高中数学会考模拟试题(B)
高中数学会考模拟题(含答案)

一、选择题(共20个小题,每小题3分,共60分)1.若集合{}13A x x =≤≤,集合{}2B x x =<,则A B =(A ){}12x x ≤< (B ){}12x x << (C ){}3x x ≤ (D ){}23x x <≤2.tan330︒=(A(B(C) (D)3.已知lg2=a ,lg3=b ,则3lg 2=(A )a -b (B )b -a (C )ba(D )a b4.函数()2sin cos f x x x =的最大值为(A )2(B )2-(C )1(D )1-5.随机投掷1枚骰子,掷出的点数恰好是3的倍数的概率为(A )12 (B )13(C )15(D )166.在等比数列{}n a 中,若32a =,则12345a a a a a = (A )8(B )16(C )32(D )7.已知点()0,0O 与点()0,2A 分别在直线y x m =+的两侧,那么m 的取值范围是(A )20m -<< (B )02m << (C )0m <或2m >(D )0m >或2m <-8.如果直线ax +2y +1=0与直线x +3y -2=0互相垂直,那么a 的值等于(A )6(B )-32(C )- (D )-69.函数sin 26y x π⎛⎫=+ ⎪⎝⎭图像的一个对称中心是(A )(,0)12π- (B )(,0)6π-(C )(,0)6π(D )(,0)3π10.已知0a >且1a ≠,且23a a >,那么函数()x f x a =的图像可能是(A ) (B ) (C )(D )11.已知()1f x x x=+,那么下列各式中,对任意不为零的实数x 都成立的是 (A )()()f x f x =-(B )()1f x f x ⎛⎫= ⎪⎝⎭(C )()f x x > (D )()2f x >12.如果一个几何体的三视图中至少有两个三角形,那么这个几何体不可能...是 (A )正三棱锥(B )正三棱柱(C )圆锥(D )正四棱锥13.如图,D 是△ABC 的边AB 的三等分点,则向量CD 等于(A )23CA AB + (B )13CA AB + (C )23CB AB +(D )13CB AB + 14.有四个幂函数:①()1f x x -=; ②()2f x x -=; ③()3f x x =; ④()13f x x =.某同学研究了其中的一个函数,他给出这个函数的两个性质: (1)定义域是{x | x ∈R ,且x ≠0}; (2)值域是{y | y ∈R ,且y ≠0}.如果这个同学给出的两个性质都是正确的, 那么他研究的函数是 (A )① (B )②(C )③(D )④15.如果执行右面的程序框图,那么输出的S 等于(A )45 (B )55 (C )90 (D )11016.若0(,)b a a b R <<∈,则下列不等式中正确的是(A )b 2<a 2(B )1b >1a(C )-b <-a (D )a -b >a +b17.某住宅小区有居民2万户,从中随机抽取200户,调查是否已接入宽带. 调查结果如下表所示:(A )3000户(B )6500户(C )9500户(D )19000户18.△ABC 中,45A ∠=︒,105B ∠=︒,A ∠的对边2a =,则C ∠的对边c 等于(A )2(B(C(D )119.半径是20cm 的轮子按逆时针方向旋转,若轮周上一点转过的弧长是40cm ,则轮子转过的弧度数是(A )2(B )-2(C )4(D )-4CADB20.如果方程x 2-4ax +3a 2=0的一根小于1,另一根大于1,那么实数a 的取值范围是(A )113a << (B )1a >(C )13a <(D )1a =二、填空题(共4道小题,每小题3分,共12分)21.函数()f x ________________________.22.在1-和4之间插入两个数,使这4个数顺次构成等差数列,则插入的两个数的和为____. 23.把函数sin 2y x =的图象向左平移6π个单位,得到的函数解析式为________________. 24.如图,单摆的摆线离开平衡位置的位移s (厘米)和时间t (秒)的函数关系是1sin 223s t ππ⎛⎫=+ ⎪⎝⎭,则摆球往复摆动一次所需要的时间是_____ 秒.ADBCB ;CBDAA ;BBBAB ;DCCAA ;[]1,1-;3;sin 23y x π⎛⎫=+⎪⎝⎭;1。
湖北高一高中数学水平会考带答案解析

湖北高一高中数学水平会考班级:___________ 姓名:___________ 分数:___________一、选择题1.成等比数列,其中则()A.B.C.D.或2.已知集合,,则( )A.B.C.D.3.已知平行四边形的三个顶点的坐标分别为,,,则顶点的坐标为( )A.(2,2)B.(-2,2)C.(2,-2)D.(-2,-2)4.远望灯塔高七层,红光点点倍加增,只见顶层灯一盏,请问共有几盏灯?答曰:( )A.64B.128C.63D.1275.在中则的值为()A.B.C.D.6.给出下列命题,其中正确的是( )A.若,则;B.若,则;C.若,则;D.若,则.7.某市环保局为增加城市的綠地面积,提出两个投资方案:方案A为一次性投资100万元;方案B为第一年投资10 万元,以后每年都比前一年增加10万元。
则按照方案B经过多少年后,总投入不少于方案A的投入。
答曰:( )A.4B.5C.9D.108.锐角使同时成立,则的值为( )A.B.C.D.9.已知,则( )A.B.C.D.二、填空题1.函数在区间上单调递减( )A.B.(-C.D.2.设等差数列的前n项和为已知则3.若,则4.5.已知关于的不等式,对一切实数都成立,则的取值范围是6.在中分别为角所对的边,已知,且的面积为,则三、解答题1.(本题满分12 分)(1)计算,(2)已知,求sin的值。
2.(本题满分12 分)已知数列为等比数列,且首项为,公比为,前项和为.(Ⅰ)试用,,表示前项和;(Ⅱ)证明(Ⅰ)中所写出的等比数列的前项和公式。
3.(本题满分12 分)如图,从气球上测得正前方的河流的两岸的俯角分别为,如果这时气球的高度米,求河流的宽度.4.(本题满分12 分)已知(Ⅰ)将化成的形式;(Ⅱ)求的最小正周期和最大值以及取得最大值时的的值;(Ⅲ)求的单调递增区间。
5.(本题满分13 分)据气象部门预报,在距离某码头南偏东方向600km处的热带风暴中心,正以每小时20km的速度向正北方向移动,距风暴中心450km以内的地区都将受到影响,从现在起多长时间后,该码头将受到热带风暴中心的影响,影响多长时间?(精确到0.1h)6.(本题满分14分)在等差数列中,已知。
2023年高中会考数学试卷含答案

2023年高中会考数学试卷含答案第一部分:选择题(共40分)1. 一种高速公路的限速为每小时100公里。
小明驾驶小汽车在这条高速公路上行驶了2小时半,行驶的路程为300公里。
那么小明的平均时速是多少?a) 80公里/小时b) 100公里/小时c) 120公里/小时d) 150公里/小时答案:b2. 已知函数 f(x) = 2x^2 + 3x - 4,求 f(-1) 的值是多少?a) -6b) 1c) 0d) -9答案:b...第二部分:填空题(共30分)1. 在一个三角形中,三个内角的度数分别是60°、70°和()°。
答案:502. 已知直线 y = 2x - 3 与 x 轴交于点 A,与 y 轴交于点 B。
直线 y = -x + 4 与 x 轴交于点 C,与 y 轴交于点 D。
那么 AB 的斜率是(), CD 的斜率是()。
答案:2,-1...第三部分:解答题(共30分)1. 已知集合 A = {2, 4, 6, 8, 10},集合 B = {4, 5, 6, 7, 8},求 A∪ B 和A ∩ B。
答案:A ∪ B = {2, 4, 5, 6, 7, 8, 10},A ∩ B = {4, 6, 8}2. 某推销员从一家餐厅进货,他为每件产品支付进货价格的80%,然后在售价上加价50%出售。
如果推销员每件产品进货价格为200元,那么他应该以多少元的价格出售产品以实现50%的利润?答案:480元...以上是2023年高中会考数学试卷的部分内容和答案。
请同学们认真作答,祝你们取得优异的成绩!。
高中数学会考试卷

高中数学会考试卷一、选择题1. 若抛物线$y=ax^2+bx+c$的顶点为$(2,-1)$,则$a+b+c$等于()。
A. 1B. -1C. 0D. 22. 设函数$f(x)=\frac{2x-1}{3x+4}$,则$f(-\frac{4}{3})$等于()。
A. $\frac{5}{3}$B. $\frac{4}{3}$C. $\frac{3}{5}$D. $-\frac{3}{5}$3. 若直线$3x-4y=7$与$x+4y=2$互相垂直,则直线$3x-4y=k$的$k$值为()。
A. -16B. 16C. -8D. 84. 若$\sin\theta=\frac{24}{25}$,$\theta$终边在第一象限,则$\cos\theta$的值为()。
A. $\frac{7}{25}$B. $\frac{1}{25}$C. $\frac{7}{24}$D.$\frac{1}{24}$5. 已知矩阵$A=\begin{bmatrix} 1 & 2 \\ -1 & 4 \end{bmatrix}$,$B=\begin{bmatrix} 2 & -3 \\ 1 & 2 \end{bmatrix}$,则$A+B$为()。
A. $\begin{bmatrix} 3 & -1 \\ 0 & 6 \end{bmatrix}$B.$\begin{bmatrix} 3 & -5 \\ 0 & 6 \end{bmatrix}$ C. $\begin{bmatrix} 3 & -1 \\ 2 & 6 \end{bmatrix}$ D. $\begin{bmatrix} 3 & 1 \\ 4 & 6\end{bmatrix}$二、填空题6. 若$f(x)=3x^2+5x-1$,则$f(-2)=$()。
7. 设$a_1=3$,$a_{n+1}=a_n+2$,若$a_{10}=$()。
高中数学会考模拟试题(附答案)

高二数学会考模拟试卷班级: 姓名:一、选择题:本大题共12小题,每小题5分,满分60分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知全集{}1,2,3,4,5,6,7,8U =,集合{}2,4,6,8A =,{}1,2,3,6,7B =,则=)(B C A U ( )A .{}2,4,6,8B .{}1,3,7C .{}4,8D .{}2,6 20y -=的倾斜角为( ) A .6π B .3π C .23π D .56π3.函数y = )A .(),1-∞B .(],1-∞C .()1,+∞D .[)1,+∞ 4.某赛季,甲、乙两名篮球运动员都参加了7场比赛,他们所有比赛得分的情况用如图1所示的茎叶图表示,则甲、乙两名运动员得分的平均数分别为( ) A .14、12 B .13、12C .14、13D .12、145.在边长为1的正方形ABCD 内随机取一点P ,则点P 到点A 的距离小于1的概率为( )A .4π B .14π- C .8π D .18π- 6.已知向量a 与b 的夹角为120,且1==a b ,则-a b 等于( ) A .1 BC .2D .37.有一个几何体的三视图及其尺寸如图2所示(单位:cm ),( A .212cm π B. 215cm π C. 224cm πD. 236cm π8.若372log πlog 6log 0.8a b c ===,,,则( ) A . a b c >>B . b a c >>C . c a b >>D . b主视图6侧视图图2图19.已知函数()2sin()f x x ωϕ=+0,2πωϕ⎛⎫>< ⎪⎝⎭的图像如图3所示,则函数)(x f 的解析式是( )A .10()2sin 116f x x π⎛⎫=+ ⎪⎝⎭B .10()2sin 116f x x π⎛⎫=- ⎪⎝⎭C .()2sin 26f x x π⎛⎫=+ ⎪⎝⎭D .()2sin 26f x x π⎛⎫=- ⎪⎝⎭ 10.一个三角形同时满足:①三边是连续的三个自然数;②最大角是 最小角的2倍,则这个三角形最小角的余弦值为( )A .378 B .34 C .74 D .1811.在等差数列{}n a 中, 284a a +=,则 其前9项的和9S 等于 ( )A .18B .27C .36D .912.已知实数x,y 满足约束条件⎪⎩⎪⎨⎧≥≥≤+,0,0,1y x y x 则z=y-x 的最大值为( )A.1 B.0 C.-1 D.-213. 函数x y x +=2的根所在的区间是( )A .⎪⎭⎫ ⎝⎛--21,1B .⎪⎭⎫ ⎝⎛-0,21C .⎪⎭⎫⎝⎛21,0 D .⎪⎭⎫ ⎝⎛1,2114.函数|2|sin xy =的周期是( ) A .2πB .πC .π2D .π4 15. sin15cos75cos15sin105+等于( ) A .0B .12C .32D .116. 过圆044222=-+-+y x y x 内一点M (3,0)作圆的割线l ,使它被该圆截得的线段最短,则直线l 的方程是( )A .03=-+y xB .03=--y xC .034=-+y xD .034=--y x1 Oxy 1112π图3二、填空题:本大题共4小题,每小题5分,满分20分. 17.圆心为点()0,2-,且过点()14,的圆的方程为 . 18.如图4,函数()2x f x =,()2g x x =,若输入的x 值为3, 则输出的()h x 的值为 .19.若函数84)(2--=kx x x f 在[]8,5上是单调函数,则k 的取值范围是20.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是21.已知两条直线82:,2)3(:21-=+=++y mx l y m x l . 若21l l ⊥,则m = 22.样本4,2,1,0,2-的标准差是23.过原点且倾斜角为060的直线被圆04x 22=-+y y 所截得的弦长为三、解答题:本大题共6小题,满分80分. 解答须写出文字说明、证明过程和演算步骤. 24.(本小题满分10分)在△ABC 中,角A ,B ,C 成等差数列.(1)求角B 的大小;(2)若()sin A B +=sin A 的值.25.已知:a 、b 、c 是同一平面内的三个向量,其中a =(1,2) (Ⅰ)若|c |52=,且a c //,求c 的坐标; (Ⅱ)若|b |=,25且b a 2+与b a 2-垂直,求a 与b 的夹角θ 26.(本小题满分12分)如图5,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面ABCD ,PA AB =,点E 是PD 的中点.(1)求证://PB 平面ACE ;(2)若四面体E ACD -的体积为2,求AB 的长.图427.(本小题满分12分)某校在高二年级开设了A ,B ,C 三个兴趣小组,为了对兴趣小组活动的开展情况进行调查,用分层抽样方法从A ,B ,C 三个兴趣小组的人员中,抽取若干人组成调查小组,有关数据见下表(单位:人) (1)求x ,y 的值;(2)若从A ,B 两个兴趣小组抽取的人中选2人作专题发言,求这2人都来自兴趣小组B 的概率.28. (本小题满分12分)已知数列{}n a 是首项为1,公比为2的等比数列,数列{}n b 的前n 项和2n S n =.(1)求数列{}n a 与{}n b 的通项公式;(2)求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和.29. (本小题满分12分)直线y kx b =+与圆224x y +=交于A 、B 两点,记△AOB 的面积为S (其中O 为坐标原点).(1)当0k =,02b <<时,求S 的最大值; (2)当2b =,1S =时,求实数k 的值.数学试题参考答案及评分标准二、填空题:本大题主要考查基本知识和基本运算.共4小题,每小题5分,满分20分.13.()22225x y ++=(或224210x y y ++-=) 14.915.()0,+∞(或[)0,+∞) 16.122⎡⎤⎢⎥⎣⎦,三、解答题24.解:(1)在△ABC 中,A B C π++=,由角A ,B ,C 成等差数列,得2B A C =+. 解得3B π=.(2)方法1:由()sin 2A B +=,即()sin 2C π-=,得sin 2C =. 所以4C π=或34C π=. 由(1)知3B π=,所以4C π=,即512A π=. 所以5sin sinsin 1246A πππ⎛⎫==+ ⎪⎝⎭sincoscossin4646ππππ=+12222=+⨯4=.25. 解(Ⅰ)设20,52,52||),,(2222=+∴=+∴==y x y x c y x c x y y x a a c 2,02),2,1(,//=∴=-∴= ……2分由20222=+=y x x y ∴42==y x 或42-=-=y x∴)4,2(),4,2(--==c c 或 ……5分(Ⅱ)0)2()2(),2()2(=-⋅+∴-⊥+b a b a b a b a ……7分 0||23||2,02322222=-⋅+∴=-⋅+b b a a b b a a ……(※) ,45)25(||,5||222===b a 代入(※)中, 250452352-=⋅∴=⨯-⋅+⨯∴b a b a ……10分 ,125525||||cos ,25||,5||-=⋅-=⋅=∴==b a b a θ26.(1)证明:连接BD 交AC 于点O ,连接EO ,因为ABCD 是正方形,所以点O 是BD 的中点. 因为点E 是PD 的中点,所以EO 是△DPB 的中位线.所以PBEO .因为EO ⊂平面ACE ,PB ⊄平面ACE , 所以PB平面ACE .(2)解:取AD 的中点H ,连接EH , 因为点E 是PD 的中点,所以EHPA .因为PA ⊥平面ABCD ,所以EH ⊥平面ABCD . 设AB x =,则PA AD CD x ===,且1122EH PA x ==. 所以13E ACD ACD V S EH -∆=⨯ 1132AD CD EH =⨯⨯⨯⨯3111262123x x x x ===.解得2x =.故AB 的长为2. 27.解:(1)由题意可得,3243648x y==, 解得2x =,4y =.(2)记从兴趣小组A 中抽取的2人为1a ,2a ,从兴趣小组B 中抽取的3人为1b ,2b ,3b ,则从兴趣小组A ,B 抽取的5人中选2人作专题发言的基本事件有()12,a a ,()11,a b ,()12,a b ,()13,a b ,()21,a b ,()22,a b ,()23,a b ,()12,b b ,()13,b b ,()23,b b 共10种.设选中的2人都来自兴趣小组B 的事件为X ,则X 包含的基本事件有()12,b b ,()13,b b ,()23,b b 共3种.所以()310P X =. 故选中的2人都来自兴趣小组B 的概率为310.28.解:(1)因为数列{}n a 是首项为1,公比为2的等比数列,所以数列{}n a 的通项公式为12n n a -=. 因为数列{}n b 的前n 项和2n S n =.所以当2n ≥时,1n n n b S S -=-()22121n n n =--=-,当1n =时,111211b S ===⨯-, 所以数列{}n b 的通项公式为21n b n =-. (2)由(1)可知,1212n n n b n a --=. 设数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和为n T , 则 213572321124822n n n n n T ----=++++++, ①即111357232122481622n n n n n T ---=++++++, ② ①-②,得2111112111224822n n nn T --=++++++- 11121211212n nn -⎛⎫- ⎪-⎝⎭=+-- 2332nn +=-, 所以12362n n n T -+=-. 故数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和为12362n n -+-.29.解:(1)当0k =时,直线方程为y b =,设点A 的坐标为1()x b ,,点B 的坐标为2()x b ,,由224x b +=,解得12x =, 所以21AB x x =-= 所以12S AB b==22422b b +-=≤.当且仅当b =,即b =S 取得最大值2.(2)设圆心O 到直线2y kx =+的距离为d,则d=.因为圆的半径为2R =, 所以2AB ===. 于是241121k S AB dk =⨯===+,即2410k k -+=,解得2k =.故实数k 的值为2+2-,2-+2-。
2020-2021学年福建省普通高中高二学业水平合格性考试(会考 )数学模拟试题(一)(解析版)

2020-2021学年福建省普通高中高二学业水平合格性考试(会考 )数学模拟试题(一)一、单选题1.设全集{}0,1,2,3,4U =,已知集合{}{}0,1,2,0,2,3A B ==,则如图所示的阴影部分的集合等于( )A .{}0,2B .{}3C .{}3,4D .{}1,4【答案】B【分析】根据韦恩图得解【详解】因为{}{}0,1,2,0,2,3A B ==,阴影部分表示的集合为(){}3U C A B =,故选:B 2.复数13ii=+( ) A .311010i - B .311010i + C .131010i - D .131010i + 【答案】B【分析】直接利用复数代数形式的乘除运算化简即可.【详解】因为复数()()()13131313i i i i i i -=++- 331101010i i +==+. 故选:B【点睛】本小题主要考查复数的除法运算,属于基础题.3.从2019年末开始,新型冠状病毒在全球肆虐.为了研制新型冠状病毒疫苗,某大型药企需要从150名志愿者中抽取15名志愿者进行临床试验,现采用分层抽样的方法进行抽取,若这150名志愿者中老年人的人数为50人,则老年人中被抽到进行临床试验的人数是( )A .15B .10C .5D .1【答案】C【分析】根据分层抽样中抽样比公式进行求解即可.【详解】设老年人中被抽到进行临床试验的人数是x ,因此有15050515x x=⇒=, 故选:C4.若sin αcos α0<,则角α的终边位于 A .第一、二象限 B .第二、三象限C .第二、四象限D .第三、四象限【答案】C【分析】由sin αcos α0<可得sin α0,cos α>0<⎧⎨⎩ 或sin α>0,cos α0⎧⎨<⎩又三角函数在各个象限的符号可求角α的终边所在象限.【详解】由sin αcos α0<可得sin α0,cos α>0<⎧⎨⎩ 或sin α>0,cos α0⎧⎨<⎩当sin α0cos α>0<⎧⎨⎩时角α的终边位于第四象限,当sin α>0cos α0⎧⎨<⎩时角α的终边位于第二象限.故选C.【点睛】本题考查角函数在各个象限的符号,属基础题. 5.若一组数据的茎叶图如图,则该组数据的中位数是A .79B .79.5C .80D .81.5【答案】A【分析】由给定的茎叶图得到原式数据70,71,72,76,82,82,85,87,再根据中位数的定义,即可求解.【详解】由题意,根据给定的茎叶图可知,原式数据为:70,71,72,76,82,82,85,87, 再根据中位数的定义,可得熟记的中位数为7682792+=,故选A. 【点睛】本题主要考查了茎叶图的应用,以及中位数的概念与计算,其中真确读取茎叶图的数据,熟记中位数的求法是解答的关键,属于基础题. 6.()cos 1050︒-的值为( )A .B .C .12-D .12【答案】A【分析】将1050-︒表示为360k α︒⨯+的形式,利用诱导公式求解. 【详解】1050360330-︒=-⨯+︒,根据诱导公式:()cos 1050cos30-︒=︒=故选:A.【点睛】本题考查诱导公式的使用,属基础题.7.直线1:310l x y ++=和直线2:2610l x y -+=的位置关系是 A .重合 B .垂直C .平行D .相交但不垂直【答案】B【分析】由两直线的斜率关系可得结论.【详解】因为已知两直线的斜率分别为13k =-,213k =,121k k =-,所以12l l ⊥. 故选:B .【点睛】本题考查两直线的位置关系,掌握两直线位置关系的判断方法是解题关键.在斜率都存在的情况下,121k k =-⇔两直线垂直,12k k =且纵截距不相等⇔两直线平行.8.下列函数中,在区间(0,1)上是递增函数的是 A .y =|x +1| B .y =3﹣xC .y 1x=D .24y x =-+【答案】A【分析】根据基本初等函数的单调性,分别求得选项中函数的单调性,即可作出判定,得到答案.【详解】由题意,对于A 中,函数1,111,1x x y x x x +≥-⎧=+=⎨--<-⎩,函数在[1,)-+∞上单调递增,可得在区间(0,1)也单调递增,所以是正确的;对于B 中,函数3y x =-在R 上单调递减,在区间(0,1)也单调递减,所以是不正确的; 对于C 中,函数1y x=在(0,)+∞上单调递减,在区间(0,1)也单调递减,所以是不正确的;对于D 中,函数24y x =-+在(0,)+∞上单调递减,在区间(0,1)也单调递减,所以是不正确的. 故选A.【点睛】本题主要考查了基本初等函数的单调性的判定及应用,其中解答中熟记基本初等函数的单调性是解答本题的关键,着重考查了分析问题和解答问题的能力,属于基础题.9.若数列{}n a 满足:11a =,12n n a a +=(*n N ∈),则5a =( ) A .8 B .16C .32D .9【答案】B【分析】根据等比数列的定义,结合等比数列的通项公式进行求解即可. 【详解】由1122n n n na a a a ++⇒==,所以数列{}n a 是以2为公比的等比数列, 又因为11a =,所以11122n n n a --=⨯=,因此51452216a -===,故选:B10.不等式2450x x +->的解集为( ) A .()1,5- B .()5,1-C .()(),15,-∞-+∞D .()(),51,-∞-⋃+∞【答案】D【分析】根据一元二次不等式的解法进行求解即可.【详解】2450(5)(1)01x x x x x +->⇒+->⇒>或5x <-, 故选:D11.《易经》是中国文化中的精髓,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(——表示一根阳线,一一表示一根阴线),从八卦中任取一卦,这一卦的三根线中恰有1根阳线和2根阴线的概率为( )A.18B.14C.38D.12【答案】C【分析】直接根据概率公式计算即可.【详解】从八卦中任取一卦,基本事件有188C=种,其中恰有1根阳线和2根阴线,基本事件共有3种,∴从八卦中任取一卦,这一卦的三根线中恰有1根阳线和2根阴线的概率为38 p=故选:C【点睛】具有以下两个特点的概率模型称为古典概率模型,简称古典概型.(1)有限性:试验中所有可能出现的基本事件只有有限个;(2)等可能性:每个基本事件出现的可能性相等.12.以下函数图象中为奇函数的一项是()A.B.C.D.【答案】A【分析】根据奇函数的性质进行判断即可.【详解】因为奇函数的图象关于原点对称,所以只有选项A 符合, 故选:A13.已知向量()1,1AB =,()2,1BC =-,则AC =( ) A .5 B .5C .3D .3【答案】B【分析】先把向量AB 和BC 相加得到向量AC 的坐标,再利用向量AC 的坐标算出向量AC 的模长.【详解】(1,1)(2,1)(1,2)AC AB BC =+=+-=-, ()22125AC =-+=.故选:B .14.下表是x 和y 之间的一组数据,则y 关于x 的回归方程必过( )A .点()2,3B .点()2,4C .点()3,4D .点()2.5,5【答案】C【分析】根据线性回归方程必过样本中心点进行求解即可. 【详解】因为323413573,444x y ++++++====,所以y 关于x 的回归方程必过点()3,4, 故选:C15.已知各个顶点都在同一球面上的正方体的棱长为2,则这个球的表面积为 A .12π B .16π C .20π D .24π【答案】A【分析】先求出外接球的半径,再求球的表面积得解. 【详解】由题得正方体的对角线长为3 所以23=2,3,=43=12R R S ππ∴=球. 故选A【点睛】本题主要考查多面体的外接球问题和球的表面积的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.二、填空题16.AB AD -=________. 【答案】DB【分析】根据平面向量减法的几何意义进行求解即可.【详解】由平面向量减法的几何意义可知:AB AD DB -=, 故答案为:DB17.等比数列{}n a 的首项11a =,48a =,则4S =___________. 【答案】15【分析】设等比数列{}n a 的公比为q ,根据题中条件求出q 的值,再利用等比数列求和公式可计算出4S 的值. 【详解】11a =,48a =,所以3418a q a ==,所以2q ,因此,()()4414111215112a q S q-⨯-===--,故答案为15.【点睛】本题考查等比数列求和,对于等比数列,一般是通过建立首项和公比的方程组,求出这两个量,再结合相关公式进行计算,考查运算求解能力,属于中等题. 18.lg0.01+log 216=_____________. 【答案】2【详解】lg0.01+log 216=-2+4=2【解析】本题考查对数的概念、对数运算的基础知识,考查基本运算能力.19.已知()y f x =是定义在R 上的奇函数,且当0x >时,()12xf x =+,则(3)f -=________.【答案】-9【详解】()y f x =是定义在R 上的奇函数,所以()()()333129f f -=-=-+=-.答案为:-9.20.在ABC 中,若30A =︒,AB =2AC =,则ABC 的面积S 是________.【分析】利用公式1sin 2s bc A =即可. 【详解】1sin 2s bc A =12sin 302s ∴=⨯⨯︒=【点睛】本题考查三角形的面积公式,要根据不同条件灵活选择1sin 2s ab C =,1sin 2s ac B =,1sin 2s bc A =三个公式.三、解答题21.已知α为锐角,且3sin 5α=. (1)求cos α的值. (2)求sin 24απ⎛⎫+ ⎪⎝⎭的值.【答案】(1)45;(2【分析】(1)根据同角的三角函数关系式中的平方和关系进行求解即可; (2)根据正弦、余弦的二倍角公式,结合两角和的正弦公式进行求解即可.【详解】(1)因为α为锐角,且3sin 5α=,所以4cos 5α===;(2)因为3sin 5α=,4cos 5α=,所以3424sin 22sin cos 25525ααα==⨯⨯=,2247cos 22cos 12()1525αα=-=⨯-=,因此247sin 2sin 2cos cos 2sin 444252252ππαααπ⎛⎫+=+=⨯+⨯= ⎪⎝⎭22.设n S 为等差数列{}n a 的前n 项和,57a =-,555S =-. (1)求{}n a 的通项公式; (2)求n S 的最小值及对应的n 值.【答案】(1)217n a n =-;(2)当8n =时,n S 的值最小,且864.S =- 【分析】(1)利用等差数列的通项公式以及前n 项和公式即可求解. (2)利用等差数列的前n 项和公式配方即可求最值. 【详解】解:(1)设等差数列{}n a 的公差为d .由题意可得515147,54555,2a a d S a d =+=-⎧⎪⎨⨯=+=-⎪⎩解得115,2a d =-=.故11()217n a a n d n =+-=-. (2)由(1)可得()2116.2n n n n S na d n n -=+=- 因为28()64,n S n =--所以当8n =时,n S 取得最小值,最小值为864.S =-23.如图,在四棱锥P ABCD -中,底面ABCD 是正方形, PA ⊥平面ABCD ,且PA AD =,点E 为线段PD 的中点.(1)求证://PB 平面AEC ; (2)求证:AE ⊥平面PCD . 【答案】(1)见解析(2)见解析【详解】试题分析:(1)连结,AC BD 交于点0,连结OE ,通过中位线的性质得到//PB OE ,由线面平行判定定理得结果;(2)通过线面垂直得到AE ⊥ CD ,通过等腰三角形得到AE ⊥ PD ,由线面垂直判定定理可得AE ⊥平面PCD .试题解析:(1)证明:连结,AC BD 交于点0,连结OE ,∵四边形ABCD 为正方形,∴O为AC 的中点,又∵E 为PC 中点,∴OE 为PBD △的中位线 ∴ //PB OE ,又∵,,OE AEC PA AEC ⊂⊄面 //PB 平面AEC .(2)∵四边形ABCD 为正方形,∴ AD CD ⊥,PD CD ⊥,∴CD ⊥面PAD ∴AE ⊥ CD ,又∵PA AD =,E 为PD 中点 ∴AE ⊥ PD ,∴AE ⊥面PCD .点睛:本题主要考查了线面平行的判定,面面平行的判定,属于基础题;主要通过线线平行得到线面平行,常见的形式有:1、利用三角形的中位线(或相似三角形);2、构造平行四边形;3、利用面面平行等;垂直关系中应始终抓住线线垂直这一主线.. 24.如图,动物园要围成一个长方形的虎笼.一面可利用原有的墙,其他各面用钢筋网围成.现有可围36m 长网的材料,虎笼的长、宽各设计为多少时,可使虎笼面积最大?【答案】虎笼的长、宽各设计为18m,9m 时,可使虎笼面积最大【分析】设虎笼的长为m x ,宽为m y ,根据已知可得236x y +=,求出虎笼面积的表达式,最后利用消元思想、基本不等式进行求解即可. 【详解】设虎笼的长为m x ,宽为m y ,因此有236x y +=,设虎笼面积为S ,所以218(362)2(18)2()1622y y S xy y y y y -+==-=-≤⋅=, 当且仅当18y y -=时取等号,即9,18y x ==时,S 有最大值,最大值为162, 所以虎笼的长、宽各设计为18m,9m 时,可使虎笼面积最大.25.已知以点()1,2A -为圆心的圆与直线1l :270x y ++=相切,过点()2,0B-的动直线l 与圆A 相交于M 、N 两点,Q 是MN 的中点.(1)求圆A 的方程;(2)当MN =时,求直线l 的方程.【答案】(1)22(1)(2)20x y ++-=;(2)2x =-或3460x y -+=.【分析】(1)设出圆A 的半径,根据以点(1,2)A -为圆心的圆与直线1:270l x y ++=相切.点到直线的距离等于半径,我们可以求出圆的半径,进而得到圆的方程;(2)根据半弦长,弦心距,圆半径构成直角三角形,满足勾股定理,我们可以结合直线l 过点(2,0)B -,求出直线的斜率,进而得到直线l 的方程. 【详解】(1)设圆A 的半径为R ,由于圆A 与直线1:270l x y ++=相切,R ∴== ∴圆A 的方程为22(1)(2)20x y ++-=;(2)①当直线l 与x 轴垂直时,易知2x =-符合题意;②当直线l 与x 轴不垂直时,设直线l 的方程为(2)y k x =+,即20kx y k -+=,连接AQ ,则AQ MN ⊥||MN =||1AQ ∴=, 则由||1AQ ==,得34k =,∴直线:3460l x y -+=. 故直线l 的方程为2x =-或3460x y -+=.【点睛】本题考查的知识点是直线和圆的方程的应用、直线的一般式方程和圆的标准方程,其中(1)的关键是求出圆的半径,(2)的关键是根据半弦长,弦心距,圆半径构成直角三角形,满足勾股定理,求出弦心距(即圆心到直线的距离).。
安徽省2023-2024学年高二下学期普通高中学业水平合格性考试仿真模拟数学试卷

安徽省2023-2024学年高二下学期普通高中学业水平合格性考试仿真模拟数学试卷一、单选题1.已知集合{}{}21,0,1,2,3,230M N x x x =-=--<,则M N =I ( )A .{}1,0,1-B .{}1,0,1,2,3-C .{}0,1,2D .{}1-2.下列图象中,表示定义域和值域均为[0,1]的函数是( )A .B .C .D .3.已知向量()()1,3,3,a b m =-=r r ,若a b r r∥,则m =( ) A .9B .9-C .1D .1-4.已知函数()()222,22,2x x x f x f x x ⎧-++≤⎪=⎨->⎪⎩,则()3f =( )A .1-B .1C .2D .35.若函数()25742xy a a a a =-++-是指数函数,则有( )A .2a =B .3a =C .2a =或3a =D .2a >,且3a ≠6.已知角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点1,12⎛⎫- ⎪⎝⎭,则πtan 4α⎛⎫+= ⎪⎝⎭( )A .3-B .3C .13-D .137.水平放置的ABC V 的斜二测直观图如图所示,已知3,2A C B C ''''==,则ABC V 的面积是( )A .4B .5C .6D .78.命题“21,10x x ∀≥-≤”的否定是( ) A .21,10x x ∃<-> B .21,10x x ∃≥-> C .21,10x x ∀<-≤D .21,10x x ∀-<>9.函数π2sin 26y x ⎛⎫=+ ⎪⎝⎭的图象的一条对称轴是( )A .π6x =- B .π2x =C .2π3x =D .5π6x =10.已知复数z 满足()34i i z +=,则z =( )A .34i 55-B .34i 55+C .43i 55+D .43i 55-11.“今有城,下广四丈,上广二丈,高五丈,袤两百丈.”这是我国古代数学名著《九章算术》卷第五“商功”中的问题.意思为“现有城(如图,等腰梯形的直棱柱体),下底长4丈,上底长2丈,高5丈,纵长200丈(1丈=10尺)”,则该问题中“城”的体积等于( )A .5310⨯立方尺B .5610⨯立方尺C .6610⨯立方尺D .6310⨯立方尺12.抛掷一枚质地均匀的骰子,记随机事件:E =“点数为奇数”,F =“点数为偶数”,G =“点数大于2”,H =“点数小于2”,R =“点数为3”.则下列结论不正确的是( )A .,E F 为对立事件B .,G H 为互斥不对立事件C .,E G 不是互斥事件D .,G R 是互斥事件13.ABC V 的内角,,A B C 的对边分别为,,,a b c ABC V 且π1,3b C ==,则边c =( )A .7B .3C D 14.已知,,αβγ是空间中三个不同的平面,,m n 是空间中两条不同的直线,则下列结论错误的是( )A .若,,m n αβα⊥⊥//β,则m //nB .若,αββγ⊥⊥,则α//γC .若,,m n m n αβ⊥⊥⊥,则αβ⊥D .若α//,ββ//γ,则α//γ15.若不等式2430ax x a -+-<对所有实数x 恒成立,则a 的取值范围为( )A .()(),14,-∞-⋃+∞B .(),1∞--C .(][),14,-∞-⋃+∞D .(],1-∞-16.已知某地区中小学生人数和近视情况分别如图甲和图乙所示,为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的小学生近视人数分别为( )A .100,30B .100,21C .200,30D .200,717.已知向量a r 与b r 的夹角为π,2,16a b ==rr ,则向量a r 与b r 上的投影向量为( )A .b rBC .a rD r18.若函数()22log 3y x ax a =-+在(2,)+∞上是单调增函数,则实数a 的取值范围为A .(,4]-∞B .(,4)-∞C .(4,4]-D .[4,4]-二、填空题19.已知5sin cos 4αα-=,则sin 2α=. 20.已知单位向量a r 与单位向量b r的夹角为120︒,则3a b +=r r .21.某学校举办作文比赛,共设6个主题,每位参赛同学从中随机抽取一个主题准备作文.则甲、乙两位参赛同学抽到的主题不相同的概率为.22.某服装加工厂为了适应市场需求,引进某种新设备,以提高生产效率和降低生产成本.已知购买x 台设备的总成本为()21800200f x x x =++(单位:万元).若要使每台设备的平均成本最低,则应购买设备台.三、解答题23.已知()f x a b =⋅r r,其中向量())()sin2,cos2,R a x x b x ==∈r r ,(1)求()f x 的最小正周期;(2)在ABC V 中,角、、A B C 的对边分别为a b c 、、,若224A f ⎫⎛== ⎪⎝⎭,求角B 的值.24.如图,在直三棱柱111ABC A B C -中,3AC =,4BC =,5AB =,点D 是AB 的中点.(1)证明:1AC BC ⊥; (2)证明:1//AC 平面1CDB . 25.已知函数()[]()211,1x b f x x x a+-=∈-+是奇函数,且()112f = (1)求,a b 的值;(2)判断函数()f x 在[]1,1-上的单调性,并加以证明;(3)若函数()f x 满足不等式()()12f t f t -<-,求实数t 的取值范围.。
高三会考数学模拟试卷答案

一、选择题(本大题共12小题,每小题5分,共60分)1. 下列各式中,绝对值最小的是()A. |3|B. |-3|C. |2|D. |-2|答案:B2. 函数f(x) = 2x + 3的图像是()A. 一次函数图像B. 二次函数图像C. 指数函数图像D. 对数函数图像答案:A3. 已知等差数列{an}的首项a1 = 2,公差d = 3,则第10项a10 =()A. 29B. 28C. 27D. 26答案:A4. 下列命题中,正确的是()A. 若a > b,则a^2 > b^2B. 若a > b,则a^3 > b^3C. 若a > b,则a^2 > b^2D. 若a > b,则a^3 < b^3答案:B5. 若log2x + log2y = 3,则xy的值为()A. 2B. 4C. 8D. 16答案:C6. 已知圆的方程为x^2 + y^2 - 4x - 6y + 9 = 0,则该圆的半径为()A. 1B. 2C. 3D. 4答案:B7. 函数y = (x - 1)^2 + 3的图像是()A. 抛物线B. 直线C. 双曲线D. 椭圆答案:A8. 已知等比数列{an}的首项a1 = 3,公比q = 2,则第5项a5 =()A. 24B. 12C. 6D. 3答案:A9. 下列函数中,有最大值的是()A. y = x^2B. y = -x^2C. y = x^3D. y = -x^3答案:B10. 已知函数f(x) = |x| + 1,则f(-1)的值为()A. 0B. 1C. 2D. 3答案:C11. 若log2x - log2y = 1,则x与y的比值为()A. 2B. 1/2C. 4D. 1/4答案:A12. 圆的标准方程为(x - 2)^2 + (y - 3)^2 = 25,则该圆的圆心坐标为()A. (2, 3)B. (2, -3)C. (-2, 3)D. (-2, -3)答案:A二、填空题(本大题共8小题,每小题5分,共40分)13. 若等差数列{an}的首项a1 = 3,公差d = 2,则第n项an = _______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学会考模拟试题(B)
一选择题
1.已知集合,,则等于
A B C D
2.函数的反函数是
A B C D
3.已知等差数列中,,则的值是
A 1
B 2
C 3
D 4
4.设函数的图象过点(1,2),则反函数的图象过点
A (1,2) B(-1,-2) C(-2,-1) D (2,1)
5.是的
A充分不必要条件 B必要不充分条件 C充分必要条件 D 既不充分也不必要条件
6.一条直线若同时平行于两个相交平面,则这条直线与这两个相交平面的位置关系是
A 异面 B相交 C平行 D平行或相交
7.点P在直线上,O为原点,则|OP|的最小值为
A-2 B C D
8.若向量|a|=1,| b|=2, c= a+ b且c⊥a,则向量a与b的夹角为
A B C D
9.若抛物线的焦点与椭圆的右焦点重合,则P的值为
A -2
B 2
C ﹣4
D 4
10.不等式组表示的平面区域是一个
A 三角形
B 梯形
C 矩形
D 菱形
11.已知正方体的外接球的体积是,那么正方体的棱长等于
A B C D
12.函数在下列哪个区间是减函数
A B C D
13.从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名女生,则选派方案共有
A 108种
B 186 种
C 216种
D 270种
14.函数对任意的实数t都有
则A B
C D
15.已知过点A(-2,m)和B(m,4)的直线与直线2x+y-1=0平行,则m的值为
A 0
B -8
C 2
D 10
16.双曲线的渐近线方程
A B C D
17.在下列函数中,函数的图象关于y轴对称的是
A B C D
18.将的图象上的所有点的纵坐标不变,横坐标缩小到原来的一半,然后再将图象沿x轴负方向平移个单位,则所得图象的解析式为
A B C D
19.设我方每枚地对空导弹独立地击中敌机的概率为,如果要以99%的把握击中来犯敌机,则至少要同时发射导弹
A 2枚
B 3 枚
C 4枚
D 5枚
20.建造一个容积为8,深为2的长方体无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,那么水池的最低总造价为
A 1700元
B 1720元
C 1740元
D 1760元
二:填空题
21.函数的值域
22.不等式的解集
23.抛物线的准线方程是
24.在的展开式中,含项的系数为
三:解答题
25.在四棱锥P-ABCD中,底面ABCD是正方形,侧面PAD是正三角形,平面PAD 底面ABCD
(1)证明AB 平面PAD
(2)求面PAD与面PDB所成的二面角的正切值
如图ABCD是正方形,面ABCD,PD=DC。
(1)求证:ACPB;
(2)求二面角的大小;
(3)求AD与PB所成角的正切值。
26.设二次方程有两根和,且满足
(1)试用表示;
(2)求证:是等比数列;
(3)当时,求数列的通项公式。
27.已知椭圆的长、短轴端点分别为A、B,从此椭圆上一点M向x轴作垂线,恰好通过椭圆的左焦点,向量与是共线向量
(1)求椭圆的离心率;
(2)设Q是椭圆上任意一点,分别是左、右焦点,求的取值范围。
参考答案
12345678910
B A B D B
C B C
D A 11121314151617181920
D C B A B C C B B D 21. [-2,0]
22.或
23.
24. 20
25.证明:(1)取AD的中点O,连接PO,侧面PAD是正三角
形,POAD,
又面PAD面ABCD则POAB,又底面是正方形,所以PAAB,则AB面PAD
(2)取PD的中点E连接AE、连接BE由(1)及三垂线定理知为所求的二面角
在直角三角形AEB中,设AB=a,则
26.(1)解:根据韦达定理得由得
故
(2)因为所以
所以数列是等比数列
(3)当的首项为
所以所以:
27.解:则
是共线向量,所以所以b=c,
(2)设
所以
当且仅当所以。