温度控制器实验总结报告

合集下载

温度控制器研究报告

温度控制器研究报告

温度控制器研究报告引言温度控制器是一种用于监测和调节温度的设备,广泛应用于各个领域,如工业生产、农业、医疗、研究等。

本文将对温度控制器的原理、应用和未来发展进行深入研究和探讨。

一、温度控制器的原理温度控制器的基本原理是通过感知温度并与设定温度进行比较,然后根据差异来控制加热或制冷设备,以达到温度稳定的目的。

常见的温度控制器有PID控制器、ON-OFF控制器和模糊控制器等。

1. PID控制器PID控制器是最常用的温度控制器之一。

它根据当前温度与设定温度之间的差异,计算出一个控制信号,然后通过控制阀门或加热元件来调整温度。

PID控制器具有良好的稳定性和动态性能,广泛应用于工业生产领域。

2. ON-OFF控制器ON-OFF控制器是一种简单的温度控制器,它将温度传感器输出的信号与设定温度进行比较,当温度高于设定温度时,控制器关闭加热设备;当温度低于设定温度时,控制器打开加热设备。

ON-OFF 控制器的稳定性较差,易产生温度波动。

3. 模糊控制器模糊控制器是一种基于模糊逻辑的温度控制器。

它通过将温度传感器输出的信号与设定温度进行模糊化处理,然后利用模糊规则进行推理,最终得到一个控制信号,用于调节加热或制冷设备。

模糊控制器具有较好的鲁棒性和适应性,适用于非线性和复杂系统。

二、温度控制器的应用温度控制器在各个领域都有广泛的应用。

1. 工业生产在工业生产中,温度控制器常用于控制炉温、烘干、冷却等过程。

通过合理调节温度,可以提高产品质量和生产效率,减少能源消耗。

2. 农业在农业领域,温度控制器被广泛应用于温室、养殖和种植等环境中。

通过控制温度,可以提供适宜的生长环境,促进作物的生长和动物的繁殖。

3. 医疗在医疗领域,温度控制器用于控制手术室、实验室和药品储存等场所的温度。

确保温度的稳定可以保证医疗设备的正常运行,并保护药品和生物样本的质量。

4. 研究在科研领域,温度控制器被广泛应用于实验室中的各种实验。

通过精确控制温度,可以保证实验的可重复性和准确性,提高研究结果的可信度。

温控器检验报告

温控器检验报告

温控器检验报告1. 引言本报告旨在对温控器的性能进行全面的检验和评估。

温控器是一种重要的电子设备,用于控制和调节温度,广泛应用于家用电器、工业设备等领域。

本次检验旨在验证温控器是否符合指定的技术标准和性能要求。

2. 检验目的本次检验的目的是评估温控器的以下性能指标:1.温度控制精度2.温度稳定性3.温度控制范围4.温度传感器的准确性和灵敏度5.温控器的响应速度6.用户界面和操作便捷性3. 检验方法为了评估温控器的性能,我们采用了以下检验方法:1.设置温控器在不同的工作模式下,并记录温度控制精度和稳定性。

2.通过与标准温度计对比,评估温控器的温度传感器的准确性和灵敏度。

3.在不同的温度设置下,测试温控器的响应速度。

4.分析温控器的用户界面和操作便捷性。

4. 检验结果4.1 温度控制精度我们将温控器设置在不同的温度范围内,并记录实际温度与设定温度之间的差异。

通过统计数据分析,我们得出以下结论:温控器设定温度(℃)实际温度(℃)误差(℃)20 20.3 0.340 39.8 -0.260 61.2 1.2综合以上数据,我们认为该温控器的温度控制精度在可接受的范围内。

4.2 温度稳定性我们将温控器设定在一个目标温度下,并记录温度的变化情况。

经过长时间观察和数据分析,我们发现温控器能够保持在±0.5℃的范围内,表明其具有良好的温度稳定性。

4.3 温度控制范围经过检验,温控器的温度控制范围为-10℃至110℃,能够满足大多数应用场景的需求。

4.4 温度传感器的准确性和灵敏度我们将温控器的温度传感器与标准温度计进行比较,在不同温度范围内进行多次测量。

通过数据分析,我们发现温控器的温度传感器具有高度的准确性和灵敏度,能够准确地反映环境温度变化。

4.5 温控器的响应速度我们将温控器的温度设置为从室温到目标温度的过程,并记录温度的变化速度。

通过数据分析,我们得出结论:该温控器的响应速度较快,可以在较短的时间内达到设定温度。

温控器检测报告

温控器检测报告

温控器检测报告1. 前言本文将对温控器进行检测,并对其功能、性能以及安全性进行评估。

温控器是一种用于控制与调节温度的设备,常见于各类家电、工业设备以及各种温控系统中。

本次检测的目的是确保温控器能够稳定可靠地工作,符合预期的温控要求。

2. 检测方法为了对温控器进行全面的检测,我们采取了以下步骤和方法:1.功能性测试:测试温控器的基本功能,包括温度调节、设定温度、测量温度等。

这些功能是温控器的核心,需要确保其正常工作。

2.性能测试:测试温控器的性能参数,包括温度精度、稳定性、响应时间等。

这些参数直接影响温控器的使用体验和调控效果。

3.安全性测试:测试温控器的安全性能,包括电气安全和防火安全等。

这些测试旨在保证用户使用温控器时的安全。

3. 功能性测试3.1 温度调节我们使用标准的温度控制设备,将温度逐渐调整到不同的设定值,并观察温控器是否能够准确地控制温度。

通过多次重复测试,我们发现温控器的温度调节功能非常稳定,能够达到预期的调节目标。

3.2 设定温度在温度调节功能的基础上,我们进一步测试了温控器的设定温度功能。

通过将温控器设定为不同的温度,我们观察到温控器能够准确地将环境温度调节到我们所设定的目标温度。

3.3 测量温度为了验证温控器温度测量的准确性,我们将温控器与标准温度计进行对比。

结果显示,温控器的温度测量非常接近标准温度计的测量结果,误差在可接受范围内。

4. 性能测试4.1 温度精度我们通过将温控器与高精度温度计一同放置在相同的环境中,对比两者测量结果的差异来评估温控器的温度精度。

测试结果表明,温控器的温度精度达到了±0.5°C,满足了一般使用要求。

4.2 稳定性为了测试温控器的稳定性,我们将温控器长时间运行,并观察温度波动情况。

经过多次测试,我们发现温控器的温度波动很小,保持在±1°C以内,表现出了较好的稳定性。

4.3 响应时间我们通过改变温控器设定的目标温度,来测试温控器的响应时间。

温度闭环控制实验心得

温度闭环控制实验心得

温度闭环控制实验心得一、实验目的本次实验的目的是学习温度闭环控制系统的原理和实现方法,掌握PID控制器的调参方法,并能够通过实验验证PID控制器对温度的控制效果。

二、实验原理1. 温度传感器本次实验使用的是热电偶温度传感器。

热电偶是一种利用热电效应测量温度的传感器,由两种不同金属或合金组成,当两种金属或合金接触时,在接触点处会形成一个电动势。

随着温度变化,电动势也会发生变化,从而可以测量出温度。

2. PID控制器PID控制器是一种常用的闭环控制系统。

它通过不断地调整输出信号来使被控对象达到期望值。

PID控制器由比例环节、积分环节和微分环节三部分组成。

其中比例环节根据误差大小调整输出信号;积分环节根据误差累计值调整输出信号;微分环节根据误差变化率调整输出信号。

3. 温度闭环控制系统温度闭环控制系统是一种将温度传感器和PID控制器结合起来的系统。

温度传感器负责测量被控对象的温度,PID控制器则根据温度误差调整输出信号,使被控对象的温度达到期望值。

三、实验步骤1. 搭建实验平台首先需要搭建实验平台。

本次实验使用的是Arduino开发板和温度传感器模块。

将Arduino开发板与电脑连接,并将温度传感器模块连接到开发板上。

2. 编写程序编写程序,用Arduino开发板读取温度传感器模块的输出信号,并通过PID控制器调整输出信号,从而控制被控对象的温度。

在编写程序时需要设置PID参数,包括比例系数、积分时间和微分时间等。

3. 调试程序将被控对象(例如加热棒)连接到开发板上,并将温度传感器放置在被控对象附近。

启动程序并进行调试,观察被控对象的温度变化情况,并根据需要调整PID参数以达到更好的控制效果。

4. 实验验证进行实验验证,观察PID控制器对被控对象温度的控制效果,并记录数据以便后续分析和总结。

四、实验心得本次实验让我深入了解了温度闭环控制系统的原理和实现方法。

通过编写程序和调试参数,我成功地将PID控制器应用于温度控制中,并取得了不错的效果。

DS18B20温控实验报告 - 副本

DS18B20温控实验报告 - 副本

桂林航院电子工程系单片机课程设计与制作说明书设计题目:DS18B20数字温度计的设计专业:通信技术班级:学号:姓名:指导教师:2012年 6 月 28 日桂林航天工业学院单片机课程设计与制作成绩评定表单片机课程设计与制作任务书专业:通信技术学号: 2 姓名:一、设计题目:DS18B20数字温度计的设计二、设计要求:1.要求采集温度精确到度。

2.显示测量温度三、设计内容:硬件设计、软件设计及样品制作四、设计成果形式:1、设计说明书一份(不少于4000字);2、样品一套。

五.完成期限: 2010 年月日指导教师:贾磊磊年月日教研室:年月日目录一摘要 (1)设计要求 (1)二理论设计 (2)硬件电路计 (2)2.1.1芯片介绍 (2)2.1.2 DS18B20简介 (7)设计方案 (9)2.2.1.显示方案 (9)2.2.2.系统硬件电路设计 (11)2.2.3软件设计流程及描述 (11)三.系统的调试 (13).硬件的调试 (13)实验结果 (19)四、设计注意事项 (19)点阵设计注意事项 (20)单片机注意事项 (16)仿真器使用注意事项 (16)五.设计心得体会 (17)总结与体会 (17)摘要在工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。

其中,温度控制也越来越重要。

在工业生产的很多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制。

采用单片机对温度进行控制不仅具有控制方便、简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大的提高产品的质量和数量。

因此,单片机对温度的控制问题是一个工业生产中经常会遇到的控制问题。

单片机是一种集CPU、RAM、ROM、I/O接口和中断系统等部分于一体的器件,只需要外加电源和晶振就可实现对数字信息的处理和控制。

因此,单片机广泛用于现代工业控制中。

本论文侧重介绍“单片机温度控制系统”的软件设计及相关内容。

温湿度控制器实训报告

温湿度控制器实训报告

一、实训背景随着现代工业、农业、科研等领域对环境控制要求的不断提高,温湿度控制器作为维持特定环境条件的核心设备,其性能和稳定性显得尤为重要。

本次实训旨在通过实际操作和理论学习,深入了解温湿度控制器的工作原理、结构组成以及应用方法,提高学生对温湿度控制系统的理解与应用能力。

二、实训目的1. 掌握温湿度控制器的基本原理和结构组成。

2. 熟悉温湿度传感器的类型和特点。

3. 学会温湿度控制器的安装、调试和维护。

4. 提高学生对实际工程问题的分析和解决能力。

三、实训内容1. 温湿度控制器工作原理温湿度控制器通过温湿度传感器实时监测环境中的温度和湿度,根据预设的参数对加热器、加湿器、通风机等执行元件进行控制,以达到维持环境稳定的目的。

2. 温湿度传感器实训中使用的温湿度传感器主要有以下几种:- DHT11传感器:数字输出,具有高精度、抗干扰能力强等特点。

- SHT75传感器:模拟输出,具有高精度、稳定性好等特点。

3. 温湿度控制器结构组成温湿度控制器主要由以下部分组成:- 传感器:用于检测环境中的温度和湿度。

- 微控制器:用于处理传感器数据,并根据预设参数控制执行元件。

- 执行元件:包括加热器、加湿器、通风机等,用于调节环境温度和湿度。

- 显示模块:用于显示当前温度和湿度。

- 按键模块:用于设置温度和湿度参数。

4. 温湿度控制器安装与调试- 安装:根据实际需求选择合适的安装位置,确保传感器能够准确反映环境温度和湿度。

- 调试:连接传感器、微控制器和执行元件,设置温度和湿度参数,进行试运行,观察控制器是否能够正常工作。

5. 温湿度控制器维护- 定期检查:检查传感器、微控制器、执行元件等部件是否正常工作。

- 清洁保养:定期清洁传感器、执行元件等部件,防止灰尘、杂物影响控制器性能。

- 更换部件:当传感器、执行元件等部件损坏时,及时更换。

四、实训过程1. 理论学习:通过查阅资料、阅读教材,了解温湿度控制器的工作原理、结构组成、安装调试和维护方法。

温度控制器实训总结报告

一、实训背景随着科技的不断发展,温度控制技术在工业、医疗、科研等领域扮演着越来越重要的角色。

为了深入了解温度控制系统的原理和实际应用,我们开展了温度控制器实训,通过实际操作和理论分析,提高了对温度控制系统的认识。

二、实训目的1. 理解温度控制系统的基本原理和组成。

2. 掌握温度传感器的种类、原理和特点。

3. 熟悉温度控制器的控制规律和调节方法。

4. 培养动手能力和实际操作技能。

三、实训内容1. 温度传感器的学习在实训过程中,我们学习了各种温度传感器的原理和特点,如热电偶、热电阻、温敏电阻等。

通过实验,我们了解了不同传感器的应用场景和优缺点。

2. 温度控制器的学习我们学习了温度控制器的控制规律和调节方法,包括比例控制、积分控制、微分控制等。

通过实验,我们掌握了如何根据实际需求选择合适的控制规律,并进行了相应的调节。

3. 温度控制系统的搭建与调试在实训中,我们搭建了一个简单的温度控制系统,包括温度传感器、控制器、执行器等。

通过实际操作,我们学会了如何将理论知识应用于实际工程中,并进行了系统的调试和优化。

4. 温度控制系统的应用我们还学习了温度控制系统的应用实例,如工业生产中的加热、冷却、保温等。

通过分析实际案例,我们了解了温度控制系统在实际工程中的重要作用。

四、实训过程1. 理论学习在实训开始前,我们查阅了大量资料,学习了温度控制系统的基本原理和组成。

通过课堂讲解和自学,我们对温度控制技术有了初步的了解。

2. 实验操作在实验过程中,我们按照实验指导书的要求,进行了温度传感器的测试、温度控制器的调试和温度控制系统的搭建。

在实验过程中,我们遇到了一些问题,如传感器信号不稳定、控制器参数设置不合理等,通过查阅资料和与老师讨论,我们逐一解决了这些问题。

3. 总结与反思在实训结束后,我们对实验过程进行了总结和反思,总结了经验教训,并对温度控制技术有了更深入的理解。

五、实训成果1. 理论水平提高通过实训,我们对温度控制系统的基本原理和组成有了更深入的了解,掌握了温度传感器的种类、原理和特点,以及温度控制器的控制规律和调节方法。

温度控制系统实验报告

温度控制系统实验报告温度控制系统实验报告一、引言温度控制系统作为现代自动化领域的重要组成部分,广泛应用于工业生产、家电和环境控制等领域。

本实验旨在通过搭建一个简单的温度控制系统,了解其工作原理和性能特点。

二、实验目的1. 了解温度控制系统的基本原理;2. 掌握温度传感器的使用方法;3. 熟悉PID控制算法的应用;4. 分析温度控制系统的稳定性和响应速度。

三、实验装置本实验使用的温度控制系统由以下组件组成:1. 温度传感器:用于测量环境温度,常见的有热敏电阻和热电偶等;2. 控制器:根据温度传感器的反馈信号,进行温度控制;3. 加热器:根据控制器的输出信号,调节加热功率;4. 冷却装置:用于降低环境温度,以实现温度控制。

四、实验步骤1. 搭建温度控制系统:将温度传感器与控制器、加热器和冷却装置连接起来,确保各组件正常工作。

2. 设置控制器参数:根据实际需求,设置控制器的比例、积分和微分参数,以实现稳定的温度控制。

3. 测量环境温度:使用温度传感器测量环境温度,并将测量结果输入控制器。

4. 控制温度:根据控制器输出的控制信号,调节加热器和冷却装置的工作状态,使环境温度保持在设定值附近。

5. 记录数据:记录实验过程中的环境温度、控制器输出信号和加热器/冷却装置的工作状态等数据。

五、实验结果与分析通过实验数据的记录和分析,我们可以得出以下结论:1. 温度控制系统的稳定性:根据控制器的调节算法,系统能够在设定值附近维持稳定的温度。

但是,由于传感器的精度、控制器参数的选择等因素,系统可能存在一定的温度波动。

2. 温度控制系统的响应速度:根据实验数据,我们可以计算出系统的响应时间和超调量等参数,以评估系统的控制性能。

3. 温度传感器的准确性:通过与已知准确度的温度计进行对比,我们可以评估温度传感器的准确性和误差范围。

六、实验总结本实验通过搭建温度控制系统,探究了其工作原理和性能特点。

通过实验数据的分析,我们对温度控制系统的稳定性、响应速度和传感器准确性有了更深入的了解。

PID实验报告范文

PID实验报告范文PID(Proportional-Integral-Derivative)是一种常用于控制系统的算法,它根据当前的误差值和历史误差值的积累来调整控制量,从而实现系统的稳定性和精确性。

在本次实验中,我们将学习如何使用PID算法来控制一个简单的温度控制系统。

实验步骤:1.实验准备:准备一个温度传感器、一个发热器以及一个温度控制器。

将温度传感器安装在控制对象上,将发热器与温度控制器连接,并将温度控制器连接到计算机。

2.确定控制目标:我们的目标是将系统的温度稳定在一个特定的温度值。

在本次实验中,我们将目标温度设定为50°C。

3.参数调整:调整PID控制器的三个参数,即比例系数Kp、积分系数Ki和微分系数Kd。

开始时,我们可以将这些参数设置为一个合理的初始值,例如Kp=1,Ki=0.1,Kd=0.014.实验记录:记录系统的温度变化过程。

在开始实验之前,将控制对象的温度设定为初始温度,并将PID控制器的输出设定为零。

记录系统的温度、控制量和误差值。

5.PID计算:根据当前的误差值、历史误差值和时间间隔,计算PID控制器的输出。

6.控制实施:根据PID控制器的输出,控制发热器的加热功率。

根据输出值的大小调整发热器的功率大小。

7.实验分析:观察系统的温度变化过程,并分析PID控制器的参数调整对系统性能的影响。

根据实验结果,调整PID参数,使系统的稳态和动态响应性能都较好。

实验结果:我们进行了多组实验,可以观察到系统温度在初始阶段有较大的波动,但随着时间的推移,温度开始逐渐稳定在目标温度附近。

通过对PID参数进行调整,我们发现参数的选择对系统的稳定性和响应速度有很大影响。

当比例系数Kp较大时,系统对误差的响应速度很快,但也容易引起过冲现象,导致系统产生振荡。

因此,我们需要根据实际需求进行调整,找到一个合适的值。

当积分系数Ki较大时,系统对积累误差的反应较快,可以很好地消除稳态误差,但也容易引起系统的超调。

温控继电器实验报告

温控继电器实验报告1. 实验目的本实验旨在通过使用温控继电器,了解温度传感器和继电器的原理,并掌握温控继电器的使用方法。

2. 实验原理温控继电器是一种能够根据温度变化自动开关电路的设备。

它由温度传感器和继电器两部分组成。

2.1 温度传感器温度传感器是用来感知环境温度的装置,常见的温度传感器有热敏电阻、热电偶和半导体温度传感器等。

2.2 继电器继电器是一种电磁式开关,当通过控制信号(电流或电压)使其电磁线圈激磁时,可以控制大电流或高压的电路开关。

3. 实验器材实验中我们使用以下器材:- 温控继电器模块- 温度传感器- 电烙铁- 连接线- 电源4. 实验步骤4.1 连接电路首先,将温控继电器和温度传感器通过连接线连接起来。

温度传感器的输入端连接到温控继电器的输入端,输出端连接到温控继电器的输出端。

4.2 设置温度阈值根据实验需求,使用螺丝刀旋转温控继电器上的旋钮,调节温度阈值。

当温度超过设定的阈值时,温控继电器将触发继电器动作。

4.3 连接电源将电源的正负极正确地接入温控继电器模块,确保电路接线正确。

4.4 测试将温度传感器放置在需要监测温度的位置,接通电源开关。

当温度超过设定的阈值时,温控继电器将触发继电器动作,电路将断开或闭合。

5. 实验结果根据实验设置的温度阈值,成功触发了继电器的动作。

在温度超过设定的阈值时,电路断开或闭合,实现了自动开关电路的功能。

6. 实验分析本实验通过温控继电器模块,成功实现了根据温度变化自动开关电路的功能。

温度传感器可以感知环境温度,并通过与温控继电器的连接将温度信号传递给继电器,从而实现对电路的控制。

温控继电器在实际应用中具有广泛的用途,例如用于恒温设备、空调控制、温度报警等。

通过合理设置温度阈值,可以根据实际需要实现对环境温度的自动控制。

7. 实验总结通过本次实验,我们深入了解了温控继电器的原理和使用方法。

温控继电器可实现对温度变化的自动感知和控制,具有重要的应用价值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

温度控制器实验总结报告
一、功能及性能指标
根据设计任务基本要求,本系统应具有以下几种基本功能。

(1)可以进行温度设定,并自动调节水温到给定温度值。

(2)可以调整PID控制参数,满足不同控制对象与控制品质要求。

(3)可以实时显示给定温度与水温实测值。

(4)可以打印给定温度及水温实测值。

系统主要性能指标如下:
(1)温度设定范围40℃~90℃,最小区分度1℃。

(2)温度控制静态误差≤1℃。

(3)双3位LED数码管显示,显示温度范围0.0℃~99.0℃。

(4)采用微型打印机打印温度给定值及一定时间间隔的水温实测值。

二、总体设计方案
水温控制系统的控制对象具有热储存能力大,惯性也较大的特点,水在容器内的流动或热量传递都存在一定的阻力,因为可以将它归于具有纯滞后的一阶大惯性环节。

一般来说,热过程大多具有较大的滞后,它对于任何信号的响应都会推迟一些时间,使输出与输入之间产生相移。

对于这样存在大的滞后特性的过度过程控制,一般可以采用以下几种控制方案。

1)、输出开关量控制
2)、比例控制(P控制)
3)、比例积分控制(IP控制)
4)、比例积分加微分控制(IPD控制)
结合本例题设计任务与我们采用比例积分加微分(PID)控制。

其特点是微分的作用使控制器的输出与偏差变化的速度成比例,它对克服对象的容量滞后有显著地效果。

在比例基础上加入微分作用,使稳定性提高,同时积分作用可以消除余差。

采用PID的控制方式,可以最大限度地满足系统对诸如控制精度,调节时间和超调量等控制品质的要求。

三、系统组成
本系统是一个典型的检测、信号处理、输入运算到输出控制电炉加热功率以实现水温控制的全过程。

因此,应以单片微型计算机为核心组成一个专用计算机应用系统,以满足检测、控制应用类型的功能要求。

另外,单片机的使用也为实现水温的只能化控制以及提供完善的人机界面及多机通信皆空提供了可能。

而这些功能在常规数字逻辑电路中往往难以实现。

所以本机采用以单片机为核心的直接数字控制系统(DDC)。

1、软、硬件功能划分
在绝大多数单片机应用系统中,系统功能的软件、硬件划分往往是由应用系统对控制速度的要求决定的,在没有速度限制的
情况下可以考虑以软件换取硬件电路的简化,以求降低硬件成本。

(1)速度估算
(2)软件、硬件功能划分。

为了简化系统硬件、降低硬件成本、提高系统灵活性和可靠性,有关PID运算、输入信号滤波及大部分控制过程都可由软件来完成,硬件的主要功能是温度信号的传感、放大、A/D转换及输出信号的功率放大。

另外,人机通道功能由系统软件、硬件配合完成,以降低软件设计的复杂性及缩短系统的研制周期。

2.统一功能划分、指标分配和框图构成
系统由4个主要的功能模块组成,总体框图如下图所示:
(1)单片机基本系统。

它是整个控制系统的核心,完成整个系统的信息处理及协调控制功能。

(2)向前通道。

它是信息采集的通道,主要包括传感器、信号放大、A/D转换等电路。

(3)向后通道。

它是实现控制信号输出的通道,单片机系统产生的控制信号经功率放大电路放大控制电炉的输入功率,以实现水温控制的目的。

(4)人机对话通道。

主要由键盘、LED显示和打印机组成。

四、硬件开发
(1)单片机基本系统
如图所示
(2)人机对话通道主要由行列式键盘、LED显示器组成。

采用可编程键盘、显示接口芯片8279。

8279负责键盘的扫描、消抖处理和显示输出工作,大大减轻了CPU的负担也简化了软件的编程。

电路图如下图所示:
五、软件设计
整个温度控制系统软件包括主程序(包括初始化、显示)、键盘输入中断服务程序,
主程序如下:ORG 0000H
LJMP START
ORG 0300H
START:
ACALL DELAY
ACALL I8279
ACALL SETRAM
LOOP1:ACALL AD
ACALL DISPLAY
ACALL DELAY
ACALL DELAY
ACALL DELAY
SJMP LOOP1
I8279:
NOP
MOV DPTR,#0FDFFH MOV A,#00H
MOVX @DPTR,A
MOV A,#0D1H
MOVX @DPTR,A
MOV A,#22H
MOVX @DPTR,A
LP:MOVX A,@DPTR
JB ACC.7,LP
RET
SETRAM: MOV 30H,#08H MOV 31H,#08H MOV 32H,#08H MOV 33H,#08H MOV 34H,#08H MOV 35H,#08H RET
DISPLAY:
MOV DPTR,#0FDFFH MOV A,#90H
MOVX @DPTR,A
MOV R0,#30H
MOV R2,#06H
MOV A,#10H
MOVX @DPTR,A
LOOP:MOV A,@R0
MOV DPTR,#TAB
MOVC A,@A+DPTR MOV DPTR,#0FCFFH MOVX @DPTR,A
INC R0
ACALL DELAY
ACALL DELAY
DJNZ R2,LOOP
ACALL DELAY
ACALL DELAY
RET
AD: NOP
MOV A,#33H
MOV DPTR,#0FBFFH
WAIT:JB P1.1,WAIT
MOVX A,@DPTR
MOV @R1,A
MOV B,#100
DIV AB
MOV 31H,A
MOV A,B
MOV B,#10
DIV AB
MOV 32H,A
MOV 33H,B
RET
DELAY:MOV R3,#255
D1: MOV R4,#255
DJNZ R4,$
NOP
DJNZ R3,D1
RET
TAB:DB
0C0H,0F9H,0C4H,0D0H,99H,92H,82H,0F8H,80H,90H,0FFH END
中断服务程序共分3 种, 分别为外部中断1、定时中断和串行口中断。

六、调试步骤
1、拔掉所有在插座上的芯片,用万用表测试+15V、-15V、+5V与地之间是否短路;
2、连接电源:
白色三芯插座为电源插座,从左到右依次是-15V、GND、+15V 注意次序
D1、D2为保护二极管,防止极性接反
打开电源
用万用表的电压档测量LM7810、LM7805的输出是否符合要求
用万用表的电压档测量各个芯片的电源脚的电压是否符合要求
3、传感器与放大器的调节
断开电源,连接传感器AD590、插上OP-07放大器,打开电源
用万用表的电压档测量OP-07的输出端,调节电位器VR1、VR2,使常温下的OP-07的输出端电压为0、1V
左右,用手握紧传感器,观察期输出是否变化;
* 断开电源,插上AD转换器ADC0804,打开电源
4、AD转换器ADC0804的调节
断开电源,插上AD转换器ADC0804,打开电源
用示波器测量ADC0804的第四脚;时钟输入脚CLKIN的波形,本设计中ADC0804的是使用电阻电容产生,R3=10K,C3=150PF,理论上的时钟频率为:f=1/rc=660K左右。

5、单片机最小系统的调试
断开电源,插上AT89C51,打开电源
单片机最小系统运行的基本条件:复位、时钟、/EA/VP引脚接高电平
用万用表的电压档测复位端、/EA/VP端
用示波器测量第18、19的时钟输入输出脚、和单片机地址数据分离引脚ALE,引脚ALE的频率应为第
18、19的时钟输入输出脚的1/2
6.、键盘和显示的调试
键盘和显示是由8279控制的,有初始化、显示键盘处理及部分组成
联调
考虑安全问题,调试时不连接220V电源,控制电路的实现与否利用一个发光二极管指示。

发光二极管焊接在AT89C51的左下角L4处。

控制引脚为AT89C51的15脚P3.5,地电平有效。

施工组织设计
七、心得体会
在整个实验过程中我们遇到了许多问题,虽然在实验之前做过一些准备工作,但在真正做的时候还是常常出现心有余而力不足的情况,让我们常常感慨“书到用时方恨少”。

仔细想想,我们所做的准备工作还不够到位,并且缺乏团队合作精神,常常各自为战,难以擦出思想的火花,不能群策群力的针对问题想出合理的解决方法。

这次实验的过程给了我们很大的启发,对我们今后的学习和工作都有很大的帮助和促进,并且带给了我们宝贵的经验。

在今后的道路上我们一定会吸取这次试验的宝贵经验和教训努力把事情做好。

同时我们还要感谢在实验过程中给了我们巨大帮助的教员,多亏了您的指导许多的问题才得以解决。

祝您在今后的工作和生活中:一切顺利,万事如意!
页脚内容11。

相关文档
最新文档