其它类的二函建模

合集下载

数学建模常用的十种解题方法

数学建模常用的十种解题方法

数学建模常用的十种解题方法 摘要当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。

这个建立数学模型的全过程就称为数学建模。

数学建模的十种常用方法有蒙特卡罗算法;数据拟合、参数估计、插值等数据处理算法;解决线性规划、整数规划、多元规划、二次规划等规划类问题的数学规划算法;图论算法;动态规划、回溯搜索、分治算法、分支定界等计算机算法;最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法;网格算法和穷举法;一些连续离散化方法;数值分析算法;图象处理算法。

关键词:数学建模;蒙特卡罗算法;数据处理算法;数学规划算法;图论算法 一、蒙特卡罗算法蒙特卡罗算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法。

在工程、通讯、金融等技术问题中, 实验数据很难获取, 或实验数据的获取需耗费很多的人力、物力, 对此, 用计算机随机模拟就是最简单、经济、实用的方法; 此外, 对一些复杂的计算问题, 如非线性议程组求解、最优化、积分微分方程及一些偏微分方程的解⑿, 蒙特卡罗方法也是非常有效的。

一般情况下, 蒙特卜罗算法在二重积分中用均匀随机数计算积分比较简单, 但精度不太理想。

通过方差分析, 论证了利用有利随机数, 可以使积分计算的精度达到最优。

本文给出算例, 并用MA TA LA B 实现。

1蒙特卡罗计算重积分的最简算法-------均匀随机数法二重积分的蒙特卡罗方法(均匀随机数)实际计算中常常要遇到如()dxdy y x f D ⎰⎰,的二重积分, 也常常发现许多时候被积函数的原函数很难求出, 或者原函数根本就不是初等函数, 对于这样的重积分, 可以设计一种蒙特卡罗的方法计算。

《二次函数应用——利润问题》教学反思

《二次函数应用——利润问题》教学反思

《二次函数应用——利润问题》教学反思二次函数的应用本身是学习二次函数的图象与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查。

新课标中要求学生能通过对实际问题的情境的分析确定二次函数的表达式,体会其意义,能根据图象的性质解决简单的实际问题。

本节课充分运用导学提纲,教师提前通过一系列问题串的设置,引导学生课前预习,在课堂上通过对一系列问题串的解决与交流,让学生通过掌握求面积最大这一类题,学会用建模的思想去解决其它和函数有关应用问题。

教材中设计先探索最大利润问题,对九年级学生来说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,而面积问题学生易于理解和接受,故而在这儿作此调整,为求解最大利润等问题奠定基础。

从而进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。

所以在例题的处理中适当的降低了梯度,让学生思维有一个拓展的空间,也有收获快乐和成就感。

在训练的过程中,通过学生的独立思考与小组合作探究相结合,使学生的分析能力、表达能力及思维能力都得到训练和提高。

同时也注重对解题方法与解题模式的归纳与总结,并适当地渗透转化、化归、数形结合等数学思想方法。

就整节课看看,学生的积极性以求充分调动,特别就是学困生,在独立思考和小组合作中发生改变以往的配角地位,也能够积极参与至课堂自学活动中,今后继续发扬从学生启程,从学生的须要启程,把问题梯度减少,设计使学生在能力范围内掌控崭新科学知识,存有了足够多的热身运动之后再回去开拓延展。

二次函数是中学数学的重要内容,也是中考的热点。

其中考试涉及的主要有考查二次函数的定义、图象与性质及应用等。

在九年级的教学中,教师就要立足课堂,瞄准中考,研究中考试题。

近年来,二次函数的应用题目不断出现在各地中考题中,特别值得一提的是,有些源自课本中的例题或习题原型和变式。

数学建模:第六章建模范例三

数学建模:第六章建模范例三
(2)
103.133872
(3)
101.310287
(3,1)
98.472872
(5)
96.731702
(5,1)
94.787533
(5,2)
92.480158
(5,3)
90.844949
(5,3,1)
4108.656375
(5,5)
*
M=5000万元,n=10年基金使用最佳方案(单位:万元)
3
改为
4
利用
5
软件求解(程序略)M=5000万元,
6
n=10年基金使用最佳方案:(单位:万元)
7
*
M=5000万元,n=10年基金使最佳方案(单位:万元)
存1年定期
存2年定期
存3年定期
存5年定期
取款数额(到期本息和)
每年发放奖学金数额
第一年初
105.650679
103.527252
220.429705
2.255
*
由上表可得,任何最佳存款策略中不能存在以下的存款策略(1,1),(2,1),(2,2),(3,2)和(3,3)。
由1,2,3,5四种定期能够组成的策略(5年定期不重复) 只能有(1),(2),(3),(3,1),(5), (5,1), (5,2), (5,3), (5,3,1)九种,
*
根据以上的推理,可得n年的最优存储方案公式二为:
据上公式用
可以求得n=10年,M=5000万元时
基金使用的最优方案:(单位:万元)
每年奖学金:
问题三求解:
方案一:只存款不购买国库券
1
因学校要在基金到位后的第3年举行校庆,所以此年奖金应是其他年度的1.2倍,

例说初中数学建模类型

例说初中数学建模类型

例说初中数学建模类型数学建模就是对在科学技术领域、经济管理、生产实际等现实生活中所遇到的实际问题加以分析、抽象简化,用数学语言进行描述,进一步用数学符号表述出来,转化为数学模型用数学方法加以解决,最后接受实践的检验。

其基本思路是:下面,就初中数学常见建模类型举例说明:一、建立几何模型诸如航海、三角测量、路程最短、工程定位、拱桥计算、皮带传动等应用题,涉及一定图形的性质,常需建立相应的几何模型,转化为几何问题求解。

例1:为方便群众寄信,要在两条公路OX和OY上设邮筒A和B,邮递员每天从邮局P到邮筒A、B取信然后返回邮局,请你根据所学的知识确定出A、B的位置,使邮递员走的路程最短。

分析:根据题意建立如图所示的几何模型,设A、B已作出,使PA+AB+BP 的值为最小,分别作P点关于OX和OY的轴对称点Pˊ和P",则有PA=PˊA和BP=BP",因此PA+AB+BP=PˊA+AB+BP",而欲使折线PˊABP"的长度最短,只要Pˊ、A、B、P"在同一直线上即可,于是,A,B的位置分别是直线PˊP"与OX、OY的交点。

二、建立直角坐标系模型对于飞机投物、开炮射击、投篮平抛等问题,物体运动的轨迹大都是抛物线,则可转化为二次函数图象去解决。

例:如图,这是某空防部队进行射击训练时,在平面直角坐标系中的示意图。

在地面O,A两个观测点测得空中固定目标C的仰角分别、,位于O点正上方千米D点处的直升飞机向目标C发射防守导弹,该导弹运行达到距离地面最大高度3千米时,相应的水平距离为4千米(即图中E点)。

1、若导弹运行轨道为一抛物线,求该抛物线的解析式。

2、说明按1中轨道运行的导弹能否击中目标C的理由。

解:1、设导弹运行轨道的抛物线解析式为Y=ax2+bx+c,项点从标为E(4,3),对称轴X=4,点D(0,)在这条抛物线上,点D关于X=4的对称点Dˊ的坐标为(),Dˊ也在这条抛物线上∴所求抛物线解析式为:Y=2、设C点的坐标为(Xo,Yo),过C点作CB⊥OX,垂足为B,OA=1,∵,,∴点C的坐标为(7,)。

全国大学生数学建模竞赛常用建模方法总结

全国大学生数学建模竞赛常用建模方法总结

邯郸学院本科毕业论文题目全国大学生数学建模竞赛常用建模方法探讨学生柴云飞指导教师闫峰教授年级2009级本科专业数学与应用数学二级学院数学系(系、部)邯郸学院数学系2013年6月郑重声明本人的毕业论文是在指导教师闫峰的指导下独立撰写完成的.如有剽窃、抄袭、造假等违反学术道德、学术规范和侵权的行为,本人愿意承担由此产生的各种后果,直至法律责任,并愿意通过网络接受公众的监督.特此郑重声明.论文经“中国知网”论文检测系统检测,总相似比为5.80%.毕业论文作者(签名):年月日全国大学生数学建模竞赛常用建模方法探讨摘要全国大学生数学建模竞赛作为全国高校规模最大的基础性学科竞赛,越来越受到人们的重视,所以建模竞赛的方法也就变得尤为重要.随着竞赛的不断发展,赛题的开放性逐步增大,一道赛题可用多种解法,各种求解的算法有时会相互融合,同时也在向大规模数据处理方向发展,这就对选手的能力提出了更高的要求.由于建模方法种类众多,无法一一介绍,所以本文主要介绍了四种比较常用的数学建模竞赛方法,包括微分与差分方程建模方法、数学规划建模方法、统计学建模方法、图论方法,并结合历年赛题加以说明.关键词:数学建模竞赛统计学方法数学规划图论Commonly Used Modeling Method ofChina Undergraduate Mathematical Contest in ModelingChai yunfei Directed by Professor Yan fengABSTRACTThe China undergraduate mathematical contest in modeling has been attention by more and more people as a basic subject of the largest national college competition. The method of modeling competition has become more and more important. Open questions gradually increased with the development of competition. Most of the games can be solved by lots of solutions. Sometimes these methods can be used together. And there is also a lot of data which puts forward higher requirement on the ability of players. The modeling methods is too numerous to mention, so this article mainly four kinds Commonly used modeling method are introduced that differential and difference equations modeling method, Mathematical programming modeling method, Statistics modeling method, graph theory and interprets with calendar year’s test questions.KEY WORDS:Mathematical contest in modeling Statistics method Mathematical programming Graph theory目录摘要 (I)英文摘要 (II)前言 (1)1微分方程与差分方程建模 (2)1.1微分方程建模 (2)1.1.1微分方程建模的原理和方法 (2)1.1.2微分方程建模应用实例 (3)1.2差分方程建模 (4)1.2.1 差分方程建模的原理和方法 (4)1.2.2 差分方程建模应用实例 (5)2数学规划建模 (5)2.1线性规划建模的一般理论 (6)2.2线性规划建模应用实例 (7)3统计学建模方法 (8)3.1聚类分析 (8)3.1.1 聚类分析的原理和方法 (8)3.1.2 聚类分析应用实例 (8)3.2回归分析 (9)3.2.1 回归分析的原理与方法 (9)3.2.2 回归分析应用实例 (10)4图论建模方法 (10)4.1两种常见图论方法介绍 (11)4.1.1 模拟退火法的基本原理 (11)4.1.2 最短路问题 (11)4.2图论建模应用实例 (12)5小结 (13)参考文献 (13)致谢 (14)前言全国大学生数学建模竞赛创办于1992年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛.参赛者需要根据题目要求,在三天时间内完成一篇包括模型假设、模型建立和求解、计算方法的设计和实现、模型结果的分析和检验、模型的改进等方面的论文.通过参加竞赛的训练和比赛,可以提高学生用数学方法解决实际问题的意识和能力,而且在培养团队精神和撰写科技论文等方面都会得到十分有益的锻炼.竞赛题目的涉及面比较宽,有工业、农业、工程设计、交通运输、经济管理、生物医学和社会事业等.竞赛选手不一定预先掌握深入的专业知识,而只需要学过高等数学的相关课程即可,并且题目具有较大的灵活性,便于参赛者发挥其创造能力.近年来,竞赛题目包含的数据较多,手工计算一般不能实现,所以就对参赛者的计算机能力提出了更高的要求,如2003年B题,某些问题的解决需要使用计算机软件;2001年A题,问题的数据读取需要计算机技术,并且对于给出的图像,需要用图像处理的方法获得;再如2004年A题则需要利用数据库数据,数据库方法,统计软件包等等.竞赛题目的总体特点可大致归纳如下:(1)实用性不断加强,问题和数据来自于实际,解决方法需要切合实际,模型和结果可以应用于实际;(2)综合性不断加强,解法多样,方法融合,学科交叉;(3)数据结构越来越复杂,包括数据的真实性,数据的海量性,数据的不完备性,数据的冗余性等;(4)开放性也越来越突出,题意的开放性,思路的开放性,方法多样,结果不唯一等.总体来说,赛题向大规模数据处理方向发展,求解算法和各类现代算法相互融合.纵观历年的赛题,主要用到的建模方法有:初等数学模型、微分与差分方程建模、组合概率、数据处理、统计学建模、计算方法建模、数学规划、图论方法、层次分析、插值与拟合、排队论、模糊数学、随机决策、多目标决策、随机模拟、计算机模拟法、灰色系统理论、时间序列等.本文不一一列举竞赛题目中涉及的所有方法,只是重点讨论其中一些比较常用的方法,包括微分与差分方程建模方法、数学规划建模方法、统计学建模方法、图论建模方法,并结合案例说明建模方法的原理及应用.1 微分方程与差分方程建模在很多竞赛题目中,常常会涉及很多变量之间的关系,找出它们之间的函数关系式具有重要意义.可在许多实际问题中,我们常常不能直接给出所需要的函数关系,但可以得到含有所求函数的导数(或微分)或差分(即增量)的方程,这样的方程称为微分方程或差分方程. 建立微分方程或差分方程的数学模型是一种重要的建模方法.如1996年A 题“最优捕鱼策略”,1997年A 题“零件参数设计”,2003年A 题“SARS 的传播”,2007年A 题“中国人口增长预测”,2009年A 题“最优捕鱼策略”等赛题中,都用到了这种方法.1.1 微分方程建模1.1.1 微分方程建模的原理和方法一般来说,任何时变问题中随时间变化而发生变化的量与其它一些量之间的关系经常以微分方程的形式来表现.例1.1 有一容器装有某种浓度的溶液,以流量1v 注入该容器浓度为1c 的同样溶液,假定溶液立即被搅拌均匀,并以2v 的流量流出混合后的溶液,试建立反映容器内浓度变化的数学模型.解 注意到溶液浓度=溶液体积溶液质量,因此,容器中溶液浓度会随溶质质量和溶液体积变化而发生变化.不妨设t 时刻容器中溶质质量为()t s ,初始值为0s ,t 时刻容器中溶液体积为()t v ,初始值为0v ,则这段时间()t t t ∆+,内有⎩⎨⎧∆-∆=∆∆-∆=∆t v t v V t v c t v c s 212211, (1) 其中1c 表示单位时间内注入溶液的浓度,2c 表示单位时间内流出溶液的浓度,当t ∆很小时,在()t t t ∆+,内有≈2c =)()(t V t s tv v V t s )()(210-+. (2) 对式(1)两端同除以t ∆,令0t ∆→,则有⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=-=00212211)0(,)0(V V s s v v dtdV v c v c dt ds . (3) 即所求问题的微分方程模型.虽然它是针对液体溶液变化建立的,但对气体和固体浓度变化同样适用.实际应用中,许多时变问题都可取微小的时间段t ∆去考察某些量之间的变化规律,从而建立问题的数学模型,这是数学建模中微分方程建模常用手段之一.常用微分方程建模的方法主要有:(1)按实验定律或规律建立微分方程模型.此种建模方法充分依赖于各个学科领域中有关实验定律或规律以及某些重要的已知定理,这种方法要求建模者有宽广的知识视野,这样才能对具体问题采用某些熟知的实验定律.(2)分析微元变化规律建立微分方程模型.求解某些实际问题时,寻求一些微元之间的关系可以建立问题的数学模型.如例1.1中考察时间微元t ∆,从而建立起反应溶液浓度随时间变化的模型.此建模方法的出发点是考察某一变量的微小变化,即微元分析,找出其他一些变量与该微元间的关系式,从微分定义出发建立问题的数学模型.(3)近似模拟法.在许多实际问题中,有些现象的规律性并非一目了然,或有所了解亦是复杂的,这类问题常用近似模拟方法来建立问题的数学模型.一般通过一定的模型假设近似模拟实际现象,将问题做某些规范化处理后建立微分方程模型,然后分析、求解,并与实际问题作比较,观察模型能否近似刻画实际现象.近似模拟法的建模思路就是建立能够近似刻画或反映实际现象的数学模型,因此在建模过程中经常做一些较合理的模型假设使问题简化,然后通过简化建立近似反映实际问题的数学模型.1.1.2 微分方程建模应用实例例1.2(2003年高教社杯全国大学生数学建模竞赛A 题) SARS 传播的预测. 2003年爆发的“SARS ”疾病得到了许多重要的经验和教训,使人们认识到研究传染病的传播规律的重要性.题目给出了感病情况的三个附件,要求对SARS 的传播建立数学模型:(1)对SARS 的传播建立一个自己的模型,并说明模型的优缺点;(2)收集SARS 对经济某个方面影响的数据,建立相应的数学模型并进行预测.问题求解过程分析 由于题目具有开放性,故选择文献[1]中的求解思路分析. 传染病的传播模式可近似分为自由传播阶段和控后阶段,然后将人群分为易感者S ,感病者I ,移出者R 三类.由三者之间的关系可得到下列微分方程:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=++=-=-=NR I S hI dt dR hI kIS dt dI kISdt dS , 利用附件中给出的数据,可以将上述方程变形为I hI kNI dtdI λ=-=, 其中h kN -=λ,其解为t e I t I λ-=0)(.其中0I 为初始值.但此模型只适用于病例数与总人口数具有可比性的情况,当病例数远小于总人口数时,感病人数将随时间以指数增长.这是按实验定律或规律建立的微分方程模型.为进一步改进模型,用计算机跟踪病毒的个体传播情况,又建立计算机模拟模型.然后用计算机模拟北京5月10日之前SARS 的传播情况,并对5月10日以后的传播情况进行预测.但是得到的有效接触率与实际统计数据有所偏差,所以统计数据,为参数的确定寻求医学上的支持,并以随机模拟取代完全确定性的模拟,对原模型进行改进,建立随机模拟模型.通过计算机编程,产生正态分布的随机数,并对传染情况进行500次模拟,即可进行预测,并可得出对SARS 疫情控制提出的相应建议.1.2 差分方程建模1.2.1 差分方程建模的原理和方法差分方程在数学建模竞赛中应用的频率极高,所以要对这种方法引起足够的重视.它针对要解决的目标,引入系统或过程中的离散变量.具体方法是:根据实际的规律性质、平衡关系等,建立离散变量所满足的关系式,从而建立差分方程模型.差分方程可以分为不同的类型,如一阶和高阶差分方程,常系数和变系数差分方程,线性和非线性差分方程等等.建立差分方程模型一般要注意以下问题:(1)注意题中的离散变化量,对过程进行分析,尤其要注意形成变化运动过程的时间或距离的分化而得到离散变量;(2)通过对具体变化过程的分析,列出满足题意的差分方程,其中入手点是找出变量所能满足的平衡关系、增量或减量关系及规律,从而得到差分方程.1.2.2差分方程建模应用实例例1.3(2007年高教社杯全国大学生数学建模竞赛A题)中国人口增长预测.题目要求从中国的实际情况和人口增长的特点出发,参考附录中的相关数据(也可以搜索相关文献和补充新的数据),建立中国人口增长的数学模型,并由此对中国人口增长的中短期和长期趋势做出预测,特别要指出模型中的优点与不足之处.问题求解过程分析由于题目具有开放性,故选择文献[2]中的求解思路分析.通过分析题中相关的数据,考虑到我国近年来人口发展的总趋势,因为涉及到人口的增长和变换,所以可以先用微分方程来建立模型,并对我国人口增长的中短期和长期趋势做出预测.首先,根据灰色系统理论,使用灰色关联分析模型法对人口系统结构进行关联分析,找出影响人口增长的主要因素;其次使用年龄推算法进行短期预测.在建立和求解长期预测模型时,根据人口阻滞增长模型(Logistic模型),可以考虑对中国人口老龄化进程加速、出生人口性别比例持续升高以及乡村人口城镇化等因素建立新的人口增长的差分方程模型.但是它仅给出了人口总数的变化规律,反映不出各类人口的详细信息,所以我们需要建立离散化的模型,并进一步可以得到全面系统地反应一个时期内人口数量状况的差分方程,可以用微分和差分方程理论来表现和模拟人口数量的变化规律.从而对人口分布的状况、变化趋势、总体特征等有更加详细和科学的了解.在模型的求解过程中,用到了MATLAB软件,并做参数估计,利用所得结果和题目给出的近五年来的人口数据,对我国人口发展趋势进行了预测,得到了在老龄化进程加速、出生人口性别比例持续升高以及乡村人口城镇化等因素影响下,未来我国人口发展预测情况.2 数学规划建模数学规划是指在一系列条件限制下,寻求最优方案,使得目标达到最优的数学模型,它是运筹学的一个重要分支.数学规划的内容十分丰富,包括许多研究分支,如:线性规划、非线性规划、整数规划、二次规划、0-1规划、多目标规划、动态规划、参数规划、组合优化、随机规划、模糊规划、多层规划问题等.在1993年A 题“非线性交调的频率设计”,1993年B 题“足球队排名”,1995年A 题“飞行管理问题”,1996年B 题“节水洗衣机”,1997年A 题“零件的参数设计”,1998年A 题“一类投资组合问题”,1999年B 题“钻井布局”,2001年B 题“公交车调度问题”,2002年A 题“车灯线光源的优化”,2006年A 题“出版社书号问题”,2007年B 题“城市公交线路选择问题”等赛题中,都用到了规划的方法.在此以线性规划为例,对规划的方法进行探讨.2.1 线性规划建模的一般理论线性规划建模方法主要用于解决生产实际中的资源利用、人力调配、生产安排等问题,它是一种重要的数学模型.线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是研究线性约束条件下线性目标函数的极值问题的数学理论和方法.一般的优化问题是指用“最好”的方式,使用或分配有限的资源即劳动力、原材料、机器、资金等,使得费用最小或利润最大.优化模型的一般形式为:()m ax m in 或 ()x f z = (4)().0..≤x g t s ()m i ,,2,1 = (5)()()12,,T n x x x x =,.由(4)、(5)组成的模型属于约束优化.若只有(4)式就是无约束优化.()x f 称为目标函数,()0g x ≤称为约束条件.在优化模型中,如果目标函数()x f 和约束条件中的()g x 都是线性函数,则该模型称为线性规划.建立实际问题线性规划模型的步骤如下:(1)设置要求解的决策变量.决策变量选取得当,不仅能顺利地建立模型而且能方便地求解,否则很可能事倍功半.(2)找出所有的限制,即约束条件,并用决策变量的线性方程或线性不等式来表示.当限制条件多,背景比较复杂时,可以采用图示或表格形式列出所有的已知数据和信息,从而避免“遗漏”或“重复”所造成的错误.(3)明确目标要求,并用决策变量的线性函数来表示,标出对函数是取极大还是取极小的要求.需要特别说明的是,要使用线性规划方法来处理一个实际问题,必须具备下面的条件:(1)优化条件:问题的目标有极大化或极小化的要求,而且能用决策变量的线性函数来表示.(2)选择条件:有多种可供选择的可行方案,以便从中选取最优方案.(3)限制条件:达到目标的条件是有一定限制的(比如,资源的供应量有限度等),而且这些限制可以用决策变量的线性等式或线性不等式表示出来.此外,描述问题的决策变量相互之间应有一定的联系,才有可能建立数学关系,这一点自然是不言而喻的.线性规划模型的求解可用图解法或单纯形法.随着计算机的普及和大量数学软件的出现,可以利用现成的软件MATLAB或LINGO等求解,在此不再叙述.2.2线性规划建模应用实例例2.1(2006年高教社杯全国大学生数学建模竞赛B题)艾滋病疗法的评价及疗效的预测.题目给出了美国某艾滋病医疗试验机构公布的两组数据,数据涉及到了病人CD4和HIV的浓度含量的测试结果.根据所给的资料需要参赛者完成以下问题:(1)利用附件1的数据,预测继续治疗的效果,或者确定最佳治疗终止时间;(2)利用附件2的数据,评价4种疗法的优劣(仅以4CD为标准),并对较优的疗法预测继续治疗的效果,或者确定最佳治疗终止时间;(3)如果病人需要考虑4种疗法的费用,对评价和预测有什么影响.问题求解过程分析由于题目具有开放性,故选择文献[3]中的求解思路进行分析.首先对题目所给数据进行分析,考虑到治疗的效果与患者的年龄有关,将患者按年龄分组,如25~35岁及45岁以上4组.每组中按照4种疗法和4个25岁,45~~14岁,35治疗阶段(如1020周,4030周),构造16个决策单元.取4~~~~0周,2010周,30种药品量为输入,治疗各个阶段末患者的4CD值的比值为输出.CD值与开始治疗时4然后建立相应的数学模型,利用相对有效性评价方法,建立分式规划模型并经过变换,转化为线性规划模型求解,对各年龄组患者在各阶段的治疗效率进行评价.计算结果:对第1年龄组疗法2和4在整个治疗中效率较高,在第4阶段仍然有效;对第2年龄组疗法1在第1,2阶段有效;对第3年龄组疗法1,2,3在第1阶段有效;对第4年龄组疗法1,2在第1,2阶段有效.表明只有2514岁的年4种轻患者,才能在治疗的最~后阶段仍然有有效的疗法.随后,由线性规划模型的对偶形式建立预测模型,对各年龄组各种疗法下一阶段的疗效进行预测.若由某决策单元得到的实际输出大于预测输出,则该决策单元相对有效;反之,说明该种疗法对该组患者在治疗的未来阶段不再有效,应该转换疗法.3 统计学建模方法在数学建模竞赛中,常常会涉及到大量的数据,因此,我们就需要用统计学建模方法对这些数据进行处理.此类方法主要包括统计分析、计算机模拟、回归分析、聚类分析、数据分类、判别分析、主成分分析、因子分析、残差分析、典型相关分析、时间序列等.如2004年A题“奥运会临时超市网点设计问题”,2004年B题“电力市场的输电阻塞管理问题”,2007年A题“人口增长预测问题”,2008年B题“大学学费问题”,2012年A题“葡萄酒的评价”等都用到了这种建模方法.在此选取其中两类方法进行阐述.3.1聚类分析3.1.1聚类分析的原理和方法该方法说的通俗一点就是,将n个样本,通过适当的方法选取m聚类中心,通过研究各样本和各个聚类中心的距离,选择适当的聚类标准,通常利用最小距离法来聚类,从而可以得到聚类.结果利用sas 软件或者spss 软件来做聚类分析,就可以得到相应的动态聚类图.这种模型的的特点是直观,容易理解.聚类分析的类型可分为:Q型聚类(即对样本聚类)和R型聚类(即对变量聚类).通常聚类中有相似系数法和距离法两种衡量标准.聚类方法种类多样,有可变类平均法、中间距离法、最长距离法、利差平均和法等.在应用时要注意,在样本量比较大时,要得到聚类结果就显得不是很容易,这时需要根据背景知识和相关的其他方法辅助处理.主要的方法步骤大致如下:(1)首先把每个样本自成一类;(2)选取适当的衡量标准,得到衡量矩阵;(3)重新计算类间距离,得到衡量矩阵;(4)重复第2步,直到只剩下一个类.3.1.2聚类分析应用实例例3.1(2012年高教社杯全国大学生数学建模竞赛A题)葡萄酒的评价.题目的附件中给出了某一年份一些葡萄酒的评价结果,和该年份这些葡萄酒的和酿酒葡萄的成分数据.要求参赛者建立数学模型解决以下问题:(1)分析附件1中两组评酒员的评价结果有无显著性差异,哪一组结果更可信;(2)根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级;(3)分析酿酒葡萄与葡萄酒的理化指标之间的联系;(4)分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量.问题求解过程分析由于题目具有开放性,故选择文献[4]中的求解思路分析.由于给定了酿酒葡萄的理化指标,首先可将附录2和附录3中的一些数据进行处理.并可以据此对各种酿酒葡萄进行聚类分析,但是,由于题目中所给的数据庞大,所以可通过主成分分析法,简化并提取大部分有效信息,再用聚类分析对酿酒葡萄进行分级.最后根据酿酒葡萄对应葡萄酒质量的平均值大小进行比较,排序分级.接下来针对问题中分析酿酒葡萄与葡萄酒理化指标之间的联系,及上面整理好的数据,采用回归分析原理,在SPSS中得到酿酒葡萄与葡萄酒的理化指标之间的联系.再通过相关分析,得出相应的相关系数,从而得到相应的判断结论.在分析酿酒葡萄与葡萄酒的理化指标之间的联系时,还用到了多元线性回归分析.该模型用于生活实践中,也可以解决很多实际问题.3.2回归分析回归分析是利用数据统计原理,对大量数据进行数学处理,并确定因变量与某些自变量的相关关系,建立一个相关性较好的回归方程,并加以外推,用于预测今后的因变量的变化的分析方法.3.2.1回归分析的原理与方法回归分析是在一组数据的基础上研究这样几个问题:建立因变量与自变量之间的回归模型;对回归模型的可信度进行检验;判断每个自变量对因变量的影响是否显著;判断回归模型是否适合这组数据;利用回归模型对进行预报或控制.回归分析主要包括一元线性回归、多元线性回归、非线性回归.回归分析的主要步骤为:(1)根据自变量和因变量的关系,建立回归方程.(2)解出回归系数.(3)对其进行相关性检验,确定相关系数.(4)当符合相关性要求后,便可与具体条件结合,确定预测值的置信区间.需要注意的是,要尽可能定性判断自变量的可能种类和个数,并定性判断回归方程的可能类型.另外,最好应用高质量的统计数据,再运用数学工具和相关软件定量定性判断.3.2.2回归分析应用实例例3.2(2006年高教社杯全国大学生数学建模竞赛B题)艾滋病疗法的评价及疗效的预测.题目同例2.1.问题求解过程分析由于题目具有开放性,故选择文献[3]中的求解思路进行分析.问题2的解决就用到回归模型.首先分析数据知,应建立时间的一次与二次函数模型,并经过统计分析比较,确定哪种较好.所以可建立一个统一的回归模型,也可对每种疗法分别建立一个模型.以总体回归模型为例,分别用一次与二次时间函数模型进行比较,可知疗法3~1用一次模型较优,且一次项系数为负,即4CD在减少,从数值看疗法3优于疗法2和1;疗法4用二次模型较优,即4t左右达到最大.可以通过4条回归CD先增后减,在20曲线进行比较,显示疗法4在30周之前明显优于其它.最后再用检验法作比较,结果是疗法1与2无显著性差异,而疗法1与3,2与3,3与4均有显著性差异.4 图论建模方法图论建模方法在建模竞赛中也经常涉及,应用十分广泛,并且解法巧妙,方法灵活多变.如1990年B题“扫雪问题”,1991年B题“寻找最优Steiner树”,1992年B题“紧急修复系统的研制”,1993年B题“足球队排名”,1994年A题“逢山开路问题”,1994年B题“锁具装箱问题”,1995年B题“天车与冶炼炉的作业调度”,1997年B题“截断切割的最优排列”,1998年B题“灾情巡视最佳路线”,1999年B题“钻井布局”,2007年B题“城市公交线路选择问题”等都应用到了图论的方法.图论近几年来发展十分迅速,在物理、化学、生物学、地理学、计算机科学、信息论、控制论、社会科学、军事科学以及计算机管理等方面都有着广泛的应用.因此图论越来越受到了全世界数学界和工程技术界乃至经营决策管理者的重视.同时也成为了数学建模中一种十分重要的方法.图论问题算法很多,包括最短路、最大流、最小生成树、二分匹配、floyd、frim等.。

数学建模分类方法大全

数学建模分类方法大全
22,自来水输送模型
23,混合泳接力模型
24,投入产出模型
25,三级火箭模型
26,糖尿病模型
27,传染病模型
28,生物种群模型
29,人口模型
30,分子模型
31,扫雪模型
32,商人过河问题
196
冲突目标
Minmax与maxmin
机会约束
约束满足概率性>P
矛盾约束
约束相互矛盾
单纯形法
木匠生产模型
注意步骤性。
215
组合模型
参数模型
动态规划
决策法
背包问题
排序问题
多步骤形的规划
数值搜索法
工业流程优化
黄金分割搜索法
还有二分搜索法
233
网络流
最大树
最大流
最短路
关键路线法
网络计划
布点问题
中心问题
重心问题
384
最优化
模拟退火法
神经网络
遗传算法
分治算法
差分进化
蚁行算法
粒子群
不确定
模型
灰色系统
数理统计
模糊数学
聚类分析
无分类
模型名称
所在目录
1,国有企业业绩分化的数学模型
2,打假问题的机理数学分析
3,足球比赛排名问题
4,大象群落的稳定性分析
5,火车便餐最有价格方案
6,影院最优设计方案
7,国有企业业绩分化的数学模型
数学建模分类方法大全
类别
类别(2)
模型名称
关键点
备注
参考书目
复杂系统
库存模型
排队模型
可靠系统
差分方程模型
动力系统类
酵母菌增长模型

高一数学必修一教案《函数模型及其应用》

高一数学必修一教案《函数模型及其运用》【导语】心无旁骛,全力以赴,争分夺秒,坚强拼搏脚踏实地,不骄不躁,长风破浪,直济沧海,我们,注定成功!作者高一频道为大家推荐《高一数学必修一教案《函数模型及其运用》》期望对你的学习有帮助!【篇一】【内容】建立函数模型刻画现实问题【内容解析】函数模型本身就来源于现实,并用于解决实际问题,所以本节内容是通过对展现的实例进行分析与探究使得学生能有更多的机会从实际问题中发觉或建立数学模型,并能体会数学在实际问题中的运用价值,同时本课题是学生在初中学习了函数的图象和性质的基础上刚上高中进行的一节探究式课堂教学。

在一个具体问题的解决进程中,学生可以从知道知识升华到熟练运用知识,使他们能辩证地看待知识知道与知识运用间的关系,与所学的函数知识前后牢牢相扣,相辅相成。

;另一方面,函数模型本身就是与实际问题结合在一起的,空讲理论只能导致学生不能真正知道函数模型的运用和在运用进程中函数模型的建立与解决问题的进程,而从简单、典型、学生熟悉的函数模型中发掘、提炼出来的思想和方法,更容易被学生接受。

同时,应尽量让学生在简单的实例中学习并感受函数模型的挑选与建立。

由于建立函数模型离不开函数的图象及数据表格,所以会有一定量的原始数据的处理,这可能会用到电脑和运算器以及图形工具,而我们的教学应更加关注的是通过实际问题的分析进程来挑选适当的函数模型和函数模型的构建进程。

在这个进程中,要使学生侧重体会的是模型的建立,同时体会模型建立的可操作性、有效性等特点,学习模型的建立以解决实际问题,培养发展有条理的思维和表达能力,提高逻辑思维能力。

【教学目标】(1)体现建立函数模型刻画现实问题的基本进程.(2)了解函数模型的广泛运用(3)通过学生进行操作和探究提高学生发觉问题、分析问题、解决实际问题的能力(4)提高学生探究学习新知识的爱好,培养学生,勇于探索的科学态度【重点】了解并建立函数模型刻画现实问题的基本进程,了解函数模型的广泛运用【难点】建立函数模型刻画现实问题中数据的处理【教学目标解析】通过对全班学生中抽样得出的样本进行分析和处理,,使学生认识到本节课的重点是利用函数建模刻画现实问题的基本进程和提高解决实际问题的能力,在引导突出重点的同时能过学生的小组合作探究来突破本节课的难点,这样,在小组合作学习与探究进程中实现教学目标中对知识和能力的要求(目标1,2,3)在如何用函数建模刻画现实问题的基本进程中让学生亲身体验函数运用的广泛性,同时提高学生探究学习新知识的爱好,培养学生主动参与、自主学习、勇于探索的科学态度,从而实现教学目标中的德育目标(目标4)【学生学习中预期的问题及解决方案预设】①描点的规范性;②实际操作的速度;③解析式的运算速度④运算终止后不进行检验针对上述可能显现的问题,我在课前课上处理是,课前给学生准备一些坐标纸来提高描点的规范性,同时让学生使用运算器利用小组讨论来进行多人合作以期提高相应运算速度,在解析式得出后引导学生得出的标准应当是只有一个的较好的,不能有很多的标准,这样以期引导学生想到对结果进行挑选从而引出检验.【教学用具】多媒体辅助教学(ppt、运算机)。

数学建模 四大模型总结

四类基本模型1 优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。

1.2 微分方程组模型阻滞增长模型、SARS 传播模型。

1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。

1.4 概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。

1.5 组合优化经典问题● 多维背包问题(MKP)背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。

如何将尽可能多的物品装入背包。

多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。

如何选取物品装入背包,是背包中物品的总价值最大。

多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。

该问题属于NP 难问题。

● 二维指派问题(QAP)工作指派问题:n 个工作可以由n 个工人分别完成。

工人i 完成工作j 的时间为ij d 。

如何安排使总工作时间最小。

二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。

二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。

● 旅行商问题(TSP)旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。

● 车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。

TSP 问题是VRP 问题的特例。

● 车间作业调度问题(JSP)车间调度问题:存在j 个工作和m 台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。

数学建模简介word文档-华南师范大学数学科学学院

1.1 关于数学建模一、数学、数学模型、数学建模的定义二、数学建模过程流程图三、数学建模的特点和分类四、数学建模的应用和现代科学五、历年全国和美国大学生数学建模竞赛六、如何学好数学建模七、数学建模的例子:火炮的射击、椅子能在不平的地上放稳吗、人中预报问题一、数学、数学模型、数学建模的定义数学――是一门研究数量关系和空间变化关系的学科数学模型――对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构。

数学建模――构造数学模型的过程,利用数学方法解决实际问题的一种实践。

即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解,得到定量的结果,以供人们作分析、预报、决策和控制。

例1:火炮的射击―――数学建模的大致全过程模型一:假设不考虑空气的阻力、重力影响――抛物运动模型二:假设不考虑重力影响,并且空气的阻力与速度成正比。

模型三:假设不考虑重力影响,并且空气的阻力与速度的平方成正比。

――适用于火炮的射击模型四:考虑重力影响,并且空气的阻力与速度的平方成正比。

―――适用于卫星的发射。

二、数学建模过程流程图众多的因素(主要和次要)--合理的假设――建立数学模型――用数学方法(或数学软件)求解模型――检验(得解与实际问题作比较)――修改完善模型。

上述数学建模过程可用流程图表述如下:三、数学建模的特点和分类数学建模是一个实践性很强的学科,它具有以下特点:1.应用领域广,如物理学、力学、工程学、生物学、医学、经济学、军事学、体育运动学等.而不少完全不同的实际问题,在一定的简化层次下,它们的模型是相同或相似的.这就要求我们培养广泛的兴趣,拓宽知识面,从而发展联想能力,通过对各种问题的分析、研究、比较,逐步达到触类旁通的境界.2.需要各种数学知识,应用已学到的数学方法和思想进行综合应用和分析,进行合理的抽象及简化的能力如微分方程、运筹学、概率统计、图论、层次分析、变分法等,去描述和解决实际问题.3.需要各种技术手段的配合,如查阅各种文献资料、使用计算机和各种数学软件包等.4.与求解数学题目的差别.求解数学题目往往有唯一正确的答案,而数学建模没有唯一正确的答案。

数学建模 建立函数模型解决实际问题


18
课前预习
课堂互动
建模选题
@《创新设计》
一、固体废物数据的搜集与处理 我们通过技术手段(代码见附件),在知名外卖网站“饿了么”上面定点抓取了一个地 区方圆7 500 m左右所有已在该网站上注册的店铺的数据约32 109条,合计月销量267 305份,并写了一个简单的基于字典的分类算法,分类了135 655份月销量,并按照一 个理想数值为每一种商品产生的垃圾进行估算.分类结果如下:
1
课前预习
课堂互动
建模选题
教材知识探究
@《创新设计》
数学建模是在20世纪60和70年代进入一些西方国家大学的,我国的 几所大学也在80年代初将数学建模引入课堂.经过30多年的发展现 在绝大多数本科院校和许多专科学校都开设了各种形式的数学建模 课程和讲座,为培养学生利用数学方法分析、解决实际问题的能力 开辟了一条有效的途径.大学生数学建模竞赛最早是1985年在美国出现的,1989年 在几位从事数学建模教育的教师的组织和推动下,我国几所大学的学生开始参加美 国的竞赛,而且积极性越来越高,近几年参赛校数、队数占到相当大的比例.可以 说数学建模竞赛是在美国诞生,在中国开花、结果的.
数学建模 建立函数模型解决实际问题
@《创新设计》
课标要求
素养要求
收集、阅读一些现实生活、生产实际或者 通过生活中具体的数学模型,进行提出问
经济领域中的数学模型,体会人们是如何 题、分析数据、建立模型、检验模型来发
借助函数刻画实际问题,感悟数学模型中 展数据分析、数学抽象及数学建模素养.
参数的现实意义.
15
课前预习
课堂互动
建模选题
@《创新设计》
[求解模型] 所谓“错位推进法”,对于本题来说,关键点为“乙在30千米和10千米 处给甲留下食物和水”,根据分析与假设推知结论:其中的一位沙漠探险家最多可深 入沙漠65千米. [检验结果] 从“第6天走到10千米处吃1份,然后回出发点”,感觉似乎还有10千米 可以走,但已经回出发点了,考虑一下甲还可以再往前推进5千米吗?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

其它类的二函建模
例题
某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A ,B 两组,采用不同工艺做降温对比实验,设降温开始后经过x min 时,A ,B 两组材料的温度分
别为y A ℃,y B ℃,y A ,y B 与x 的函数关系式分别为y A =kx+b , ()m x y B +-=2604
1 (部分图象如图所示),当x=40时,两组材料的温度相同.
(1)分别求y A ,y B 关于x 的函数关系式;
(2)当A 组材料的温度降至120℃时,B 组材料的温度是多少?
(3)在0<x<40的什么时刻,两组材料温差最大?
解:(1)由题意可得出:y B =(x ﹣60)2+m 经过(0,1000),
则1000=(0﹣60)2+m ,
解得:m=100,
∴y B =(x ﹣60)2+100,
当x=40时,y B =×(40﹣60)2+100,
解得:y B =200,
y A =kx+b ,经过(0,1000),(40,200),则
, 解得:, ∴y A =﹣20x+1000;
(2)当A 组材料的温度降至120℃时,120=﹣20x+1000,
解得:x=44,
当x=44,y B =(44﹣60)2+100=164(℃),
∴B 组材料的温度是164℃;
(3)当0<x <40时,y A ﹣y B =﹣20x+1000﹣(x ﹣60)2﹣100=﹣x 2+10x=﹣(x ﹣20)2+100,
∴当x=20时,两组材料温差最大为100℃.。

相关文档
最新文档