物理下——第13章 静电场中的导体和电介质

合集下载

静电场中的导体和电解质

静电场中的导体和电解质

Q + + + + ++ + + + + E= 0 S+ + + + + + + + ++
Q q + + + +++ + +-q + + - E= 0 S + 结论: 电荷分布在导体外表面, 导体 + q + + 内部和内表面没净电荷. + - - + + + + ++ 腔内有电荷q: E 0 q 0

i
结论: 电荷分布在导体内外两个表面,内表面感应电荷为-q. 外表面感应电荷为Q+q.
NIZQ
第 5页
大学物理学 静电场中的导体和电介质
结论: 在静电平衡下,导体所带的电荷只能分布在导体的 表面,导体内部没有净电荷. • 静电屏蔽 一个接地的空腔导体可以隔离内 外电场的影响. 1. 空腔导体, 腔内没有电荷 空腔导体起到屏蔽外电场的作用. 2. 空腔导体,腔内存在电荷 接地的空腔导 体可以屏蔽内、 外电场的影响.
NIZQ
第 3页
大学物理学 静电场中的导体和电介质
• 静电平衡时导体中的电场特性
E内 0
场强:
ΔVab
b
a
E dl 0
• 导体内部场强处处为零 E内 0 • 表面场强垂直于导体表面 E表面 // dS
• 导体为一等势体 V 常量 • 导体表面是一个等势面
S
0 E P dS qi

大学物理——静电场中的导体和电介质

大学物理——静电场中的导体和电介质

v E
二、导体上电荷的分布 由导体的静电平衡条件和静电场的基本性 dV 质,可以得出导体上的电荷分布。 1.导体内部无静电荷 证明:在导体内任取体积元 dV
E内 = 0
r r 由高斯定理 E dS ⋅ = 0 ∫
S
∑q = ∫ ρ dV = 0
i i V
Q体积元任取 导体带电只能在表面!
ρ =0
证毕
A B σ1 σ 2σ 3
场 两板之间 强 分 布 两板之外
Q E = ε0S
r E
E=0
练习
已知: 两金属板带电分别为q1、q2 求:σ1 、σ2 、σ3 、σ4
q1
q2
q1 + q2 σ1 = σ 4 = 2S
σ1
σ2
σ3
σ4
q1 − q2 σ 2 = −σ 3 = 2S
2.导体表面电荷 表面附近作圆柱形高斯面
r r σΔS 0 ∫ E • dS = E ⋅ ΔS ⋅ cos 0 =
σ
r E
ΔS
ε0
σ ∴E = ε0
r σ ^ ^ E表 = n n :外法线方向
ε0
3.孤立带电导体表面电荷分布 一般情况较复杂;孤立的带电导体,电荷 分布的实验的定性的分布: 曲率较大,表面尖而凸出部分,电荷面密度较大 曲率较小,表面比较平坦部分,电荷面密度较小 曲率为负,表面凹进去的部分,电荷面密度最小
例3.已知:导体板A,面积为S、带电量Q,在其旁边 放入导体板B。 求:(1)A、B上的电荷分布及空间的电场分布 (2)将B板接地,求电荷分布
σ1 σ 2 σ 3 σ4 − − − =0 a点 2ε 0 2ε 0 2ε 0 2ε 0
A B σ1 σ 2σ 3 σ 4

静电场中的导体和电介质共29页

静电场中的导体和电介质共29页


R2 R3
E2dl

R1 R2
E3dl


R1 E4dl







r


R

3





R1



R2






R2 R3
4q0r2dr
2q
R140r2dl
410R q3R q22 R q 12.31103V
方法二:由电势叠加原理求球心的电势
内球表面电荷q在球心的电势 1q
V1 4 0 R3









R

3





R1



R2





外球内表面电荷-q在球心的电势
1q
V2 4 0 R2
外球外表面电荷2q在球心的电势
1 2q
V3 4 0 R1
由高斯定理可求出场强分布
E1 0 (rR3) q
E240r2 (R3rR2)
E30 (R2rR1) 2q
E4 40r2 (rR1)







r

R 3





R1



R2





球心的电势为
V0

Edl
0

R3 0
E1dl
本章内容
Contents chapter 6

第章静电场中的导体和电介质PPT课件

第章静电场中的导体和电介质PPT课件

q2
EA
1 2 o
2 2 o
3 2 o
4 2 o
0
EB
1 2 O
2 2 O
3 2 o
4 2 o
0
1
23
4
由电荷守恒:
1S 2 S q1
A
B
3S 4S q2
1
4
q1 q2 2S
2
3
q1 q2 2S
20
1
4
q1 q2 2S
q1
2
3
q1 q2 2S
1
2
上述结果表明:平板相背的两面带电等
R3 R2
R3
RR11
qq1 1
RR33
问题:电势表
达式能直接写
R2 R1
q1
4 or
2
dr
R3
(q q1 )
4 or 2
dr
出来吗?
q1
4 o
1 R1
1 R2
q q1
4 o R3
V1 V2
同理,球壳的电势为:
V2
E dl
R3
R3
(q
4
q1 ) or 2
dr
q q1
2.内屏蔽
+
+
壳外表面上的电荷分布与腔内带电体的位置无关,只 取于导体外表面的形状。
若将空腔接地,则空腔外表面上的感应电荷被大地电荷 中和,腔外电场消失,腔内电荷不会对空腔外产生影响。即 接地空腔对内部电场起到了屏蔽作用,这是静电屏蔽的另外 一种——内屏蔽。
高压设备用金属导体壳接地做保护。 14
五、利用静电平衡条件和性质作定量计算
例1:半径为R和r的球形导体(R>r),用很长的细导线连 接起来,使两球带电Q、q,求两球表面的电荷面密度。

第13章-静电场中的导体和电介质汇总

第13章-静电场中的导体和电介质汇总

(2)空腔内电场强度处处为零,或者说,空腔内的电势处处相等。
证明:在导体内部作一个包围内表面的闭
q
合曲面,由静电平衡v条件,此曲面
上各点的电场强度 E 0,则通过
Ò闭S合Ev曲d面Sv的 0电通量所为以零,即q:i 0
S
假设导体空腔内表面上分布有等量异号的 电荷,是否可以?
屏蔽作用──导体壳内所包围的区域不受外电场的影响。
第13章 静电场中的导体和电介质
本章重点: 本章作业:
§13.1 静电场中的导体
一、导体的静电平衡条件
导体在静电场中,两侧出现正、负电
荷的现象叫做静电感应现象。产生的
电荷称为感应电荷。产生外电场的
电荷称为施感电荷。
静电平衡时:
E E0 E 0
E0
E0
E0
静电平衡时,要求表面电荷也不能移动.即表面处的静电场
( R1 r R2 ) (r R2 )
q
R2
R1
R
(2)根据静电平衡条件和电势的定义可得电势的分布为
R
R1
R2
R1 q
qQ
U1
r
E1dr
R
E2dr
E3dr
R1
E4dr
R2
R
4π0r 2 dr
R2
4π0r 2 dr
1
4π 0
q R
q R1
qQ R2
(r R)
U2
R1
E2dr
E2
则面元dS所受的电场力为 单位面积上受到的电场力为
F
2
2 0
E2 en
dS
2 2 0
d Sen
例题13-3 半径为R的孤立金属球,接 地,与球心相距 l 处有一点电荷+q, 求球 上的感应电荷q′。

大学物理13 静电场中的导体和电介质

大学物理13 静电场中的导体和电介质

不是都平行于E

有极分子也有位移极化,不过在静电场中主要是取向极化,
但在高频场中,位移极化反倒是主要的了。
34
均匀电介质在静电 场中
E0



E'
+– +–
E0
+ E' +
– 取向极化
+
P分

?
位移极化
+
电介质极化:在外电场作用下,电介质产生一附加电场或电
介质表面出现束缚电荷的现象。
B
上的电荷消失。两球的电势分别为
Qq
A
UA

q
4 0

1 R0

1 R1

q R0
U B U R1 U R2 0
R2 R1 q
两球电势差仍为:
UA
UB

q
4 0

1 R0

1 R1

由结果可以看出,不管外球壳接地与否,两球的电势 差恒保持不变。当q为正值时,小球的电势高于球壳;当q 为负值时,小球的电势低于球壳。
3
§1 导体的静电平衡
一. 导体的静电平衡
1. 静电感应现象:
电场一般利用带电导体形成。
有导体存在时电场的性质?
在静电场力作用下,导体中自由电子在电场力的作用下
作宏观定向运动,使电荷产生重新分布的现象。
Ε 0
-
Ε 0
- + -+
E内 0
-
-+
2. 静电平衡状态:
导体内部和表面无自由电荷的定向移动 —称电场和导体之间达到静电平衡

大学物理静电场中的导体和电介质习题答案

第13章 静电场中的导体和电介质P70.13.1 一带电量为q ,半径为r A 的金属球A ,与一原先不带电、内外半径分别为r B 和r C 的金属球壳B 同心放置,如图所示,则图中P 点的电场强度如何?若用导线将A 和B 连接起来,则A 球的电势为多少?(设无穷远处电势为零)[解答]过P 点作一个同心球面作为高斯面,尽管金属球壳内侧会感应出异种,但是高斯面内只有电荷q .根据高斯定理可得 E 4πr 2 = q /ε0, 可得P 点的电场强度为204q E rπε=.当金属球壳内侧会感应出异种电荷-q 时,外侧将出现同种电荷q .用导线将A 和B 连接起来后,正负电荷将中和.A 球是一个等势体,其电势等于球心的电势.A 球的电势是球壳外侧的电荷产生的,这些电荷到球心的距离都是r c ,所以A 球的电势为04cq U r πε=.13.2 同轴电缆是由半径为R 1的导体圆柱和半径为R 2的同轴薄圆筒构成的,其间充满了相对介电常数为εr 的均匀电介质,设沿轴线单位长度上导线的圆筒的带电量分别为+λ和-λ,则通过介质内长为l ,半径为r 的同轴封闭圆柱面的电位移通量为多少?圆柱面上任一点的场强为多少?[解答]介质中的电场强度和电位移是轴对称分布的.在内外半径之间作一个半径为r 、长为l 的圆柱形高斯面,根据介质中的高斯定理,通过圆柱面的电位移通过等于该面包含的自由电荷,即 Φd = q = λl .设高斯面的侧面为S 0,上下两底面分别为S 1和S 2.通过高斯面的电位移通量为d d SΦ=⋅⎰D S12d d d 2S S S rlD π=⋅+⋅+⋅=⎰⎰⎰D S D S D S ,可得电位移为 D = λ/2πr , 其方向垂直中心轴向外.电场强度为 E = D/ε0εr = λ/2πε0εr r , 方向也垂直中心轴向外.13.3 金属球壳原来带有电量Q ,壳内外半径分别为a 、b ,壳内距球心为r 处有一点电荷q ,求球心o 的电势为多少?[解答]点电荷q 在内壳上感应出负电荷-q ,不论电荷如何分布,距离球心都为a .外壳上就有电荷q+Q ,距离球为b .球心的电势是所有电荷产生的电势叠加,大小为000111444o q q Q qU r a bπεπεπε-+=++13.4 三块平行金属板A 、B 和C ,面积都是S = 100cm 2,A 、B 相距d 1 = 2mm ,A 、C 相距d 2 = 4mm ,B 、C 接地,A 板带有正电荷q = 3×10-8C ,忽略边缘效应.求(1)B 、C 板上的电荷为多少?图14.3图14.4(2)A板电势为多少?[解答](1)设A的左右两面的电荷面密度分别为σ1和σ2,所带电量分别为q1 = σ1S和q2 = σ2S,在B、C板上分别感应异号电荷-q1和-q2,由电荷守恒得方程q = q1 + q2 = σ1S + σ2S.①A、B间的场强为E1 = σ1/ε0,A、C间的场强为E2 = σ2/ε0.设A板与B板的电势差和A板与C板的的电势差相等,设为ΔU,则ΔU = E1d1 = E2d2,②即σ1d1 = σ2d2.③解联立方程①和③得σ1 = qd2/S(d1 + d2),所以q1 = σ1S = qd2/(d1+d2) = 2×10-8(C);q2 = q - q1 = 1×10-8(C).B、C板上的电荷分别为q B= -q1 = -2×10-8(C);q C= -q2 = -1×10-8(C).(2)两板电势差为ΔU = E1d1 = σ1d1/ε0 = qd1d2/ε0S(d1+d2),由于k = 9×109 = 1/4πε0,所以ε0 = 10-9/36π,因此ΔU = 144π= 452.4(V).由于B板和C板的电势为零,所以U A = ΔU = 452.4(V).13.5 一无限大均匀带电平面A,带电量为q,在它的附近放一块与A平行的金属导体板B,板B有一定的厚度,如图所示.则在板B的两个表面1和2上的感应电荷分别为多少?[解答]由于板B原来不带电,两边感应出电荷后,由电荷守恒得q1 + q2 = 0.①虽然两板是无限大的,为了计算的方便,不妨设它们的面积为S,则面电荷密度分别为σ1 = q1/S、σ2 = q2/S、σ = q/S,它们产生的场强大小分别为E1 = σ1/ε0、E2 = σ2/ε0、E = σ/ε0.在B板内部任取一点P,其场强为零,其中1面产生的场强向右,2面和A板产生的场强向左,取向右的方向为正,可得E1 - E2–E = 0,即σ1 - σ2–σ= 0,或者说q1 - q2 + q = 0.②解得电量分别为q2 = q/2,q1 = -q2 = -q/2.13.6 两平行金属板带有等异号电荷,若两板的电势差为120V,两板间相距为1.2mm,忽略边缘效应,求每一个金属板表面的电荷密度各为多少?[解答]由于左板接地,所以σ1 = 0.由于两板之间的电荷相互吸引,右板右面的电荷会全部吸引到右板左面,所以σ4 = 0.由于两板带等量异号的电荷,所以σ2 = -σ3.两板之间的场强为E = σ3/ε0,而 E = U/d,所以面电荷密度分别为σ3 = ε0E = ε0U/d = 8.84×10-7(C·m-2),σ2 = -σ3 = -8.84×10-7(C·m-2).13.7 一球形电容器,内外球壳半径分别为R1和R2,球壳与地面及其他物体相距很远.将内球用细导线接地.试证:球面间电容可用公式202214RCR Rπε=-表示.(提示:可看作两个球电容器的并联,且地球半径R>>R2)[证明]方法一:并联电容法.在外球外面再接一个半径为R3大外球壳,外壳也接地.内球壳和外球壳之间是一个电容器,电容为P2图14.5图14.61210012211441/1/R R C R R R R πεπε==--外球壳和大外球壳之间也是一个电容器,电容为2023141/1/C R R πε=-.外球壳是一极,由于内球壳和大外球壳都接地,共用一极,所以两个电容并联.当R 3趋于无穷大时,C 2 = 4πε0R 2.并联电容为12120022144R R C C C R R R πεπε=+=+-202214R R R πε=-. 方法二:电容定义法.假设外壳带正电为q ,则内壳将感应电荷q`.内球的电势是两个电荷产生的叠加的结果.由于内球接地,所以其电势为零;由于内球是一个等势体,其球心的电势为0201`044q q R R πεπε+=,因此感应电荷为12`R q q R =-. 根据高斯定理可得两球壳之间的场强为122002`44R q q E r R rπεπε==-, 负号表示场强方向由外球壳指向内球壳.取外球壳指向内球壳的一条电力线,两球壳之间的电势差为1122d d R R R R U E r =⋅=⎰⎰E l121202()d 4R R R qr R rπε=-⎰ 1212021202()11()44R q R R q R R R R πεπε-=-= 球面间的电容为202214R q C U R R πε==-.13.8 球形电容器的内、外半径分别为R 1和R 2,其间一半充满相对介电常量为εr 的均匀电介质,求电容C 为多少?[解答]球形电容器的电容为120012211441/1/R R C R R R R πεπε==--.对于半球来说,由于相对面积减少了一半,所以电容也减少一半:0121212R R C R R πε=-.当电容器中充满介质时,电容为:0122212r R R C R R πεε=-.由于内球是一极,外球是一极,所以两个电容器并联:01212212(1)r R R C C C R R πεε+=+=-.13.9 设板面积为S 的平板电容器析板间有两层介质,介电常量分别为ε1和ε2,厚度分别为d 1和d 2,求电容器的电容.[解答]假设在两介质的介面插入一薄导体,可知两个电容器串联,电容分别为C 1 = ε1S/d 1和C 2 = ε2S/d 2. 总电容的倒数为122112*********d d d d C C C S S Sεεεεεε+=+=+=, 总电容为 122112SC d d εεεε=+.13.10 圆柱形电容器是由半径为R 1的导线和与它同轴的内半径为R 2的导体圆筒构成的,其长为l ,其间充满了介电常量为ε的介质.设沿轴线单位长度导线上的电荷为λ,圆筒的电荷为-λ,略去边缘效应.求:(1)两极的电势差U ;(2)介质中的电场强度E 、电位移D ; (3)电容C ,它是真空时电容的多少倍?[解答]介质中的电场强度和电位移是轴对称分布的.在内外半径之间作一个半径为r 、长为l 的圆柱形高斯面,侧面为S 0,上下两底面分别为S 1和S 2.通过高斯面的电位移通量为d d SΦ=⋅⎰D S12d d d 2S S S rlD π=⋅+⋅+⋅=⎰⎰⎰D S D S D S ,高斯面包围的自由电荷为 q = λl , 根据介质中的高斯定理 Φd = q , 可得电位为 D = λ/2πr , 方向垂直中心轴向外.电场强度为 E = D/ε = λ/2πεr , 方向也垂直中心轴向外.取一条电力线为积分路径,电势差为21d d d 2R LLR U E r r r λπε=⋅==⎰⎰⎰E l 21ln 2R R λπε=. 电容为 212ln(/)q lC U R R πε==. 在真空时的电容为00212ln(/)l q C U R R πε==, 所以倍数为C/C 0 = ε/ε0.13.11 在半径为R 1的金属球外还有一层半径为R 2的均匀介质,相对介电常量为εr .设金属球带电Q 0,求:(1)介质层内、外D 、E 、P 的分布; (2)介质层内、外表面的极化电荷面密度.[解答](1)在介质内,电场强度和电位移以及极化强度是球对称分布的.在内外半径之间作一个半径为r 的球形高斯面,通过高斯面的电位移通量为2d d 4d SSD S r D Φπ=⋅==⎰⎰D S高斯面包围的自由电荷为q = Q 0, 根据介质中的高斯定理 Φd = q , 可得电位为 D = Q 0/4πr 2, 方向沿着径向.用矢量表示为D = Q 0r /4πr 3.电场强度为E = D /ε0εr = Q 0r /4πε0εr r 3, 方向沿着径向.由于 D = ε0E + P , 所以 P = D - ε0E = 031(1)4rQ rεπ-r. 在介质之外是真空,真空可当作介电常量εr = 1的介质处理,所以D = Q 0r /4πr 3,E = Q 0r /4πε0r 3,P = 0. (2)在介质层内靠近金属球处,自由电荷Q 0产生的场为E 0 = Q 0r /4πε0r 3;极化电荷q 1`产生的场强为E` = q 1`r /4πε0r 3;总场强为 E = Q 0r /4πε0εr r 3. 由于 E = E 0 + E `,解得极化电荷为 `101(1)rq Q ε=-,介质层内表面的极化电荷面密度为``01122111(1)44r Q q R R σπεπ==-. 在介质层外表面,极化电荷为``21q q =-,面密度为``02222221(1)44r Q q R R σπεπ==-.13.12 两个电容器电容之比C 1:C 2 = 1:2,把它们串联后接电源上充电,它们的静电能量之比为多少?如果把它们并联后接到电源上充电,它们的静电能之比又是多少?[解答]两个电容器串联后充电,每个电容器带电量是相同的,根据静电能量公式W = Q 2/2C ,得静电能之比为W 1:W 2 = C 2:C 1 = 2:1. 两个电容器并联后充电,每个电容器两端的电压是相同的,根据静电能量公式W = CU 2/2,得静电能之比为W 1:W 2 = C 1:C 2 = 1:2. 13.13 一平行板电容器板面积为S ,板间距离为d ,接在电源上维持其电压为U .将一块厚度为d 相对介电常量为εr 的均匀介电质板插入电容器的一半空间内,求电容器的静电能为多少?[解答]平行板电容器的电容为C = ε0S/d ,当面积减少一半时,电容为C 1 = ε0S /2d ; 另一半插入电介质时,电容为C 2 = ε0εr S /2d .两个电容器并联,总电容为C = C 1 + C 2 = (1 + εr )ε0S /2d ,静电能为W = CU 2/2 = (1 + εr )ε0SU 2/4d . 13.14 一平行板电容器板面积为S ,板间距离为d ,两板竖直放着.若电容器两板充电到电压为U 时,断开电源,使电容器的一半浸在相对介电常量为εr 的液体中.求:(1)电容器的电容C ;(2)浸入液体后电容器的静电能; (3)极板上的自由电荷面密度.[解答](1)如前所述,两电容器并联的电容为C = (1 + εr )ε0S /2d . (2)电容器充电前的电容为C 0 = ε0S/d , 充电后所带电量为 Q = C 0U . 当电容器的一半浸在介质中后,电容虽然改变了,但是电量不变,所以静电能为W = Q 2/2C = C 02U 2/2C = ε0SU 2/(1 + εr )d . (3)电容器的一半浸入介质后,真空的一半的电容为 C 1 = ε0S /2d ;介质中的一半的电容为 C 2 = ε0εr S /2d . 设两半的所带自由电荷分别为Q 1和Q 2,则Q 1 + Q 2 = Q . ① 由于C = Q/U ,所以U = Q 1/C 1 = Q 2/C 2. ② 解联立方程得01112211/C U C QQ C C C C ==++, 真空中一半电容器的自由电荷面密度为00112122/2(1/)(1)r C U U Q S C C S dεσε===++. 同理,介质中一半电容器的自由电荷面密度为0021222(/1)(1)r r C U UC C S dεεσε==++.13.15 平行板电容器极板面积为200cm 2,板间距离为1.0mm ,电容器内有一块1.0mm 厚的玻璃板(εr = 5).将电容器与300V 的电源相连.求:(1)维持两极板电压不变抽出玻璃板,电容器的能量变化为多少?(2)断开电源维持板上电量不变,抽出玻璃板,电容器能量变化为多少?[解答]平行板电容器的电容为C 0 = ε0εr S/d ,静电能为 W 0 = C 0U 2/2. 玻璃板抽出之后的电容为C = ε0S/d .(1)保持电压不变抽出玻璃板,静电能为 W = CU 2/2, 电能器能量变化为ΔW = W - W 0 = (C - C 0)U 2/2 = (1 - εr )ε0SU 2/2d = -3.18×10-5(J). (2)充电后所带电量为 Q = C 0U , 保持电量不变抽出玻璃板,静电能为W = Q 2/2C ,电能器能量变化为2000(1)2C C U W W W C ∆=-=- 20(1)2r r SU dεεε=-= 1.59×10-4(J).13.16 设圆柱形电容器的内、外圆筒半径分别为a 、b .试证明电容器能量的一半储存在半径R =[解答]设圆柱形电容器电荷线密度为λ,场强为 E = λ/2πε0r , 能量密度为 w = ε0E 2/2, 体积元为 d V = 2πrl d r , 能量元为 d W = w d V .在半径a 到R 的圆柱体储存的能量为20d d 2VVW w V E V ε==⎰⎰2200d ln 44Ral l R r r a λλπεπε==⎰.当R = b 时,能量为210ln 4l b W aλπε=;当R =22200ln48l l b W aλλπεπε==,所以W 2 = W 1/2,即电容器能量的一半储存在半径R =13.17 两个同轴的圆柱面,长度均为l ,半径分别为a 、b ,柱面之间充满介电常量为ε的电介质(忽略边缘效应).当这两个导体带有等量异号电荷(±Q )时,求:(1)在半径为r (a < r < b )、厚度为d r 、长度为l 的圆柱薄壳中任一点处,电场能量体密度是多少?整个薄壳层中总能量是多少?(2)电介质中总能量是多少(由积分算出)?(3)由电容器能量公式推算出圆柱形电容器的电容公式?[解答](1)圆柱形内柱面的电荷线密度为 λ = Q/l ,根据介质是高斯定理,可知电位移为D = λ/2πr = Q /2πrl ,场强为 E = D/ε = Q /2πεrl , 能量密度为w = D ·E /2 = DE /2 = Q 2/8π2εr 2l 2.薄壳的体积为d V = 2πrl d r , 能量为 d W = w d V = Q 2d r /4πεlr .(2)电介质中总能量为22d d ln 44bV aQ Q bW W r lr l a πεπε===⎰⎰.(3)由公式W = Q 2/2C 得电容为222ln(/)Q lC W b a πε==.13.18 两个电容器,分别标明为200PF/500V 和300PF/900V .把它们串联起来,等效电容多大?如果两端加上1000V 电压,是否会被击穿?[解答]当两个电容串联时,由公式211212111C C C C C C C +=+=, 得 1212120PF C C C C C ==+.加上U = 1000V 的电压后,带电量为Q = CU ,第一个电容器两端的电压为U1 = Q/C1 = CU/C1 = 600(V);第二个电容器两端的电压为U2 = Q/C2 = CU/C2 = 400(V).由此可知:第一个电容器上的电压超过它的耐压值,因此会被击穿;当第一个电容器被击穿后,两极连在一起,全部电压就加在第二个电容器上,因此第二个电容器也接着被击穿.。

静电场中的导体和电介质1课件


➢问:可否在S 内存在两种等量异号的电荷,才使

P
S
E内 0
qi 0 (S内) 成立?
➢答:不可能
S是任意取的高斯面,只 要在某点有某种正或者 负电荷存在,我们就可 以取一个小的高斯面将 其包围,这样
qi 0 (S内)
与导体内场强为0矛盾
(2)空腔导体
➢A:空腔内没有带电体时
空腔导体的内表面无电 荷,电荷只能分布在外 表面
应用二:导体空腔与静电屏蔽 Electrostatic Shielding
一、第一类导体空腔 —— [ 腔内无带电体]
腔内无电场 屏蔽(腔内仪器不受外场影响)。
注意:腔外 发电场,腔内
q
E
在腔内也激 0 是因为腔
外表面被 q 感应出异号电荷,
感应场与外场叠加后使腔内: E 0 (合场强为零)。
在一些工厂或实验室里, 存在大量易燃气体, 工作人员要穿 一种特制的鞋, 这种鞋的导电性能很好,能够将电荷导入大地, 避免电荷在人体上的积累, 以免产生火花放电, 引起火灾.
➢4. 闪电
带电云层之间或带电云层和地面之间发生强烈放电时, 产生 耀眼的闪光和巨响, 这就是闪电. 闪电的放电电流可以高达几十万 安培, 会使建筑物遭受严重损坏. 这就是雷击。
二、第二类导体空腔— [腔内有带电体]
(1)腔内电场不受外电场影响。 (可用高斯定理证明)
QQ q
q
q
(2)空腔导体腔外电场不受导体腔内电场影响。
与腔内电荷分布无关,但与腔内 放置的带电体电量有 关。
QQ q
q
q
导体外的电场是Q+q产生的电场的叠加。
由于导体内表面上电量与腔内电荷等量异号,在+q发出 的电场线全部终止在内表面上,则+q及-q在腔外产生 的合场强为0。

大学物理---静电场中的导体和电介质


, E ; E
+
+ + + +
++ ++
E 0
注意 导体表面电荷分布与导体形状以及周围环境有关. 导体凸出部分的表面曲率越大处, 电荷面密度越大, 附近 电场也越强。孤立导体表面的电荷密度与曲率之间不存 在单一的函数关系。
尖端放电现象
E
带电导体尖端附近电场最强
B A
Q RB (4)电容 C 2 π 0 r l ln U RA
2 π 0 r lRA 0 r S d RB RA RA , C d d 2
en
+
+
E
d+ l
+

导体内部电势相等
U AB
AB
E dl 0
A
B

静电平衡时导体上电荷的分布
1 实心导体
E 0
2
q E dS 0
S
+
+ + + +
+
S
+
q 0
有空腔导体
空腔内无电荷
0
+
+ +
结论 导体内部无电荷
结论 电荷分布在外表面上(内表面无电荷)
空腔内有电荷
E dS 0, qi 0
S1
Qq
电荷分布在表面上
E d S 0 , q 0 i
S2
内表面上有电荷吗?
S2
q
q
S1
q内 q
结论 当空腔内有电荷 q 时,内表面因静电感应出 现等值异号的电荷 q ,外表面有感应电荷 q (电荷 守恒)

大学物理静电场中的导体和电介质


03
在静电场中,导体和电介质的 性质和行为表现出显著的差异 ,因此了解它们的特性是学习 大学物理静电场的重要基础。
学习目标
01
掌握导体和电介质的定义、性质和分类。
02
理解静电场中导体和电介质的电场分布和电荷分布。
03
掌握导体和电介质在静电场中的行为和相互作用, 以及它们在电路中的作用。
02
导体
导体的定义与性质
感应电荷的产生是由于导体内 部自由电荷受到电场力的作用 而重新分布,这种效应称为静 电感应现象。
静电感应现象在生产和生活中 的应用十分广泛,如静电除尘、 静电喷涂等。
导体的静电平衡状态
当导体放入静电场中并达到稳定状态时,导体内部的自由电荷不再发生定向移动, 此时导体的状态称为静电平衡状态。
在静电平衡状态下,感应电荷在导体内、外表面产生附加电场,该电场与外界电场 相抵消,使得导体内部的总电场为零。
应用
了解电场强度在电介质中 的分布和变化规律,有助 于理解电子设备和器件的 工作原理。
电介质的电位移矢量
01
02
03
04
定义
电位移矢量是指描述电场中电 荷分布情况的物理量。
特点
在静电场中,电位移矢量与电 场强度之间存在线性关系,可
以用介电常数表示。
计算
根据电位移矢量的定义和电场 强度的计算公式,可以计算出
定义
导体是指能够让电流通过的物质。在 静电场中,导体内部自由电荷会受到 电场力的作用而发生移动,从而形成 电流。
性质
导体具有导电性,其导电能力与温度 、光照、化学状态等因素有关。金属 导体是电导率最高的物质之一,而绝 缘体则几乎不导电。
导体的静电感应现象
当导体放入静电场中时,导体 表面会产生感应电荷,感应电 荷的分布与外界电场有关。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
r
q
R1
Qq
解:(1)由对称性,小球表面上和球壳内外表面上的电荷分布是均 匀的。小球上的电荷q将在球壳的内外表面上感应出-q和+q的电荷, 故球壳外表面上的总电荷量为q+Q。
小球和球壳内外表面的电势分别为:
1 q q qQ qQ U R1 40 R1 R1 R2 40 R2
极性(有极)分子介质 取向极化
27 转向极化ok.swf
14
(2)接地空腔导体可使腔内、腔外互不影响。
+ + -
-q
q ·- +
空腔导体未接地 当腔内q位置移动时,q(感应电荷) 将自动调整。 腔内带电体位置的移动,不影响腔 外电场,但q大小变化时,将影响腔 外电场。
接地空腔导体可使腔内带电体的变化 (大小、位置)对腔外电场没有影响
-
+
+
-q + - · - + - q
E d S E表 d S
S
P
S
dS
dS
S d S
E dS
En
dS E表 d S 0
E表
Et
E
0
写作
ˆ E表 n 0
ˆ n
:外法线方向
8
2.3 孤立带电导体表面电荷分布 一般情况较复杂;孤立的带电导体,电荷分布的实验 定性:
高斯定理
B
Qq
A
q
R0
S E d S 0
R2 R 1
qi 0
i
QB内 q
QB外 Q q
S
电荷守恒定律
q
21
2)球A和壳B的电势UA、UB 。
等效:在真空中三个均匀带电的球面
利用叠加原理 q q Qq UA 4 0 R0 4 0 R1 4 0 R2
27
U Uo / r
§13.2 电介质极化
一.电介质的微观图象 等效电偶极子 电介质分子中正负电荷“重心”不重合时,它们相当于一 对距离极近的等值异号点电荷,设它们的中心距离为l。 等效电偶极矩(电矩) 有极分子 正负电荷中心不重合的分子称有极分子。 P
+ – +
+–
– p ql
Q 4 0 R q 4 0l 0
R
o
l
q
R Q q l
19
例:无限大的带电平面的场中平行放置一无限大金属平 板求:金属板两面电荷面密度。
解:设金属板面电荷密度为1和2 如图可视为三个无限大的带电平面 由对称性和电量守恒 1 2 导体体内任一点P 场强为零 1 2 0 2 0 2 0 2 0
+
q ·q
-
2-07静电屏蔽.exe
15
汽 车 是 个 静 电 屏 蔽 室
在静电平衡状态下,空腔导体外面的带电体不会影响 空腔内部的电场分布;一个接地的空腔导体,空腔内的带 电体对腔外的物体不会产生影响。这种使导体空腔内的电 场不受外界影响或利用接地的空腔导体将腔内带电体对外 界影响隔绝的现象,称为静电屏蔽。
它随电介质的种类和状态的不同而不同,是电介质的一种 特性常数。 注意:相对介电常数对于均匀各向同性介质是常量;非均匀介 质它是空间坐标函数;真空它是1。
o r ——绝对介电常数
3、实验表明 插入电介质后,两块带电板的场强减弱
U Ed
U o Eo d
E Eo / r
E内 0
2.基本性质方程
qi S E d S
U const
0
L E d l 0
3.电荷守恒定律
Qi const .
i
18
例:接地导体球附近有一点电荷,如图所示。 求:导体上感应电荷的电量。
解:接地 即 U 0 设感应电量为 Q,由导体是个等势体,0点的 电势为零,则有
电介质是一种电阻率很大,导电性能很差的物质。它的分子中 正负电荷束缚得很紧,在一般条件下不会分离。我们在这里仅讨论 理想的各向同性的电介质。

电子云
25
1、实验现象: 当带电板之间充满入电介 质时发现两板间的电压与真空 时的关系如下:
-Q U o
+Q -Q
U
+Q
d
26
2、 相对介电常数 r
Qq UB 4 0 R2
B
Qq
A
q
R0
R2 R 1
q
22
例:在内外半径分别为R1和R2的导体球壳内,有一个半径为r 的 导体小球,小球与球壳同心,让小球与球壳 分别带上电荷量q和Q。试求: q R2 (1)小球的电势Ur,球壳内、外表面的电势; (2)小球与球壳的电势差; (3)若球壳接地,再求小球与球壳的电势差。
具有固有电矩:
p ql
28
无极分子
正负电荷中心重合的分子称无极分子。 无极分子在电场中产生感生 电矩:
p ql
下图是一些无极分子(氦、甲烷)和有极分子(氯化氢、水)的示意图
29
有极分子
无极分子
无外场时:
V
pi 0
二. 电介质的极化 有电场时 M p E
导体的静电平衡过程
静电感应:
在静电场力作用下,导体中自由电子在电场力的作用下 作宏观定向运动,使电荷产生重新分布的现象。
1.静电平衡 (electrostatic equilibrium)
导体内部和表面无自由电荷的定向移动, —— 导体处于静电平衡状态。 2.导体静电平衡的条件: (1)导体内部任何一点的场强为0;
(2)两球的电势差为
U R2 U R1
qQ 40 R2
q R2
U r U R2
q 1 1 40 r R1
r
q
R1
Qq
(3)若外球壳接地,则球壳外表面上的电荷 消失。两球的电势分别为
q 1 1 Ur 40 r R1
第13章
§13.1 §13.2 §13.3 §13.4 §13.5
静电场中的导体和电介质
导体的静电平衡 电介质的极化 电极化强度 电位移矢量 电介质中的静电场 电容与电容器 静电场的能量
本章作业:大学物理(二)练习册B:1-6页
1
本章导读
仍然是静电场,场量仍然是: E、U
讨论:静电场对导体和电介质的作用以及后者对前者的影响
16
这个是“法拉弟笼”,用的是“静电屏蔽”原理。笼外面加了几百伏 的高压电,会闪哦,看上去挺吓人的!好不容易说服了第一批“勇敢者” 学生进去,哈哈!学生说虚惊了一场!摸着球壁,与高压电做最亲密的接 触,感觉热热的,还不错哦,原来我们也是很勇敢的哦!
17
四.有导体存在时静电场场量的计算原则: 1.静电平衡的条件
电量分布
Q腔内表面 q
用高斯定理可证
q

腔体外表面所带的电量由电荷守 恒定律决定, 腔内的电场 1) 与电量q有关; 2) 与腔内带电体几何因素、介 质分布有关。
13
2.静电屏蔽
(1)空腔导体可保护腔内空间不受腔外带电体的影响
q+
+ +
-
Q
[EQ + Eq]外表面以内空间 = 0 当Q大小或位置改变时,q(感应电荷) 将自动调整, 保证上述关系成立。 腔外带电体的变化(大小、位置),不会影响腔内电场。
论述的根据是静电场的基本规律和导体与电介质的电结构 特征。 qi 基本性质方程: E d S E dl 0 0 L S 导体 存在大量的可自由移动的电荷(conductor); 绝缘体 理论上认为一个自由移动的电荷也没有 也称 电介质(dielectric); 半导体 介于上述两者之间(semiconductor)。
FIM image of pure Al at 7kV and 15KV
FIM image of W(钨)containing grain boundaries
The FIM100 conventional atom probe实际照片
11
三.导体壳 静电屏蔽
1. 空腔导体内外的静电场 (1)腔内无带电体 内表面无电荷分布 腔内无电场 E腔内 0 或说,腔内电势处处相等。
U R1 U R2 0
q R2
r
q
R1
q 1 1 两球的电势差仍为 U r U R 40 r R1
由结果可以看出,不管外球壳接地与否,两球的电势差恒保持不 变。当q为正值时,小球的电势高于球壳;当q为负值时,小球的电势 低于球壳。
24
导读:电介质对电场的影响
金属 尖端 荧光质 导电膜
He
接真空泵或 充氦气设备
接地
+ 高压
10
Oxford大学的几幅图片
历史上首次能看到原子的显微镜是场离 子显微镜(FIM),它是米勒(Erwin W. M ü ller)在1951年发明的。 只能探测在半径小于100nm的针尖上的原 子结构和二维几何性质,且制样技术复杂。
1 1 2

1
P
2 2 0
2
2 0
1 2 0
2
1 2
x
20
金属板两面面电荷分布:1与异号, 2与同号!
例:金属球A与金属球壳B 同心放置,已知球A半径为R0,带电为q; 金属壳B 内外半径分别为R1,R2,带电为Q。 求:1)球A和壳B的电量分布, 2)球A和壳B的电势UA、UB 。 解:1)导体带电在表面,球A的电量只可能在球的表面。 壳B有两个表面,电量可能分布在内、外两个表面。 由于A、B同心放置,仍维持球对称。 电量在表面均匀分布。 球A均匀分布着电量q,相当于一个均匀带电的球面 壳B上电量的分布:由高斯定理和电量守恒定律确定. 在B内紧贴内表面作高斯面S
相关文档
最新文档