于点H,∵以点A为圆心,AD长为半径作弧交AB于点E,∴AD=AE=AF=2,∵再以AB为直径作半圆,与DE交于点F,∴AE=BE=2,AE=EF,∴AF=AE=EF=2,∴△AEF是等边三角形,∴∠FAE=∠AEF=60°,AH=1,∴FH=AH·tan∠FAE=AH·tan60°=3∴S扇形FAE=60π×22360=23π,S弓形AF=60π×22360−12×23=23π−3,∴S阴影部分=S半圆AB-S扇形FAE-S弓形AF=12×4π−23π−(23π−3)=3+23π故答案为:3+2 3π.13.【答案】83614.【答案】22;415.【答案】y=−12x2+416.【答案】①②③【解析】【解答】解:如图:连接DC,∵D是AC的中点,∴AD=DC,由圆周角定理的推论得:∠ABD=∠DAC,故①正确;∵AB是直径,∴∠ADB=90°,∴∠DAC+∠AGD=90°,∵DE⊥AB∴∠BDE+∠ABD=90°,∵∠ABD=∠DAC,∴∠BDE=∠AGD,∴DF=FG,∵∠BDE+∠ABD=90°,∠BDE+∠ADE=90°,∴∠ADE=∠ABD,∵∠ABD=∠DAC,∴∠ADE=∠DAC,∴AF=FD,∴AF=FG,即②正确;在△ADG和△BDA,{∠ADG =∠BDA∠DAG =∠DBA ,∴△ADG ∽△BDA ,∴AD BD =GDAD ,即:AD 2+3=2AD,解得:AD =10,由勾股定理得:AG =AD 2+DG 2=10+4=14,∵AF =FG ,∴FG =12AG =142,故③正确;如图:假设半圆的圆心为O ,连接OD ,CO ,CD ,∵BD =2AD ,AB =6,D 是AC 的中点,∴AD =DC =13AB ,∴∠AOD =∠DOC =60°,∵OA =OD =OC ,∴△AOD ,△ODC 是等边三角形,∴OA =AD =CD =OC =OD =6,∴四边形ADCO 是菱形,∴∠DAC =∠OAC =12∠DAO =30°,∵∠ADB =90°,∴tan ∠DAC =tan30°=DGAD ,即33=DG 6,解得:DG =23,∴S △ADG =12AD ⋅DG =12×6×23=63,∵AF =FG∴S △DFG =12S △ADG =33,故④错误.故答案为:①②③.17.【答案】(1)证明:∵OA ⊥BE ,∴AB=AE,∴∠ABE=∠C;(2)解:∵AC平分∠OAE,∴∠OAC=∠EAC,∵∠EAC=∠EBC,∴∠OAC=∠EBC,∵OA=OC,∴∠OAC=∠C,∴∠EBC=∠C,∴BF=CF,由(1)∠ABE=∠C,∴∠ABE=∠C=∠EBC,∵BC为直径,∴∠BAC=90°,∴∠ABE+∠C+∠EBC=90°,∴∠ABE=30°,∴AF=12 BF,∴AF=12 CF,即AFCF=12.18.【答案】(1)证明:∵AC是直径,AC⊥BD ∴AB=AD∴∠ABD=∠C又∵OB=OC∴∠OBC=∠C∴∠CBO=∠ABD(2)解:∵AE=4cm,CE=16cm∴直径AC=AE+CE=20cm∴OA=OB=10cm∴OE=OA-AE=10-4=6cm∵AC是直径,AC⊥BD∴BE=ED= BO2−OE2=8cm∴BD=2BE=16cm19.【答案】(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∵OD∥BC,∴∠OFA=90°,∴OF⊥AC,∴AC=CD,即点D为AC的中点;(2)解:OF⊥AC,∴AF=12AC=8,∵DF=4,∴OF=OD−DF=OA−4,∵OA2=AF2+OF2,∴OA2=82+(OA−4)2,∴OA=10,∴⊙O的直径为20.20.【答案】(1)解:∠ACB=45°,理由如下:∵AC⊥BD,∴∠AEB=90°.∴∠ABE+∠BAE=90°.∴AD+BC=180°.∴AB+CD=180°.∵AC=BD,∴AC=BD.∴AC−AD=BD−AD.∴AB=CD.∴AB=90°.∴∠ACB=45°.(2)解:如图,连结BO,DO,过点O作OH⊥BD交BD于点H.∵∠BCD=60°, ∴∠BOD=120°.∵OH⊥BD,∴∠BOH=60°, BH=DH.在Rt△BHO中,∠BOH=60°,OB=10,∴OH=5,BH=53.∴BD=103=AC.∴S四边形ABCD=12×103×103=150.(3)证明:如图,延长BO交⊙O于点M,连结CM,DM.∵OF⊥BC,∴BF=CF,即点F是BC的中点.又∵点O是BM的中点,∴OF是△BCM的中位线.∴CM=2OF.∵DM⊥BD,AC⊥BD,∴DM∥AC.∴AD=CM.∴AD=2OF.21.【答案】(1)证明:如图1,∵AB=CD,∴AB=CD,即AC+BC=BD+BC,∴AC =BD ,∴∠A =∠D ,∴AM =DM ;(2)解:①∠M =90°−12α°.理由如下:连接AC ,如图,∵BE =BC =α°,∴∠CAB =12α°,∵AB ⊥CD ,∴∠AMC =90°,∴∠M =∠C =90°−12α°;②∵BE =BC =α°,∴∠CAB =∠EAB ,∵AB ⊥CD ,∴AC =AF ,∴∠ACF =∠AFC ,∵∠ACF =∠E ,∠AFC =∠DFE ,∴∠DFE =∠E ,∴DF =DE =7,∵AM =DM ,∴AM =MF +7,∵AM +MF =17,∴MF +7+MF =17,解得MF =5,∴AM =12,∴S △ADF =12×7×12=42.22.【答案】(1)证明:根据题意得CM=DM=12CD,∵∠ABC=90°,∴BM=12 CD,∴CM=DM=BM,∴点B在⊙M上.(2)解:连接DE,如图,∵CD⊥BE,CD为⊙M直径,∴BD=DE,∠ABC=∠DEC=90°,∵AB=BC,∠ABC=90°,∴∠DAE=∠ADE=45°,∴DE=AE,∴AD=2DE=2BD,∴AD+BD=AB=(2+1)BD,∴BC=(2+1)BD,∴BCBD=2+1.(3)证明:过点B作BN⊥BG,过点A作AN⊥AE,交BN于点N,连接DE,NE,∵AB=BC,∠ABC=90°,∴∠DAC=∠BCA=45°,∴∠BAN=∠BCF=45°,∵M为CD的中点,∴MD =MB =MC ,∵∠CMG =∠MBC +∠MCB =30°,∴∠MDB =∠MBD =75°,∠MBC =∠MCB =15°,∠DCE =∠BCE−∠MCB =30°,∴∠EDC =∠EBC =60°,∴∠EBF =∠EBC−∠MBC =45°,∴∠EBF =∠EBN =45°,∴∠ABN =90°−∠ABF =∠CBF ,∵{∠ABN=∠CBFAB =BC ∠BAN =∠BCF ,∴△BAN≌△BCF(ASA),∴AN =CF ,BN =BF ,∵{BN =BF∠NBE =∠FBE BE =BE ,∴△NBE≌△FBE(SAS),∴NE =EF ,在Rt △AEN 中,N E 2=A N 2+A E 2,∴E F 2=C F 2+A E 2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年秋浙教版九年级数学上册第3章圆的基本性质单元培优测试卷解析版一、选择题(共10题;共30分)1.已知⊙O的半径为3,A为线段PO的中点,则当OP=5时,点A与⊙O的位置关系为()A. 点在圆内B. 点在圆上C. 点在圆外D. 不能确定2.在绿色食品、回收、节能、节水四个标志中,是由某个基本图形经过旋转得到的是()A. B. C. D.3.往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB=48cm,则水的最大深度为()A. 8cmB. 10cmC. 16cmD. 20cm4.如图,AB是⊙O的直径,点C、D在⊙O上,∠BDC=20°,则∠AOC的大小为()A. 40°B. 140°C. 160°D. 170°5.如图,点A,B,C,D在⊙O上,∠AOC=120°,点B是AC的中点,则∠D的度数是()A. 30°B. 40°C. 50°D. 60°6.如图,四边形ABCD是菱形,⊙O经过点A,C,D,与BC相交于点E,连接AC,AE。
若∠D=80°,则∠EAC的度数是( )A. 20°B. 25°C. 30°D. 35°7.如图中有两张型号完全一样的折叠式饭桌,将正方形桌面边上的四个弓形翻折起来后,就能形成一个圆形桌面(可以近似看作正方形的外接圆),正方形桌面与翻折成圆形桌面的面积之比最接近()A. 45B. 34C. 23D. 128.如图,放置在直线l上的扇形OAB.由图①滚动(无滑动)到图②,再由图②滚动到图③.若半径OA =2,∠AOB=45°,则点O所经过的最短路径的长是()A. 2π+2B. 3πC. 5π2D. 5π2+29.如图,在扇形OAB中,已知∠AOB=90°,OA=√2,过AB的中点C作CD⊥OA,CE⊥OB,垂足分别为D、E,则图中阴影部分的面积为()A. π−1B. π2−1 C. π−12D. π2−1210.如图,在平面直角坐标系中,Q是直线y=﹣12x+2上的一个动点,将Q绕点P(1,0)顺时针旋转90°,得到点Q′,连接OQ′,则OQ′的最小值为( )A. 4√55B. √5 C. 5√23D. 6√55二、填空题(共6题;共24分)11.在⊙O中,若弦BC垂直平分半径OA,则弦BC所对的圆周角等于________°.12.如图,AB为⊙O的直径,弦CD⊥AB于点H,若AB=10,CD=8,则OH的长度为________.13.小明在手工制作课上,用面积为150πcm2,半径为15cm的扇形卡纸,围成一个圆锥侧面,则这个圆锥的底面半径为________ cm.14.如图,已知锐角三角形ABC内接于半径为2的⊙O,OD⊥BC于点D,∠BAC=60°,则OD= ________.15.如图,正方形ABCD的边长为1,将其绕顶点C按逆时针方向旋转一定角度到CEFG位置,使得点B落在对角线CF上,则阴影部分的面积是________.16.如图,点C、D分别是半圆AOB上的三等分点,若阴影部分的面积为32π,则半圆的半径OA的长为________.三、解答题(共8题;共66分)17.如图,在△ABC中,∠BAC=100°,将△ABC绕点A逆时针旋转150°,得到△ADE,使得点B、C、D恰好在同一条直线上,求∠E的度数.18.如图,△ABC的三个顶点都在⊙O上,直径AD=6cm,∠DAC=2∠B,求AC的长.19.如图,△ABC中,AB=AC,⊙O是△ABC的外接圆,BO的延长交边AC于点D.(1)求证:∠BAC=2∠ABD;(2)当△BCD是等腰三角形时,求∠BCD的大小;(3)当AD=2,CD=3时,求边BC的长.20.如图,将△ABC绕点B顺时针旋转60度得到ΔDBE,点C的对应点E恰好落在AB的延长线上,连接AD.(1)求证:BC//AD;(2)若AB=4,BC=1,求A,C两点旋转所经过的路径长之和.21.如图,在△ABC中,AC=BC,D是AB上一点,⊙O经过点A、C、D,交BC于点E,过点D作DF//BC,交⊙O于点F,求证:(1)四边形DBCF是平行四边形(2)AF=EF22.如图,点M,N分别在正方形ABCD的边BC,CD上,且∠MAN=45°,把△ADN绕点A 顺时针旋转90°得到△ABE .(1)求证:△AEM≌△ANM .(2)若BM=3,DN=2,求正方形ABCD的边长.23.如图所示,已知A,B两点的坐标分别为(2 √3,0),(0,10),P是△AOB外接圆⊙C上的一点,OP交AB于点D.(1)当OP⊥AB时,求OP;(2)当∠AOP=30°时,求AP.24.如图,四边形ABCD内接于⊙O,AC为直径,AC和BD交于点E,AB=BC.(1)求∠ADB的度数;(2)过B作AD的平行线,交AC于F,试判断线段EA,CF,EF之间满足的等量关系,并说明理由;(3)在(2)条件下过E,F分别作AB,BC的垂线,垂足分别为G,H,连接GH,交BO于M,若AG=3,S四边形AGMO:S四边形CHMO=8:9,求⊙O的半径.答案一、选择题1.解:∵OA = 12 OP =2.5,⊙O 的半径为3, ∴OA <⊙O 半径,∴点A 与⊙O 的位置关系为:点在圆内.故答案为:A.2.解:ACD 、 不是由某个基本图形经过旋转得到的,故ACD 不符合题意; B 、是由一个基本图形经过旋转得到的,故B 符合题意. 故答案为:B.3.解:过点O 作OD ⊥AB 于D ,交⊙O 于E ,连接OA , 由垂径定理得: AD =12AB =12×48=24cm , ∵⊙O 的直径为 52cm , ∴ OA =OE =26cm ,在 RtΔAOD 中,由勾股定理得: OD =√OA 2−AD 2=√262−242=10cm , ∴ DE =OE −OD =26−10=16cm , ∴油的最大深度为 16cm , 故答案为: C . 4.解:∵∠BDC=20° ∴∠BOC=2×20°=40° ∴∠AOC=180°-40°=140° 故答案为:B. 5.连接OB ,∵点B 是弧AC 的中点, ∴∠AOB = 12 ∠AOC =60°,由圆周角定理得,∠D = 12 ∠AOB =30°, 故答案为:A .6.∵四边形ABCD 是菱形,∠D=80°, ∴∠ACB=12∠DCB=12(180°-∠D )=50°, ∵四边形AECD 是圆内接四边形,∠D=80°,∴∠AEB=∠D=80°, ∴∠EAC=∠AEB-∠ACB=30°. 故答案为:C. 7.连接AC ,设正方形的边长为a , ∵四边形ABCD 是正方形, ∴∠B=90°, ∴AC 为圆的直径, ∴AC= √2 AB= √2 a ,则正方形桌面与翻折成的圆形桌面的面积之比为: 2π×(√22a)=2π≈23 ,故答案为:C. 8.解:如图,点O 的运动路径的长= 的长+O 1O 2+ 的长=90·π·2180+45·π·2180+90·π·2180= 5π2 ,故答案为:C . 9.连接OC∵ 点C 为弧AB 的中点 ∴∠AOC =∠BOC在 △CDO 和 △CEO 中 {∠AOC =∠BOC∠CDO =∠CEO =90°CO =CO∴△CDO ≅△CEO(AAS) ∴OD =OE,CD =CE 又 ∵∠CDO =∠CEO =∠DOE =90°∴ 四边形CDOE 为正方形 ∵OC =OA =√2 ∴OD =OE =1 ∴S 正方形CDOE =1×1=1由扇形面积公式得 S 扇形AOB =90π×(√2)2360=π2 ∴S 阴影=S 扇形AOB −S 正方形CDOE =π2−1故答案为:B.10.解:作QM ⊥x 轴于点M ,Q ′N ⊥x 轴于N ,设Q( m , −12m +2 ),则PM= m ﹣1 ,QM= −12m +2 , ∵∠PMQ=∠PNQ ′=∠QPQ ′=90°, ∴∠QPM+∠NPQ ′=∠PQ ′N+∠NPQ ′, ∴∠QPM=∠PQ ′N , 在△PQM 和△Q ′PN 中,{∠PMQ =∠PNQ ′=90°∠QPM =∠PQ ′NPQ =Q ′P,∴△PQM ≌△Q ′PN(AAS),∴PN=QM= −12m +2 ,Q ′N=PM= m ﹣1 , ∴ON=1+PN= 3−12m , ∴Q ′( 3−12m , 1﹣m ),∴OQ ′2=( 3−12m )2+( 1﹣m )2= 54 m 2﹣5m+10= 54 (m ﹣2)2+5,当m=2时,OQ ′2有最小值为5, ∴OQ ′的最小值为 √5 , 故答案为:B. 二、填空题11.设弦 BC 垂直平分半径 OA 于点E ,连接OB 、OC 、AB 、AC ,且在优弧BC 上取点F ,连接BF 、CF ,∴OB=AB ,OC=AC ,∵OB=OC ,∴四边形OBAC 是菱形, ∴∠BOC=2∠BOE , ∵OB=OA ,OE= 12 , ∴cos ∠BOE= 12 , ∴∠BOE=60°, ∴∠BOC=∠BAC=120°, ∴∠BFC= 12 ∠BOC=60°,∴ 弦 BC 所对的圆周角为120°或60°, 故答案为:120或60. 12.连接OC ,Rt △OCH 中,OC= 12 AB=5,CH= 12 CD=4;由勾股定理,得:OH= √OC 2−CH 2=√52−42=3 ; 即线段OH 的长为3. 故答案为:3.13.由 S 扇形=12lR 得:扇形的弧长= 2×150π÷15=20π (厘米),圆锥的底面半径= 20π÷π÷2=10 (厘米). 故答案是:10. 14.解:连接OB 和OC ,∵△ABC 内接于半径为2的圆O ,∠BAC=60°, ∴∠BOC=120°,OB=OC=2, ∵OD ⊥BC ,OB=OC , ∴∠BOD=∠COD=60°, ∴∠OBD=30°,∴OD= 12 OB=1,故答案为:1.15.解:过E 点作MN ∥BC 交AB 、CD 于M 、N 点,设AB 与EF 交于点P 点,连接CP,如下图所示,∵B 在对角线CF 上,∴∠DCE=∠ECF=45°,EC=1,∴△ENC 为等腰直角三角形,∴MB=CN= √22 EC= √22 , 又BC=AD=CD=CE ,且CP=CP ,△PEC 和△PBC 均为直角三角形,∴△PEC ≌△PBC(HL),∴PB=PE ,又∠PFB=45°,∴∠FPB=45°=∠MPE ,∴△MPE 为等腰直角三角形,设MP=x , 则EP=BP= √2x ,∵MP+BP=MB ,∴ x +√2x =√22,解得 x =2−√22 ,∴BP= √2x =√2−1 ,∴阴影部分的面积= 2S ΔPBC =2×12×BC ×BP =1×(√2−1)=√2−1 .故答案为: √2−1 .16.解:如图,连接 OC,OD,CD,∵ 点C 、D 分别是半圆AOB 上的三等分点,∴∠AOC =∠COD =∠DOB =60°,∵OC =OD,∴△COD 为等边三角形,∴∠OCD=60°,∴∠AOC=∠DCO,∴CD//AB,∴S△COD=S△BCD,∴S扇形OCD =S阴影=3π2,∴60π•OA2360=3π2,解得:OA=3,(负根舍去),故答案为:3三、解答题17. 解:∵将△ABC绕点A逆时针旋转150°,得到△ADE,∴∠BAD=150°,AD=AB,∠E=∠ACB .∵点B、C、D恰好在同一条直线上∴△BAD是顶角为150°的等腰三角形,∴∠B=∠BDA,∴∠B=12(180°−∠BAD)=15°,∴∠E=∠ACB=180°−∠BAC−∠B=180°−100°−15°=65° .18. 解:如图,连接OC,∵∠AOC=2∠B,∠DAC=2∠B,∴∠AOC=∠DAC,∴AO=AC,又∵OA=OC,∴△AOC是等边三角形,∴AC=AO=12AD=3cm.19. (1)连接OA,如下图1所示:∵AB=AC,∴AB = AC,∴OA⊥BC,∴∠BAO=∠CAO.∵OA=OB,∴∠ABD=∠BAO,∴∠BAC=2∠ABD.(2)如图2中,延长AO交BC于H.①若BD=CB,则∠C=∠BDC=∠ABD+∠BAC=3∠ABD.∵AB=AC,∴∠ABC=∠C,∴∠DBC=2∠ABD.∵∠DBC+∠C+∠BDC=180°,∴8∠ABD=180°,∴∠C=3∠ABD=67.5°.②若CD=CB,则∠CBD=∠CDB=3∠ABD,∴∠C=4∠ABD.∵∠DBC+∠C+∠CDB=180°,∴10∠ABD=180°,∴∠BCD=4∠ABD=72°.③若DB=DC,则D与A重合,这种情形不存在.综上所述:∠C的值为67.5°或72°.(3)如图3中,过A点作AE // BC交BD的延长线于E.则AEBC = ADDC= 23,且BC=2BH,∴AOOH = AEBH= 43,设OB=OA=4a,OH=3a.则在Rt△ABH和Rt△OBH中,∵BH2=AB2﹣AH2=OB2﹣OH2,∴25 - 49a2=16a2﹣9a2,∴a2= 2556,∴BH= 5√24,∴BC=2BH= 5√22.故答案为:5√22.20. (1)证明:由旋转性质得:ΔABC≅ΔDBE,∠ABD=∠CBE=60°∴AB=BD,∴ΔABD是等边三角形所以∠DAB=60°∴∠CBE=∠DAB,∴BC//AD;(2)解:依题意得:AB=BD=4,BC=BE=1,所以A,C两点经过的路径长之和为60π×4180+60π×1180=53π .21. (1)证明:∵AC=BC,∴∠BAC=∠B,∵DF//BC,∴∠ADF=∠B,又∠BAC=∠CFD ,∴∠ADF=∠CFD,∴BD//CF,四边形DBCF是平行四边形.(2)证明:如图,连接AE∵∠ADF=∠B,∠ADF=∠AEF∴∠AEF=∠B四边形AECF是⊙O的内接四边形∴∠ECF+∠EAF=180°∵BD//CF∴∠ECF+∠B=180°∴∠EAF=∠B∴∠AEF=∠EAF∴AF=EF22. (1)证明:由旋转的性质得:AE=AN,∠BAE=∠DAN ∵四边形ABCD是正方形∴∠BAD=90°,即∠BAN+∠DAN=90°∴∠BAN+∠BAE=90°,即∠EAN=90°∵∠MAN=45°∴∠MAE=∠EAN−∠MAN=90°−45°=45°在△AEM和△ANM中,{AE=AN∠MAE=∠MAN=45°AM=AM∴△AEM≅△ANM(SAS);(2)解:设正方形ABCD的边长为x,则BC=CD=x∵BM=3,DN=2∴CM=BC−BM=x−3,CN=CD−DN=x−2由旋转的性质得:BE=DN=2∴ME=BE+BM=2+3=5由(1)已证:△AEM≅△ANM∴MN=ME=5又∵四边形ABCD是正方形∴∠C=90°则在Rt△CMN中,CM2+CN2=MN2,即(x−3)2+(x−2)2=52解得x=6或x=−1(不符题意,舍去)故正方形ABCD的边长为6.23. (1)解:∵A,B两点的坐标分别为(2 √3,0),(0,10),∴AO=2 √3,OB=10,∵AO⊥BO,∴AB=√100+12=4 √7,∵OP⊥AB,∴10×2√32=4√7×CD2,CD=DP,∴CD=5√217,∴OP=2CD=10√21;7(2)解:连接CP,如图所示:∵∠AOP=30°,∴∠ACP=60°,∵CP=CA,∴△ACP为等边三角形,AB=2 √7.∴AP=AC=1224. (1)解:如图1,∵AC为直径,∴∠ABC=90°,∴∠ACB+∠BAC=90°,∵AB=BC,∴∠ACB=∠BAC=45°,∴∠ADB=∠ACB=45°;(2)解:线段EA,CF,EF之间满足的等量关系为:EA2+CF2=EF2.理由如下:如图2,设∠ABE=α,∠CBF=β,∵AD ∥BF ,∴∠EBF =∠ADB =45°,又∠ABC =90°,∴α+β=45°,过B 作BN ⊥BE ,使BN =BE ,连接NC ,∵AB =CB ,∠ABE =∠CBN ,BE =BN ,∴△AEB ≌△CNB (SAS ),∴AE =CN ,∠BCN =∠BAE =45°,∴∠FCN =90°.∵∠FBN =α+β=∠FBE ,BE =BN ,BF =BF ,∴△BFE ≌△BFN (SAS ),∴EF =FN ,∵在Rt △NFC 中,CF 2+CN 2=NF 2 ,∴EA 2+CF 2=EF 2;(3)解:如图3,延长GE ,HF 交于K ,由(2)知EA 2+CF 2=EF 2 ,∴ 12 EA 2+ 12 CF 2= 12 EF 2,∴S △AGE +S △CFH =S △EFK ,∴S △AGE +S △CFH +S 五边形BGEFH =S △EFK +S 五边形BGEFH ,即S △ABC =S 矩形BGKH ,∴ 12 S △ABC = 12 S 矩形BGKH ,∴S △GBH =S △ABO =S △CBO ,∴S △BGM =S 四边形COMH , S △BMH =S 四边形AGMO ,∵S 四边形AGMO :S 四边形CHMO =8:9,∴S △BMH :S △BGM =8:9,∵BM平分∠GBH,∴BG:BH=9:8,设BG=9k,BH=8k,∴CH=3+k,∵AG=3,∴AE=3 √2,∴CF=√2(k+3),EF=√2(8k﹣3),∵EA2+CF2=EF2,∴(3√2)2+[√2(k+3)]2=[√2(8k−3)]2,整理得:7k2﹣6k﹣1=0,(舍去),k2=1.解得:k1=﹣17∴AB=12,∴AO=√2AB=6 √2,2∴⊙O的半径为6 √2.。