2021年吉林普通高中会考数学模拟试题及答案
吉林省长春市普通高中2021届高三数学质量监测(三模)试题(三)理.doc

吉林省长春市普通高中2021届高三数学质量监测(三模)试题(三)理一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合2{|4}A x x =∈≤Z ,B={x|-4<x<2},则A∩B= A.{x|-2≤x<2}B.{x|-4<x≤2}.{2,1,0,1,2}C --.{2,1,0,1}D --2.已知复数z=(a+i)(1-2i)(a ∈R )的实部为3,其中i 为虚数单位,则复数z 的虚部为 A.-1B.-iC.1D.i3.已知向量a =(1,-2),b =(3,-3),c =(1,t),若向量a 与向量b c +共线,则实数t=A.5B.-5C.1D.-14.已知函数()cos 3sin 22x xf x =-的图象为C,为了得到关于原点对称的图象,只要把C 上所有的点A.向左平移3π个单位 B.向左平移23π个单位 C.向右平移3π个单位 D.向右平移23π个单位 5.函数3()x xx f x e e -=-的图象大致为6.在521()x x +的展开式中,一定含有 A.常数项B.x 项1.C x - 项3.D x 项7.已知直线m,n 和平面,,,αβγ有如下四个命题: ①若m ⊥α,m//β,则α⊥β; ②若m ⊥α,m//n,n ⊂β,则α⊥β;③若n ⊥α,n⊥β,m⊥α,则m ⊥β; ④若m ⊥α,m⊥n,则n//α. 其中真命题的个数是 A.1B.2C.3D.48.风雨桥是侗族最具特色的建筑之一,风雨桥由桥、塔、亭组成,其塔俯视图通常是正方形、正六边形和正八边形.右下图是风雨桥中塔的俯视图。该塔共5层,若01122334000.5,8.B B B B B B B B m A B m =====这五层正六边形的周长总和为A.35mB.45mC.210mD.270m9.已知圆E 的圆心在y 轴上,且与圆C:2220x y x +-=的公共弦所在直线的方程为30,x y -=则圆E 的方程为22.(3)2A x y +-= 22.(3)2B x y ++= 22.(3)3C x y +-=22.(3)3D x y ++=10.某项针对我国《义务教育数学课程标准》的研究中,列出各个学段每个主题所包含的条目数(如下表),下右图是将统计表的条目数转化为百分比,按各学段绘制的等高条形图,由图表分析得出以下四个结论,其中错误的是A.除了“综合与实践”外,其它三个领域的条目数都随着学段的升高而增加,尤其“图形与几何”在第三学段增加较多,约是第二学段的3.5倍。B.所有主题中,三个学段的总和“图形与几何”条目数最多,占50%,综合与实践最少,约占4%C.第一、二学段“数与代数”条目数最多,第三学段“图形与几何”条目数最多.D.“数与代数”条目数虽然随着学段的增长而增长,而其百分比却一直在减少.“图形与几何”条目数,百分比都随学段的增长而增长.11.已知数列{}n a 的各项均为正数,其前n 项和n S 满足2*42,()n nn S a a n =+∈N ,设1(1),n n n n b a a +=-⋅T n 为数列{}n b 的前n 项和,则20T =A.110B.220C.440D.88012.设椭圆的左右焦点为12,,F F 焦距为2c,过点1F 的直线与椭圆C 交于点P,Q,若2||2,PF c =且114||||3PF QF =,则椭圆C 的离心率为 1.2A3.4B 5.7C 2.3D 二、填空题:本题共4小题,每小题5分,共20分。13.一名信息员维护甲、乙两公司的5G 网络,一天内甲公司需要维护和乙公司需要维护的概率分别为0.4和0.3,则至少有一个公司不需要维护的概率为___.14.等差数列{}n a 中,11,a =公差d ∈[1,2],且391515,a a a λ++=则实数λ的最大值为___.15.若12,x x 是函数2()74f x x x lnx =-+的两个极值点,则12x x =__;12()()f x f x +=___.(本题第一空2分,第二空3分)16.现有一批大小不同的球体原材料,某工厂要加工出一个四棱锥零件,要求零件底面ABCD 为正方形,AB=2,侧面△PAD 为等边三角形,线段BC 的中点为E,若PE=1.则所需球体原材料的最小体积为____.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22~23题为选考题,考生根据要求作答。(一)必考题:共60分。 17.(12分)笔、墨、纸、砚是中国独有的文书工具,即“文房四宝”.笔、墨、纸、砚之名,起源于南北朝时期,其中的“纸”指的是宣纸,宣纸“始于唐代,产于泾县”,而唐代泾县隶属于宣州府管辖,故因地而得名“宣纸”,宣纸按质量等级,可分为正牌和副牌(优等品和合格品),某公司年产宣纸10000刀(每刀100张),公司按照某种质量标准值x给宣纸确定质量等级,如下表所示:x (48,52] (44,48]∪(52,56] (0,44]∪(56,100]质量等级正牌副牌废品,已知每张正牌纸的利润是10元,副牌纸的利润是5元,废品亏损10元.(1)估计该公司生产宣纸的年利润(单位:万元);(II)该公司预备购买一种售价为100万元的机器改进生产工艺,这种机器的使用寿命是一年,只能提高宣纸的质量,不影响产量,这种机器生产的宣纸的质量标准值x的频率,如下表所示:其中x为改进工艺前质量标准值x的平均值,改进工艺后,每张正牌和副牌宣纸的利润都下降2元,请判断该公司是否应该购买这种机器,并说明理由.18.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,且a=4ccosB.(1)求证:sinBcosC=3sinCcosB;(II)求B-C的最大值.19.(12分)四棱锥P-ABCD中,ABCD为直角梯形,BC//AD,AD⊥DC,BC=CD=1,AD=2,PA=PD,E为PC中点,平面PAD⊥平面ABCD,F为AD上一点,PA//平面BEF.(1)求证:平面BEF⊥平面PAD;(II)若PC与底面ABCD所成的角为60°.求二面角E-BF-A的余弦值.20.(12分)已知点A(0,1),点B在y轴负半轴上,以AB为边做菱形ABCD,且菱形ABCD对角线的交点在x轴上,设点D的轨迹为曲线E.(1)求曲线E的方程;(II)过点M(m,0),其中1<m<4,作曲线E的切线,设切点为N,求△AMN面积的取值范围.21.(12分)已知函数1()ln ,()(0)x f x m x g x x x-==>. (1)讨论函数F(x)=f(x)-g(x)在(0,+∞)上的单调性;(II)是否存在正实数m,使y=f(x)与y=g(x)的图象有唯一一条公切线,若存在,求出m 的值,若不存在,请说明理由.(二)选考题:共10分,请考生在22-23题中任选一题作答,如果多做则按所做的第一题计分. 22.[选修4-4坐标系与参数方程](10分)以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为2212([0,])23sin πρθθ=∈+,直线1的参数方程为23x y ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数). (1)求曲线C 的参数方程与直线l 的普通方程;(II)设点P 为曲线C 上的动点,点M 和点N 为直线l 上的点,且满足△PMN 为等边三角形,求△PMN 边长的取值范围.23.[选修4-5不等式选讲](10分)已知函数()()2, , 3f x m x m g x x =--∈=+R .(1)当x∈R时,有f(x)≤g(x),求实数m的取值范围;(II)若不等式f(x)≥0的解集为[1,3],正数a,b满足ab-2a-b=3m-1,求a+b的最小值.。
2021年吉林省普通高中学业水平考试数学试题(word版含答案)

2021年吉林省普通高中学业水平考试数学试题一、选择题:(本大题共15小题,每小题的四个选项中,只有一项是正确的,第1—10小题每小题3分,第11—15小题4分,共50分)1. 已知集合A={-1,0,1,2},B={-2,1,2}则A B=( ) A{1} B.{2} C.{1,2} D.{-2,0,1,2}.2.函数5()log (1)f x x =-的定义域是( )A. (,1)(1,)-∞+∞B.[0,1)C.[1,)+∞D.(1,)+∞3函数f(x)=⎩⎨⎧ x +1,x ≤1-x +3,x>1,则f(f(4))=( )A. 0B. -2C. 2D. 64.将一枚质地均匀的骰子抛掷一次,出现“正面向上的点数为6”的概率是() A. B. C. D.5.的值为( )A. B. C. D. 6.已知直线l 过点(0,7),且与直线y=-4x+2平行,则直线l 的方程为( )A.y=-4x-7B.y=4x-7C.y=-4x+7D.y=4x+77.已知向量若,则实数x 的值为( )A.-2B.2C.-1D.1314151614cos 4sin ππ2122422),1,(),2,1(-==x b a b a ⊥8.已知函数f(x)的图像是连续不断的,且有如下对应值表: x 1 2 3 4 5 f(x) -4 -2 1 4 7 在下列区间中,函数f(x)必有零点的区间为 ( )A.(1,2)B.(2,3)C.(3,4)D. (4,5)9.已知直线l :y=x+1和圆C :x 2+y 2=1,则直线l 和圆C 的位置关系为( )A.相交B.相切C.相离D.不能确定10.下列函数中,在区间(0,+)上为增函数的是( )A. B.y=log 3x C. D.y=cosx11..下列结论正确的是( )A .平行于同一个平面的两条直线平行B .一条直线与一个平面平行,它就和这个平面内的任意一条直线平行C .与两个相交平面的交线平行的直线,必平行于这两个平面D .平面外两条平行直线中的一条与这个平面平行,则另一条也与这个平面平行 12. 已知一组数据如图所示,则这组数据的中位数是( )A.27.5B. 28.5C. 27D. 2813. )的最小值是(则若)2(),0,2(x x x +-∈A. 2-B. 23- C. 1- D. 21-14. 偶函数)(x f 在区间[]1,2--上单调递减,则函数)(x f 在区间[]2,1上( )A. 单调递增,且有最小值)1(fB. 单调递增,且有最大值)1(fC. 单调递减,且有最小值)2(fD. 单调递减,且有最大值)2(f∞x y )31(=x y 1=。
吉林省长春市普通高中2021届高三质量监测(二)数学(理)试题答案

长春市普通高中2021届高三质量监测(二) 数学(理科)试题参考答案及评分标准一、选择题(本大题共12小题,每小题5分,共60分)1. D2. A3. B4. C5.C6. C7. D8. B9. D 10.C 11. C12. D简答与提示:1. 【试题解析】D 复数z 的虚部为2sin3π=D. 2. 【试题解析】A 易知阴影部分为集合()(1,2]U A B =-,故选A. 3. 【试题解析】B 若m 与n 不相交,则“直线l m ⊥且l n ⊥”不能推出“l α⊥”;反之,如果“l α⊥”,无论m 与n 是否相交,都能推出“直线l m ⊥且l n ⊥”,故“直线l m ⊥且l n ⊥”是“l α⊥”的必要不充分条件,故选B.4. 【试题解析】C 由图易知①②③正确,④中位数应为1289(万),④错,故选C.5. 【试题解析】C 设事件A =“第1次抽到代数题” ,事件B =“第2次抽到几何题”,则321(|)342P B A ⨯==⨯,故选C. 6. 【试题解析】C 由题意533565,13S a a ===,所以142328a a a a +=+=,故选C.7. 【试题解析】D 由题意知,直线l 过点1(,1)2-,斜率为2,所以直线:220l x y -+=,故选D.8. 【试题解析】B 由题意知||1,0DC DC BC =⋅=,所以()1AD DC AB BC CD DC AB DC CD DC ⋅=++⋅=⋅+⋅=,故选B9. 【试题解析】D由题意,设ABC △为36A =︒的黄金三角形,有,a b c b ==,所以222cos362b c a bc +-︒==所以sin126cos36︒=︒=另外36A B ==︒,108C =,也可获得此结果,故选D.10. 【试题解析】C 由2FA AM =知A 为线段FM 上靠近F 的三等分点,所以0(,0),(,3)22p p F M y -,有22(2)2,12,2422p pp y x -=+==,故选C. 11. 【试题解析】C 由图知,125,221212πππωω⋅=+=,2()2,0,126k k ππϕπϕ⨯-+===,故①正确,②错误;③中,12,26x x π+=而直线6x π=是函数()f x 的对称轴,故③正确,④错误,故选C.12. 【试题解析】D 由题意化简,()1x xx xe ef x e e --+=+-,可知()f x 的图象与()g x 的图象都关于点(0,1)对称,又2224()0(1)xx e f x e -'=<-,所以()f x 在(,0),(0,)-∞+∞上单调递减,由2()3(4)g x x '=--可知,()g x 在(,2),(2,)-∞-+∞上单调递减,在(2,2)-上单调递增,由图象可知,()f x 与()g x 的图象有四个交点,且都关于点(0,1)对称,所以所求和为4,故选D.二、填空题(本大题共4小题,每小题5分,共20分)13. 614. 例如x -15.16. 三、解答题17. (本小题满分12分)【试题解析】解:(1)由题意,521885020400ˆ90,4,859080ii x x b =-⨯====-∑,ˆ40085460a=-⨯=,所以ˆ8560y x =+. (6分) (2)由(1)知,22171125585805()24w x x x =-+-=--+,所以当8x =或9x =时能获得总利润最大. (12分)18. (本小题满分12分) 【试题解析】解:(1)证明:11111111111A A ABC A A AC AC A ABB AC ABC AC B M AC B M AB AC B M A ABB ⎫⎫⊥⎫⇒⊥⎪⎬⎪⇒⊥⊂⎬⎪⎭⇒⊥⊥⎬⎪⊥⎭⎪⎪ ⊂⎭平面平面平面,即平面111111*********AC B M B M A BC A B B M B C M A BC B M B C M ⎫⊥⎫⇒⊥⎬⎪⊥⇒⊥⎬⎭⎪ ⊂⎭平面平面平面平面. (6分) (2)以A 为原点,AB 方向为x 轴,AC 方向为y 轴,1AA 方向为z 轴,建立空间直角坐标系.1(4,0,2)B ,1(0,4,2)C ,(3,0,0)M11(4,4,0)BC =- 1(1,0,2)B M =--平面11B C M 的法向量为1(2,2,1)n =- 平面11A ACC 的法向量为2(1,0,0)n =即平面11A ACC 与平面11B C M 所成锐二面角θ的余弦值为1212||2cos 3||||n n n n θ⋅==⋅,即平面11A ACC 与平面11B C M 所成锐二面角的余弦值为23. (12分)19. (本小题满分12分)【试题解析】解:(1)由题意112112080a a q a q a q +=⎧⎨+=⎩,可知4q =, 进一步解得14a =. 即{}n a 的通项公式为4n n a =. (6分)(2)22log log 42n n n b a n ===,212(1)22n S n n n n n =+-⋅=+,2221111111n n b n S n n n n==+++++,由*n ∈N , 利用基本不等式以及对勾函数的性质可得11203n n +≥得61123n n b S +≤则λ的最小值为623. (12分)20. (本小题满分12分)【试题解析】解:(1)当1a =时,令2()()()ln F x f x g x x x =-=-,1()2F x x x'=-(0x >) 2121()2x F x x x x -'=-=,令()0F x '=且0x >可得22x =,min 21111((ln 2)ln 222222F F ==--=+. (4分)(2)方法一:由函数()f x 和()g x 的图象可知,当()()f x g x >时,曲线()y f x =与()y g x =有两条公切线.即2ln ax x >在(0,)+∞上恒成立,即2ln x a x>在(0,)+∞上恒成立,设2ln ()x h x x =,312ln ()xh x x -'=令312ln ()0xh x x -'==,x e =即max 1()2h h e e ==,因此,12a e >. (12分)法二: 取两个函数相切的临界条件:20000ln 12ax x ax x⎧=⎪⎨=⎪⎩解得0x =,12a e =, 由此可知,若两条曲线具有两条公切线时,12a e>. (12分) 21. (本小题满分12分)【试题解析】解:(1)由12e =可设2a t =,c t =,则b =, 则方程化为2222143x y t t+=,又点3(1,)2P 在椭圆上,则22914143t t+=,解得1t =,因此椭圆C 的方程为22143x y +=. (4分) (2)当直线AB 的斜率存在时,设AB 直线的方程为y kx m =+, 联立直线AB 和椭圆C 的方程消去y 得,2234()120x kx m ++-=,化简得:222(34)84120k x kmx m +++-=,21111||||||||222AOB S m x x m m =⋅-==△222||2||3434m m k k =++==当221342m k =+时,S22234m k =+, 又122834km x x k -+=+,121226()234my y k x x m k +=++=+, 则1212(,)22x x y y M ++,即2243(,)3434km mM k k -++ 令22434334km x k my k -⎧=⎪⎪+⎨⎪=⎪+⎩,则221322x y +=, 因此平面内存在两点G 、H使得||||GM HM +=当直线AB的斜率不存在时,设(2cos )A θθ,则(2cos ,)B θθcos 2AOB S θθθ==△,即当4πθ=此时AB 中点M的坐标为,满足方程221322x y +=,即||||GM HM +=(12分)22. (本小题满分10分)【试题解析】(1)曲线1C 的普通方程为cos sin 0y x αα⋅-⋅=,即极坐标方程为θα=(ρ∈R ).曲线2C 的直角坐标方程为2223x y x +-=,即22(1)4x y -+=. (5分)(2)曲线2C 的极坐标方程为22cos 30ρθρ-⋅-=,代入θα=,可得123ρρ⋅=-, 则12||||||3OA OB ρρ⋅==. (10分)23. (本小题满分10分) 【试题解析】(1)()(4)|1||3|8f x f x x x ++=-++≥,则(,5][3,)x ∈-∞-+∞. (5分)(2)要证()||()bf ab a f a>成立,即证|1|||ab b a ->-成立, 即证22221b a b a +>+成立,只需证222(1)(1)0a b b --->成立即证22(1)(1)0a b -->成立,由已知||1,||1a b <<得22(1)(1)0a b -->显然成立.(10分)。
吉林省长春市2021届新高考数学四模考试卷含解析

吉林省长春市2021届新高考数学四模考试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.双曲线2212yx-=的渐近线方程为()A.32y x=±B.y x=±C.2y x=±D.3y x=±【答案】C【解析】【分析】根据双曲线的标准方程,即可写出渐近线方程. 【详解】Q双曲线2212yx-=,∴双曲线的渐近线方程为2y x=±,故选:C【点睛】本题主要考查了双曲线的简单几何性质,属于容易题.2.“角谷猜想”的内容是:对于任意一个大于1的整数n,如果n为偶数就除以2,如果n是奇数,就将其乘3再加1,执行如图所示的程序框图,若输入10n=,则输出i的()A.6 B.7 C.8 D.9【答案】B【解析】【分析】模拟程序运行,观察变量值可得结论. 【详解】循环前1,10i n ==,循环时:5,2n i ==,不满足条件1n =;16,3n i ==,不满足条件1n =;8,4n i ==,不满足条件1n =;4,5n i ==,不满足条件1n =;2,6n i ==,不满足条件1n =;1,7n i ==,满足条件1n =,退出循环,输出7i =. 故选:B . 【点睛】本题考查程序框图,考查循环结构,解题时可模拟程序运行,观察变量值,从而得出结论.3.已知双曲线22221(0,0)x y a b a b-=>>的左右焦点分别为1(,0)F c -,2(,0)F c ,以线段12F F 为直径的圆与双曲线在第二象限的交点为P ,若直线2PF 与圆222:216⎛⎫-+= ⎪⎝⎭c b E x y 相切,则双曲线的渐近线方程是( ) A .y x =± B .2y x =±C .y = D.y =【答案】B 【解析】 【分析】先设直线2PF 与圆222:216⎛⎫-+= ⎪⎝⎭c b E x y 相切于点M ,根据题意,得到1//EM PF ,再由22114F E F F =,根据勾股定理求出2b a =,从而可得渐近线方程. 【详解】设直线2PF 与圆222:216⎛⎫-+= ⎪⎝⎭c b E x y 相切于点M ,因为12PF F ∆是以圆O 的直径12F F 为斜边的圆内接三角形,所以1290F PF ∠=o,又因为圆E 与直线2PF 的切点为M ,所以1//EM PF ,又22114F E F F =,所以144b PF b =⋅=, 因此22PF a b =+,因此有222(2)4b a b c ++=,所以2b a =,因此渐近线的方程为2y x =±. 故选B【点睛】本题主要考查双曲线的渐近线方程,熟记双曲线的简单性质即可,属于常考题型.4.512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为 A .-40 B .-20C .20D .40【答案】D 【解析】令x=1得a=1.故原式=511()(2)x x x x +-.511()(2)x x x x+-的通项521552155(2)()(1)2r r r r r r r r T C x x C x ----+=-=-,由5-2r=1得r=2,对应的常数项=80,由5-2r=-1得r=3,对应的常数项=-40,故所求的常数项为40 ,选D解析2.用组合提取法,把原式看做6个因式相乘,若第1个括号提出x,从余下的5个括号中选2个提出x ,选3个提出1x ;若第1个括号提出1x ,从余下的括号中选2个提出1x,选3个提出x. 故常数项=223322335353111(2)()()(2)X C X C C C X X X X⋅⋅-+⋅-⋅=-40+80=405.设全集U =R ,集合{|(1)(3)0}A x x x =--≥,11|24xB x ⎧⎫⎪⎪⎛⎫=>⎨⎬ ⎪⎝⎭⎪⎪⎩⎭.则集合()U A B I ð等于( )A .(1,2)B .(2,3]C .(1,3)D .(2,3)【答案】A 【解析】 【分析】先算出集合U A ð,再与集合B 求交集即可. 【详解】因为{|3A x x =≥或1}x ≤.所以{|13}U A x x =<<ð,又因为{}|24{|2}xB x x x =<=<. 所以(){|12}U A B x x ⋂=<<ð. 故选:A. 【点睛】本题考查集合间的基本运算,涉及到解一元二次不等式、指数不等式,是一道容易题.6.某几何体的三视图如图所示,若侧视图和俯视图均是边长为2的等边三角形,则该几何体的体积为A .83B .43C .1D .2【答案】C 【解析】 【分析】 【详解】由三视图可知,该几何体是三棱锥,底面是边长为23,所以该几何体的体积113223132V =⨯⨯⨯=,故选C .7.()252(2)x x -+的展开式中含4x 的项的系数为( ) A .20- B .60 C .70 D .80【答案】B 【解析】 【分析】展开式中含4x 的项是由5(2)x +的展开式中含4x 和2x 的项分别与前面的常数项2-和2x 项相乘得到,由二项式的通项,可得解 【详解】由题意,展开式中含4x 的项是由5(2)x +的展开式中含4x 和2x 的项分别与前面的常数项2-和2x 项相乘得到,所以()252(2)x x -+的展开式中含4x 的项的系数为1335522260C C -⨯+⨯=.故选:B 【点睛】本题考查了二项式系数的求解,考查了学生综合分析,数学运算的能力,属于基础题.8.已知变量x ,y 满足不等式组210x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则2x y -的最小值为( )A .4-B .2-C .0D .4【答案】B 【解析】 【分析】先根据约束条件画出可行域,再利用几何意义求最值. 【详解】解:由变量x ,y 满足不等式组210x y x y x +≤⎧⎪-≤⎨⎪≥⎩,画出相应图形如下:可知点()1,1A ,()0,2B ,2x y -在B 处有最小值,最小值为2-.故选:B. 【点睛】本题主要考查简单的线性规划,运用了数形结合的方法,属于基础题.9.在平行四边形ABCD 中,113,2,,D,32AB AD AP AB AQ A ====u u u v u u u v u u u v u u u v 若CP C 12,Q ⋅=u u u v u u u v则ADC ∠=( )A .56πB .34π C .23π D .2π 【答案】C 【解析】 【分析】由23CP CB BP AD AB =+=--u u u r u u u r u u u r u u u r u u u r ,12CQ CD DQ AB AD =+=--u u u r u u u r u u u r u u u r u u u r,利用平面向量的数量积运算,先求得,3BAD π∠=利用平行四边形的性质可得结果.【详解】如图所示,平行四边形ABCD 中, 3,2AB AD ==,11,32AP AB AQ AD ==u u u r u u u r u u u r u u u r ,23CP CB BP AD AB ∴=+=--u u u r u u u r u u u r u u u r u u u r ,12CQ CD DQ AB AD =+=--u u u r u u u r u u u r u u u r u u u r ,因为12CP CQ ⋅=u u u r u u u r,所以2132CP CQ AD AB AB AD ⎛⎫⎛⎫⋅=--⋅-- ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r22214323AB AD AB AD =++⋅u u ur u u u r u u u r u u u r222143232cos 12323BAD =⨯+⨯+⨯⨯⨯∠=, 1cos 2BAD ∠=,,3BAD π∴∠= 所以233ADC πππ∠=-=,故选C. 【点睛】本题主要考查向量的几何运算以及平面向量数量积的运算法则,属于中档题. 向量的运算有两种方法:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和).10.已知函数()2ln 2,03,02x x x x f x x x x ->⎧⎪=⎨+≤⎪⎩的图像上有且仅有四个不同的点关于直线1y =-的对称点在1y kx =-的图像上,则实数k 的取值范围是( )A .1,12⎛⎫⎪⎝⎭B .13,24⎛⎫⎪⎝⎭C .1,13⎛⎫⎪⎝⎭D .1,22⎛⎫⎪⎝⎭【答案】A 【解析】 【分析】可将问题转化,求直线 1y kx =-关于直线1y =-的对称直线,再分别讨论两函数的增减性,结合函数图像,分析临界点,进一步确定k 的取值范围即可 【详解】可求得直线 1y kx =-关于直线1y =-的对称直线为1y mx =-()m k =-,当0x >时,()ln 2f x x x x =-,()'ln 1f x x =-,当x e =时,()'0f x =,则当()0,x e ∈时,()'0f x <,()f x 单减,当(),x e ∈+∞时,()'0f x >,()f x 单增;当0x ≤时,()232f xx x =+,()3'22f x x =+,当34x =-,()'0f x =,当34x <-时,()f x 单减,当304x -<<时,()f x 单增; 根据题意画出函数大致图像,如图:当1y mx =-与()232f x x x =+(0x ≤)相切时,得0∆=,解得12m =-;当1y mx =-与()ln 2f x x x x =-(0x >)相切时,满足ln 21ln 1y x x xy mx m x =-⎧⎪=-⎨⎪=-⎩,解得1,1x m ==-,结合图像可知11,2m ⎛⎫∈-- ⎪⎝⎭,即11,2k ⎛⎫-∈-- ⎪⎝⎭,1,12k ⎛⎫∈ ⎪⎝⎭故选:A 【点睛】本题考查数形结合思想求解函数交点问题,导数研究函数增减性,找准临界是解题的关键,属于中档题 11.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,3C π=,若()6,m c a b =-u r ,(,6n a b c =-r,且//m n u r r,则ABC ∆的面积为( )A .3B .93C 33D .33【答案】C 【解析】 【分析】由//m n u r r ,可得2()(6)(6)a b c c -=-+,化简利用余弦定理可得2221cos 322a b c abπ+-==,解得ab .即可得出三角形面积. 【详解】解:Q ()6,m c a b =--u r ,(),6n a b c =-+r ,且//m n u r r,2()(6)(6)a b c c ∴-=-+,化为:22226a b c ab +-=-.222261cos 3222a b c ab ab ab π+--∴===,解得6ab =.11333sin 622ABC S ab C ∆∴==⨯⨯=. 故选:C . 【点睛】本题考查了向量共线定理、余弦定理、三角形面积计算公式,考查了推理能力与计算能力,属于中档题. 12.若函数f(x)=a |2x -4|(a>0,a≠1)满足f(1)=19,则f(x)的单调递减区间是( ) A .(-∞,2] B .[2,+∞) C .[-2,+∞) D .(-∞,-2]【答案】B 【解析】 由f(1)=得a 2=, ∴a=或a=-(舍), 即f(x)=(.由于y=|2x-4|在(-∞,2]上单调递减,在[2,+∞)上单调递增,所以f(x)在(-∞,2]上单调递增,在[2,+∞)上单调递减,故选B.二、填空题:本题共4小题,每小题5分,共20分。
吉林省会考数学模拟试题及答案word版

吉林省会考数学模拟试题及答案word版一、选择题(每题5分,共20分)1. 下列哪个选项是正确的?A. 1+1=2B. 1+1=3C. 1+1=4D. 1+1=5答案:A2. 一个圆的直径是10厘米,那么它的半径是多少厘米?A. 5厘米B. 10厘米C. 15厘米D. 20厘米答案:A3. 一个数的平方根是4,那么这个数是多少?A. 16B. 8C. 4D. 2答案:A4. 一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 5和-5D. 以上都不是答案:C二、填空题(每题5分,共20分)1. 已知一个直角三角形的两条直角边分别为3和4,那么斜边的长度是_________。
答案:52. 一个数的立方是-8,那么这个数是_________。
答案:-23. 一个等差数列的前三项分别为2,5,8,那么第四项是_________。
答案:114. 函数f(x) = 2x + 3的值域是_________。
答案:所有实数三、解答题(每题10分,共40分)1. 已知函数f(x) = x^2 - 4x + 4,求f(2)的值。
答案:f(2) = 2^2 - 4*2 + 4 = 4 - 8 + 4 = 02. 求解方程x^2 - 5x + 6 = 0。
答案:x = 2 或 x = 33. 已知一个等比数列的前两项分别为3和6,公比为2,求第三项。
答案:第三项 = 6 * 2 = 124. 计算定积分∫(0到1) (3x^2 - 2x + 1) dx。
答案:∫(0到1) (3x^2 - 2x + 1) dx = [x^3 - x^2 + x] (从0到1) = (1 - 1 + 1) - (0 - 0 + 0) = 1。
2021年高中学业水平合格性考试数学模拟卷(含参考答案)07

2021年普通高中学业水平考试 科合格性考试数学仿真模拟卷07(考试时间为90分钟,试卷满分为150分)一、选择题(本大题共15小题,每小题6分,共90分.每小题中只有一个选项是符合题意的,不选、多选、错选均不得分)1.已知234x -=,则x 等于( ) A .±18 B .±8C .344D .±232 1.【解析】由题意,可知234x-=,可得13x 2=4,即3x 2=14,所以x 2=164,解得x =±18.故选A .【答案】A2.若集合M ={-1,1},N ={-2,1,0},则M ∩N =( ) A .{0,-1} B .{0} C .{1} D .{-1,1} 2.【解析】M ∩N ={1},故选C . 【答案】C3.已知f (x )、g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=( ) A .-3 B .-1 C .1 D .33.【解析】本题考查函数的奇偶性.令x =-1可得f (-1)-g (-1)=1⇒f (1)+g (1)=1,故选C . 【答案】C4.直线x +3y -2=0与圆x 2+y 2=4相交于A 、B 两点,则弦AB 的长度等于( )A .2 5B .2 3C . 3D .14.【解析】利用平面几何中圆心距、半径、半弦长的关系求解.∵圆心到直线x +3y -2=0的距离d =|0+3×0-2|12+(3)2=1,半径r =2,∴弦长|AB |=2r 2-d 2=222-12=2 3.【答案】B5.函数f (x )=2x +1的定义域是( )A .⎝⎛⎦⎤-∞,-12B .⎣⎡⎭⎫-12,+∞C .⎝⎛⎦⎤-∞,12 D .(-∞,+∞) 5.【解析】由2x +1≥0,解得x ≥-12,故选B . 【答案】B6.已知向量a =(1,x ),b =(-1,x ),若2a -b 与b 垂直,则|a |=( ) A . 2 B . 3 C .2 D .46.【解析】(2a -b )·b =(3,x )·(-1,x )=x 2-3=0, ∴x =±3,∴|a |=2. 【答案】C7.已知a +b >0,b <0,那么a ,b ,-a ,-b 的大小关系是( ) A .a >b >-b >-a B .a >-b >-a >b C .a >-b >b >-aD .a >b >-a >-b7.【解析】∵a +b >0,b <0,∴a >-b >0.∴-a <0,b >-A . ∴-a <b <0<-b <A . 【答案】C8.函数y =2cos 2⎝⎛⎭⎫x -π4-1的是( )A .最小正周期为π的奇函数B .最小正周期为2π的奇函数C .最小正周期为π的偶函数D .最小正周期为2π的偶函数8.【解析】因为y =2cos 2⎝⎛⎭⎫x -π4-1=cos 2⎝⎛⎭⎫x -π4=sin 2x ,所以T =2π2=π,且为奇函数,故选A .【答案】A9.设变量x 、y 满足约束条件⎩⎪⎨⎪⎧x -2≤0,x -2y ≤0,x +2y -8≤0,则目标函数z =3x +y 的最大值为( )A .7B .8C .9D .149.【解析】由不等式组,作出可行域如下: 在点A (2,3)处,z =3x +y 取最大值为9. 【答案】C10.已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( ) A .7 B .5 C .-5 D .-710.【解析】利用等比数列的通项公式求解.由题意得⎩⎪⎨⎪⎧a 4+a 7=a 1q 3+a 1q 6=2,a 5a 6=a 1q 4×a 1q 5=a 21q 9=-8, ∴⎩⎪⎨⎪⎧q 3=-2,a 1=1或⎩⎪⎨⎪⎧q 3=-12,a 1=-8,∴a 1+a 10=a 1(1+q 9)=-7. 【答案】D11.当x >0时,下列不等式正确的是( ) A .x +4x ≥4 B .x +4x ≤4 C .x +4x ≥8 D .x +4x ≤8 11.【解析】由均值不等式可知,当x >0时,x +4x ≥2x ·4x =4,当且仅当x =2时取“=”,故选A .【答案】A12.△ABC 的内角A 、B 、C 的对边分别为a 、b 、C .已知a =5,c =2,cos A =23,则b =( ) A . 2 B . 3 C .2 D .312.【解析】由余弦定理得cos A =b 2+c 2-a 22bc =b 2+22-524b =23,∴b =3,答案选D . 【答案】D13.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为( ) A .15 B .25 C .825 D .92513.【解析】从5人中选2人共有10种选法,其中有甲的有4种选法,所以概率为410=25. 【答案】B14.《周髀算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,雨水、惊蛰、春分、清明日影之和为三丈二尺,前七个节气日影之和为七丈三尺五寸,问立夏日影长为( ) A .七尺五寸B .六尺五寸C .五尺五寸D .四尺五寸14.【解析】由已知结合等差数列的通项公式及求和公式即可直接求解. 从冬至日起,日影长构成数列{a n },则数列{a n }是等差数列,则a 5+a 6+a 7+a 8=32,S 7所以解可得,a 1=,d =﹣1.故a 10=【答案】D .15.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤2,x ≥1,y ≥0,则z =2x +y 的最大值为( )A .1B .2C .3D .415.【解析】在平面直角坐标系中,作出变量x ,y 的约束条件⎩⎪⎨⎪⎧x +y ≤2,x ≥1,y ≥0表示的平面区域如图中阴影部分所示.由图可知,当z =2x +y 过点B (2,0)时,z 最大,所以z max =4,所以z =2x +y 的最大值4.故选D . 【答案】D二、填空题(本大题共4小题,每小题6分,共24分.将正确答案填在题中横线上) 16.f (x )为奇函数,当x <0时,f (x )=log 2(1-x ),则f (3)=________. 16.【解析】f (3)=-f (-3)=-log 24=-2. 【答案】-217.经过点(-2,2),且与两坐标轴所围成的三角形面积为1的直线l 的方程为________. 17.【解析】设所求直线l 的方程为x a +yb =1,由已知可得⎩⎨⎧-2a +2b =1,12|a ||b |=1,解得⎩⎪⎨⎪⎧a =-1,b =-2或⎩⎪⎨⎪⎧a =2,b =1.∴2x +y +2=0或x +2y -2=0为所求. 【答案】2x +y +2=0或x +2y -2=018.某防疫站对学生进行身体健康调查,欲采用分层抽样的办法抽取样本.某中学共有学生2 000名,抽取了一个容量为200的样本,已知样本中女生比男生少6人,则该校共有女生________人.18.【解析】由题意知抽取女生97人,设该校共有女生x 人.则x ×2002 000=97,解得x =970. 【答案】97019.已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ≤π2的图象上的两个相邻的最高点和最低点的距离为22,则ω=______.19.【解析】由已知两相邻最高点和最低点的距离为22,由勾股定理可得T2=(22)2-22,∴T =4,∴ω=α2.【答案】α2三、解答题(本大题共3小题,共36分.解答时应写出必要的文字说明、证明过程及演算步骤) 20.(12分)设{a n }是公比为正数的等比数列,a 1=2,a 3=a 2+4. (1)求{a n }的通项公式;(2)设{b n }是首项为1,公差为2的等差数列,求数列{a n +b n }的前n 项和S n .20.解:(1)设q 为等比数列{a n }的公比,则由a 1=2,a 3=a 2+4得2q 2=2q +4,即q 2-q -2=0,解得q =2或q =-1(舍去),因此q =2,所以{a n }的通项为a n =2·2n -1=2n (n ∈N *). (2)S n =2(12)12n --+n ×1+(1)2n n -×2=2n +1+n 2-2. 21.(12分)如图,在梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AB =BC =1,PA ⊥平面ABCD ,CD ⊥PC , (1)证明:CD ⊥平面PAC ;(2)若E 为AD 的中点,求证:CE ∥平面PAB . 21.证明:(1)∵PA ⊥平面ABCD ,CD ⊂平面ABCD ,∴PA ⊥CD .又CD ⊥PC ,PA ∩PC =P , ∴CD ⊥平面PAC .(2)∵AD ∥BC ,AB ⊥BC ,AB =BC =1, ∴∠BAC =45°,∠CAD =45°,AC = 2.∵CD ⊥平面PAC ,∴CD ⊥CA ,∴AD =2.又E 为AD 的中点,∴AE =BC =1,∴四边形ABCE 是正方形, ∴CE ∥AB .又AB ⊂平面PAB ,CE ⊄平面PAB , ∴CE ∥平面PAB . 22.(12分)如图是半径为1m 的水车截面图,在它的边缘(圆周)上有一定点P ,按逆时针方向以角速度rad /s π(每秒绕圆心转动rad 3π)作圆周运动,已知点P 的初始位置为0P ,且06xOP π∠=,设点P 的纵坐标y 是转动时间t (单位:s )的函数,记为()y f t =.(1) 求()30,2f f ⎛⎫⎪⎝⎭的值,并写出函数()y f t =的解析式; (2) 选用恰当的方法作出函数()f t ,06t ≤≤的简图; (3) 试比较13131,,345f f f ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪⎝⎭⎝⎭⎝⎭的大小(直接给出大小关系,不用说明理由). 22.解:(1)()10sin62f π==,()32sin cos 23662f πππ⎛⎫=⨯+== ⎪⎝⎭, ()sin 36y f t t ππ⎛⎫==+ ⎪⎝⎭,0t ≥.(2)用“五点法”作图,列表得:描点画图:说明:的变化过程也可给满分.(3) 13131345f f f ⎛⎫⎛⎫⎛⎫>> ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.。
2021年高中毕业会考数学试卷含答案

2021年高中毕业会考数学试卷含答案考生须知1. 考生要认真填写考场号和座位序号。
2. 本试卷共页,分为两个部分,第一部分为选择题,个小题(共分);第二部分为解答题,个小题(共分)。
3.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用铅笔作答;第二部分必须用黑色字迹的签字笔作答。
4.考试结束后,考生应将试卷、答题卡放在桌面上,待监考员收回。
在每个小题给出的四个备选答案中,只有一个是符合题目要求的.1.函数的最小正周期是A.1 B.2 C.D.2.已知集合,,如果,那么实数等于A.B.0 C.2 D.43.如果向量,,那么等于A.B.C.D.4.在同一直角坐标系中,函数与的图象之间的关系是A.关于轴对称B.关于轴对称C.关于直线对称2 D.关于直线对称5.执行如图所示的程序框图.当输入时,输出的值为A.B.0C.2D.6.已知直线经过点,且与直线平行,那么直线的方程是A.B.C.D.7.某市共有初中学生270000人,其中初一年级,初二年级,初三年级学生人数分别为99000,90000,81000,为了解该市学生参加“开放性科学实验活动”的意向,现采用分层抽样的方法从中抽取一个容量为3000的样本,那么应该抽取初三年级的人数为A.800 B.900 C.1000 D.11008.在中,,AC=2,BC=3,那么AB等于A.B.C.D.9.口袋中装有大小和材质都相同的6个小球,其中有3个红球,2个黄球和1个白球,从中随机模出1个小球,那么摸到红球或白球的概率是A.B.C.D.10.如果正方形ABCD的边长为1,那么等于A.1B.C.D.211.xx年9月3日,纪念中国人民抗日战争暨世界反法西斯战争胜利70周年大会在北京天安门广场隆重举行,大会中的阅兵活动向全世界展示了我军威武文明之师的良好形象,展示了科技强军的伟大成就以及维护世界和平的坚定决心,在阅兵活动的训练工作中,不仅使用了北斗导航、电子沙盘、仿真系统、激光测距机、迈速表和高清摄像头等新技术装备,还通过管理中心对每天产生的大数据进行存储、分析、有效保证了阅兵活动的顺利进行,假如训练过程过程中第一天产生的数据量为,其后每天产生的数据量都是前一天的倍,那么训练天产生的总数据量为A.B.C.D.12.已知,那么等于A.B.C.D.13.在函数①;②;③;④中,图象经过点(1,1)的函数的序号是A.①B.②C.③D.④14.等于A.B.C.1 D.215.某几何体的三视图如图所示,其中俯视图是正方形,那么该几何体的表面积是A.32B.24C.D.16.如果,且,那么在不等式①;②;③;④中,一定成立的不等式的序号是A.①B.②C.③D.④17.在正方体中,E,F,G分别是,,的中点,给出下列四个推断:①FG平面;②EF平面;③FG平面;④平面EFG平面其中推断正确的序号是A.①③B.①④C.②③D.②④18.已知圆的方程为,圆的方程为,如果这两个圆有且只有一个公共点,那么的所有取值构成的集合是A.B.C.D.19.在直角坐标系中,已知点和满足,那么的值为A.3B.4 C.5 D.620.已知函数,其中,且,如果以,为端点的线段的中点在轴上,那么等于A.1B.C.2 D.21.已知点,动点的坐标满足,那么的最小值是A.B.C.D.122.已知函数,关于的性质,有以下四个推断:①的定义域是;②的值域是;③是奇函数;④是区间上的增函数.其中推断正确的个数是A.1B.2 C.3 D.423.为应对我国人口老龄化问题,某研究院设计了延迟退休方案,第一步:xx年女干部和女工人退休年龄统一规定为55岁;第二步:从xx年开始,女性退休年龄每3年延迟1岁,至2045年时,退休年龄统一规定为65岁,小明的母亲是出生于1964年的女干部,据此方案,她退休的年份是A.2019 B.2020 C.2021 D.2022 24.已知函数,其中,,如果对任意,都有,那么在不等式①;②;③;④中,一定成立的不等式的序号是A.①B.②C.③D.④25.我国古代数学名著《续古摘奇算法》(杨辉)一书中有关于三阶幻方的问题:将1,2,3,4,5,6,7,8,9分别填入的方格中,使得每一行,每一列及对角线上的三个数的和都相等(如图所示),我们规定:只要两个幻方的对应位置(如每行第一列的方格)中的数字不全相同,就称为不同的幻方,那么所有不同的三阶幻方的个数是A.9B.8 C.6 D.4第二部分解答题(每小题5分,共25分)26.(本小题满分5分)已知,且.(Ⅰ);(将结果直接填写在答题卡...的相应位置上)(Ⅱ)求的值.27.(本小题满分5分)如图,在三棱柱中,平面ABC,,AB=2,,D是棱上一点.(Ⅰ)证明:;(Ⅱ)求三棱锥的体积.28.(本小题满分5分)已知直线与轴交于点P,圆O的方程为().(Ⅰ)如果直线与圆O相切,那么;(将结果直接填写在答题卡...的相应位置上)(Ⅱ)如果直线与圆O交于A,B两点,且,求的值.29.(本小题满分5分)数列满足,,2,3,,的前项和记为.(Ⅰ)当时,;(将结果直接填写在答题卡...的相应位置上)(Ⅱ)数列是否可能....为等比数列?证明你的推断;(Ⅲ)如果,证明:30.(本小题满分5分)已知函数,其中,.(Ⅰ)当时,的零点为;(将结果直接填写在答题卡...的相应位置上)(Ⅱ)当时,如果存在,使得,试求的取值范围;(Ⅲ)如果对于任意,都有成立,试求的最大值.xx年北京市春季普通高中会考数学试卷答案及评分参考[说明]1.第一部分选择题,机读阅卷.2.第二部分解答题.为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.若考生的解法与本解答不同,正确者可参照评分标准给分.解答右端所注分数,表示考生正确做到这一步应得的累加分数.第一部分选择题(每小题3分,共75分)第二部分解答题(每题5分,共25分)26.(Ⅰ)…………2分(Ⅱ)…………5分27.(Ⅰ)略…………3分(Ⅱ)…………5分28.(Ⅰ)…………1分(Ⅱ)的值为或…………5分29.(Ⅰ)…………1分(Ⅱ)数列不可能为等比数列…………3分(Ⅲ)略…………5分30.(Ⅰ)的零点为0,…………1分(Ⅱ)的取值范围是…………3分(Ⅲ)的最大值是2 …………5分29364 72B4 犴~32043 7D2B 紫C36785 8FB1 辱36339 8DF3 跳26770 6892 梒aK35084 890C 褌23475 5BB3 害q33829 8425 营。
2021届吉林省普通高中学业模拟考试数学试题(五)

2020年吉林省普通高中学业考试数学试卷学校:__________姓名:__________班级:__________考号:__________一、单项选择(本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项符合题目要求的)1、设集合,则( )A .B .C .D .2、点到直线的距离是( )A .B .C .D .3、采用简单随机抽样的方法,从含有5个个体的总体中抽取一个容量为2的样本,某个个体被抽到的概率为( )A .B .C .D .4、已知且则的终边落在( )A B ={}1,2,4,5,7{}3,4,5{}5{}2,5()1,1-10x y -+=15122325sin 0α<A .第一象限B .第二象限C .第三象限D .第四象限5、已知,,且,则等于( )A .B .C .D .6、已知,则os 等于( )A .B .C .D .7、下列函数中,既是奇函数又是增函数的为( )A .B .C .D .8、中,若,则的面积为( )A .B .C .1 D9、已知数列满足,且,那么( )A .B .C .D .10、在中,内角所对的边分别为,已知,,则( )A .BCD .二、填空题(本大题共5小题,每小题4分,满分20分)()1,2a =-(),3b x =a b ⊥x 32-326-61y x =+2y x =-1y x =-y x x =ABC ∆︒===30,2,1B c a ABC ∆21233{}n a 1n n a a n +=+12a =3a =4567ABC ∆,,A B C ,,a b c o 105A =o45C =2c =b =123211、已知sinα=,则cos2α=______.12、已知向量,,,若,则__________.13、若圆锥底面半径为1,侧面积为,则该圆锥的体积是________.14、为抗击新型冠状病毒,普及防护知识,某校开展了“疫情防护”网络知识竞赛活动,现从参加该活动的学生中随机抽取了100名学生,将他们的比赛成绩(满分为100分)分为5组:,,,,,得到如图所示的频率分布直方图,则该100名学生中成绩在80分(含80分)以上的人数为______.15、已知,,,是以2为公比的等比数列,则______.三、解答题(本大题共5小题,16题6分,17题18题19题每题8分,20题10分,满分40分,解答须写出文字说明、证明过程和验算步骤)16、求满足下列条件的m 的值:(1)直线l 1:y =-x +1与直线l 2:y =(m 2-2)x +2m 平行;(),1a x =()1,2b =()1,5c =-()2//a b c +a =[)50,60[)60,70[)70,80[)80,90[]90,100a b c d 22a bc d +=+(2)直线l 1:y =-2x +3与直线l 2:y =(2m -1)x -5垂直.17、如图是函数的图像,求、、的值,并确定其函数解析式.18、如图,正方体中(1)求证:(2)求证:平面19、已知等差数列满足,且是的等比中项.(1)求数列的通项公式;(2)设,数列的前项和为,求.()sin 0,0,2y A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭A ωϕ1111ABCD A B C D-1AC DB ⊥1DB ⊥1ACD {}n a 636a a =+31a -241,a a -{}n a ()11n n n b n a a *+=∈N {}n b nTn T20、在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且. (1)求C ;(2)若△ABC 的面积为8,a =4,求b 的值.cos sin a C A参考答案1、【答案】A2、【答案】D3、【答案】D4、【答案】D5、【答案】D6、【答案】A7、【答案】D8、【答案】A9、【答案】B 10、【答案】A11、【答案】12、13、【答案】14、【答案】40 15、【答案】16、【答案】(1)∵l 1∥l 2,∴两直线斜率相等. ∴m 2-2=-1.∴m =±1. (2)∵l 1⊥l 2,∴2m -1=.∴m =.14123417、【答案】,,,. 试题分析:本题首先可以根据周期计算出,然后根据最大值为以及最小值为得出,最后将点代入函数中即可求出并得出函数解析式.详解:因为周期,所以,,因为最大值为,最小值为,所以,,将点代入中, 得,解得, 因为,所以,. 【点睛】本题考查根据三角函数图像求函数解析式,可根据函数的周期、最值以及点的坐标来求解,考查数形结合思想,考查计算能力,是简单题.18、【答案】试题分析:(1)利用线面垂直的结论,进而可得线线垂直结论; (2)利用线面垂直的判定定理,进而可得结论. 详解:证明:(1)连结、3A =2ω=3πϕ=3sin 23y x π⎛⎫=+⎪⎝⎭T π=2ω=33-3A =,312π⎛⎫⎪⎝⎭3πϕ=566T πππ⎛⎫=--= ⎪⎝⎭222T ππωπ===sin 2φy A x 33-3A =()3sin 2y x ϕ=+,312π⎛⎫⎪⎝⎭()3sin 2y x ϕ=+π33sinφ6()23k k Z πϕπ=+∈2πϕ<3πϕ=3sin 23y x π⎛⎫=+⎪⎝⎭BD 11B D平面,平面又,,平面平面,又平面(2)由,即同理可得, 又,平面平面【点睛】本题主要考查线线垂直,线面垂直的证明方法,属于基础题.19、【答案】(1);(2).试题分析:(1)由先求出公差,再由等比中项的性质可得,进而求出,得出通项公式;1DD ⊥ABCD AC ⊂ABCD 1DD ∴⊥AC AC BD ⊥1BDDD D =1BD DD ⊂、11DBB D AC ∴⊥11DBB D 1DB ⊂11DBB D 1AC DB ∴⊥1AC DB ⊥1DB AC ⊥11DB AD ⊥1AD AC A =1,AD AC ⊂1ACD 1DB ∴⊥1ACD 21n a n =+()323nn +636a a =+()()232411a a a -=-⋅1a(2)由(1)再结合裂项公式得,采用迭加法即可求得数列的前项和详解:(1)设等差数列的公差为,所以,即,,,,又是,的等比中项,,即,解得. 数列的通项公式为.(2)由(1)得.. 【点睛】本题考查等差数列通项公式的求法,裂项法与迭加法求解数列前项和,属于中档题 20、【答案】(1);(2) 试题分析:(1)根据正弦定理得到,故,得到答案. (2),,得到答案. 详解:(1),根据正弦定理得到:,11122123n b n n ⎛⎫=-⎪++⎝⎭{}n b n T {}n a d 6336a a d -==2d =3113a a ∴-=+2111a a -=+416a a =+31a -21a -4a ()()232411a a a ∴-=-⋅()()()2111+3=16a a a ++13a =∴{}n a 21n a n =+()()111111212322123n n n b a a n n n n +⎛⎫===- ⎪++++⎝⎭1212n n T b b b ∴=++⋅⋅⋅+=11111135572123n n ⎛⎫-+-+⋅⋅⋅+- ⎪++⎝⎭()1112323323nn n ⎛⎫=-= ⎪++⎝⎭n 6π8sin cos sin A C C A =3tan C1sin 824ab S ab C ===32ab =cos sin a C A =sin cos sin A C C A =故,,故.(2),故,. 【点睛】本题考查了正弦定理和面积公式,意在考查学生的计算能力.3tan 3C()0,C π∈6C π=1sin 824abS ab C ===32ab =8b =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年吉林普通高中会考数学模拟试题及答案注意事项:1.答题前将自己的姓名、考籍号、科考号、试卷科目等项目填写或涂在答题卡和试卷规定的位置上。
考试结束时.将试卷和答题卡一并交回。
2.本试题分两卷.第1卷为选择题.第Ⅱ卷为书面表达题。
试卷满分为120分。
答题时间为100分钟。
3.第1卷选择题的答案都必须涂在答题卡上。
每小题选出答案后.用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动.用橡皮擦干净后.再选涂其他答案标号。
选择题答案写在试卷上无效。
4.第Ⅱ卷的答案直接写在试卷规定的位置上.注意字迹清楚.卷面整洁。
参考公式:标准差:锥体体积公式: V= 31S底·h其中.s 为底面面积.h 为高,柱体体积公式V=s.h球的表面积、体积公式S= 24R π V=343R π其中.s 为底面面积.h 为高, V 为体积 .R 为球的半径第1卷 (选择题 共50分)一、选择题(本大题共15小题.每小题的四个选项中只有一项是正确的.第1-10小题每 小题3分.第11-15小题每小题4分.共50分)1.设集合M={-2.0.2}.N={0}.则( ). A .N 为空集 B. N ∈M C. N M D. MN2.已知向量(3,1)=a .(2,5)=-b .那么2+a b 等于( ) A (1,11)- B (4,7) C (1,6) D (5,4)-3.函数2log (1)y x =+的定义域是( )222121[()()()]n s x x x x x x n =-+-++-A (0,)+∞B (1,)-+∞C (1,)+∞D [1,)-+∞4.函数sin y x ω=的图象可以看做是把函数sin y x =的图象上所有点的纵坐标保持不变.横坐标缩短到原来的12倍而得到的.那么ω的值为( ) A 14 B 12C 4D 25.在函数3y x =.2xy =.2log y x =.y =.奇函数是( )A 3y x = B 2xy = C 2log y x =D y =6.一个几何体的三视图如图所示.该几何体的表面积是( ) A 3π B 8π C 12π D 14π7.11sin 6π的值为( )A 12-B 2-C 12D 28.不等式2320x x -+<的解集为( )A {}2x x > B {}1x x > C {}12x x << D {}12x x x <>或9.在等差数列{}n a 中.已知12a =.24a =.那么5a 等于( )A .6B .8C .10D .1610.函数45)(2+-=x x x f 的零点为()俯视图左(侧)视图主(正)视图22A .(1,4)B .(4,1)C .(0,1),(0,4)D .1,411.已知平面α∥平面β.直线m ⊂平面α.那么直线m 与平面β的关系是( ) A 直线m 在平面β内 B 直线m 与平面β相交但不垂直 C 直线m 与平面β垂直 D 直线m 与平面β平行12. 在ABC ∆中.如果3a =2b =.1c =.那么A 的值是( )A 2πB 3πC 4πD 6π13.直线y= -12x+34的斜率等于 ( ) A .-12 B .34 C .12 D .- 3414.某城市有大型、中型与小型超市共1500个.它们的个数之比为1:5:9.为调查超市每日的零售额情况.需要通过分层抽样抽取30个超市进行调查.那么抽取的小型超市个数为( )A 5B 9C 18D 2015, .设,x y ∈R 且满足1230x x y y x ≥⎧⎪-+≥⎨⎪≥⎩.则2z x y =+的最小值等于 ( )A. 2B. 3C.4D.52021年吉林省普通高中学业考试模拟试题(数学) 注意事项:1.第Ⅱ卷共4页.用蓝、黑色钢笔或圆珠笔直接答在试卷上。
用铅笔答卷无效。
2.答题前将密封线内的项目填写清楚.并在第6页右下方“考生座位序号”栏内第Ⅱ卷 (书面表达题 共70分)┏━━━━━━┳━━━┳━━━━┳━━━━━━┓ ┃ 题 号 ┃ 二 ┃ 三 ┃ 总 分 ┃ ┣━━━━━━╋━━━╋━━━━╋━━━━━━┫ ┃ 得 分 ┃ ┃ ┃ ┃ ┗━━━━━━┻━━━┻━━━━┻━━━━━━┛ ┏━━━┳━━━━┓ ┃得分 ┃评卷人 ┃ ┣━━━╋━━━━┫ ┃ ┃ ┃ ┗━━━┻━━━━┛二、填空题(本大题共4小题.每小题5分.共20分.把答案填 在题中横线上)16.已知向量(2,3)=a .(1,)m =b .且⊥a b .那么实数m 的值为 .17.右图是甲、乙两名同学在五场篮球比赛中得分情况的茎叶图.那么甲、乙两人得分的 标准差s 甲 s 乙(填,,><=).18从数字1.2.3.4.5中随机抽取两个数字(不允许重复).那么这两个数字的和是奇数的概率为( )19.某程序框图如右图所示.该程序运行后输出的a 的最大值为 .┏━━━┳━━━━┓ ┃得分 ┃评卷人 ┃ ┣━━━╋━━━━┫ ┃ ┃ ┃12 3 402 1 08 90123乙甲n n=1是a 结束开始┗━━━┻━━━━┛三、解答题(本大题共5小题.每小题10分.共50分.解答应写 出文字说明、证明过程或演算步骤)20. .等比数列{n a }的前n 项和为n s .已知1S ,3S ,2S 成等差数列 (Ⅰ)求{n a }的公比q ;(Ⅱ)求1a -3a =3.求n s21. 在正四棱柱1111D C B A ABCD -中.AB =1.21=AA . (Ⅰ)证明:BD AC ⊥1 (Ⅱ)求三棱锥1C -ABC 的体积;22.已知函数(x)f 22cos 2sin 4cos x x x =+-。
(Ⅰ)求()3f π=的值;(Ⅱ)求(x)f 的最大值和最小值23. .已知圆x 2+y 2+8x-4y=0与以原点为圆心的某圆关于直线y=kx+b 对称.(I )求k 、b 的值;(II )若这时两圆的交点为A 、B.求∠AOB 的度数.24. 已知二次函数f (x )=ax 2+bx+1为偶函数.且f (﹣1)=﹣1. (I )求函数f (x )的解析式;(II )若函数g (x )=f (x )+(2﹣k )x 在区间(﹣2.2)上单调递增.求实数k 的取值范围.参考答案说明: 1.本解答给出了一种或几种解法供参考.如果考生的解法与本解答不同.可根据给出的评分标准制定相应的评分细则. 2.对解答题.当考生的解答在某一步出现错误时.如果后继部分的解答未改变该题的内容和难度.可视影响的程度决定后继部分的给分.但不得超过该部分正确解答得分数的一半;如果后继部分的解答有较严重的错误.就不再给分. 3.每个步骤只给整数分数.第1卷(选择题 共50分)一、选择题(第1-10小题每小题3分.第11-15小题每小题4分.共50分) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 CBBDABACCDDBACB第Ⅱ卷(书面表达题 共70分)二、填空题(每小题5分.共20分) 16 -3217 ﹥ 1853 19 45三、解答题(每小题10分.共50分)20解:(Ⅰ)依题意有 )(2)(2111111q a q a a q a a a ++=++由于 01≠a .故 022=+q q 又0≠q .从而21-=q (Ⅱ)由已知可得321211=--)(a a故41=a从而))(()())((n nn 211382112114--=----=S21. 解:(Ⅰ)连接AC.在正四棱柱1111D C B A ABCD -中CC 1 ⊥BD 又AC ⊥BD ,所以 BD ⊥平面AC C 1, BD AC ⊥1(Ⅱ)V 1c -ABC =31SABC. CC 1= 31×21×1 × 1 × 2 = 3122. 解:(Ⅰ)22()2cossin 333f πππ=+=31144-+=-(Ⅱ)22()2(2cos 1)(1cos )f x x x =-+- 23cos 1,x x R =-∈ 因为[]cos 1,1x ∈-,所以.当cos 1x =±时()f x 取最大值2;当cos 0x =时.()f x 取最小值-1。
23. 解 (1)圆x 2+y 2+8x-4y=0可写成(x+4)2+(y-2)2=20.∵圆x 2+y 2+8x-4y=0与以原点为圆心的某圆关于直线y=kx+b 对称. ∴y=kx+b 为以两圆圆心为端点的线段的垂直平分线.∴402---×k=-1.k=2.又 点(0.0)与(-4.2)的中点为(-2.1). ∴1=2×(-2)+b.b=5.∴k=2.b=5.(2)圆心(-4.2)到2x-y+5=0的距离为d=5552)4(2=+--⨯.而圆的半径为25.∴∠AOB=120°.24.解:(I)∵二次函数f(x)=ax2+bx+1为偶函数.故函数f(x)的图象关于y轴对称即x=﹣=0.即b=0又∵f(﹣1)=a+1=﹣1.即a=﹣2.故f(x)=﹣2x2+1(I I)由(I)得g(x)=f(x)+(2﹣k)x=﹣2x2+(2﹣k)x+1 故函数g(x)的图象是开口朝下.且以x=为对称轴的抛物线故函数g(x)在(﹣∞.]上单调递增.又∵函数g(x)在区间(﹣2.2)上单调递增.∴≥2解得k≤﹣6故实数k的取值范围为(﹣∞.﹣6]。