实验四 回溯法(图着色问题)
回溯法实验(图的m着色问题)

算法分析与设计实验报告第六次附加实验cout<<endl;}elsefor(int i=1;i<=m;i++){x[t]=i;if(ok(t)) Backtrack(t+1);//回溯,继续寻找下一层x[t]=0;//回到最初状态,使x[1]继续尝试其他填色的可能解}}测试结果当输入图如下时:结果如下:12435只要输入边即可当输入的图如下时:结果如下:附录:完整代码(回溯法)//图的m着色问题回溯法求解#include<iostream>using namespace std;class Color{friend void mColoring(int,int,int **);private:bool ok(int k);void Backtrack(int t);int n, //图的顶点个数m, //可用颜色数**a, //图的邻接矩阵*x; //当前解long sum; //当前已找到的可m着色的方案数};bool Color::ok(int k) //检查颜色可用性{for(int j=1;j<=n;j++)if((a[k][j]==1)&&(x[j]==x[k])) //两个点之间有约束且颜色相同return false;return true;}void Color::Backtrack(int t){if(t>n) //到达叶子节点{sum++; //可行解+1cout<<"着色: ";for(int i=1;i<=n;i++) //输出可行解方案cout<<x[i]<<" ";cout<<endl;}elsefor(int i=1;i<=m;i++){x[t]=i;if(ok(t)) Backtrack(t+1);//回溯,继续寻找下一层x[t]=0;//回到最初状态,使x[1]继续尝试其他填色的可能解 }}void mColoring(int n,int m,int **a){Color X;//初始化XX.n=n;X.m=m;X.a=a;X.sum=0;int *p=new int[n+1];for(int i=0;i<=n;i++)p[i]=0;X.x=p;cout<<"顶点: ";for(int i=1;i<=n;i++) //用于输出结果cout<<i<<" " ;cout<<endl;X.Backtrack(1); //从顶点1开始回溯delete []p;cout<<"解法个数:"<<X.sum<<endl;}int main(){int n;int m;cout<<"please input number of node:";cin>>n;cout<<"please input number of color:";cin>>m;int **a=new int*[n+1];for(int i=0;i<=n;i++)a[i]=new int[n+1];for(int i=0;i<=n;i++) //利用抽象图实现图的邻接矩阵for(int j=0;j<=n;j++)a[i][j]=0;int edge;cout<<"please input adjacent edge number:";cin>>edge;int v,w;cout<<"please inout adjacent edge:"<<endl; //只要输入边即可for(int i=0;i<edge;i++){cin>>v>>w; //由于是无向图,所以对应的邻接矩阵对应的边都有,即v->m,m->v都有边a[v][w]=1;a[w][v]=1;}mColoring(n,m,a);system("pause");return 0;}。
图的着色问题--C++实现(含详细注释)

图的着色问题一、题目简述(1) 图的m-着色判定问题给定一个无向连通图 G 和 m 种不同的颜色。
用这些颜色为图 G 的各顶点着色,每个顶点着一种颜色,是否有一种着色法使 G 中任意相邻的两个顶点着不同颜色?(2) 图的m-着色优化问题若一个图最少需要 m 种颜色才能使图中任意相邻的两个顶点着不同颜色,则称这个数 m 为该图的色数。
求一个图的最小色数 m 的问题称为m-着色优化问题。
二、算法思想1. m-着色判定问题总体思想:通过回溯的方法,不断为每一个节点着色,每个点的颜色由一个数字代表,初始值为1。
在对前面 step - 1 个节点都合法的着色之后,开始对第 step 个节点进行着色。
如果 n 个点均合法,且颜色数没有达到 m 种,则代表存在一种着色法使 G中任意相邻的两个顶点着不同颜色。
具体步骤:1. 对每个点 step ,有 m 种着色可能性,初始颜色值为1。
2. 检查第 step 个节点颜色的可行性,若与某个已着色的点相连且颜色相同,则不选择这种着色方案,并让颜色值加1,继续检查该点下一种颜色的可行性。
3. 如果第 step 点颜色值小于等于 m ,且未到达最后一个点,则进行对第 step + 1 点的判断。
4. 如果第 step 点颜色值大于 m ,代表该点找不到合适的分配方法。
此时算法进行回溯,首先令第 step 节点的颜色值为0,并对第 step - 1 个点的颜色值+1后重新判断。
5. 如果找到一种颜色使得第 step 个节点能够着色,说明 m 种颜色的方案是可行的。
6. 重复步骤2至5,如果最终 step 为0则代表无解。
2. m-着色优化问题基于问题1,对于一个无向图 G ,从1开始枚举染色数,上限为顶点数,第一个满足条件的颜色数即为所求解。
三、实现过程(附代码)1. m-着色判定问题#include<iostream>using namespace std;int color[100]; // 每个点的颜色int mp[100][100]; // 图的邻接矩阵int n, m, x; // n顶点,m种颜色方案,x条边bool check(int step) {// 判断与step点相邻的点,颜色是否与step点相同,若相同则返回falsefor (int i=1; i<=n; i++) {if (mp[step][i] ==1&&color[i] ==color[step]) {return false;}}return true;}bool Solve(int m) {// 求解是否可以找到一种可行的染色方案int step=1; // step指示当前节点while (step>=1) {color[step] +=1; // 假定颜色值从1开始,若为回溯,选择下一种方案while (color[step] <=m) { // 按照问题条件选择第step点颜色if (check(step)) {break;} else {color[step]++; // 搜索下一个颜色}}if (color[step] <=m&&step==n) { // 如果找完n个点,且染色方法小于等于m种 return true;} else if (color[step] <=m&&step<n) {step++; // 求解下一个顶点} else { // 如果染色数大于m个,回溯color[step] =0; // 回溯,该点找不到合适的分配方法,对上一点进行分析step--;}}// 如果step退到0,则代表无解return false;}int main() {int i, j;bool ans=false;cout<<"输入顶点数n和着色数m"<<endl;cin>>n>>m;cout<<"输入边数"<<endl;cin>>x;cout<<"具体输入每条边"<<endl;for (int p=0; p<x; p++) { // 以无向邻接矩阵存储边cin>>i>>j;mp[i][j] =1;mp[j][i] =1;}if (Solve(m)) {cout<<"有解";} else {cout<<"无解";}return0;}2. m-着色优化问题#include<iostream>using namespace std;int color[100]; // 每个点的颜色int mp[100][100]; // 图的邻接矩阵int n, m, x; // n顶点,m种颜色方案,x条边bool check(int step) {// 判断与step点相邻的点,颜色是否与step点相同,若相同则返回falsefor (int i=1; i<=n; i++) {if (mp[step][i] ==1&&color[i] ==color[step]) {return false;}}return true;}bool Solve(int m) {// 求解是否可以找到一种可行的染色方案int step=1; // step指示当前节点while (step>=1) {color[step] +=1; // 假定颜色值从1开始,若为回溯,选择下一种方案while (color[step] <=m) { // 按照问题条件选择第step点颜色if (check(step)) {break;} else {color[step]++; // 搜索下一个颜色}}if (color[step] <=m&&step==n) { // 如果找完n个点,且染色方法小于等于m种 return true;} else if (color[step] <=m&&step<n) {step++; // 求解下一个顶点} else { // 如果染色数大于m个,回溯color[step] =0; // 回溯,该点找不到合适的分配方法,对上一点进行分析step--;}}// 如果step退到0,则代表无解return false;}int main() {int i, j;bool ans=false;cout<<"输入顶点数n"<<endl;cin>>n;cout<<"输入边数"<<endl;cin>>x;cout<<"具体输入每条边"<<endl;for (int p=0; p<x; p++) { // 以无向图邻接矩阵存储边 cin>>i>>j;mp[i][j] =1;mp[j][i] =1;}for (m=1; m<=n; m++) { // 从小到大枚举着色数mif (Solve(m)) { // 如果有解,输出答案并跳出循环cout<<"最小色数m为 "<<m;break;}}return0;}四、结果及分析问题1测试用例:问题2测试用例:经检验,最少着色数的范围为2-4,意味着使 G 中任意相邻的两个顶点着不同颜色最多需要4种颜色。
图的着色问题

问题来源
图的着色
通常所说的着色问题是指下述两类问题: 通常所说的着色问题是指下述两类问题: 1.给定无环图G=(V,E),用m种颜色为图中 的每条边着色,要求每条边着一种颜色, 的每条边着色,要求每条边着一种颜色,并 使相邻两条边有着不同的颜色, 使相邻两条边有着不同的颜色,这个问题称 为图的边着色问题。 为图的边着色问题。 2.给定无向图G=(V,E),用m种颜色为图中 的每个顶点着色,要求每个顶点着一种颜色, 的每个顶点着色,要求每个顶点着一种颜色, 并使相邻两顶点之间有着不同的颜色, 并使相邻两顶点之间有着不同的颜色,这个 问题称为图的顶着色问题。 问题称为图的顶着色问题。
化简得
( a + bd )(b + aceg )(c + bdef )( d + aceg )(e + bcdf )( f + ceg )( g + bdf )
求极小覆盖法- 求极小覆盖法-布尔代数法
Step3:从中挑选所用极大独立集个数最小者, Step3:从中挑选所用极大独立集个数最小者, 即为X 即为X(G) 但上述子集的颜色数都不是X ),正确的应 但上述子集的颜色数都不是X(G),正确的应 该是X =3,该子集为: {b,d,f}中的 该是X(G)=3,该子集为:给{b,d,f}中的 b,d,f涂颜色 涂颜色1 {a,e,g}中a,e,g涂颜色 涂颜色2 b,d,f涂颜色1,为{a,e,g}中a,e,g涂颜色2为 {a,c,g}中的 涂颜色3 中的c {a,c,g}中的c涂颜色3。 由此可见, 由此可见,求色数其需要求极大独立集以 及一切若干极大独立集的和含所有顶点的子 对于大图, 集,对于大图,因为图计算量过大而成为实 际上难以凑效的算法,所以不是一个好算法, 际上难以凑效的算法,所以不是一个好算法, 一般我们采用贪心法等近似算法来求解 。
第8节图论应用实例_图着色问题

第8节图论应用实例_图着色问题预备知识_回溯法回溯法:在实际生活中,有些问题是不能用数学公式去解决的,它需要通过一个过程,此过程要经过若干个步骤才能完成,每一个步骤又分为若干种可能;同时,为了完成任务,还必须遵守一些规则,但这些规则无法用数学公式表示,对于这样一类问题,一般采用搜索的方法来解决,回溯法就是搜索算法(广度优先、深度优先等)中的一种控制策略,它能够解决许多搜索中问题。
回溯法基本思想:试探法,撞了南墙就回头。
(一般采用深度优先搜索策略) 搜索策略:深度优先(不撞南墙不回头)。
在搜索过程中,如果求解失败,则返回搜索步骤中的上一点,去寻找新的路径,以求得答案。
要返回搜索,前进中的某些状态必须保存,才能使得退回到某种状态后能继续向前。
白话搜索:如果用数组存放搜索信息,i表示数组下标(当前状态), ++i表示往前走(下一个状态),--i表示回溯(往回退,返回上一次状态)。
第8节图论应用实例_图着色(graph coloring)问题数学定义:给定一个无向图G=(V, E),其中V为顶点集合,E为边集合,图着色问题即为将V分为k个颜色组(k为颜色数),每个组形成一个独立集,即其中没有相邻的顶点。
其优化版本是希望获得最小的k值。
典型应用:地图的着色、调度问题等。
k-着色判定问题:给定无向连通图G和k种不同的颜色。
用这些颜色为图G的各顶点着色,每个顶点着一种颜色,是否有一种着色法使G中任意相邻的2个顶点着不同颜色,例四色问题。
设有如图1的地图,每个区域代表一个省,区域中的数字表示省的编号,现在要求给每个省涂上红、蓝、黄、白四种颜色之一,同时使相邻的省份以不同的颜色区分。
课外拓展:搜索“四色问题”,了解四色问题相关知识。
5674231图1问题分析:(1)属于图的搜索问题。
将问题简化:将每个省抽象为一个点,省之间的联系看为一条边,可以得到图2。
16751432图2(2)用邻接矩阵表示各省之间的相邻关系,二维数组实现:1 表示省i与省j相邻, ,,ri,j,,0 表示省i与省j不相邻,由图2可以得到如下矩阵:(对称矩阵)1 2 3 4 5 6 71 0 1 0 0 0 0 12 1 0 1 1 1 1 13 0 1 0 1 0 0 04 0 1 1 0 1 0 05 0 1 0 1 0 1 06 0 1 0 0 1 0 17 1 1 0 0 0 1 0 为一对称矩阵。
《算法设计与分析》课程实验报告 (回溯法(二))

《算法设计与分析》课程实验报告实验序号:10实验项目名称:实验十一回溯法(二)一、实验题目1.图的着色问题问题描述:给定无向连通图G和m种不同的颜色。
用这些颜色为图G的各顶点着色,每个顶点着一种颜色。
如果有一种着色法使G中每条边的2个顶点着不同颜色,则称这个图是m可着色的。
图的m着色问题是对于给定图G和m种颜色,找出所有不同的着色法。
2.旅行商问题问题描述:给出一个n个顶点的带权无向图,请寻找一条从顶点1出发,遍历其余顶点一次且仅一次、最后回到顶点1的最小成本的回路——即最短Hamilton回路。
3.拔河比赛问题描述:某公司的野餐会上将举行一次拔河比赛。
他们想把参与者们尽可能分为实力相当的两支队伍。
每个人都必须在其中一只队伍里,两队的人数差距不能超过一人,且两队的队员总体重应该尽量接近。
4.批处理作业调度问题描述:给定n个作业的集合J=(J1,J2, .. Jn)。
每个作业J都有两项任务分别在两台机器上完成。
每个作业必须先由机器1处理,再由机器2处理。
作业i需要机器j的处理时间为tji(i=1,2, ..n; j=1,2)。
对于一个确定的作业调度,设Fji是作业i在机器j上完成处理的时间,则所有作业在机器2上完成处理的时间和,称为该作业调度的完成时间和。
批处理作业调度问题要求,对于给定的n个作业,制定最佳作业调度方案,使其完成时间和达到最小。
二、实验目的(1)通过练习,理解回溯法求解问题的解状态空间树与程序表达的对应关系,熟练掌握排列树、子集树的代码实现。
(2)通过练习,体会减少搜索解空间中节点的方法,体会解的状态空间树的组织及上界函数的选取对搜索的影响。
(3)通过练习,深入理解具体问题中提高回溯算法效率的方法。
(4)(选做题):在掌握回溯法的基本框架后,重点体会具体问题中解的状态空间搜索时的剪枝问题。
三、实验要求(1)每题都必须实现算法、设计测试数据、记录实验结果,并给出时间复杂度分析。
四、实验过程(算法设计思想、源码)1.图的着色问题(1)算法设计思想用邻接矩阵a[i][j]存储无向图,对于每一个顶点有m种颜色可以涂。
图着色问题——精选推荐

图着⾊问题⼀、图着⾊问题(1)图的m可着⾊判定问题给定⽆向连通图G和m种不同的颜⾊。
⽤这些颜⾊为图G的各顶点着⾊,每个顶点着⼀种颜⾊。
是否有⼀种着⾊法使G中每条边的2个顶点着不同颜⾊。
(2)图的m可着⾊优化问题若⼀个图最少需要m种颜⾊才能使图中每条边连接的2个顶点着不同颜⾊,则称这个数m为该图的⾊数。
⼆、m可着⾊判定问题的解法【算法】(1)通过回溯的⽅法,不断的为每⼀个节点着⾊,在前⾯cur-1个节点都合法的着⾊之后,开始对第cur-1个节点进⾏着⾊,(2)这时候枚举可⽤的m个颜⾊,通过和第cur-1个节点相邻的节点的颜⾊,来判断这个颜⾊是否合法(3)如果找到那么⼀种颜⾊使得第cur-1个节点能够着⾊,那么说明m种颜⾊的⽅案在当前是可⾏的。
(4)cur每次迭代加1,如果cur增加到N并通过了检测,说明m种颜⾊是可满⾜的。
(5)注意,这⾥只是要求判断m种颜⾊是否可满⾜,所以找到任何⼀种⽅案就可以了。
【代码实现】#include<iostream>#include<cstring>using namespace std;const int maxn = 105;int G[maxn][maxn];int color[maxn];bool ans;int n,m,k;void init(){ans = 0;memset(G, 0 , sizeof G);memset(color, 0 , sizeof color);}void dfs(int cur){if(cur > n) {ans = 1;return;}for(int i=1; i<=m; i++){ //对cur结点尝试使⽤每⼀种颜⾊进⾏涂⾊bool flag = 1;//cur之前的结点必被涂⾊for(int j=1; j<cur; j++){if(G[j][cur] == 1 && color[j] == i){flag = 0;//只要有⼀个冲突都不⾏break;}}//如果可以涂上i颜⾊,则考虑下⼀个结点的情况if(flag){color[cur] = i;dfs(cur + 1);}//如果到这⼀步第cur个结点⽆法着⾊,则返回探寻其他⽅案else color[cur] = 0;//回溯 ;}}int main(){while(cin>>n>>k>>m){init();for(int i=1; i<=k; i++){int x,y;cin>>x>>y;G[x][y] = G[y][x] = 1;}dfs(1);cout<<ans<<endl;}return0;}三、m可着⾊拓展【问题】在上述基础上,求出m种颜⾊能够给图G涂⾊的总总⽅案数量【算法】由于这个时候要求总⽅案数量,所以在找到⼀种可⾏⽅案后,总是进⾏回溯再搜索其他的解决⽅案,与上⾯不同,上⾯是只需要找出⼀种⽅案即可,所以如果找到了就不需要再回溯了,所以在这⾥只需要把回溯语句的位置写到dfs语句的后⾯即可。
回溯算法补充内容(N皇后、图的着色问题)

• 子集合数问题的递归回溯算法
• • Procedure Sumofsum(s,k,r) //找w(1:n)中和数为M的所有子集。进入此过程的时候x(1),…,x(k-1)的值已经确定。 s=w(1)x(1)+…+w(k-1)x(k-1); r=w(k)+…+w(n) 这些W(j)按非降次的顺序排列。假定 w(1)<=M, w(1)+…+w(n)>=M
N皇后问题的所有解
end while
end
PLACE (k)的程序
• Procedure PLACE(k) // 如果一个皇后能放在第k行和x(k)列,返回ture;否则返回false。x是一个全局 变量,进入此过程的时候已经置了k个值。ABS(r)过程返回r的绝对值 global x(1:k); integer i,k; i=1; while i<k do if x(i)==x(k) or ABS(x(i)-x(k))==ABS(i-k) //在同一列 或者在同一斜角线上 有两个皇后 then return (false) end if i=i+1; end while return (true) end
Global integer m,n X(1:n) Boolean Graph(1:n,1:n) integer k loop X(k)=(X(k)+1)mod(m+1) //试验下一个最高标值的颜色 if X(k)==0 return //全部颜色用完 endif for j=1:n if Graph(k,j)and X(k)==X(j) //如果(k,j)是一条边并且临近的结点有相同的颜色 exit endif endfor if j==n+1 // 找到了一种新颜色 return endif endloop end
回溯法解决图着色问题

回溯法解决图着色问题回溯法解决图着色问题2010-05-20 20:151回溯算法也叫试探法,它是一种系统地搜索问题的解的方法。
回溯算法的基本思想是:从一条路往前走,能进则进,不能进则退回来,换一条路再试。
用回溯算法解决问题的一般步骤为:一、定义一个解空间,它包含问题的解。
二、利用适于搜索的方法组织解空间。
三、利用深度优先法搜索解空间。
四、利用限界函数避免移动到不可能产生解的子空间。
问题的解空间通常是在搜索问题的解的过程中动态产生的,这是回溯算法的一个重要特性。
回溯法是一个既带有系统性又带有跳跃性的的搜索算法。
它在包含问题的所有解的解空间树中,按照深度优先的策略,从根结点出发搜索解空间树。
算法搜索至解空间树的任一结点时,总是先判断该结点是否肯定不包含问题的解。
如果肯定不包含,则跳过对以该结点为根的子树的系统搜索,逐层向其祖先结点回溯。
否则,进入该子树,继续按深度优先的策略进行搜索。
回溯法在用来求问题的所有解时,要回溯到根,且根结点的所有子树都已被搜索遍才结束。
而回溯法在用来求问题的任一解时,只要搜索到问题的一个解就可以结束。
这种以深度优先的方式系统地搜索问题的解的算法称为回溯法,它适用于解一些组合数较大的问题.递归回溯:由于回溯法是对解空间的深度优先搜索,因此在一般情况下可用递归函数来实现回溯法如下:procedure try(i:integer);var begin if in then输出结果else for j:=下界to上界do begin x:=h[j];if可行{满足限界函数和约束条件}then begin置值;try(i+1);end;end;end;说明:i是递归深度;n是深度控制,即解空间树的的高度;可行性判断有两方面的内容:不满约束条件则剪去相应子树;若限界函数越界,也剪去相应子树;两者均满足则进入下一层;搜索:全面访问所有可能的情况,分为两种:不考虑给定问题的特有性质,按事先顶好的顺序,依次运用规则,即盲目搜索的方法;另一种则考虑问题给定的特有性质,选用合适的规则,提高搜索的效率,即启发式的搜索。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
01 234 001 1 01 1 1 01 01 21 1 01 0 3001 01 41 1 01 0
class MGraph { public:
MGraph(int v,int s); void mColoring(int m,int *x); //一维数组x,存放1~n个顶点的颜色 ~MGraph(); private: void NextValue(int k,int m,int *x); void mColoring (int k,int m,int *x); int **a; //二维数组a,存储图的邻接矩阵 int n,e; //n表示图的顶点数,e表示边数 };
无向图G
【实验内容与要求】
图的着色问题:设G=(V,E)是一连通无向图,有3 种颜色,用这些颜色为G的各顶点着色,每个顶点着 一种颜色,且相邻顶点颜色不同。试用回溯法设计一 个算法,找出所有可能满足上述条件的着色法。
无向图G
无向图G
对应这个无向图的状态空间树应该是怎样的?
是一个完全3叉树,共6层
实验四 回溯法 — 图的着色问题
图的着色问题是由地图的着色问题引申而来的: 用m种颜色为地图着色,使得地图上的每一个 区域着一种颜色,且相邻区域颜色不同。
问题处理:如果把每一个区域收缩为一个顶点, 把相邻两个区域用一条边相连接,就可以把一
个区域图抽象为一个平面图。
地图(map)中地区的相邻关系,在图(graph )中用边表示。
//若(i, j)是图的边,且相邻结点k和j颜色相同 //发生冲突,选下一种颜色
if (j==k) return; //成功选择一种颜色返回 }while (1); //循环尝试颜色 }
运行结果:
谢谢观赏
递归回溯:
1. 为x[k]分配一个合法的颜色(即为第k个顶点分配颜色)。 2. 如果x[k]为0,表示当前没有适合的颜色,此方案不可行,返回。 3. 顶点k颜色分配成功后:
3.1如果k=n-1,表示所有顶点分到一个合法的颜色(完全着色);
输出x数组
3.2否则(还未完全着色)对k+1顶点进行着色(递归,向下一层搜索);
//x[k]=0 表示没有可用颜色,颜色从1开始编号
do { x[k]=(x[k]+1) % (m+1); //尝试下一种颜色 if (x[k]==0) return; //已经试完所有颜色,没有可用颜色 for (int j=0; j<k; j++) if (a[k][j] && x[k] == x[j]) break;
完
{
//得到图G的一种m-着色方案
全 着
for (int i=0; i<n; i++) cout << x[i] << ' ';
色
cout << endl;
}
else mColoring(k+1,m,x); //已经对前k个结点分配了颜色,尝试其余结 点(部分着色)
} while(1);
}
void MGraph::NextValue(int k,int m,int *x) { //本函数在[1,m]中为x[k]确定一个值最小的,且不与其邻接点冲突的颜色
4. 回到1,寻找下一个可行的方案
void MGraph:: mColoring(iຫໍສະໝຸດ t k,int m,int *x) {
do { NextValue(k,m,x); //为x[k]分配颜色
if (x[k]==0) break;
//x[k]=0表示当前没有适当的颜色,此着色方案不可行
if (k == n-1)