高中数学联赛模拟试题(1)

合集下载

高中数学竞赛模拟试题(含详细答案)

高中数学竞赛模拟试题(含详细答案)

高中数学竞赛试题(模拟)一、选择题:(本大题共10个小题;每小题5分,共50分,在每小题给出的四个选项中, 有且只有一项是符合题目要求的)1.已知函数f(x)是R 上的奇函数,g(x)是R 上的偶函数,若129)()(2++=-x x x g x f ,则=+)()(x g x f ( )A .1292-+-x x B .1292-+x xC .1292+--x xD . 1292+-x x2.有四个函数:① y=sinx+cosx ② y= sinx-cosx ③ y=x x cos sin ⋅ ④ xxy cos sin = 其中在)2,0(π上为单调增函数的是 ( )A .①B .②C .①和③D .②和④3.方程x xx x x x ππ)1(12122-+=-+-的解集为A(其中π为无理数,π=3.141…,x 为实数),则A 中所有元素的平方和等于 ( ) A .0 B .1C .2D .44.已知点P(x,y)满足)(4)sin 4()cos 4(22R y x ∈=-+-θθθ,则点P(x,y)所在区域的面积为 A .36π B .32π C .20π D .16π ( )5.将10个相同的小球装入3个编号为1、2、3的盒子(每次要把10个球装完),要求每个盒子里球的个数不少于盒子的编号数,这样的装法种数为 ( ) A .9 B .12 C .15 D .186.已知数列{n a }为等差数列,且S 5=28,S 10=36,则S 15等于 ( ) A .80B .40C .24D .-487.已知曲线C :x x y 22--=与直线0:=-+m y x l 有两个交点,则m 的取值范围是 ( )A .)2,12(--B .)12,2(--C .)12,0[-D .)12,0(-8.过正方体ABCD-A 1B 1C 1D 1的对角线BD 1的截面面积为S ,S max 和S min 分别为S 的最大值和最小值,则minmaxS S 的值为 ( ) A .23 B .26 C .332 D .362 9.设7log ,1sin ,82.035.0===z y x ,则x 、y 、z 的大小关系为 ( )A .x<y<zB .y<z<xC .z<x<yD . z<y<x10.如果一元二次方程09)3(222=+---b x a x 中,a 、b 分别是投掷骰子所得的数字,则该二次方程有两个正根的概率P= ( )A .181 B .91 C .61 D .1813 二、填空题(本大题共4个小题,每小题8分,共32分)11.设P 是椭圆191622=+y x 上异于长轴端点的任意一点,F 1、F 2分别是其左、右焦点,O 为中心,则=+⋅221||||||OP PF PF ___________.12.已知△ABC 中,==,,试用、的向量运算式子表示△ABC 的面积,即S △ABC = ____________________.13.从3名男生和n 名女生中,任选3人参加比赛,已知3人中至少有1名女生的概率为3534,则n=__________.14.有10名乒乓球选手进行单循环赛,比赛结果显示,没有和局,且任意5人中既有1人胜其余4人,又有1人负其余4人,则恰好胜了两场的人数为____________个.三、解答题(本大题共5个小题,15-17题每小题12分,18题、19题每小题16分,共68分) 15.对于函数f(x),若f(x)=x,则称x 为f(x)的“不动点”,若x x f f =))((,则称x 为f(x)的“稳定点”,函数f(x)的“不动点”和“稳定点”的集合分别记为A 和B ,即x x f x A ==)(|{}})]([|{x x f f x B ==.(1). 求证:A ⊆B(2).若),(1)(2R x R a ax x f ∈∈-=,且φ≠=B A ,求实数a 的取值范围.16.某制衣车间有A 、B 、C 、D 共4个组,各组每天生产上衣或裤子的能力如下表,现在上衣及裤子要配套生产(一件上衣及一条裤子为一套),问在7天内,这4个组最多能生产多少套?17.设数列}{n a 满足条件:2,121==a a ,且 ,3,2,1(12=+=++n a a a n n n ) 求证:对于任何正整数n ,都有 nnn n a a 111+≥+18.在周长为定值的△ABC 中,已知|AB|=6,且当顶点C 位于定点P 时,cosC 有最小值为257. (1).建立适当的坐标系,求顶点C 的轨迹方程.(2).过点A 作直线与(1)中的曲线交于M 、N 两点,求||||BN BM ⋅的最小值的集合.19.已知三棱锥O-ABC 的三条侧棱OA 、OB 、OC 两两垂直,P 是底面△ABC 内的任一点,OP 与三侧面所成的角分别为α、β、γ. 求证:33arcsin32≤++<γβαπ参考答案一、选择题: ADCBC CCCBA 二、填空题:11. 25 12.13. 4 14. 1 三、解答题:15.证明(1).若A=φ,则A ⊆B 显然成立;若A ≠φ,设t ∈A ,则f(t)=t,f(f(t))=f(t)=t,即t ∈B,从而 A ⊆B. 解 (2):A 中元素是方程f(x)=x 即x ax =-12的实根.由 A ≠φ,知 a=0 或 ⎩⎨⎧≥+=∆≠0410a a 即 41-≥aB 中元素是方程 x ax a =--1)1(22 即 0122243=-+--a x x a x a 的实根 由A ⊆B ,知上方程左边含有一个因式12--x ax ,即方程可化为 0)1)(1(222=+-+--a ax x a x ax因此,要A=B ,即要方程 0122=+-+a ax x a ① 要么没有实根,要么实根是方程 012=--x ax ② 的根. 若①没有实根,则0)1(4222<--=∆a a a ,由此解得 43<a 若①有实根且①的实根是②的实根,则由②有 a ax x a +=22,代入①有 2ax+1=0.由此解得 a x 21-=,再代入②得,012141=-+a a 由此解得 43=a . 故 a 的取值范围是 ]43,41[-16.解:A 、B 、C 、D 四个组每天生产上衣与裤子的数量比分别是:76,117,129,108,且11712910876>>> ① 只能让每天生产上衣效率最高的组做上衣,生产裤子效率最高的组做裤子,才能使做的套数最多.由①知D 组做上衣效率最高,C 组做裤子效率最高,于是,设A 组做x 天上衣,其余(7-x)天做裤子;B 组做y 天上衣,其余(7-y)天做裤子;D 组做7天上衣,C 组做7天裤子.则四个组7天共生产上衣 6×7+8x+9y (件);生产裤子11×7+10(7-x)+12(7-y) (条)依题意,有 42+8x+9y=77+10(7-x)+12(7-y),即 769x y -=. 令 μ= 42+8x+9y=42+8x+9(769x -)=123+x 72 因为 0≤x ≤7,所以,当x=7时,此时y=3, μ取得最大值,即μmax =125.因此,安排A 、D 组都做7天上衣,C 组做7天裤子,B 组做3天上衣,4天裤子,这样做的套数最多,为125套.17.证明:令 10=a ,则有 11-++=k k k a a a ,且 ),2,1(1111 =+=+-+k a aa a k k k k 于是 ∑∑=+-=++=nk k k nk k k a aa a n 11111由算术-几何平均值不等式,可得nn n a a a a a a 132211+⋅⋅⋅≥ +n n n a aa a a a 113120+-⋅⋅⋅ 注意到 110==a a ,可知nn n nn a a a 11111+++≥,即 nnn n a a 111+≥+18.解:(1) 以AB 所在直线为x 轴,线段AB 的中垂线为y 轴建立直角坐标系,设 |CA|+|CB|=2a(a>3)为定值,所以C 点的轨迹是以A 、B 为焦点的椭圆,所以焦距 2c=|AB|=6.因为 1||||182||||236||||2|)||(|||||26||||cos 22222--=--+=-+=CB CA a CB CA CB CA CB CA CB CA CB CA C又 22)22(||||a a CB CA =≤⋅,所以 2181cos a C -≥,由题意得 25,25718122==-a a. 此时,|PA|=|PB|,P 点坐标为 P(0,±4).所以C 点的轨迹方程为)0(1162522≠=+y y x (2) 不妨设A 点坐标为A(-3,0),M(x 1,y 1),N(x 2,y 2).当直线MN 的倾斜角不为900时,设其方程为y=k(x+3) 代入椭圆方程化简,得 0)1169(83)16251(2222=-+++k x k x k 显然有 △≥0, 所以 222122212516400225,2516150k k x x k k x x +-=+-=+而由椭圆第二定义可得25165311442553125251614453125251614481251645025259)(325)535)(535(||||22222222212121+-⋅+=+-+=+-+++=++-=--=⋅k k kk k k k k x x x x x x BN BM只要考虑251653114422+-k k 的最小值,即考虑2516531144251612++-k 取最小值,显然. 当k=0时,||||⋅取最小值16.当直线MN 的倾斜角为900时,x 1=x 2=-3,得 16)534(||||2>=⋅BN BM 但)0(1162522≠=+y y x ,故0≠k ,这样的M 、N 不存在,即||||⋅的最小值的集合为空集.19.证明:由 题意可得 1sin sin sin 222=++γβα,且α、β、 )2,0(πγ∈所以 )cos()cos()2cos 2(cos 21sin sin 1sin 222γβγβγβγβα-+=+=--= 因为 )cos()cos(γβγβ+>-,所以 )](2[sin )(cos sin 222γβπγβα+-=+>当2πγβ≥+时,2πγβα>++.当2πγβ<+时,)(2γβπα+->,同样有 2πγβα>++故 2πγβα>++另一方面,不妨设 γβα≥≥,则 33sin ,33sin ≤≥γα 令 βγα2211sin )33(1sin ,33sin --==, 则 1sin sin sin12212=++γβα)cos()cos()cos()cos(sin 11112γαγαγαγαβ-+=-+=因为 γαγα-≤-11,所以 )cos()cos(11γαγα-≥- 所以 )cos()cos(11γαγα+≥+ 所以 11γαγα+≤+如果运用调整法,只要α、β、γ不全相等,总可通过调整,使111γβα++增大. 所以,当α=β=γ=33arcsin时,α+β+γ取最大值 333arcsin . 综上可知,33arcsin32≤++<γβαπ。

全国高中数学联赛模拟试卷习题练习习题试卷习题试卷试题一.doc.doc

全国高中数学联赛模拟试卷习题练习习题试卷习题试卷试题一.doc.doc

全国高中数学联赛模拟试题( 一)第一试一、选择题 ( 共 36 分 )1. 在复平面上,非零复数z1,z2在以 z=i 对应的点为圆心,1 为半径的圆上,z1 z2 的实π部为零, argz 1=6,则 z2=( )3 3 3 3 3 3 3 3A. -2+2 iB. 2-2iC. -2+2 iD. 2-2 i2. 已知函数 f(x) = log a(ax 2- x+1 ) 在 [1 ,2] 上恒正,则实数 a 的取值范围是 ( )21 5 3 1 5 3 1A.( , )B.( ,+∞ )C.( , ) ∪( ,+∞ )D.( ,+∞ )2 8 2 2 8 2 23. 已知双曲线过点M(-2, 4) 和 N(4,4) ,它的一个焦点为 F (1 , 0) ,则另一个焦点 F1 2的轨迹方程是( )(x -1) 2 (y - 4) 2A.+=1(y≠0)或x=1(y≠0)2516(x -1) 2(y - 4) 2B.+=1(x≠0)或x=1(y≠0)16252 2(x -4)(y - 1)C.+=1(y≠0)或y=1(x≠0)2516(x -4) 2(y - 1) 2D.+=1(x≠0)或y=1(x≠0)16254.已知正实数a,b 满足a+ b= 1,则M=1+ a2+1+ 2b的整数部分是( )A.1B.2C.3D.45.一条笔直的大街宽度为 40 米,一条人行横道穿过这条街,并与街道成一定的角度,人行横道长度为50 米,与大街边缘结合部的宽度为15 米,则人行横道的宽度为 ( )A.9 米B.10 米C.12 米D.15 米6. 一条铁路原有m个车站,为适应客运需要新增加n(n > 1) 个车站,结果客运车票增加了58 种( 注:从甲站到乙站和从乙站到甲站需要两种不同的车票) ,那么原有车站的个数为A.12B.13C.14D.15 ( )二、填空题 ( 共 54 分 )7. 长方形 ABCD的长 AB 是宽 BC的 2 3倍,把它折成无底的正三棱柱,使AD与 BC重合,折痕线 EF, GH分别交原来长方形对角线AC于 M、 N,则折后截面 AMN与底面 AFH所成的角是 _____.8. 在△ ABC中,a,b,c 是角 A,B,C的对边,且满足 a2+ b2= 2c2,则角 C 的最大值是_____.。

全国高中数学联赛模拟试题及参考答案

全国高中数学联赛模拟试题及参考答案

全国高中数学联赛训练题(1)第一试一、填空题1.函数3()2731x x f x +=-+在区间[0,3]上的最小值为_____.2.在数列{}n a 中,11a =且21n n n a a a ++=-.若20002000a =,则2010a =_____.3.若集合{|61,}A x x n n N ==-∈,{|83,}B x x n n N ==+∈,则A B 中小于2010的元素个数为_____.4.若方程sin (1)cos 2n x n x n ++=+在π<<x 0上有两个不等实根,则正整数n 的最小值为_____.5.若c b a >>,0=++c b a ,且21,x x 为02=++c bx ax 的两实根,则||2221x x -的取值范围为_____.6.有n 个中心在坐标原点,以坐标轴为对称轴的椭圆的准线都是1x =.若第k (1,2,,)k n = 个椭圆的离心率2k k e -=,则这n 个椭圆的长轴之和为_____.7.在四面体-O ABC 中,若点O 处的三条棱两两垂直,则在四面体表面上与点A 距离为2的点所形成的曲线长度之和为_____.8.由ABC ∆内的2007个点122007,,,P P P 及顶点,,A B C 共2010个点所构成的所有三角形,将ABC ∆分 割成互不重叠的三角形个数最多为_____.二、解答题9.设抛物线22y px =(0)p >的焦点为F ,点A 在x 轴上F 的右侧,以FA 为直径的圆与抛物线在x 轴上方交于不同的两点,M N ,求证:FM FN FA +=.10.是否存在(0,)2πθ∈,使得sin ,cos ,tan ,cot θθθθ的某一排列成等差数列?并说明理由.11.已知实数123123,,,,,a a a b b b 满足:123123a a a b b b ++=++,122331122331a a a a a a bb b b b b ++=++,且123min{,,}a a a 123min{,,}b b b ≤,求证:123max{,,}a a a 123max{,,}b b b ≤.第二试一、设圆的内接四边形ABCD 的顶点D 在直线,,AB BC CA 上的射影分别为,,P Q R ,且ABC ∠与ADC ∠的平分线交于点E ,求证:点E 在AC 上的充要条件是PR QR =.二、已知周长为1的i i i ABC ∆(1,2)i =的三条边的长分别为,,i i i a b c ,并记2224i i i i i i i p a b c a bc =+++(1,2)i =,求证:121||54p p -<.三、是否存在互不相同的素数,,,p q r s ,使得它们的和为640,且2p qs +和2p qr +都是完全平方数?若存在,求,,,p q r s 的值;若不存在,说明理由.四、对n 个互不相等的正整数,其中任意六个数中都至少存在两个数,使得其中一个能整除另一个.求n 的最小值,使得在这n 个数中一定存在六个数,其中一个能被另外五个整除.全国高中数学联赛训练题(1)参考答案:令3xt =,[0,3]x ∈则3()()271f x g t t t ==-+,[1,27]t ∈,而'()3(3)(3)g t t t =-+.故当[1,3]t ∈时,'()0g t <,()g t 单调递减,当[3,27]t ∈时,'()0g t >,()g t 单调递增.所以当3t =,()g t 取得最小值min ()(3)53g t g ==-,即当1x =时,()f x 取得最小值53-.:设2a t =,则由21n n n a a a ++=-依次写出数列{}n a 的前8项为:1,,1,1,,1,1,t t t t t - - - - .于是易知:该数列是以周期6T =的一个周期数列,故由20002000a =可得20006333222000a a a t ⨯+====,从而2010335661120001999a aa t ⨯===-=-=-,即20101999a =-. :由题意若x A ∈,则5(mod 6)x ≡ ,若x B ∈,则3(mod 8)x ≡ ,故若x AB ∈ ,则11(mod 24)x ≡ ,即若x A B ∈ ,则2411x k =+,于是可得满足题意的元素共有84个.:由已知得11sin 12cos x n x --=---,而1sin 2cos xx---表示上半个单位圆(不包括端点)上的动点(cos ,sin )P x x 与定点(2,1)Q -的斜率k ,要满足题意就要直线PQ 与上半个单位圆(不包括端点)有两个不同的交点,此时4(,1)3k ∈--,从而可得11(0,)3n ∈,故3n >,即正整数n 的最小值为4.:由0=++c b a 知方程02=++c bx ax 有一个实数根为1,不妨设11x =,则由韦达定理可知2c x a=.而c b a >>,0=++c b a ,故0,0a c ><,且a a c c >-->,则122c a -<<-,故2221()44c x a<=<,从而可得2212||[0,3)x x -∈.:设第k 个椭圆的长半轴为k a ,焦半径为k c ,则由题意有21k ka c =,2k k k k ce a -==,故可得2k k a -=,于是可得121222212n n n a a a ----+++=+++=- ,故这n 个椭圆的长轴之和为12(12)22n n---=-.:如图,点,M N 分别在棱,AB AC 上,且2AM AN ==,点,E F 分别在棱,OB OC 上,且1OE OF ==,则2AE AF ==,因此,符合题意的点形成的曲线有:①在面OBC 内,以O 为圆心,1为半径的弧EF ,其长度为2π;②在面AOB 内,以A 为圆心,2为半径的弧EM ,其长度为6π;③在面AOC 内,以A 为圆心,2为半径的弧FN ,其长度为6π;④在面ABC 内,以A 为圆心,2为半径的弧MN ,其长度为23π.所以,所求的曲线长度之和为2326632πππππ+++=.:设三角形最多有n 个,则根据角度相等可得20072n πππ⨯+=⨯,故2200714015n =⨯+=.: 令1122(,),(,)M x y N x y ,设点(,0)A a ,则由(,0)2p F 得12FA a p =-,故以FA 为直径的圆为22222()()44a p a p x y +--+=,则可知12,x x 是方程2222()2()44a p a p x px +--+=的两个实根,即是说12,x x 是方程22(23)0x a p x ap --+=,由韦达定理得1223322a p x x a p -+==-. 故121131()()()2222FM FN x p x p a p p a p FA +=+++=-+=-=,即FM FN FA +=.:当(0,)2πθ∈时,函数s i n y x =与cos y x =的图像关于直线4x π=对称,函数t a n y x =与cot y x =的图像也关于直线4x π=对称,且当4πθ=时,sin ,cos ,tan ,cot θθθθ的任一排列均不可能成等差数列.故只需考虑是否存在(0,)4πθ∈使得sin ,cos ,tan ,cot θθθθ的某一排列成等差数列即可.假设存在(0,)4πθ∈符合题意,则由sin cos tan cot θθθθ<<<可知cot tan cos sin θθθθ-=-,从而有s i n c o s s i n c o s θθθθ+=⋅,故2(sin cos )12sin cos 1sin 2θθθθθ⋅=+⋅=+.而2(sin cos )1θθ⋅<,且1sin 21θ+>,故假设不成立.即,不存在这样的θ,使得sin ,cos ,tan ,cot θθθθ的某一排列成等差数列.:设123123a a a b b b p ++=++=,122331122331a a a a a a bb b b b b q ++=++=,且123a a a r =,123'b b b r =, 则123,,a a a 是函数32()f x x px qx r =-+-的零点,123,,b b b 是函数32()'g x x px qx r =-+-的零点.不妨设123123,a a a b b b ≤≤ ≤≤,则由123min{,,}a a a 123min{,,}b b b ≤知11a b ≤. 而1()0f a =,1111213()()()()0g a a b a b a b =---≤,故11()()g a f a ≤,即3232111111'a pa qa r a pa qa r -+-≤-+-,故3232333333'a pa qa r a pa qa r -+-≤-+-, 即33()()g a f a ≤,也即是33132333()()()()()0g a a b a b a b f a =---≤=.若33a b >,则313233()()()0a b a b a b --->,这与33132333()()()()()0g a a b a b a b f a =---≤=矛盾! 所以有123max{,,}a a a 123max{,,}b b b ≤.:由西姆松定理知,,P Q R 共线.由题意易知,,,C Q D R 四点共圆,则有DCA DQR DQP ∠=∠=∠,同样有,,,A P R D 四点共圆,则有DAC DPR DPQ ∠=∠=∠.故DAC ∆∽DPQ ∆,同理可得:DAB ∆∽DRQ ∆,DBC ∆∽DPR ∆,因此有:PRDB DA DP PR BA BC DC DQ QR BCDB BA⋅===⋅⋅.从而PR QR =的充要条件是DA BABC =.又由角平分线的性质得,ABC ADC ∠∠的平分线分AC 的比分别为,BA DABC DC.故命题成立. :由题意知1i i i a b c ++=,且不妨设i i i a b c ≤≤,则由于三角形的三边关系可得102i i i a b c <≤≤<,即可得312121210(12)(12)(12)()327i i i i i i a b c a b c -+-+-<---≤=.2222222(12)(12)(12)12()4()814()812[()()]812(4)12i i i i i i i i i i i i i i ii i i i i i i i i i i i i i i i i i i i i i i i ia b c a b c a b b c c a a b c a b b c c a a b c a b c a b c a b c a b c a b c p ---=-+++++-=-+++-=-+++-++-=-+++=- 从而可得131272i p ≤<,所以121||54p p -<. :由640p q r s +++=,及,,,p q r s 是不同的素数知,,,p q r s 都是奇数.设2222p qs m p qr n ⎧+=⎪⎨+= ⎪⎩ ①②, 并不妨设s r <,则m n <.由①,②可得()()()()m p m p qsn p n p qr-+=⎧⎨-+=⎩.若1m p ->,则由m p n p n p -<-<+可得m p q n p +==-,故2q m n =+,,s m p r n p =-=+,从而2s r m n q +=+=,故23640p q r s p q q p q +++=++=+=.又由23s m p q p =-=-≥,故可得90p ≤,逐一令p 为不大于90的素数加以验证便知此时无解.若1m p -=,则21qs m p p =+=+,故12qs p -=.而q m p n p <+<+,故,2q n p r n p p q =-=+=+. 故332(1)26402p q r s p q s qs q s +++=++=-++=,即有(32)(34)3857719q s ++==⨯⨯于是得3419,3272s q +=+=⨯,故5,67s q ==,从而167,401p r ==.综上可得167,67,401,5p q r s ====或167,67,5,401p q r s ====. :所求的最小正整数26n =.我们分两步来证明,第一步说明25n ≤不行,我们构造如下的25个正整数:543215432154321543215432122222;33333;55555;7,7777;1111111111,,,,,,,,,,,,,,,,,,,①②③④⑤.如上,我们把这25个正整数分成5组,则任意选取六个数都一定会有两个数在同一组,显然在同一组中的这两个数中的一个能整除另一个;另一方面,由于每一组数只有5个,因此所选的六个数必然至少选自两组数,即是说在所选的六个数中不存在其中一个能被另五个整除的数.所以,当25n =时是不行的.对于25n <,也可类似地证明.第二步说明26n =是可以的.我们首先定义“好数组”.如果一数组中的数都在所给定的26个正整数中,其中最大的一个记为a ,除a 外的25个数中没有a 的倍数,且这25个数中所有a 的约数都在这组数中,那么我们称这个数组为“好数组”.(一个“好数组”中的数可以只有一个).现证这样的“好数组”至多有五个.否则,必存在六个“好数组”,我们考虑这六个“好数组”中的最大数,分别记为,,,,,a b c d e f ,由题知六个数,,,,,a b c d e f 中必然存在一个能整除另一个,不妨记为|b a ,即是说a 的约数b 不在a 所在的“好数组”中,这与“好数组”的定义不符,故“好数组”至多有五个.由于“好数组”至多有五个,而所给的正整数有26个,因此至少存在一个“好数组”中有六个数,考虑这个“好数组”中的最大数,由“好数组”的定义知这个数组中至少另有五个数都能整除该数.综上可得,所求的最小正整数26n =.陕西师范大学附中 王全 710061 wangquan1978@。

全国高中数学联赛模拟试卷试题.doc

全国高中数学联赛模拟试卷试题.doc

全国高中数学竞赛模拟试题一、选择题(每题 6 分共 36 分)1. 由 0,1,2,3,4,5六个数字能组成数字不重复且百位数字不是5 的偶数有 [ ] 个A.360B.252C.720D.2402. 已知数列 { a n }(n ≥ 1) 满足 a n 2 = a n 1 - a n ,且 a 2 =1, 若数列的前2020 项之和为 2020,则前2020 项的和等于 [ ] A.2020B.2020C.2020D.20203. 有一个四棱锥,底面是一个等腰梯形,并且腰长和较短的底长都是1,有一个底角是 60 0,又侧棱与底面所成的角都是450 ,则这个棱锥的体积是[ ]A.1B. 3C.3 D.3424. 若 ( 2x 4)2 naa x ax2a+则 a 2 a 4 a 2 n 被 3 除的余数2 2 n x 2n (n ∈ N ),0 1是 [ ] A.0 B.1C.2D.不能确定5. 已知 x, y(2, 2 ) ,且 xy 1 ,则24 的最小值是[ ]2422 xyA 、20B 、12C 、 16 4 2D 、 16 4 277776. 在边长为 12 的正三角形中有 n 个点,用一个半径为 3 的圆形硬币总可以盖住其中的2 个点,则 n 的最小值是 [ ]A.17B.16C.11D.10二、填空题(每题 9 分共 54 分)7. 在锐角三角形 ABC 中,设 tanA,tanB,tanC 成等差数列且函数 f(x) 满足f(cos2C)=cos(B+C-A) ,则 f(x) 的解析是为100 8.[(10i 1)(10i 3)(10i 7)(10i 9)] 的末三位数是 _______i 19. 集合 A 中的元素均为正整数,具有性质:若a A ,则 12- aA ,这样的集合共有 个 .10. 抛物线的顶点在原点,焦点在 x 轴的正半轴上,直线 x+y-1=0 与抛物线相交于 A 、 B 两点,且 |AB|= 86. 在抛物线上是否存在一点 C ,使△ ABC 为正三角形,若存在, C 点的11坐标是.11. 在数列 { a n } 中, a 1 = 2, a nan 11(n N * ) ,设 S n 为数列 { a n } 的前 n 项和,则S 2007 2S 2006S 2005 的值为12. 函数f ( x) 3 1 x x,其中0. 函数 f ( x)在[ 0, ) 上是减函数;的取范是 _____________________. 三、解答题(每题20 分共 60 分)13. 已知点 A 5,0和曲 x2 y 21 2x2 5,y上的点P、P、P n。

2019年全国高中数学联赛模拟试题(一)参考答案

2019年全国高中数学联赛模拟试题(一)参考答案

中;
……18 '
若 x 672 ,假若 x y ,只有 y 2x ,这种数 y 也已悉数被挖去,即 y X ,因此 X 不
是好集,这种 a 也不合要求. 综上所述, a 的最大值为 671 .
…… 20 '
将 AN 方程与椭圆方程联立,得 b2 a2k 2 x2 2a3k 2 x k 2a2 a2b2 0
xA
xN
2a3k 2 b2 a2k2
, xN
ab2 a3k 2 b2 a2k2
yN
2kab2 b2 a2k2
,
AM
a
1 k 2
…… 9 ' ……12 '
AN
ab2 a3k 2 b2 a2k2
若 X 中存在 x y, x y ,因 x 672 , y 2016 ,则 y 3x ;
若 x 672 ,如果 x y , x y ,只有 y 2x 或者 y 3x ,此时 y 的取值只能是:
y 2 672 1344 , 或 者 y 3 672 2016 ; 由 于
1344 2(672 0), 2016 2(672 336) , 这 说 明 , 这 两 个 数 已 被 挖 去 , 不 在 集 合 X
, AM
a cos
( ) ,…… 6 ' 2
因此
AM
AN
2a2b2 b2 cos2 a2 sin2
,…… 9 '
又据 AN ∥ CD ,则点 C, D 坐标为: C( OD cos, OD sin ) ,
D( OD cos, OD sin ) ,……12'
因为 C, D 在椭圆上,则
点 A, N 的坐标为 A(a, 0), N (a cos , b sin ) ,则直线 AN 方程为

全国高中数学联赛省级预赛模拟试题1

全国高中数学联赛省级预赛模拟试题1

全国高中数学联赛省级预赛模拟试题第Ⅰ卷(选择题 共60分) 参考公式1.三角函数的积化和差公式sinα•cosβ=21[sin(α+β)+sin(αβ)], cosα•sinβ=21[sin(α+β)sin(αβ)],cosα•cosβ=21[cos(α+β)+cos(αβ)],sinα•sinβ=21[cos(α+β)cos(αβ)].2.球的体积公式 V 球=34πR3(R 为球的半径)。

一、选择题(每小题5分,共60分)1.设在xOy 平面上,0<y≤x2,0≤x≤1所围成图形的面积为31。

则集合 M={(x,y)|x≤|y|}, N={(x,y)|x≥y2| 的交集M∩N 所表示的图形面积为 A .32 B .31 C .1 D .61 2.在四面体ABCD 中,设AB=1,CD=3,直线AB 与直线CD 的距离为2,夹角为3π。

则四面体ABCD 的体积等于 A .23 B .31 C .21D .33 3.有10个不同的球,其中,2个红球、5个黄球、3个白球。

若取到一个红球得5分,取到一个白球得2分,取到一个黄球得1分,那么,从中取出5个球,使得总分大于10分且小于15分的取法种数为A .90B .100C .110D .1204.在ΔABC 中,若(sinA+sinB)(cosA+cosB)=2sinC ,则 A .ΔABC 是等腰三角形,但不一定是直角三角形 B .ΔABC 是直角三角形,但不一定是等腰三角形 C .ΔABC 既不是等腰三角形,也不是直角三角形 D .ΔABC 既是等腰三角形,也是直角三角形5.已知f(x)=3x2x+4, f(g(x))=3x4+18x3+50x2+69x+48.那么,整系数多项式函数g(x)的各项系数和为A .8B .9C .10D .116.设0<x<1, a,b 为正常数。

则xb x a -+122的最小值是A .4abB .(a+b)2C .(ab)2D .2(a2+b2) 7.设a,b>0,且a+b=a+b 。

高中数学联赛模拟卷(含答案)

高中数学联赛模拟卷姓名:_____________考试号:______________得分:____________一、填空题:本大题共8小题,每小题8分,共64分.把答案填在横线上.1.方程2log sin 2x x π+=在区间(0,]2π上的实根个数为_________________.解析:设2()log sin 2f x x x π=+-,则1()cos ln2f x x x π'=+,∵02x π<≤,∴0cos 1x ≤<,又0ln12π<<,∴()0f x '>,即在区间(0,]2π上单调递增,故方程2log sin 2x x π+=在区间(0,]2π上有且只有一个实根.2.设数列118()3n -⎧⎫⨯-⎨⎬⎩⎭的前n 项和为n S ,则满足不等式1|6|125n S -<的最小整数n 是_________________.解析:易知数列118()3n -⎧⎫⨯-⎨⎬⎩⎭是首项是8,公比是13-的等比数列,∴18[1()]1366()131()3nn n S --==----,于是1|6|125n S -<⇔112132503125n n --<⇔>, ∵53243250=<,63729250=>,故最小整数n 是7. 3.如果:(1)a, b, c, d 都属于{1, 2, 3, 4};(2)a ≠b, b ≠c, c ≠d, d ≠a ;(3)a 是a, b, c, d 中的最小数。

那么,可以组成的不同的四位数abcd 的个数是________. 解析:46个。

abcd 中恰有2个不同数字时,能组成C 24=6个不同的数。

abcd 中恰有3个不同数字时,能组成1212121213C C C C C +=16个不同数。

abcd 中恰有4个不同数字时,能组成A 44=24个不同数,所以符合要求的数共有6+16+24=46个。

全国高中数学联赛一试模拟试题

全国高中数学联赛一试模拟试题(1)
(考试时间:80分钟满分:120分)
一、填空题(本大题共8小题,每小题8分,共64分)
1.函数 的值域是___________
2.设a,b,c为RT△ACB的三边长,点(m,n)在直线ax+by+c=0上.则m2+n2的最小值是___________
3.若 ,且 为正整数,则
(考试时间:80分钟满分:120分)
1、填空题(本大题共8小题,每小题8分,共64分)
1.集合 , , ,则 的取值范围是___________
2.某人投两次骰子,先后得到点数 ,用来作为一元二次方程 的系数,则使方程有
实根的概率为______________
3.过四面体 的顶点 作半径为 的球,该球与四面体 的外接球相切
6.对于每个大于等于2的整数 ,令 表示 在区间 上不同解的个数,
表示 在区间 上不同解的个数,则 =____________
7.在平面直角坐标系中,定义点P(x1,y1),Q(x2,y2)之间的“直角距离”为d(P,Q)=|x1-x2|+|y1-y2|
若C(x,y)到点A(1, 3),B(6, 9)的“直角距离”相等,其中实数x,y满足0≤x≤10, 0≤y≤10,
B队三名队员是B1,B2,B3,,且 对 的胜率为 (1≤i,j≤3),A队得分期望的最大可能值是________.
7.△ABC的三边长分别为13, 14, 15,有4个半径同为 的圆O,O1,O2,O3放在△ABC内,并且⊙O1与
边AB、AC相切,⊙O2与边BA、BC相切,⊙O3与边CB、CA相切,⊙O与⊙O1,O2,O3相切,
一、填空题(本大题共8小题,每小题8分,共64分)

15套精选高中数学联赛全真模拟题题目


B, C ⊆ A, f (B ∩ C) = min{f (B), f (C)},
, 的 数.
{1, 2, · · · , 10},
4
第二试
一、 (40 分) A, B, C, D, E
l

AC = BC ,F
l 的一 , F C
CE CD
G, ∠F AC = ∠AGD, ∠F EC = ∠EGB
.
A + C = 2B,

的数 ak1 , ak2 , · · · , akn , · · ·

(
)
x = cos A − C , f (x) = cos B · 2
1
1
cos A + cos C

4.
(0, 2) 的 l
1 C : y = x + (x > 0)
x
.
√ 5. 数 f (x) = x2 − 3x + 3 + 2(x − 1)4 − 18(x − 1)2 + 12x + 56
(1)a1 + · · · + an = b1 + · · · + bn
(2)a31 + · · · + a3n = b31 + · · · + b3n.
的数
An = {a1, · · · , an}
3
数学 赛 试题(二)
第一试
一、填空题(每题 8 分,共 64 分)
1.
a ≥ −2, A = {x| − 2 ≤ x ≤ a}, B = {y|y = 2x + 3, x ∈ A}, C = {t|t = x2, x ∈ A}, C ⊆ B,

全国高中数学联赛模拟试题1及答案

全国高中数学联赛模拟试题1及答案全国高中数学联赛模拟试题1及答案全国高中数学联赛模拟试题(一)第一试一、选择题:(每小题6分,共36分)1、方程6×(5a2+b2)=5c2满足c≤20的正整数解(a,b,c)的个数是(A)1 (B)3 (C)4 (D)5x22、函数y (x∈R,x≠1)的递增区间是x 1(A)x≥2 (C)x≤0(B)x≤0或x≥2 (D)x≤1 2或x≥23、过定点P(2,1)作直线l分别交x轴正向和y轴正向于A、B,使△AOB(O为原点)的面积最小,则l的方程为(A)x+y-3=0 (B)x+3y-5=0 (C)2x+y-5=0 (D)x+2y-4=04、若方程cos2x+3sin2x=a+1在 0, 上有两个不同的实数解x,则参2数a的取值范围是(A)0≤a<1 (B)-3≤a<1 (C)a<1 (D)0<a<1 5、数列1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,…的第1000项是(A)42 (B)45 (C)48 (D)516、在1,2,3,4,5的排列a1,a2,a3,a4,a5中,满足条件a1<a2,a2>a3,a3<a4,a4>a5的排列的个数是(A)8 (B)10 (C)14 (D)16二、填空题:(每小题9分,共54分)1、[x]表示不大于x的最大整数,则方程1×[x2+x]=19x+99的实数解x2是.2、设a1=1,an+1=2an+n2,则通项公式an=.3、数799被2550除所得的余数是.54、在△ABC中,∠A=,sinB=,则cosC=.3135、设k、是实数,使得关于x的方程x2-(2k+1)x+k2-1=0的两个根为sin 和cos ,则的取值范围是. 6、数5 242n(n∈N)的个位数字是三、(20分)已知x、y、z都是非负实数,且x+y+z=1.求证:x(1-2x)(1-3x)+y(1-2y)(1-3y)+z(1-2z)(1-3z)≥0,并确定等号成立的条件.四、(20分)(1)求出所有的实数a,使得关于x的方程x2+(a+2002)x+a =0的两根皆为整数.(2)试求出所有的.实数a,使得关于x的方程x3+(-a2+2a+2)x-2a2-2a=0有三个整数根.五、(20分)试求正数r的最大值,使得点集T={(x,y)|x、y∈R,且x2+(y-7)2≤r2}一定被包含于另一个点集S={(x,y)|x、y∈R,且对任何∈R,都有cos2 +xcos +y≥0}之中.第二试一、(50分)设a、b、c∈R,b≠ac,a≠-c,z是复数,且z2-(a-c)z-b=0.a2 b a c z求证: 1的充分必要条件是(a-c)2+4b≤0.ac b二、(50分)如图,在△ABC中,∠ABC和∠ACB均是锐角,D是BC边上的内点,且AD平分∠BAC,过点D分别向两条直线AB、AC作垂线DP、DQ,其垂足是P、Q,两条直线CP与BQ相交与点K.求证:(1)AK⊥BC;(2) AK AP AQ2S△ABC,其中S△ABC表BC示△ABC的面积.三、(50分)给定一个正整数n,设n个实数a1,a2,…,an满足下列n个方程:ai4(j 1,2,3, ,n). i j2j 1i 1n确定和式Si 1nai的值(写成关于n的最简式子). 2i 1参考答案第一试二、填空题:18115871、或;38383、343;2、7×2n-1-n2-2n-3; 4、53 12; 265、{ | =2n +或2n -,n∈Z} ;6、1(n为偶数);7(n为奇数). 21 1 1x z y z 1 x y三、证略,等号成立的条件是x y z 或 2或 2或 2.3 z 0 y 0 z 0四、(1)a的可能取值有0,-1336,-1936,-1960,-2664,-4000,-2040;(2)a的可能取值有-3,11,-1,9.五、rmax=42.第二试a c a c 4b i一、证略(提示:直接解出z ,通过变形即得充分性成22立,然后利用反证法证明必要性).二、证略(提示:用同一法,作出BC边上的高AR,利用塞瓦定理证明AR、BQ、CP三线共点,从而AK⊥BC;记AR与PQ交于点T,则AQ=AP,对于AK<AP,可证∠APK<∠AKP).三、S12S△ABC=AR>AT>BC2n 121.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学联赛模拟试题(1)一试一、选择题(本大题36分,每小题6分)1.在复平面上,非零复数z1,z2在以i对应的点为圆心,1为半径的圆上,z1·z2的实部为零,argz1=π/6,则z2=().A.-/2+(3/2)iB./2-(3/2)iC.-3/2+(/2)iD.3/2-(/2)i2.已知函数f(x)=loga(ax2-x+1/2)在[1,2]上恒正,则实数a的取值范围是().A.(1/2,5/8)B.(3/2,+∞)C.((1/2,(5/8)∪((3/2,+∞)D.(1/2,+∞)3.已知双曲线过点M(-2,4)、N(4,4),它的一个焦点为F1(1,0),则另一个焦点F2的轨迹方程是().A.(x-1)2/25+(y-4)2/16=1(y≠0)或x=1(y≠0)B.(x-1)2/16+(y-4)2/25=1(x≠0)或x=1(y≠0)C.(x-4)2/25+(y-1)2/16=1(y≠0)或y=1(x≠0)D.(x-4)2/16+(y-1)2/25=1(x≠0)或y=1(x≠0)4.已知正实数a、b满足a+b=1,则M=的整数部分是().A.1 B.2 C.3 D.45.一条笔直的大街宽是40米,一条人行道穿过这条大街,并与大街成某一角度,人行道的宽度是15米,长度是50米,则人行道间的距离是().A.9米B.10米C.12米D.15米6.一条铁路原有m个车站,为适应客运需要新增加n个车站(n>1),则客运车票增加了58种(注:从甲站到乙站和从乙站到甲站需要两种不同的车票),那么原有车站的个数是().A.12 B.13 C.14 D.15二、填空题(本大题54分,每小题9分)1.长方形ABCD的长AB是宽BC的2倍,把它折成无底的正三棱柱,使AD与BC重合,折痕线EF、GH分别交原对角线AC于M、N,则折后截面AMN与底面AFH所成的角是_________.2.在△ABC中,a、b、c是角A、B、C的对边,且满足a2+b2=2c2,则角C的最大值是_________.3.从盛满a升(a>1)纯酒精的容器里倒出1升,然后填满水,再倒出1升混合溶液后又用水填满,如此继续下去.则第n次操作后溶液的浓度是_________.4.已知函数f(x)与g(x)的定义域均为非负实数集,对任意的x≥0,规定f(x)*g(x)=min{f(x),g(x)}.若f(x)=3-x,g(x)=,则f(x)*g(x)的最大值为_________.5.从1到100的自然数中,每次取出不同的两个数,使它们的和大于100,则可有_________种不同的取法.6.若实数a>0,则满足a5-a3+a=2的a值属于区间:①(0,);②(,);③(,+∞);④(0,).其中正确的是_________.三、(本大题20分)求证:经过正方体中心的任一截面的面积不小于正方体一个侧面的面积.四、(本大题20分)直线Ax+Bx+C=0(A·B·C≠0)与椭圆b2x2+a2y2=a2b2相交于P和Q两点,O为坐标原点,且OP⊥OQ,求证:a2b2/c2=(a2+b2)/(A2+B2).五、(本大题20分)某新建商场设有百货部、服装部和家电部三个经营部,共有190名售货员,计划全商场日营业额(指每日卖出商品所收到的总金额)为60万元,根据经验,各部商品每1万元营业额所需售货员人数如表1,每1万元营业额所得利润情况如表2.商场将计划日营业额分配给三个经营部,同时适当安排各部的营业员人数,若商场预计每日的总利润为c(万元)且满足19≤c≤19.7,又已知商场分配给经营部的日营业额均为正整数万元,问这个商场怎样分配日营业额给三个部?各部分别安排多少名售货员?表1各部每1万元营业额所需人数表表2 各部每1万元营业额所得利润表加试一、(本大题50分)矩形ABCD的边AD=λ·AB,以AB为直径在矩形之外作半圆,在半圆上任取不同于A、B的一点P,连PC,PD交AB于E、F,若AE2+BF2=AB2,试求正实数λ的值.二、(本大题50分)若ai∈R+(i=1,2,…,n),S=,且2≤n∈N,求证:三、(本大题50分)无穷数列{cn}可由如下法则定义:cn+1=│1-│1-2cn││,而0≢c1≢1.(1)证明:仅当c1是有理数时,数列自某一项开始成为周期数列.(2)存在多少个不同的c1值,使得数列自某项之后以T为周期(对于每个T=2,3,…)?参考答案一试一、选择题1.选A.如图1所示,设复数z1对应的点为Z1,则图1│OZ1│=2sin(π/6)=1,∴z1==(/2)+(1/2)i.再设z2=x+yi(x,y∈R),由│z2-i│=1,得x2+(y-1)2=1.①∵(/2-(1/2)i)(x+yi)的实部为零,∴x+y=0.②联立①与②,解出x=0,(舍去)x=-/2,y=0.y=3/2.故z2=-/2+(3/2)i.2.选C.设g(x)=ax2-x+1/2.首先由ax2-x+1/2>0,得a>(x-1/2)/x2=-(1/2x2)+1/x.当1≢x≢2时,(-(1/2x2)+1/x)max=1/2,从而a>1/2.在a>1/2的前提下,易知函数g(x)=ax2-x+(1/2)的对称轴x=(1/2)a在区间[1,2]的左边,从而g(x)在[1,2]上是递增函数.当a>1时,f(x)在[1,2]上是增函数,有f(1)=loga(a-1+1/2)>0,∴a>3/2.当(1/2<a<1时,f(x)在[1,2]上是减函数,有f(2)=loga(4a-2+1/2)>0,∴1/2<a<5/8.综上,1/2<a<5/8或a>3/2.3.选A.易知│MF1│=│NF1│=5,而││MF1│-│MF2││=││NF1│-│NF2││,即│5-│MF2││=│5-│NF2││.当5-│MF2│=5-│NF2│,即│MF2│=│NF2│时,点F2的轨迹是线段MN的中垂线,其方程为x=1(y≠0).当5-│MF2│=-(5-│NF2│),即│MF2│+│NF2│=10时,点F2的轨迹是以M、N为焦点,长轴长为10的椭圆,其方程为(x-1)2/25+(y-4)2/16=1(y≠0).4.选B.一方面M>+=2,另一方面M<=1+a+1+b=2+(a+b)=3,即有2<M<3.5.选C.如图2,人行横道的面积S=15×40=600,图2∴S=50x=600,解得x=12.6.选C.新增的n个车站之间需要P2n种车票,新增的n个车站与原来的m个车站之间需要2mn种车票,从而P2n+2mn=58,即n(n-1+2m)=58.∵m、n是非负数(n>1),且58只能分解为1×58,和2×29,∴n=2,或n=29,解出n=2,n-1+2m=29n-1+2m=2.m=14.二、填空题1.填π/6.折叠后,仍有AF=FH=HB(或HA,折叠后A点和B点重合),AM=MN=NC,且它们的长度没有改变,仍等于折叠前的长度,但对角线AC由直线段变成了折线段,A,M,N三点由原来共线(如图3(1))变成现在A,M,N三点构成三角形(如图3(2)).图3设AD=a,则AB=2a.图3(1)为折前长方形,有AC=a,AM=MN=a/3,AF=FH=HB=2a/3,MF=a/3,HN=2a/3.设平面AMN与平面AFH的夹角为θ(如图3(2)),由S△AFH=1/2×2a/3×2a/3×sin60°=a2/3.在Rt△NHA中,AN==4a/3.取AN的中点P,∵AM=MNMP⊥AN.在Rt△MPA中,MP==a,∴S△AMN=a/2·4a/3=2a2/3. ∴cosθ=S△AFH/S△AMN =/2,∴θ=π/6.2.填π/3. 因为a2+b2=2c2,所以cosC=(a2+b2-c2)/2ab=(a2+b2-(a2+b2)/2)/2ab=(a2+b2)/4ab,所以a2-4abcosC+b2=0.即(a/b)2-(4cosC)(a/b)+1=0(因为b≠0). 因为a/b是正实数,所以Δ=(-4cosC)2-4≥0, cos2C≥1/4, 4cosC>0 cosC>0.故cosC≣1/2,所以C≢π/3. 因此角C的最大值是π/3.3.填(1-(1/a))n. 开始的浓度为1,操作一次后溶液的浓度是a1=1-(1/a).设操作n次后溶液的浓度为an,则操作n+1次后溶液的浓度为 an+1=an(1-(1/a)). ∴{an}是首项和公比均为a1=1-(1/a)的等比数列,∴an=a1qn-1=(1-(1/a))n, 4.填2-1. ∵x≣0,令3-x>,解得0≢x<4-2.∴f(x)*g(x)=,0≤x<4-2,3-x,x≥4-2.∵3-x在R 上单调递减,故当x≣4-2时, f(x)*g(x)≢f(4-2)*g(4-2)=3-(4-2)=2-1.当0≢x≢4-2时,单调递增,故当x∈[0,4-2]时,f (x )*g (x )<=2-1.综上知,f (x )*g (x )的最大值为2-1.5.填2500. 以1为被加数,则1+100=101>100,有1种取法. 以2为被加数,则2+100=102>100, 2+99=101>100,有2种取法.依次可得,被加数为n(n∈N,n≢50)时,有n种取法.但51为被加数时,则扣除前面已取过的,只能取52,53,…,100,有49种取法,同理52为被加数时,有48种取法,依次可得当被加数n(n∈N,51≢n≢100)时,有100-n种取法. 所以不同的取法有(1+2+3+…+50)+(49+48+…+1) =2500.6.填③④. ∵a6+1=(a2+1)(a4-a2+1)=(a2+1)/a·(a5-a3+a)=2(a+1/a),(a≠0)∵a>0,且a≠1,∴a6+1>4,∴a6>3, 即a>.又a5-a3+a=2,∴2/(a3+1)=a2+(1/a2)>2,∴a3<2,即a<,综合知应填③④.三、显然,所作截面是一个中心对称的凸多边形,它是一个四边形或一个六边形如果截面是一个四边形,那么它一定没有截到立方体的某一组对面,故截面的面积不小于正方体一个侧面的面积.图4如果截面是一个六边形,那么它一定截到立方体的六个面.将立方体展开在一个平面上(如图4).设截面的周长为l,正方体的棱长为a,则l≣│AB│==3a.由于正方体的中心是其内切球的球心,所以截面内含有半径为a/2的圆.从而有S截面≣(1/2)·(a/2)l≣(3/4)a2>a2.四、将Ax+By+C=0,变形为1=-(Ax+By)/C代入椭圆方程,得b2x2+a2y2=a2b2(-(Ax+By)/C)2,整理得(a2b2B2-a2C2)y2+2ABa2b2xy+(a2b2A2-b2C2)x2=0,(1)当x=0时,显然成立;(2)当x≠0时,同除以x2得(a2b2B2-a2C2)((y/x)2+2ABa2b2(y/x)+(a2b2A2-b2C2)=0,则方程的两根为OP、OQ的斜率.因为OP⊥OQ,所以-1=(a2b2A2-b2C2)/(a2b2B2-a2C2),即a2b2/C2=(a2+b2)/(A2+B2).五、设商场分配给百货、服装、家电营业额分别为x,y,z(万元)(x,y,z是正整数),则x+y+z=60,①5x+4y+2z=190,②c=0.3x+0.5y+0.2z,③19≤c≤19.7.④由①,②得y=35-(3/2)x,z=25+(x/2),∴c=0.3+0.5(35-(3x/2))+0.2(25+(x/2)) =22.5-0.35x.代入④得8≢x≢10.∵x,y,z必为正整数,x=8,x=10,5x=40,5x=50,y=23,y=20,4y=92,4y=80,z=29z=30.2z=582z=60.加试一、解法1(三角法):如图5,过P作PG⊥AB,垂足为G.不失一般性,设AB=2,则AD=2λ.再设PG=h,∠PDA=α,∠PCB=β,则图5AE=AB-BE=2-2λtgβ,BF=AB-AF=2-2λtgα.∵(2λ+h)tgα+(2λ+h)tgβ=2,∴tgα+tgβ=2/(2λ+h),①又(2λ+h)tgα(2λ+h)tgβ=h2,∴tgα·tgβ=h2/(2λ+h)2.②∵AE2+BF2=(2-2λtgβ)2+(2-2λtgα)2=AB2,∴8-8λ(tgα+tgβ)+4λ2(tg2α+tg2β)=4.即λ2(tgα+tgβ)2-2λ2tgαtgβ-2λ(tgα+tgβ)+1=0,①、②代入得(4λ2-2λ2h2)/(2λ+h)2-(4λ)/(2λ+h)+1=0.∴h2(1-2λ2)=0,∵h≠0,∴1-2λ2=0,即λ=/2.解法2(代数法):如图5,不失一般性,设AB=2,则AD=2λ,并令AF=x,BE=y,因为△PGE∽△CBE,于是有PG/BC=BE/BE,即PG/2λ=GE/y.所以,GE=(PG·y)/2λ.①同理,GF=(PG·x)/2λ.②①+②,得EF=(x+y)·(PG)/2λ,即PG=(EF·2λ)/(x+y)=(2λ(2-x-y))/(x+y).③由①、②、③得GE=(PG·y)/2λ=(2λ(2-x-y)/x+y·y·(1/2)λ=[(2-x-y)/(x+y)]·y,GF=(PG·x)/2λ=[(2-x-y)/(x+y)]·x.∴BG=GE+y=2y/(x+y),④同理AG=2x/(x+y).⑤又PG2=AG·BG,综合③④⑤,得4λ2((2-x-y)/(x+y))2=4xy/(x+y)2,化简得λ2(2-x-y)2=xy,⑥又∵AE2+BF2=AB2,∴(2-x)2+(2-y)2=4,即4-4(x+y)+x2+y2=0,∴4-4(x+y)+(x+y)2=2xy.⑦将⑥代入⑦得4-4(x+y)+(x+y)2=2λ2(2-x-y)2.即(2-x-y)2=2λ2(2-x-y)2.∵x+y≠2,∴2λ2=1.解得λ=/2.二、由柯西不等式,得故原不等式得证.三、易知题中的递推关系式即为cn+1=2cn,若0≤cn<(1/2),①2-2cn,若(1/2)≤cn≤1.(1)若c1为有理数,即c1=p/q,其中(p,q)=1时,对一切n,均有cn=(pn/q,其中pn∈{0,1,…,q},故有n1<n2,使得pn1=pn2.从而cn1=cn2.于是,由①式可知{cn}自第n1项之后呈周期变化.假设数列自第n1项开始成为周期为T的,我们记cn1=ak·2-k,即用二进制表示cn1,其中ak=0或1,并记ak=1-ak,k∈N,②由此并结合归纳法,即知此即表明cn1为二进制循环小数,故为有理数.当a1+…+aT≡1(mod2)时,由于cn1+T=cn1得ak=ak+T=1-ak+T,k∈N.③由于③式亦表明ak+T=ak+2T,k∈N,所以,ak=1-ak+T=1-ak+2T=1-(1-ak+2T)=ak+2T,(k∈N).故cn1亦为有理数.再由递推式①知cn1是由c1经n1-1步有理运算得出的,所以,c1也必为有理数.(2)如果分别取④则可使{cn}分别以T=2和T=m,m≥3为周期,又易见,只要将c1取为④中的1/2k,k∈N,都可使数列最终以相应的T为周期.从而,对每个T=2,3,…都有无穷多个c1使得数列自某项之后以T为周期变化.。

相关文档
最新文档