《高等数学A2》课程教学大纲

合集下载

高等数学A2(一) 教学大纲

高等数学A2(一)   教学大纲

高等数学A2(一)一、课程说明课程编号:130702X10课程名称(中/英文):高等数学A2(一)/Advanced Mathematics A2(Ⅰ)课程类别:必修学时/学分:80/5先修课程:无适用专业:理工类教材、教学参考书:基本教材:《高等数学》(上册),主编,2014.7,中南大学出版社主要参考书:《大学数学系列课程学习辅导与同步练习册》(高等数学上),2015.9,中南大学出版社二、课程设置的目的意义高等数学A2是高等院校理工类(非数学)专业理工科各专业学生必修的重要基础理论课,是研究自然科学和工程技术的重要工具,是学生提高文化素质和学习有关专业知识的重要基础.通过本课程的学习,要使学生获得:1、函数、极限与连续(不包括实数理论);2、一元函数微积分学;3、无穷级数(包括傅立叶级数);4、向量代数与空间解析几何;5、多元函数微积分学(不包括含参变量的积分);6、微分方程等方面的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获取数学知识奠定必要的数学基础.高等数学A2的教学分为两部分,分别是高等数学A2(一)、高等数学A2(二).开设时间是大学第一学年,分两学期授课,总学时为80+80,学分为5+5.第一学期每周6学时(约14周);第二学期每周5学时(约16周).学习本课程的目的和任务:第一、使学生系统地获得大纲中所列基础知识、基本理论和基本运算技能,为学习后续课程和进一步深造奠定必要的数学基础;第二、通过各个教学环节逐步培养学生具有抽象概括问题的能力、空间想象能力、逻辑推理能力和自学能力,特别要培养学生具有熟练的运算能力和综合运用所学知识去分析问题和解决问题的能力.三、课程的基本要求本课程基本要求的高低用不同词汇加以区分,对概念、理论,高要求用“理解”一词表述,低要求用“了解”一词表述;对方法、运算,高要求用“掌握”一词表述,低要求用“会”或“了解”表述.学生对高要求部分必须深入理解,牢固掌握,熟练应用.具体要求如下:第1章函数、极限与连续1.掌握基本初等函数的概念、性质及其图形, 掌握初等函数的概念;2.掌握极限四则运算法则;3.理解函数的概念,掌握函数的表示法, 会求函数值及定义域;4.会建立简单实际问题中的函数关系;5.了解两个极限存在准则(夹逼准则和单调有界准则),会用两个重要极限求极限;6.了解无穷小、无穷大以及无穷小的阶的概念,了解无穷小的运算性质及阶的比较,会用等价无穷小求极限;7.理解函数在一点连续的概念,会判断函数在某一点(包括分段函数在分段点处)的连续性;8.了解函数间断点的概念,并会判断间断点的类型;9.了解反函数概念,会求简单函数的反函数;理解复合函数概念,会分析复合函数的复合过程;10.了解函数的奇偶性、单调性、周期性和有界性;11.了解极限的概念(对极限的ε-N,ε-δ定义在学习过程中逐步加深理解,对于给出ε求N或δ不作过多的要求);12.了解初等函数的连续性及闭区间上连续函数的性质(最大值、最小值定理和介值定理),并会应用这些性质.第2章一元函数微分学1 掌握导数的概念及其几何意义,掌握可导性与连续性的关系,会求曲线在某点处的切线与法线方程;2.熟练掌握导数的基本公式,四则运算法则和复合函数求导方法;掌握初等函数一、二阶导数的求法;3.会求分段函数的导数,会求隐函数和参数式所确定的函数的一、二阶导数,以及反函数的导数;会用对数求导法求幂指函数及由积、商、幂所组成的函数的导数;4.了解高阶导数的概念, 会求简单函数的n阶导数;5.了解微分的概念,掌握微分运算法则和一阶微分形式不变性,以及可导与可微的关系,会求函数的微分;6.理解并会用Rolle定理、Lagrange中值定理和Cauchy中值定理,了解并会用Taylor定理;知道e x、sinx、cosx、ln(1+x)等函数的Maclourin展开式;7.熟练掌握用洛必达法则求未定式"0/0"与"∞/∞"型以及可化为这两种形式的未定式的极限;8.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,会利用函数的单调性证明简单的不等式, 掌握函数的最大值和最小值的求法及其应用;9.了解曲线凹凸性与拐点的概念,会用导数判别曲线的凹凸性,会求拐点;会求曲线的渐近线,能描绘函数的图形;10.了解曲率和曲率半径的概念,并会计算曲率和曲率半径.第3章 一元函数积分学1.熟练掌握不定积分的基本公式、换元积分法和分部积分法; 2.熟练掌握定积分的换元积分法与分部积分法;3.掌握Newton- Leibniz 公式并能熟练地用此公式计算定积分; 4.理解原函数与不定积分的概念,掌握不定积分的性质;5.掌握简单的有理函数和三角函数有理式及简单无理函数的不定积分计算方法;6.理解定积分的概念、几何意义和基本性质;理解变上限的积分作为其上限的函数及其求导定理.7.掌握用定积分计算平面图形的面积、旋转体的体积、平行截面面积已知的立体体积和平面曲线的弧长;8.了解不定积分的几何意义 ;9.会计算无穷区间和无界函数的广义积分;10.知道用微元法将实际问题表达成定积分的方法;会用定积分表达并计算一些物理量(如功、水压力、引力、平均值等)的方法.第4章 无穷级数1.熟练掌握几何级数与p 级数的收敛与发散的条件;熟练掌握调和级数的敛散性及其应用;2.熟练掌握幂级数的收敛半径、收敛区间及收敛域的求法; 3.理解无穷级数收敛、发散及和的概念,了解无穷级数的基本性质及收敛的必要条件;4.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法; 5.掌握交错级数的莱布尼茨判别法; 6.掌握Maclaurin 展开式,会利用e x 、sinx 、cosx 、ln (1+x )、(1+x )m 的Maclourin 展开式将一些简单的函数间接展开成幂级数;7.理解幂级数收敛半径的概念; 8.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系; 9.了解函数项级数的收敛域及和函数的概念;10.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和;11.了解函数展开为Taylor 级数的充分必要条件;12.了解Fourier 级数的概念和Drichillit 收敛定理,会将定义在[,]ππ-和[,]l l -上的函数展开为Fourier 级数,会将定义在[0,]π和[0,]l 的上的函数展开为正弦级数与余弦级数,会写出傅里叶级数和函数的表达式.四、教学内容、重点难点及教学设计注:实践包括实验、上机等五、实践教学内容和基本要求无六、考核方式及成绩评定七、大纲撰写:大纲审核:。

《高等数学A(2)》教学大纲

《高等数学A(2)》教学大纲

《高等数学A(2)》教学大纲课程编号:1021750总学时:72学分:4.5基本面向:全院非理工学门类本科各专业、49专业所属单位:数理学院高等数学教研室一、本课程的目的、性质及任务数学是研究客观世界数量关系和空间形式的科学。

随着现代科学技术和数学科学的发展,“数量关系”和“空间形式”具备了更丰富的内涵和更广泛的外延。

现代数学内容更加丰富,方法更加综合,应用更加广泛。

数学不仅是一种工具,而且是一种思维模式;不仅是一种知识,而且是一种素养;不仅是一种科学,而且是一种文化,能否运用数学观念定量思维是衡量民族科学文化素质的一个重要标志。

数学教育在培养高素质科学技术人才中具有其独特的、不可替代的重要作用。

本课程是全院非理工学门类本科各专业学生的一门必修的重要基础理论课,同时也是一门工具课,它是为培养我国社会主义现代化建设所需要的高质量专门人才服务的。

通过本课程的学习,要使学生获得:(1) 多元函数微积分学(2) 无穷级数;(3) 线性代数等方面的基本概念、基本理论和基本运算技能,目的是为学习后续课程和进一步获得数学知识奠定必要的数学基础。

在传授知识的同时,要通过各教学环节逐步培养学生具有抽象思维和逻辑推理的理性思维能力,综合运用所学的知识分析问题和解决问题的能力以及较强的自主学习能力,逐步培养学生的创新精神和创新能力。

二、本课程的基本要求本课程的内容按教学要求的不同,分为三个层次。

对概念、理论的要求由高到低分为深刻理解、理解、了解三个层次;对方法、运算的要求由高到低分为熟练掌握、掌握、会三个层次。

(一)向量代数与空间解析几何1、理解二次曲面方程的概念,了解空间曲线方程的概念。

2、了解常用二次曲面的方程及其图形,了解以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的拄面方程。

3、了解曲面的交线在坐标平面上的投影。

4、了解二次曲面的分类。

(一) 多元函数1、理解二元函数的概念,了解多元函数的概念。

2、了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质。

《高等数学(I)和(II)》教学大纲

《高等数学(I)和(II)》教学大纲

《高等数学(I )和(II )》教学大纲课程代号:/ 学时数:150~170 学分数: 适用专业:全院工科各专业一、本课程的地位,任务和作用高等数学是人们从事高新技术,知识创新中必不可少的工具,它的内容、思想、方法和语言已广泛渗入自然科学和社会科学,成为现代文化的重要组成部分。

21世纪是信息时代,它不仅给人类生活带来日新月异的变化,也给高等数学课程的教学增添了新的内函。

高等数学是高等工程院校的一门重要的基础课,通过学习使学生受到必要的高等数学教育,使其具有一定的数学素养,为后续课程学习及今后的应用打下良好的数学基础。

二.、本课程的相关课程后续课程:大学物理、概率论与数理统计等三、本课程的基本内容及要求 第一章 函数,极限,连续 教学内容函数的概念及表示法,函数的有界性、单调性、周期性、奇偶性,复合函数,反函数,隐函数,基本初等函数的性质及其图形,初等函数,应用问题的函数关系的建立,数列极限与函数极限的定义及性质,函数的左、右极限,无穷小与无穷大的概念,无穷小的性质及其比较,极限的四则运算,极限存在的两个准则,两个重要极限e x x x xx =+=∞→→)11( 1 sin lim limx 0函数连续的概念,间断点的类型, 初等函数的连续性,闭区间上连续函数的性质. 教学要求1.理解函数的概念,掌握表示法.2.了解函数的有界性,单调性,周期性,奇偶性.3.理解复合函数及分段函数的概念,了解反函数,隐函数概念. 4.掌握简单初等函数的性质及其图形. 5.会建立简单应用问题的函数关系式.《高等数学(Ⅰ) 和(Ⅱ)》教学大纲教学大纲系列·2·6.理解数列极限与函数极限的概念.理解函数的左、右极限概念及极限存在和左、右极限的关系.7.掌握极限的性质,极限的四则运算法则.8.掌握极限存在的两个准则,并会利用它们求极限, 基本掌握利用"两个重要极限"求极限方法.9.理解无穷小与无穷大的概念. 掌握无穷小比较方法,会用等价无穷小求极限.10.理解函数连续的概念,会判别函数间断点的类型.11.了解连续函数的性质,初等函数的连续性, 理解闭区间上连续函数的性质并会利用这些性质.第二章一元函数微分学教学内容导数和微分的概念,导数的几何意义和物理意义,函数的可导性与连续性之间的关系,平面曲线的切线和法线,基本初等函数的导数,导数和微分的四则运算,复合函数、反函数、隐函数以及参数方程所确定的函数的微分法,高阶导数的概念,某些简单函数n阶导数,一阶微分形式的不变性,微分在近似计算中的应用,罗尔(Rolle)定理,拉格朗日(Lagrange)中值定理,柯西(Cauchy)中值定理,泰勒(Taylor)展开定理,洛比达(L'Hospital)法则,函数的极值及其求法,函数单调性,函数图形的凹凸性、拐点及渐近线,函数图形的描绘,函数最大值和最小值的及其简单应用,弧微分,曲率半径,方程近似解的二分法和切线法。

《高等数学A(二)》教学大纲-安徽大学数学科学学院

《高等数学A(二)》教学大纲-安徽大学数学科学学院

《高等数学A (二)》教学大纲一、课程基本情况课程基本情况课程中文名称课程中文名称::高等数学A (二) 课程英文名称课程英文名称::Advanced Mathematics A (II) 课程代码课程代码::GG31002 学分/学时学时:: 4/102 开课学期开课学期::第二学期课程类別课程类別::必修;1年级;公共基础 适用专业适用专业::理工科(非数学类) 先修课程先修课程::高等数学A (一) 后修课程后修课程::高等数学A (三)开课单位开课单位::数学科学学院大学数学教学中心二、课程教学大纲课程教学大纲(一)课程性质与教学目标1. 课程性质课程性质::《高等数学A(二)》是理工科(非数学)专业必修的公共基础课程,为后续学习其他专业课程提供数学基础知识和工具.2. 教学目标教学目标::通过《高等数学A(二)》课程的学习,使学生掌握多变量微积分学的基础知识,同时培养学生具有抽象思维能力、逻辑推理能力、空间想象能力、运算能力和自学能力,还要特别注意培养学生具有综合运用所学知识去分析问题和解决问题的能力.(二)教学内容及基本要求教学内容及基本要求::第9章 空间解析几何 (16学时) §9.1 空间直角坐标系 §9.2 向量代数§9.3 空间的平面与直线§9.4 几种常见的二次曲面本章的重点是单位向量、方向余弦、向量的坐标表达式以及用坐标表达式进行向量运算的方法;平面方程和直线方程及其求法;曲面方程的概念.难点是向量的向量积;利用平面、直线的相互关系解决有关问题;常见二次曲面的画法.本章要求学生掌握向量的运算(线性运算、数量积、向量积);用坐标表达式进行向量运算的方法,平面方程和直线方程及其求法.会求平面与平面、平面与直线的夹角、直线与直线之间的夹角,并会利用平面、直线的相互关系解决有关问题;会求点到直线及点到平面的距离;会求简单柱面和旋转曲面的方程.本章习题:见配套习题册.第10章多元函数微分学(21学时)§10.1 多元函数的基本概念§10.2 偏导数与全微分§10.3 多元复合函数微分法§10.4 隐函数求导法则§10.5 偏导数在几何上的应用§10.6 多元函数的泰勒公式§10.7 多元函数的极值本章的重点是多元函数的概念;偏导数和全微分的概念;多元复合函数—阶、二阶偏导数的求法;多元函数极值和条件极值的概念.难点是复合函数的高阶偏导数;隐函数的偏导数;求曲线的切线和法平面及曲面的切平面和法线;求条件极值的拉格朗日乘数法.本章要求学生掌握多元复合函数—阶、二阶偏导数的求法;多元函数极值存在的必要条件.会求全微分;方向导数与梯度的计算;多元隐函数的偏导数;会求二元函数极值;会用拉格朗日乘数法求条件极值;会求简单多元函数最值,并会解决一些简单应用问题.本章习题:见配套习题册.第11章重积分(14学时)§11.1 二重积分的概念与性质§11.2 二重积分的计算§11.3 三重积分§11.4 重积分的应用本章的重点是二重、三重积分的概念,直角坐标系、极坐标系下二重积分的计算;直角坐标、柱面坐标、球面坐标下求解三重积分.难点是利用一般的变量代换求解二重、三重积分问题.本章要求学生掌握二重积分(直角坐标、极坐标)的计算方法;并会计算三重积分(直角坐标、柱面坐标、球面坐标).本章习题:见配套习题册.第12章曲线积分与曲面积分(24学时)§12.1 第一类曲线积分§12.2 第二类曲线积分§12.3 Green公式§12.4 第一类曲面积分§12.5 第二类曲面积分§12.6 Gauss公式§12.7 Stokes公式§12.8 场论初步本章的重点是两类曲线积分与曲面积分的概念与计算;曲线积分与路径无关;Green公式;Gauss公式.难点是曲面积分的计算;Green公式;Gauss公式;Stokes公式.本章要求学生掌握两类曲线积分的计算方法;掌握格林公式并会应用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数;掌握两类曲面积分的计算方法;用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分;会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形面积、体积、曲面面积、弧长、质量、形心、转动惯量、引力、功及流量等).本章习题:见配套习题册.第13章无穷级数(18学时)§13.1 数项级数的概念与性质§13.2 数项级数的收敛判别法§13.3 幂级数§13.4 Fourier级数本章的重点是数项级数的概念与性质,几何级数和p—级数的收敛性,正项收敛的若干判别法,幂级数的收敛区间与收敛域的求法,函数的幂级数展开.难点是任意项级数的收敛性判别,幂级数的和函数,函数的幂级数与傅立叶级数展开.本章要求学生掌握收敛级数的基本性质及收敛的必要条件.几何级数与p-级数收敛与发散的条件,正项级数的比较判别法与比值法,交错级数的莱布尼兹判别法.幂级数的收敛半径、收敛区间及收敛域的求法.掌握e x,sin x,cos x,ln(1+x) 及(1+x) α的麦克劳林展开式,会用它们将一些简单函数间接展开为幂级数.会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.会将定义在[ -l, l ]上的函数展开为Fourier级数,会将定义在[0, l ]上的函数展开为正弦级数与余弦级数;会写出Fourier级数的和函数的表达式.本章习题:见配套习题册.(三)教学方法教学方法::以课堂教学为主,习题课与讨论课为辅.(四)考核内容及方式考核方式为闭卷考试,实行教考分离.成绩由平时成绩(30%)和期末考试(70%)两部分组成.平时成绩含考勤、作业、课堂提问、小测验等.(五)教学安排及方式教学安排及方式::周次学时数教学主要内容教学方式1 6 第9章空间解析几何§9.1-9.2讲授2 6 第9章空间解析几何§9.3 讲授、习题课3 6 第9章空间解析几何§9.4;第10章多元函数微分学§10.1讲授、习题课4 6 第10章多元函数微分学§10.2-§10.3讲授5 6 第10章多元函数微分学§10.4-§10.5讲授6 6 第10章多元函数微分学§10.6-§10.7讲授7 6 第10章多元函数微分学§10.7;第11章重积分§11.1讲授、习题课8 6 第11章重积分§11.2讲授9 6 第11章重积分§11.3-§11.4讲授、习题课10 6 第12章曲线积分与曲面积分§12.1-§12.2讲授11 6 第12章曲线积分与曲面积分§12.3-§12.4讲授12 6 第12章曲线积分与曲面积分§12.5-§12.6讲授13 6 第12章曲线积分与曲面积分§12.6-§12.7讲授、习题课14 6 第12章曲线积分与曲面积分§12.8讲授15 6 第13章无穷级数§13.1-§13.2讲授16 6 第13章无穷级数§13.2-§13.3讲授17 6 第13章 无穷级数 §13.4;总复习讲授、习题课(六)教材与参考资料教材与参考资料:: 1.1.教材教材教材《高等数学(下)》(理工类,第3版),杜先能,孙国正等,安徽大学出版社,2011年. 2.2.参考书目参考书目参考书目(1)《高等数学(下册)》(第7版),同济大学数学系编,高等教育出版社,2014年.(2)《高等数学习题全解指南(下册)》(第7版),同济大学数学系编,高等教育出版社,2014年.数学科学学院大学数学教学中心2015年9月。

《高等数学A上下》课程教学大纲

《高等数学A上下》课程教学大纲
2
通过讲解我国古代数学家刘徽领先欧洲1000度年创立了的“割圆术”所体现的极限思想,树立学生的文化自信。
五、课程考核方式
考核方式
考核内容
对应课程目标
评分标准
考核占比
平时作业1
明晰函数与极限的概念,推演函数连续性问题,计算和分析初等函数连续性及极限讨论。(1~2分)
3
作业成绩算分法
依据标准答案评分
20%
3、能够基于函数和极限的基本原理和数学方法,推演函数连续性问题,计算和分析初等函数连续性及极限讨论问题。
4、能够运用向量代数与空间解析几何、曲线积分与曲面积分、无穷级数的基本原理和数学方法,识别和判断空间点线面位置关系、曲线及曲面积分、级数收敛等问题。
三、课程目标对毕业要求的支撑情况
课程目标
所支撑的毕业要求
二、课程目标和基本要求
通过本课程的学习,使学生能够将数学知识用于数据计算、公式推导。能够基于数学原理和方法初步正确表达数学问题。具体目标如下:
1、能够明晰导数、微分和积分的基本概念和理论,将其用于高阶导数、不定积分和定积分、常微分方程问题的表述。
2、能够明晰多元函数微积分、重积分的基本概念和理论,将其用于高阶偏导数、重积分的求解。
课堂讨论
课堂提问
1
授课(12)
作业4
第五章定积分
5.1定积分的概念与性质
5.2微积分基本公式
5.3定积分的换元法和分部积分法
5.4反常积分
能够明晰定积分的概念与理论,将其用于定积分问题的表述
PPT讲授
课堂讨论
课堂提问
1
授课(10)
作业5
第六章定积分的应用
6.1定积分的元素法
6.2定积分在几何学上的应用

《高等数学A2》课程教学大纲

《高等数学A2》课程教学大纲

《高等数学A2》课程教学大纲一、课程基本信息课程代码:SL1102课程名称:高等数学A2课程性质:必修课课程类别:通识教育基础课程适用专业:工学、管理学、经济学、理学(非数学类)类本科多学时各专业总学时:88学时总学分:5.5学分先修课程:高等数学A1后续课程:各相关专业课程课程简介:《高等数学A2》是利用微积分方法研究客观世界数量关系和空间形式的科学,是高等学校工学、管理学、经济学、理学(非数学类)类本科多学时各专业学生的一门必修的重要通识教育基础课程.通过本课程中的基本概念、基本理论、基本方法和运算技能的学习,逐步培养学生具有抽象思维能力、逻辑推理能力、空间想象能力,特别培养学生具有比较熟练的运算能力和综合运用所学知识分析和解决问题的能力以及创新精神,为今后学习后继课程和进一步拓广知识面奠定必要的坚实的数学基础.主要内容包括:微分方程、空间解析几何、多元函数微分法及其应用、重积分、曲线积分与曲面积分、无穷级数.选用教材:《高等数学》(第六版)(上、下册)[M].同济大学应用数学系编,高等教育出版社,2007.参考书目:[1]《高等数学》(上、下册)[M].王金金编,北京:北京邮电大学出版社,2010;[2]《高等数学》(上、下册)[M].朱士信等编,北京:中国电力出版社,2007;[3]《高等数学》[M].杜先能孙国正编,安徽:安徽大学出版社,2004;[4]《高等数学习题课讲义》[M].同济大学应用数学系编,北京:高等教育出版社,1998;[5]《高等数学习题集》[M].华东六省工科数学系列教材编委会编,北京:高等教育出版社;[6]《数学分析》(第四版)(上、下册)[M].华东师范大学数学系编,北京:高等教育出版社,2008.二、课程总目标通过本课程的学习,使学生获得微分方程、向量代数与空间解析几何、多元函数微积分学、无穷级数等方面的基本概念、基本理论、基本方法和运算技能,逐步培养学生具有抽象概括问题的能力、逻辑推理能力、空间抽象能力以及自学能力,特别注意培养学生具有比较熟练的运算能力和综合运用所学知识分析和解决问题能力以及创新精神,为今后学习后继课程和进一步拓广知识面奠定必要的坚实的数学基础.三、课程教学内容与基本要求1、教学内容:(1)微分方程;(2)空间解析几何;(3)多元函数微分法及其应用;(4)重积分;(5)曲线积分与曲面积分;(6)无穷级数.2、基本要求:(1) 微分方程①了解微分方程的解、通解、初始条件和特解等概念; ②掌握变量可分离的方程及一阶线性方程的解法;③会解齐次方程和伯努利(Bernoulli )方程,并从中领会用变量代换求解方程的思想;④会用降阶法求下列三种类型的高阶方程:()()ny f x =,(),y f x y '''=,(),y f y y '''= ;⑤理解二阶线性微分方程解的性质及解的结构;⑥掌握二阶常系数齐次线性微分方程的解法,了解某些高阶常系数齐次线性微分方程的解法;⑦会求自由项形如:()ax n P x e ,12()sin ()cos ax m n e p x x p x x ωω⎡⎤+⎣⎦的二阶常系数非齐次线性微分方程的特解,其中()n P x 为实系数n 次多项式,,a ω实数;⑧会用微分方程解一些简单的几何和物理问题.重点:可分离变量及一阶线性微分方程解法;二阶线性微分方程解的结构;二阶常系数齐次微分方程解法. 难点:微分方程的建立;初始条件的确定.(2) 向量代数与空间解析几何①理解空间直角坐标系,理解向量的概念及其表示; ②掌握向量的运算(线性运算,数量积,向量积),了解两向量垂直、平行的条件; ③理解单位向量、方向数与方向余弦的概念,掌握用坐标表达式进行向量运算的方法; ④掌握平面的方程和直线的方程及其求法,会利用平面、直线的相互关系解决有关问题;⑤了解曲面方程概念,了解常用二次曲面的方程及其图形,会求以坐标轴为旋转轴的旋转曲面方程 ; 会求母线平行于坐标轴的柱面方程;⑥了解空间曲线的参数方程和一般方程;⑦了解曲面的交线在坐标平面上的投影,并会求其方程. 重点:空间直线与平面的方程,;曲面的图形. 难点:曲面的交线在坐标平面上的投影.(3) 多元函数微分法及其应用①理解多元函数的概念, 理解二元函数的几何意义;②了解二元函数的极限与连续性的概念以及有界闭域上连续函数的性质;③理解偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件; ○4理解方向导数与梯度的概念,会求方向导数与梯度; ○5掌握多元复合函数的一阶偏导数的求法,会求多元复合函数的二阶偏导数(对于求抽象复合函数的 二阶导数,只要求作简单训练);○6会求多元隐函数(包括两个方程组成的方程组确定的隐函数)的一阶偏导数; ○7了解空间曲线的切线和法平面及曲面的切平面与法线的概念,并会求出它们的方程; ○8理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求解一些较简单的最大值和最小值的应用问题. 重点:偏导数与全微分的概念;多元函数概念;偏导数的计算;多元函数的极值和条件极值(拉格朗日乘数法). 难点:复合函数与隐函数的一、二阶偏导数求解.(4)重积分①理解二重积分、三重积分的概念,了解重积分的性质.②掌握二重积分的计算方法(直角坐标、极坐标),会计算简单的三重积分(直角坐标、柱面坐标、*球面坐标). ③会用重积分求一些几何量与物理量(如体积、曲面面积、质量、重心、转动惯量等). 重点:二重积分、三重积分的概念与计算. 难点:二重积分、三重积分的计算.(5)曲线积分与曲面积分①理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系,掌握计算两类曲线积分的方法; ②掌握格林(Green )公式,会使用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数,了解全微分方程的解法..③了解两类曲面积分的概念、性质及相互联系,并会计算两类曲面积分;④会用高斯(Gauss )公式计算曲面积分,了解斯托克斯(Stokes )公式(斯托克斯公式的证明以及利用该公式计算空间曲线积分不作要求);⑤了解散度、旋度的概念,并会计算;○6会用重积分、曲线积分及曲面积分求一些几何量与物理量(如体积、曲面面积、弧长、质量、重心、转动惯量、引力、功等).重点:两类曲线积分的概念及计算;格林公式.难点:第二类曲线与曲面积分;高斯公式.(6)无穷级数①理解无穷级数收敛、发散以及收敛级数的和的概念,掌握无穷级数基本性质及收敛的必要条件; ②掌握几何级数和P –级数的收敛性;○3掌握正项级数的比较审敛法和比值审敛法,会用根值审敛法; ○4掌握交错级数的莱布尼茨定理; ○5了解无穷级数的绝对收敛与条件收敛的概念,以及绝对收敛与收敛的关系; ○6了解函数项级数的收敛域及和函数的概念; ○7掌握比较简单的幂级数收敛区间的求法; ○8了解幂级数在其收敛区间内的一些基本性质,会求一些幂级数在其收敛区间内的和函数; ○9了解函数展开为泰勒级数的充分必要条件; ○10掌握xe ,sin x ,x cos ,ln(1)x +和m x )1(+的麦克劳林(Maclaurin )展开式,会利用它们将一些简单的函数间接展开成幂级数;○11了解幂级数在近似计算上的简单应用;○12了解用三角函数逼近周期函数的思想,了解函数展开为傅里叶(Fourier )级数的狄利克雷(Dirichlet )条件,会将定义在(),ππ-和(),l l -上的函数展开为傅里叶级数,会将定义在()0,l 上函数展开为正弦或余弦级数,会写出傅里叶级数的和的表达式.重点:无穷级数收敛与发散的概念;正项级数的比值判别法;幂级数的收敛区间;泰勒级数;函数的幂级数展开式;函数的傅里叶级数;函数的傅里叶正弦和余弦级数.难点:正项级数的比较审敛法;用间接法展函数为泰勒级数.3、学时分配《高等数学A2》课程总学时:88 其中讲授学时:88四、考核方式本课程为考试课程,采用闭卷笔试的考核办法,学生成绩的评定:考试成绩占70%,出勤考核占10%,平时作业占20%.执笔人:俞能福 审定人: 陈邦考 2011年8月19日。

高等数学A2教学大纲

六、课程考核方式
1. 采取闭卷考试考核;平时成绩占0%~20%
卷面成绩占80%~100%;
2. 闭卷考试卷面 分值的大致分布为:选择题占20%
填空题占20%
计算题和其他占60%;
说明:
大纲中的教学基本要求是作为合格的本、专科学生必须达到的最低要求
基本要求的高低用不同的词汇加以区分
比较的大小
积分域D由x轴、y轴与直线x+y=1所围成
2.(交换积分次序)
3. 利用极坐标计算
其中D由圆周 及直线y=0,y=x所围成的在第一象限内的闭区域
4. 计算三重积分其中是由及 所围成的空间区域
5. 计算曲线积分
其中L是圆周(按逆时针方向)
6. 计算曲面积分
二、课程内容及学时分配:
课程内容:
1. 向量代数与空间解析几何
空间直角坐标系
两点间的距离公式
向量的概念及向量的运算
向量及其方向余弦的坐标表示
向量的夹角
向量平行与垂直的条件
曲面方程的概念
平面方程
直线方程
平面与平面
平面与直线
直线与直线的位置关系
旋转曲面
柱面
适用专业及层次:全校本、专科生(应用物理、计算机、自动化、信息、机械、环境等专业)
相关课程:先行课程无
后继课程有概率论与数理统计
复变函数与积分变换等
教材:《高等数学》(第六版)
同济大学应用数学系编著
高等教育出版社
2002年
推荐参考书:
1. 高等数学附册《学习辅导与习题选解》(同济四、五版)
若收敛
需说明是绝对收敛还是条件收敛

高等数学A1、A2课程教学大纲-山东建筑大学

目录序号编码课程名称页码1.LX1001-2 高等数学A1、A2 (1)2.LX1003-4 高等数学B1、B2 (4)3.LX1005-6 高等数学C1、C2 (8)4.LX1007 Matlab语言与数学实验 (10)5.LX2001-2 大学物理 (12)6.LX2003 大学物理B (19)7.LX3001 材料力学 (25)8.LX3002 理论力学A (29)9.LX3003 理论力学B (32)10.LX3004 基础力学 (35)11.LX3005 工程力学(LX) (39)12.LX3006 基础力学1 (42)13.LX3007 基础力学2 (44)14.LX3008 建筑力学 (47)15.LX5001-3 数学分析1-3 (51)16.LX5004-5 高等代数1、2 (55)17.LX5006 空间解析几何 (60)18.LX5007 概率论与数理统计(理) (62)19.LX5008 概率论与数理统计 (65)20.LX5009 概率论 (67)21.LX5011 复变函数 (69)22.LX5012 复变函数与积分变换 (72)23.LX5013 运筹学 (74)24.LX5014 数值计算A (76)25.LX5015 数值计算B (79)26.LX5016 常微分方程 (81)27.LX5017 C语言 (83)28.LX5018 数据库原理与应用 (86)29.LX5019 计算机组成原理 (90)30.LX5020 信息论基础 (93)31.LX5021 最优化方法 (95)32.LX5022 计算机图形学A (97)33.LX5023 数学模型 (99)34.LX5024 离散数学A (101)35.LX5025 数理方程 (104)36.LX5027 组合数学A (106)37.LX5028 数学物理方法 (110)38.LX5101 高等代数选讲 (112)39.LX5102 数学分析选讲 (114)40.LX5103 实变函数 (117)41.LX5104 近世代数概论 (119)42.LX5105 微分几何 (122)43.LX5201 宏观经济学 (126)44.LX5202 证券与投资 (129)45.LX5203 应用统计学 (132)46.LX5204 微观经济学 (135)47.LX5205 工程经济分析 (138)48.LX5206 风险管理 (141)49.LX5207 国际贸易 (143)50.LX5301 密码学与网络安全 (145)51.LX5302 现代密码学 (148)52.LX5303 信息安全数学基础 (151)53.LX5304 电子商务安全技术 (153)54.LX5305 计算机网络基础 (156)55.LX5306 计算机技术与应用 (159)56.LX5307 网页设计与制作 (161)57.LX5308 数字图像处理 (163)58.LX5401 面向对象的程序设计 (166)59.LX5402 JAVA程序设计 (169)60.LX5403 软件工程 (171)61.LX5404 DELPHI程序设计 (174)62.LX5405 最新软件分析及应用 (178)63.LX5406 PYTHON程序设计 (180)64.LX5407 专业英语 (182)65.LX5408 数学实验 (184)66.LX5502 C语言课程设计 (187)67.LX5503 毕业实习 (190)68.LX5504 认识实习 (196)69.LX5505 应用软件训练 (199)70.LX5506 信息与计算科学专业毕业论文(设计) (201)71.LX5508 密码学与网络安全课程设计 (208)72.LX5509 联想网御信息安全防火墙设计训练 (210)73.LX6001 量子力学 (212)74.LX6002 电动力学 (214)75.LX6003 固体物理学 (216)76.LX6005 原子物理 (218)77.LX6006 科技写作 (220)78.LX6007 应用物理学专业毕业设计(论文) (222)79.LX6008 创新训练 (224)80.LX6009 半导体器件与工艺 (225)81.LX6010 光电子技术 (227)82.LX6011 光电测试技术 (229)83.LX6012 网页设计 (231)84.LX6013 应用物理学专业毕业实习 (233)85.LX6014 认识实习 (235)86.LX6016 光学信息技术 (237)87.LX6017 创新与专利 (239)88.LX6021 太阳能电池原理与工艺 (241)89.LX6022 太阳能电池测试与表征 (243)90.LX6023 光电照明工程 (245)91.LX6025 单片机原理与技术 (247)92.LX6026 传感器原理及应用 (249)93.LX6027 专业英语 (253)94.LX6028 LED制造技术与应用 (255)95.LX7001 力学 (257)96.LX7003 电磁学 (260)97.LX7004 光学 (263)98.LX7005 激光原理 (267)99.LX7006 光信息科学与技术专业毕业论文 (269)100.LX7007 毕业实习 (273)101.LX7010 导波光学 (275)102.LX7011 光纤通信 (278)103.LX7012 光显示原理与技术 (283)104.LX7016 光信息存储原理 (285)105.LX7019 晶体光学 (288)106.LX7020 光学机械基础 (290)107.LX7021 物理光学与应用光学 (293)108.LX7024 计算机网络 (297)109.LX7025 信号与系统 (300)110.LX7028 认识实习 (303)111.LX7029 光纤光学 (305)112.LX7032 热学 (308)113.LX7033 数字图像处理 (311)114.LX7034 太阳能光伏原理与技术 (314)115.LX7036 物理仿真实验训练 (316)116.LX7039 热力学与统计物理 (319)117.LX7040 量子信息 (323)118.LX7041 半导体物理 (325)119.LX7042 太赫兹科学技术和应用 (328)120.LX7043 光学测量技术与应用 (331)121.LX7044 光纤通讯网络与安全 (333)122.LX7045 创新训练 (335)123.LX7047 理论力学 (336)124.LX7050 专业英语 (339)125.LX7051 信息光学 (341)高等数学A1、A2课程教学大纲课程编号:LX1001、LX1002课程名称:高等数学A1、A2 Higher Mathematics (A1)(A2)先修课程:初等数学总学时:176学时(授课学时:88 , 88 ;上机学时:0 实验学时:0)一、课程的性质和任务高等数学是工科院校中一门重要的公共基础理论课,是工科院校学生学习专业基础理论、专业知识及技能必备的课程。

高等数学A2教学大纲

《高等数学AⅡ》课程教学大纲一、课程基本信息二、课程教学目标本课程为我校理、工等学科本科生的公共基础课。

通过系统学习,使学生掌握高等数学的基本知识,使学生计算能力和解决问题的能力进一步提高,逐步培养学生抽象思维和概括问题的能力、逻辑推理能力、创新思维能力、自学能力、较熟练的运算能力和综合运用所学知识分析和解决问题的能力,为后续课程的学习和专业发展奠定必要的数学基础。

第一,通过课程学习,学生的计算能力要进一步提高,主要是求极限、求导数、求积分的能力要达到一定的熟练程度。

第二,通过课程学习,学生的自学能力要进一步提高,主要是培养学生的自主学习意识和学习习惯。

第三,通过课程学习,学生的分析和解决问题的能力要进一步提高,主要是要培养学生的学以致用的能力,把高等数学的知识用到后续的专业课程中去的能力。

第四,通过课程学习,学生的抽象思维和逻辑推理能力要进一步提高。

三、教学学时分配《高等数学AⅡ》课程理论教学学时分配表四、教学内容和教学要求第七章常微分方程(12学时)(一)教学要求:1.掌握微分方程的基本概念。

2.熟练掌握可分离变量、齐次、一阶线性等一阶微分方程的解法与应用。

3.掌握三类可降价的高阶微分方程的解法及应用。

4.理解二阶线性微分方程解的结构。

5.掌握二阶常系数线性齐次与非齐次微分方程的解法及应用。

(二)教学重点与难点:重点:可分离变量的微分方程,一阶线性微分方程,二阶常系数线性齐次与非齐次微分方程。

难点:求解一阶线性,二阶常系数线性齐次与非齐次微分方程。

(三)教学内容:第一节微分方程的基本概念第二节可分离变量的微分方程第三节齐次方程1.齐次方程2.可化为齐次方程的方程第四节一阶线性微分方程1.线性方程2.伯努利方程第五节可降阶的高阶微分方程第六节高阶线性微分方程1.二阶线性微分方程举例2.线性微分方程的解的结构第七节常系数齐次线性微分方程第八节常系数非齐次线性微分方程本章习题要点:1.解一阶微分方程2.解二阶微分方程第八章空间解析几何与向量代数(14学时)(一)教学要求:1.理解空间直角坐标系及两点间距离。

沈阳理工大学 高等数学A2

《高等数学A2》课程教学大纲课程代码:课程英文名称:Higher mathematics(A2)课程总学时:80 讲课:80 实验:0 上机:0适用专业:理学院大纲编写(修订)时间:2010.7一、大纲使用说明(一)课程的地位及教学目标本课程是一门重要公共基础课,通过本课程的学习,可以使学生获得本课程的基本内容和基本的数学思想方法,培养学生的抽象思维能力、分析问题和解决问题的能力,是进一步学好其它理工学科课程的重要基础。

本课程的研究对象是函数(变化过程中量的依赖关系)。

内容包括向量代数与空间解析几何学,多元函数微分学,多元函数积分学,无穷级数与常微分方程等。

(二)知识、能力及技能方面的基本要求通过本课程的学习,要使学生掌握微积分学的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获得数学知识奠定必要的数学基础。

要通过各个教学环节逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力和自学能力,还要特别注意培养学生的熟练运算能力和综合运用所学知识去分析解决问题的能力。

(三)实施说明1、本大纲适用于学习公共基础课《高等数学》科目的理学院专业的本科生。

2、因教学学时所限,课堂教学要做到突出重点,精讲难点,有针对性地解决理论与实际应用中可能遇到的基本数学问题。

教师在授课中可酌情安排各部分的学时,课时分配表仅供参考。

3、注意知识的内在联系与融合贯通,注意采用课堂讲授、讨论、多媒体教学相结合的教学方式,启发学生自学并不断积累学科前沿最新知识,学会独立思考,独立提出问题与独立解决问题的能力。

4、对于与其它课程交叉部分的内容,要分工明确,突出本课程在课程设置中的地位、作用与特色。

(四)对先修课的要求《高等数学》(上册)(五)对习题课、实践环节的要求习题的选取应体现本课程的基本概念、基本原理,并应结合实际的应用,使学生理解和消化所学的知识,考察并提高掌握知识的质量与解决问题的能力。

(六)课程考核方式1.考核方式:考试2.考核目标:在考核学生基本知识、基本原理和方法的基础上,重点考核学生用高等数学的解题思想去解决数学中的其它问题以及其它实际问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《高等数学A2》课程教学大纲
一、课程基本信息 课程代码:SL1102 课程名称:高等数学A2 课程性质:必修课
课程类别:通识教育基础课程
适用专业:工学、管理学、经济学、理学(非数学类)类本科多学时各专业 总 学 时:88 学时 总 学 分:5.5学分 先修课程:高等数学A1 后续课程:各相关专业课程 课程简介:
《高等数学A2》是利用微积分方法研究客观世界数量关系和空间形式的科学,是高等学校工学、管理学、经济学、理学(非数学类)类本科多学时各专业学生的一门必修的重要通识教育基础课程.通过本课程中的基本概念、基本理论、基本方法和运算技能的学习,逐步培养学生具有抽象思维能力、逻辑推理能力、空间想象能力,特别培养学生具有比较熟练的运算能力和综合运用所学知识分析和解决问题的能力以及创新精神,为今后学习后继课程和进一步拓广知识面奠定必要的坚实的数学基础.
主要内容包括:微分方程、空间解析几何、多元函数微分法及其应用、重积分、曲线积分与曲面积分、无穷级数.
选用教材:
《高等数学》(第六版)(上、下册)[M].同济大学应用数学系编,高等教育出版社,2007.
参考书目:
[1] 《高等数学》(上、下册)[M].王金金 编,北京:北京邮电大学出版社,2010; [2]《高等数学》(上、下册)[M].朱士信等编,北京:中国电力出版社,2007; [3]《高等数学》[M]. 杜先能 孙国正编,安徽:安徽大学出版社,2004;
[4]《高等数学习题课讲义》[M].同济大学应用数学系编, 北京:高等教育出版社,1998;
[5]《高等数学习题集》[M].华东六省工科数学系列教材编委会编,北京:高等教育出版社; [6]《数学分析》(第四版)(上、下册)[M].华东师范大学数学系 编,北京:高等教育出版社,2008.
二、课程总目标
通过本课程的学习,使学生获得微分方程、向量代数与空间解析几何、多元函数微积分学、无穷级数等方面的基本概念、基本理论、基本方法和运算技能,逐步培养学生具有抽象概括问题的能力、逻辑推理能力、空间抽象能力以及自学能力,特别注意培养学生具有比较熟练的运算能力和综合运用所学知识分析和解决问题能力以及创新精神,为今后学习后继课程和进一步拓广知识面奠定必要的坚实的数学基础.
三、课程教学内容与基本要求 1、教学内容:
(1)微分方程;
(2)空间解析几何;
(3)多元函数微分法及其应用; (4)重积分;
(5)曲线积分与曲面积分; (6)无穷级数.
2、基本要求:
(1) 微分方程
①了解微分方程的解、通解、初始条件和特解等概念; ②掌握变量可分离的方程及一阶线性方程的解法;
③会解齐次方程和伯努利(Bernoulli )方程,并从中领会用变量代换求解方程的思想; ④会用降阶法求下列三种类型的高阶方程:()
()n y
f x =,(),y f x y '''=,(),y f y y '''= ;
⑤理解二阶线性微分方程解的性质及解的结构;
⑥掌握二阶常系数齐次线性微分方程的解法,了解某些高阶常系数齐次线性微分方程的解法;
⑦会求自由项形如:()ax
n P x e ,12
()sin ()cos ax m n e p x x p x x ωω⎡⎤+⎣⎦的二阶常系数非齐次线性微分方程的特解,其中
()n P x 为实系数n 次多项式,,a ω实数;
⑧会用微分方程解一些简单的几何和物理问题.
重点:可分离变量及一阶线性微分方程解法;二阶线性微分方程解的结构;二阶常系数齐次微分方程解法. 难点:微分方程的建立;初始条件的确定.
(2) 向量代数与空间解析几何
①理解空间直角坐标系,理解向量的概念及其表示; ②掌握向量的运算(线性运算,数量积,向量积),了解两向量垂直、平行的条件; ③理解单位向量、方向数与方向余弦的概念,掌握用坐标表达式进行向量运算的方法; ④掌握平面的方程和直线的方程及其求法,会利用平面、直线的相互关系解决有关问题;
⑤了解曲面方程概念,了解常用二次曲面的方程及其图形,会求以坐标轴为旋转轴的旋转曲面方程 ; 会求母线平行于坐标轴的柱面方程;
⑥了解空间曲线的参数方程和一般方程;
⑦了解曲面的交线在坐标平面上的投影,并会求其方程. 重点:空间直线与平面的方程,;曲面的图形. 难点:曲面的交线在坐标平面上的投影.
(3) 多元函数微分法及其应用
①理解多元函数的概念, 理解二元函数的几何意义;
②了解二元函数的极限与连续性的概念以及有界闭域上连续函数的性质;
③理解偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件; ○4理解方向导数与梯度的概念,会求方向导数与梯度; ○
5掌握多元复合函数的一阶偏导数的求法,会求多元复合函数的二阶偏导数(对于求抽象复合函数的 二阶导数,只要求作简单训练);

6会求多元隐函数(包括两个方程组成的方程组确定的隐函数)的一阶偏导数; ○
7了解空间曲线的切线和法平面及曲面的切平面与法线的概念,并会求出它们的方程; ○
8理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求解一些较简单的最大值和最小值的应用问题.
重点:偏导数与全微分的概念;多元函数概念;偏导数的计算;多元函数的极值和条件极值(拉格朗日乘数法). 难点:复合函数与隐函数的一、二阶偏导数求解.
(4)重积分
①理解二重积分、三重积分的概念,了解重积分的性质.
②掌握二重积分的计算方法(直角坐标、极坐标),会计算简单的三重积分(直角坐标、柱面坐标、*
球面坐标). ③会用重积分求一些几何量与物理量(如体积、曲面面积、质量、重心、转动惯量等). 重点:二重积分、三重积分的概念与计算. 难点:二重积分、三重积分的计算.
(5)曲线积分与曲面积分
①理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系,掌握计算两类曲线积分的方法; ②掌握格林(Green )公式,会使用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数,了解全微分方
程的解法..
③了解两类曲面积分的概念、性质及相互联系,并会计算两类曲面积分;
④会用高斯(Gauss )公式计算曲面积分,了解斯托克斯(Stokes )公式(斯托克斯公式的证明以及利用该公式计算空间曲线积分不作要求);
⑤了解散度、旋度的概念,并会计算;
○6会用重积分、曲线积分及曲面积分求一些几何量与物理量(如体积、曲面面积、弧长、质量、重心、转动惯量、引力、功等).
重点:两类曲线积分的概念及计算;格林公式. 难点:第二类曲线与曲面积分;高斯公式.
(6)无穷级数
①理解无穷级数收敛、发散以及收敛级数的和的概念,掌握无穷级数基本性质及收敛的必要条件; ②掌握几何级数和P –级数的收敛性;

3掌握正项级数的比较审敛法和比值审敛法,会用根值审敛法; ○
4掌握交错级数的莱布尼茨定理; ○
5了解无穷级数的绝对收敛与条件收敛的概念,以及绝对收敛与收敛的关系; ○
6了解函数项级数的收敛域及和函数的概念; ○
7掌握比较简单的幂级数收敛区间的求法; ○
8了解幂级数在其收敛区间内的一些基本性质,会求一些幂级数在其收敛区间内的和函数; ○
9了解函数展开为泰勒级数的充分必要条件; ○10掌握x
e ,sin x ,x cos ,ln(1)x +和m x )1(+的麦克劳林(Maclaurin )展开式,会利用它们将
一些简单的函数间接展开成幂级数;
○11了解幂级数在近似计算上的简单应用;
○12了解用三角函数逼近周期函数的思想,了解函数展开为傅里叶(Fourier )级数的狄利克雷(Dirichlet )条件,会将定义在(),ππ-和(),l l -上的函数展开为傅里叶级数,会将定义在()0,l 上函数展开为正弦或余弦级数,会写出傅里叶级数的和的表达式.
重点:无穷级数收敛与发散的概念;正项级数的比值判别法;幂级数的收敛区间;泰勒级数;函数的幂级数展开式;函数的傅里叶级数;函数的傅里叶正弦和余弦级数.
难点:正项级数的比较审敛法;用间接法展函数为泰勒级数.
3、学时分配
《高等数学A2》课程总学时:88 其中讲授学时:88
四、考核方式
本课程为考试课程,采用闭卷笔试的考核办法,学生成绩的评定:考试成绩占70%,出勤考核占10%,平时作业占20%.
执笔人:俞能福 审定人: 陈邦考 2011年8月19日。

相关文档
最新文档