高一数学学习方法总结5篇

合集下载

最新高一数学知识点5篇总结

最新高一数学知识点5篇总结

最新高一数学知识点5篇总结高一数学知识点总结1集合具有某种特定性质的事物的总体。

这里的事物可以是人,物品,也可以是数学元素。

例如:1、分散的人或事物聚集到一起;使聚集:紧急~。

2、数学名词。

一组具有某种共同性质的数学元素:有理数的~。

3、口号等等。

集合在数学概念中有好多概念,如集合论:集合是现代数学的基本概念,专门研究集合的理论叫做集合论。

康托(Cantor,G.F.P.,1845年1918年,德国数学家先驱,是集合论的,目前集合论的基本思想已经渗透到现代数学的所有领域。

集合,在数学上是一个基础概念。

什么叫基础概念?基础概念是不能用其他概念加以定义的概念。

集合的概念,可通过直观、公理的方法来下定义。

集合是把人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。

组成一集合的那些对象称为这一集合的元素(或简称为元)。

集合与集合之间的关系某些指定的对象集在一起就成为一个集合集合符号,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做。

空集是任何集合的子集,是任何非空集的真子集。

任何集合是它本身的子集。

子集,真子集都具有传递性。

(说明一下:如果集合A的所有元素同时都是集合B的元素,则A称作是B的子集,写作AB。

若A是B的子集,且A不等于B,则A 称作是B的真子集,一般写作AB。

中学教材课本里将符号下加了一个符号,不要混淆,考试时还是要以课本为准。

所有男人的集合是所有人的集合的真子集。

)高一数学知识点总结21.函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x);(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x)f(-x)=0或(f(x)0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2.复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式ag(x)b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

高一数学重点知识点梳理五篇

高一数学重点知识点梳理五篇

高一数学重点知识点梳理五篇高中数学是很多同学的噩梦,知识点众多而且杂,对于高一的同学们很不友好,小编建议同学们通过总结知识点的方法来学习数学,这样可以提高学习效率.下面就是小编给大家带来的关于高一数学知识点,希望大能帮助到大家!高一数学知识点1一.指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中 1,且 _.当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicale_ponent),叫做被开方数(radicand).当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成( 0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作.注意:当是奇数时,当是偶数时,2.分数指数幂正数的分数指数幂的意义,规定:0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.3.实数指数幂的运算性质(二)指数函数及其性质1.指数函数的概念:一般地,函数叫做指数函数(e_ponential),其中_是自变量,函数的定义域为R.注意:指数函数的底数的取值范围,底数不能是负数.零和1.2.指数函数的图象和性质高一数学知识点2定义三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右).俯视图(从上向下)注:正视图反映了物体上下.左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右.前后的位置关系,即反映了物体的长度和宽度;侧视图反映了物体上下.前后的位置关系,即反映了物体的高度和宽度.高一数学知识点31.〝包含〞关系子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合.反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.〝相等〞关系:A=B(5 5,且5 5,则5=5)实例:设A={_|_2-1=0}B={-1,1}〝元素相同则两集合相等〞即:①任何一个集合是它本身的子集.A A②真子集:如果A B,且A B那就说集合A是集合B的真子集,记作AB(或BA)③如果A B,B C,那么A C④如果A B同时B A那么A=B3.不含任何元素的集合叫做空集,记为规定:空集是任何集合的子集,空集是任何非空集合的真子集.4.子集个数:有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集三.集合的运算运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作 A交B ),即AB={_|_A,且_B}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作 A并B ),即AB={_|_A,或_B}).高一数学知识点4(1)按元素属性分类,如点集,数集.(2)按元素的个数多少,分为有/无限集关于集合的概念:(1)确定性:作为一个集合的元素,必须是确定的,这就是说,不能确定的对象就不能构成集合,也就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了.(2)互异性:对于一个给定的集合,集合中的元素一定是不同的(或说是互异的),这就是说,集合中的任何两个元素都是不同的对象,相同的对象归入同一个集合时只能算作集合的一个元素.(3)无序性:判断一些对象时候构成集合,关键在于看这些对象是否有明确的标准.集合可以根据它含有的元素的个数分为两类:含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集.非负整数全体构成的集合,叫做自然数集,记作N;在自然数集内排除0的集合叫做正整数集,记作N+或N_;整数全体构成的集合,叫做整数集,记作Z;有理数全体构成的集合,叫做有理数集,记作Q;(有理数是整数和分数的统称,一切有理数都可以化成分数的形式.)实数全体构成的集合,叫做实数集,记作R.(包括有理数和无理数.其中无理数就是无限不循环小数,有理数就包括整数和分数.数学上,实数直观地定义为和数轴上的点一一对应的数.)1.列举法:如果一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号〝{}〞内表示这个集合,例如,由两个元素0,1构成的集合可表示为{0,1}.有些集合的元素较多,元素的排列又呈现一定的规律,在不致于发生误解的情况下,也可以列出几个元素作为代表,其他元素用省略号表示.例如:不大于1_的自然数的全体构成的集合,可表示为{0,1,2,3, ,1_}.无限集有时也用上述的列举法表示,例如,自然数集N可表示为{1,2,3, ,n, }.2.描述法:一种更有效地描述集合的方法,是用集合中元素的特征性质来描述.例如:正偶数构成的集合,它的每一个元素都具有性质:〝能被2整除,且大于0〞而这个集合外的其他元素都不具有这种性质,因此,我们可以用上述性质把正偶数集合表示为{_ R│_能被2整除,且大于0}或{_ R│_=2n,n N+},大括号内竖线左边的_表示这个集合的任意一个元素,元素_从实数集合中取值,在竖线右边写出只有集合内的元素_才具有的性质.一般地,如果在集合I中,属于集合A的任意一个元素_都具有性质p(_),而不属于集合A的元素都不具有的性质p(_),则性质p(_)叫做集合A的一个特征性质.于是,集合A可以用它的性质p(_)描述为{_ I│p(_)}它表示集合A是由集合I中具有性质p(_)的所有元素构成的,这种表示集合的方法,叫做特征性质描述法,简称描述法.例如:集合A={_ R│_2-1=0}的特征是_2-1=0高一数学知识点5集合具有某种特定性质的事物的总体.这里的〝事物〞可以是人,物品,也可以是数学元素.例如:1.分散的人或事物聚集到一起;使聚集:紧急~.2.数学名词.一组具有某种共同性质的数学元素:有理数的~.3.口号等等.集合在数学概念中有好多概念,如集合论:集合是现代数学的基本概念,专门研究集合的理论叫做集合论.康托(Cantor,G.F.P.,_45年 __年,德国数学家先驱,是集合论的创始者,目前集合论的基本思想已经渗透到现代数学的所有领域.集合,在数学上是一个基础概念.什么叫基础概念?基础概念是不能用其他概念加以定义的概念.集合的概念,可通过直观.公理的方法来下〝定义〞.集合是把人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合.组成一集合的那些对象称为这一集合的元素(或简称为元).集合与集合之间的关系某些指定的对象集在一起就成为一个集合集合符号,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做 .空集是任何集合的子集,是任何非空集的真子集.任何集合是它本身的子集.子集,真子集都具有传递性.(说明一下:如果集合A的所有元素同时都是集合B的元素,则A称作是B 的子集,写作A B.若A是B的子集,且A不等于B,则A称作是B的真子集,一般写作A属于B.中学教材课本里将符号下加了一个不等于符号,不要混淆,考试时还是要以课本为准.所有男人的集合是所有人的集合的真子集.)1._最新高一数学知识点归纳总结5篇2.最新_高一数学知识点总结归纳5篇3._最新高一数学知识点5篇总结4._最全高一数学知识点总结5._高一数学知识点总结归纳三篇高一作文开学第一天优秀范文今天是开学第一天.这一天是令人激动的,是崭新的一天.下面是小编给大家带来的开学第借物喻人作文6_字高一闻着春的气息,听见春的脚步,看见春的身影.已是六年级的毕业班学生,随之而来的压力以生活启示为题的作文高一在生活中启示无处不在,每个人都会受到启发.我也是这样,就在今天我受到了蚂蚁的启示英语自我介绍作文高一五篇开学的时候我们总是要有一个精彩的自我介绍才能给别人留下深刻的印象.下面是小编给大。

高一数学学习方法总结大全

高一数学学习方法总结大全

高一数学学习方法总结大全很多高一新生反映:开学学习不适应,比初中要难学。

一个是暑假放了近六十天暑假,很多东西都忘了,就会出现了知识上的断层。

再一个就是高中数学的确比初中数学要难学,小编在这里整理了相关资料,希望能帮助到您。

1.先看专题一,整数指数幂的有关概念和运算性质,以及一些常用公式,这公式不但在初中要求熟练掌握,高中的课程也是经常要用到的。

2.二次函数,二次方程不仅是初中重点,也是难点。

在高中还是要学的内容,并且增加了一元二次不等式的解法,这个就要根据二次函数图像来理解了! 解不等式的时候就要从先解方程的根开始,二次项系数大于 0 时,有个口诀得记下:“大于号取两边,小于号取中间”。

3.因式分解的方法这个比较重要,高中也是经常用的,比如证明函数的单调性,常在做差变形是需要因式分解,还有解一元多次方程的时候往往也先需要分解因式,之后才能求出方程的根。

4.判别式很重要,不仅能判断二次方程的根有几个,大于零 2 个根;等于零1 个根;小于零无根。

而且还能判断二次函数零点的情况,人教版必修一就会学到。

集合里面有许多题也要用到。

2 学习方法一1.不少同学都会有个相同的错误,就是在老师讲课的时候,拼命的做笔记,做计算。

这都是徒劳或者是低效的。

最有效的是抛开一切,认真理解老师的解题思路,千万不要纠结某个计算结果或者是某个环节,你所要理解的是,一道题如何一环环的解开和每一个环节的原理。

2.要学好高中数学,最主要的是自己做题,千万不可依赖老师或者同学,不提倡题海战术,因为做一道新题要比你做一百道同样的题强很多。

每做完一道题,要总结出解题的思路方法。

3.整个高中最难的一块就是函数,而函数又恰巧学在前面,导致很多学生受挫。

函数一块的话,可以先了解一下函数图象的一块,借助图象来解函数问题,非常方便。

4.看书能明白,听老师讲题觉得很简单,但一到自己做,就不会了。

这是一个通病。

主要原因不是因为高中的数学有多难,而是思维没有转变过来。

高一数学学习方法归纳

高一数学学习方法归纳

高一数学学习方法归纳进入高中后不久,很多学生都感到不适应,面对许多学习障碍和挑战不知所措,尤其是数学科表现得最为突出。

下面就是给大家带来的高一数学学习方法,希望能帮助到大家!高一数学学习方法篇1一、明确意义是学会预习的动力源泉学会学习是现代人的基本素质。

预习意义有以下三点:1.培养良好的学习习惯。

学会自主学习,掌握自学的方法,为终身学习打下基础;2.预习有助了解下一节要学习的知识点、难点,为上课扫除部分知识障碍,通过补缺,建立新旧知识间联系,从而有利于知识系统化;3.有助于提高听课效果。

预习中不懂的问题,上课老师讲解这部分知识时,目标明确,态度积极,注意集中,容易将不懂问题搞懂,同时通过预习有助听课笔记的记录与使用,课本上有的内容可不记,这样挤出时间,认真听课,认真分析,提高效率。

二、“读、划、写、查”是预习的基本步骤:1.“读”——先粗读一遍,以领会教材的大意。

根据学科特点,然后细读。

数学课本可分为概念,规律(包括法则、定理、推论、性质、公式等)、图形、例题、习题等逐条阅读。

例如,看例题时要求学生做到①分清解题步骤,指出关键所在;②弄清各步的依据,养成每步必问为什么,步步有依据的习惯;③比较同一节例题的特点,尽量去体会选例意图;④分析例题的解题规范格式,并按例题格式做练习题。

2.“划”——即划层次、划重点。

将一节内容划分成几个层次,分别标出序号。

对每层中重点用“★”,对重点字、词下面加“·”,对疑难问题旁边加“?”,对各层次间关系用“=”表示等等,划时要有重点,切勿面面俱到,符号太多。

3.“写”——即将自己的看法、体会写在书眉或书边。

(1)写段意:每一段在书边上写出段意;(2)写小结:一要概括本书内容,二要反映本节各内容之间的并列与从属关系;(3)例题:在书边说明各主要步骤的依据,在题后空白处用符号或几个字,写出本例特点,体现编者选例意图;(4)变式:对优秀生要求对例题条件、结论变化,由特殊向一般转倾,将有关知识进行横向联系,纵向发展。

快速学好高一数学的技巧(通用7篇)

快速学好高一数学的技巧(通用7篇)

快速学好高一数学的技巧(通用7篇)快速学好高一数学的技巧(1)改变陈旧的思维方式和学习方法.高中之前的学习,大部分学生是在教师的牵引下完成的,上课专心听讲,下课完成教师布置的作业,思维方式上很大程度习惯于接受,形成被动的思维习惯,很少主动思索.有的学生不会自主地安排学习,缺乏自学能力.高中以后,学生应该主动改变自己的这些学习习惯,加强自学能力和逆向思维的培养,主动思索知识点之间的联系,从而获得更多的感悟.培养良好的数学学习模式.数学是一门非常严谨的科学.在学习之前,学生应该安排自己数学学习的有序性,知道自己应该先做什么后做什么,养成数学学习的线性过程,包括课前的预习,也就是自身对知识点的初级领悟;包括上课的专心听讲,这一环节中包含自己课前领悟所获得知识的验证、思考和质疑,即自身对知识点的掌握能力;包括课后的及时复习,这里包含教师布置的作业、检查自己完成作业的顺利程度、会自己找题目来巩固已学知识点;包括一个单元及单元内各个知识点的系统小结,会检查自己掌握这些知识点的程度,基本能领悟知识点之间的系统联系,有探究意识,并落实行动.懂得并掌握常用的数学思想.说到高中数学的思想,其实也是对学生自主学习能力的培养.在学习一个单元、几个单元之后,学生是否有自己的体会和感受相当重要.这个环节包含了教师的提点,教师在讲授新知识、复习巩固知识点的同时,往往会把集合与对应思想、数形结合思想、转化思想渗透给学生,学生在教师的渗透过程中要懂得这些题目、这些知识体系中涵盖了这些思想,这些思想代表的深层含义是什么,解题中如何运用这些思想.在教学过程中,教师还会把一些数学学习的具体方法毫不保留地教给学生,如联想与类比、比较与分类、分析与综合、抽象与概括等.同时,学生要经常思索选择怎样的角度来解决自己的问题,并且适当多做练习,达到熟能生巧的地步.快速学好高一数学的技巧(2)认清数学知识的实用性,提高学生学习数学的兴趣。

数学知识的应用是广泛的,大至宏观的天体运动,小至微观的质子、中子的研究,都离不开数学知识。

学好高一数学的方法有哪些

学好高一数学的方法有哪些

学好高一数学的方法有哪些【导语】很多高中生刚接触高中数学的时候都会感到非常难,不知道从何下手。

实际上,只要能够掌控高中数学的正确学习方法,就可以快速提高成绩。

作者为各位同学整理了《学好高一数学的方法有哪些》,期望对你的学习有所帮助!1.学好高一数学的方法有哪些篇一1.很多同学都会有个相同的毛病,就是在老师讲课的时候,拼命的做笔记,做运算。

这都是白费或者是低效的。

最有效的是抛开一切,认真知道老师的解题思路,千万不要纠结某个运算结果或者是某个环节,你所要知道的是,一道题如何一环环的解开和每一个环节的原理。

2.要学好高中数学,最主要的是自己做题,千万不可依靠老师或者同学,不提倡题海战术,由于做一道新题要比你做一百道同样的题强很多。

每做完一道题,要总结出解题的思路方法。

3.全部高中最难的一块就是函数,而函数又恰巧学在前面,导致很多学生受挫。

函数一块的话,可以先了解一下函数图象的一块,借助图象来解函数问题,非常方便。

4.看书能明白,听老师讲题觉得很简单,但一到自己做,就不会了。

这是一个通病。

主要原因不是由于高中的数学有多难,而是思维没有转变过来。

2.学好高一数学的方法有哪些篇二基础很重要,保持耐心多巩固要学好数学,最关键的是要有一个好的基础。

只有打牢数学基础,才能够把高中数学好,同样只有打好基础,才能足数学获得高分。

打好基础是最关键的!比如:建一栋大楼,如果地基不稳,不管大楼有多么奢华,都只是华而不实。

想学好数学,对数学感爱好其实学好数学的办法就是发自内心由衷的想要学习,期望学习,才能体会到从学习中所收获的乐趣。

自己的成绩感提升,对于学习数学的积极性也就提高了,觉得数学并没有那么难,就愿意去多接触了。

多做题反复做,有题感其实学好数学办法就是要大量做题,反复去做,题做多了就知道哪些方面需要自己去加强学习,还有就是同样做数学题做多了就会有题感。

有些题,它的类型都是一样的,题做多了之后,即便你不会做,你也会找到一些解题的思路和技能。

高一数学学习方法最新精选

高一数学学习方法最新精选

高一数学学习方法最新精选高一数学学习方法篇11、数学是得分的科目,同时数学又是高考成败的关键。

多少学子因为数学成绩而走向不同的大学。

从某种意义上讲,高一高二的基础很重要,高一高二有没有“弄懂”将在很大程度上影响高三复习的进度,如果基础打得牢,高三可以向更高的层次冲一把,如果自认为基础有些薄弱,也不是完全没办法,一轮复习将在很大程度上弥补以前的弱势。

2、建议看看自己来年参加的考试的试卷题型分布,在复习方面,进入高三,哪些知识点只属于识记和基础理解层次,哪些知识点属于重难点。

非重难点可以不独立安排复习时间,因为跟着老师的进度就可以得分,如集合、命题及其关系、充分条件与必要条件、程序框图、复数等内容,但是一定要保证此类问题属于自己的必拿分题目。

3、其次,对其他的整个知识体系的版块有一个基本认识,可分为以下板块:函数的基本题型、函数与导数、三角函数相关内容、平面向量和空间向量、立体几何、数列、不等式、解析几何初步、圆锥曲线、统计与概率,选修内容不同省份安排不一样:极坐标、不等式、平面几何等。

4、知道了整个知识体系框架,就可以考虑在这一个学期里把哪些板块安排在哪一个月、哪一周,同时参考老师带领复习的进度,互为补充。

每一周上课前,可以把老师上一周带动复习的内容再给自己计划一下,计划这一周在以前老师讲过的基础上再给自己添加哪些内容,无论是做新题,还是整理做过的题型来寻找考试方向,都要提前安排好,六天(可能高三时期周六都要拿出一些时间给学习吧)时间每天给自己规定额外的几个小时的自习时间来完成自己的数学计划。

5、高三的课一般有两种形式:复习课和评讲课,到高三所有课都进入复习阶段,通过复习,学生要能检测出知道什么,哪些还不知道,哪些还不会,因此在复习课之前一定要弄清那些已懂那些还不懂,增强听课的主动性。

现在学生手中都会有一种复习资料,在老师讲课之前,要把例题做一遍,做题中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的有关的旧知识,可进行补缺,以减少听课过程中的困难;有助于提高思维能力,自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;体会分析问题的思路和解决问题的思想方法,坚持下去,就一定能举一反三,提高思维和解决问题的能力。

最新高一数学知识点总结5篇

最新高一数学知识点总结5篇

2022高一数学知识点总结5篇文章一:高一数学知识点总结(1)——初步代数在高一数学中,初步代数是一个非常重要的内容。

它包括了一次函数、二次函数、函数的概念、函数的图像、函数的性质等知识点。

举例如下:1.一次函数一次函数的一般形式为:y=kx+b。

其中,k表示斜率,b为截距。

知道一次函数的图像、斜率、截距,可以用描点法、斜率法和截距法画出它的图像。

2.二次函数二次函数的一般形式为:y=ax²+bx+c。

其中,a为二次项系数,b为一次项系数,c为常数项。

知道二次函数的图像、顶点坐标、对称轴、零点、判别式等信息,可以作出函数的图像。

3.函数的概念函数是将集合A中每个元素x与唯一的元素y对应起来的一个规律。

常用的表示法是f(x),其中f表示函数名,x为自变量,y为因变量。

函数的定义域、值域、图像、单调性等是初步代数中需要掌握的知识。

文章二:高一数学知识点总结(2)——平面几何平面几何也是高一数学中的重要内容,它包括了平面图形的基本性质、相似、全等、共线和垂直、平行等知识点。

举例如下:1.平面图形的基本性质平面图形的基本性质有:周长、面积、角度、对称性等。

知道平面图形的这些性质,可以通过计算周长、面积等,求出其具体特征。

2.相似相似是指两个图形形状相同,但大小不同。

如果两个图形相似,那么它们的对应角度相等,对应边的比相等。

根据相似的关系,可以通过比例来求解图形的各个部分。

3.全等全等是指两个图形形状和大小都相同。

如果两个图形全等,那么它们的对应角度和对应边长都相等,根据全等的性质,可以通过移动、翻转和旋转等方式,证明两个图形全等。

文章三:高一数学知识点总结(3)——三角函数三角函数是高中数学中的重点知识之一,它包括了正弦、余弦、正切等三角函数的概念、性质以及应用。

举例如下:1.正弦函数正弦函数以y=sin(x)的形式表示,其中x为弧度。

正弦函数的图像是一个波浪形,其最大值为1,最小值为-1。

正弦函数在三角函数、谐波振动等领域有着广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学学习方法篇11、注意化归转化思想学习。

人们学习过程就是用掌握的知识去理解、解决未知知识。

数学学习过程都是用旧知识引出和解决新问题,当新的知识掌握后再利用它去解决更新知识。

初中知识是基础,如果能把新知识用旧知识解答,你就有了化归转化思想了。

可见,学习就是不断地化归转化,不断地继承和发展更新旧知识。

2、学会数学教材的数学思想方法。

数学教材是采用蕴含披露的方式将数学思想溶于数学知识体系中,因此,适时对数学思想作出归纳、概括是十分必要的。

概括数学思想一般可分为两步进行:一是揭示数学思想内容规律,即将数学对象其具有的属性或关系抽取出来,二是明确数学思想方法知识的联系,抽取解决全体的框架。

实施这两步的措施可在课堂的听讲和课外的自学中进行。

课堂学习是数学学习的主战场。

课堂中教师通过讲解、分解教材中的数学思想和进行数学技能地训练,使高中学生学习所得到丰富的数学知识,教师组织的科研活动,使教材中的数学概念、定理、原理得到程度的理解、挖掘。

如初中学习的相反数概念教学中,教师的课堂教学往往有以下理解:①从定义角度求3、-5的相反数,相反数是的数是_____.②从数轴角度理解:什么样的两点表示数是互为相反数的。

(关于原点对称的点)③从绝对值角度理解:绝对值_______的两个数是互为相反数的。

④相加为零的两个数互为相反数吗?这些不同角度的教学会开阔学生思维,提高思维品质。

望同学们把握好课堂这个学习的主战场。

高一数学学习方法篇2一:先注意以下三点。

一)、课内重视听讲,课后及时复习。

新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。

上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。

特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。

首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,应尽量回忆而不采用不清楚立即翻书之举。

认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。

在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。

二)、适当多做题,养成良好的解题习惯。

要想学好数学,多做题是难免的,熟悉掌握各种题型的解题思路。

刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。

对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。

在平时要养成良好的解题习惯。

让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入状态,在考试中能运用自如。

实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。

如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。

三)、调整心态,正确对待考试。

首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。

调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。

特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我,要有自己不垮,谁也不能打垮我的自豪感。

在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。

对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。

高一数学学习方法篇31、数学语言在抽象程度上突变初、高中的数学语言有着显著的区别。

初中的数学主要是以形象、通俗的语言方式进行表达。

而高一数学一下子就触及非常抽象的集合语言、逻辑运算语言、函数语言、图象语言等。

2、思维方法向理性层次跃迁高一学生产生数学学习障碍的另一个原因是高中数学思维方法与初中阶段大不相同。

初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步,因式分解先看什么,再看什么等。

因此,初中学习中习惯于这种机械的,便于操作的定势方式,而高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了高要求。

这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降。

3、知识内容的整体数量剧增高中数学与初中数学又一个明显的不同是知识内容的“量”上急剧增加了,单位时间内接受知识信息的量与初中相比增加了许多,辅助练习、消化的课时相应地减少了。

4、知识的独立性大初中知识的系统性是较严谨的,给我们学习带来了很大的方便。

因为它便于记忆,又适合于知识的提取和使用。

但高中的数学却不同了,它是由几块相对独立的知识拼合而成(如高一有集合,命题、不等式、函数的性质、指数和对数函数、指数和对数方程、三角比、三角函数、数列等),经常是一个知识点刚学得有点入门,马上又有新的知识出现。

因此,注意它们内部的小系统和各系统之间的联系成了学习时必须花力气的着力点。

高一数学学习方法篇4一、预习1、通览教材,初步理解教材的基本内容和思路。

2、预习时如发现与新课相联系的旧知识掌握得不好,则查阅和补习旧知识,给学习新知识打好牢固的基础。

3、在阅读新教材过程中,要注意发现自己难以掌握和理解的地方,以便在听课时特别注意。

4、做好预习笔记。

预习的结果要认真记在预习笔记上,预习笔记一般应记载教材的主要内容、自己没有弄懂需要在听课着重解决的问题、所查阅的旧知识等。

二、上课。

1、课前准备好上课所需的课本、笔记本和其他文具,并抓紧时间简要回忆和复习上节课所学的内容。

2、要带着强烈的求知欲上课,希望在课上能向老师学到新知识,解决新问题。

3、上课时要集中精力听讲,上课铃一响,就应立即进入积极的学习状态,有意识地排除分散注意力的各种因素。

4、听课要抬头,眼睛盯着老师的一举一动,专心致志聆听老师的每一句话。

要紧紧抓住老师的思路,注意老师叙述问题的逻辑性,问题是怎样提出来的,以及分析问题和解决问题的方法步骤。

5、如果遇到某一个问题或某个问题的一个环节没有听懂,不要在课堂上“钻牛角尖”,而要先记下来,接着往下听。

不懂的问题课后再去钻研或向老师请教。

6、要努力当课堂的主人。

要认真思考老师提出的每一个问题,认真观察老师的每一个演示实验,大胆举手发表自己的看法,积极参加课堂讨论。

7、要特别注意老师讲课的开头和结尾。

老师的“开场白”往往是概括上节内容,引出本节的新课题,并提出本节课的目的要求和要讲述的中心问题,起着承上起下的作用。

老师的课后总结,往往是一节课的精要提炼和复习提示,是本节课的高度概括和总结。

8、要养成记笔记的好习惯。

是一边听一边记,当听与记发生矛盾时,要以听为主,下课后再补上笔记。

记笔记要有重点,要把老师板书的知识提纲、补充的课外知识、典型题目的解题步骤和课堂上没有听懂的问题记下来,供课后复习时参考。

三、作业。

1、先看书后作业,看书和作业相结合。

只有先弄懂课本的基本原理和法则,才能顺利地完成作业,减少作业中的错误,也可以达到巩固知识的目的。

2、注意审题。

要搞清题目中所给予的条件,明确题目的要求,应用所学的知识,找到解决问题的途径和方法。

3、态度要认真,推理要严谨,养成“言必有据”的习惯。

准确运用所学过的定律、定理、公式、概念等。

作业之后,认真检查验算,避免不应有的错误发生。

4、作业要独立完成。

只有经过自己动脑思考动手操作,才能促进自己对知识的消化和理解,才能培养锻炼自己的思维能力;同时也能检验自己掌握的知识是否准确,从而克服学习上的薄弱环节,逐步形成扎实的基础。

5、认真更正错误。

作业经老师批改后,要仔细看一遍,对于作业中出现的错误,要认真改正。

要懂得,出错的地方,正是暴露自己的知识和能力弱点的地方。

经过更正,就可以及时弥补自己知识上的缺陷。

6、作业要规范。

解题时不要轻易落笔,要在深思熟虑后一次写成,切忌写了又改,改了又擦,使作业涂改过多。

书写要工整,解题步骤既要简明、有条理,又要完整无缺。

作业时,各科都有各自的格式,要按照各学科的作业规范去做。

7、作业要保存好,定期将作业分门别类进行整理,复习时,可随时拿来参考。

四、复习。

1、当天的功课当天复习,并且要同时复习头一天学习和复习过的内容,使新旧知识联系起来。

对老师讲授的主要内容,在全面复习的基础上,抓住重点和关键,特别是听课中存在的疑难问题更应彻底解决。

重点内容要熟读牢记,对基本要领和定律等能准确阐述,并能真正理解它的意义;对基本公式应会自行推导,晓得它的来龙去脉;同时要搞清楚知识前后之间的联系,注意总结知识的规律性。

2、单元复习。

在课程进行完一个单元以后,要把全单元的知识要点进行一次全面复习,重点领会各知识要点之间的联系,使知识系统化和结构化。

有些需要记忆的知识,要在理解的基础上熟练地记忆。

3、期中复习。

期中考试前,要把上半学期学过的内容进行系统复习。

复习时,在全面复习的前提下,特别应着重弄清各单元知识之间的联系。

4、期末复习。

期末考试前,要对本学期学过的内容进行系统复习。

复习时力求达到“透彻理解、牢固掌握、灵活运用”的目的。

5、假期复习。

每年的寒假和暑假,除完成各科作业外,要把以前所学过的内容进行全面复习,重点复习自己掌握得不太好的部分。

这样可以避免边学边忘,造成高三总复习时负担过重的现象。

6、在达到上面要求的基础上,学有余力的同学,可在老师的指导下,适当阅读一些课外参考书或做一些习题,加深对有关知识的理解和记忆。

五、课外学习。

1、可根据自己的学习情况,有目的地选择学习内容,原则是有利于巩固基础知识,弥补自己的学习弱点。

2、可以根据自己的特长和爱好,选择一些有关学科的课外读物学习。

3、课外阅读一定要从自己的实际出发,量力而行,宁可少而精,也不多而滥,切忌好高鹜远、贪多求全。

六、考试。

1、要正确对待考试。

考试是检查学生学习效果的一种方法,考得好,可以促进自己进一步努力学习,考得不好,也可以促使自己认真分析原因,找出存在的问题,以便今后更有针对性地学习。

所以,考试并不可怕,绝不应当产生畏考心理,造成情绪紧张,影响水平的正常发挥。

2、做好考试前的准备工作。

首先是对各科功课进行系统认真的复习,这是考出好成绩的基础。

另外,考试前和考试期间要注意劳逸结合,保证充足的睡眠和休息,保持充沛的精力,这是取得优异成绩的必要条件。

3、答卷时应注意的主要问题是:①认真审题。

拿到试卷后,对每一个题目要认真阅读,看清题目的要求,找出已知条件和要求的结论,然后再动手答题。

相关文档
最新文档