2019-2020年高一上学期数学(必修1)过关检测(6) 含答案

合集下载

2019-2020年高一上学期期末联考数学试题 含答案

2019-2020年高一上学期期末联考数学试题 含答案

2019-2020年高一上学期期末联考数学试题 含答案本试卷分选择题和非选择题两部分,共4页,满分为150分,考试用时120分钟. 注意事项:1.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.2.非选择题必须用黑色字迹钢笔或签字笔作答.答案必须写在答题卡各题目指定区域内相应位置上,超出指定区域的答案无效;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答案的答案无效.参考公式:1.球体积公式334R V π=,表面积公式24S R π=,其中R 为球的半径; 2.锥体体积公式Sh V 31=,其中S 为底面面积、h 为高;3.圆锥表面积公式2S r rl ππ=+,其中r 为底面半径,l 为母线;4.台体的体积公式'1()3V h S S =+,其中,S S '分别是台体上、下底面的面积,h 是台体的高.第一部分 选择题(共50分)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{}1,2,3,4,5,6,7,8U =,集合{1,2,3,5}A =,{2,4,6}B =,则图中的阴影部分表示的集合为( )A .{}2 B .{}4,6 C .{}1,3,5 D .{}4,6,7,82.函数y =( )A .(0,)+∞B .[0,)+∞C .(1,)+∞D .[1,)+∞ 3.下列函数中,既是奇函数又是区间),0(+∞上的增函数的是( )A .2log y x =B .1-=x yC .3x y =D .x y 2= 4.已知m 、n 为两条不同的直线,α、β为两个不同的平面,则下列推理中正确的是( )A .βαβα⊂⊂n m ,,//n m //⇒ B .αα//,//n m n m //⇒ C .n m m =⊂βαβα ,,//n m //⇒ D .αα⊂n m ,//n m //⇒ 5.将棱长为2的正方体木块削成一个体积最大的球,则这个球的表面积为( ) A .2π B .4π C .8π D .16π6.设1>a ,则a 2.0log 、a2.0、2.0a 的大小关系是( )A .2.02.0log 2.0a a a <<B .2.02.02.0log a a a <<C .a a a 2.0log 2.02.0<<D .a a a 2.02.0log 2.0<< 7.如果一个几何体的三视图如图所示(单位长度:cm), 则此几何体的 表面积是( )A .220cm B.2(20cm + C.2(24cm + D .224cm8.设函数122,1()1log ,1x x f x x x -⎧≤=⎨->⎩,则满足2)(≤x f 的x 的取值范围是( )A .[1,2]-B .[0,)+∞C .[1,)+∞D .[0,2]9.设函数3y x =与1()2xy =的图象的交点为00(,)x y ,则0x 所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)A FD BGE 1BH 1C1D 1A第12题图10.设奇函数)(x f 在),0(+∞上为增函数,且0)1(=f ,则不等式0)()(<--xx f x f 的解集为( ) A .(10)(1)-+∞,, B .(1)(01)-∞-,, C .(1)(1)-∞-+∞,, D .(10)(01)-,,第二部分 非选择题 (共100分)二、填空题:本大题共4小题,每小题5分,满分20分.11.已知29x=,342=y,则2x y +的值为 .12.如图,在正方体1111D C B A ABCD -中,H G F E ,,,分别为1111,,,C B BB AB AA 的中点,则异面直线EF 与GH 所成的角等于 . 13.函数()log 234ay x =-+的图象恒过定点M , 且点M 在幂函数()f x 的图象上,则(3)f = .14.下列说法中:①指数函数1()2xy =的定义域为(0,)+∞;②函数2xy =与函数3log y x =互为反函数;③空集是任何一个集合的真子集;④若()f x M <(M 为常数),则函数()y f x =的最大值为M ;⑤函数()3xf x =的值域为[1,)+∞.正确的是 (请写出所有正确命题的序号).三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 15.(本小题满分12分)设函数y =A ,不等式2log (1)1x -≤的解集为集合B .(1)求集合A ,B ; (2)求集合A B ,()R A C B .16.(本小题满分12分)如图,已知圆锥的轴截面ABC 是边长为2cm 的正三角形,O 是底面圆心.(1)求圆锥的表面积;(2)经过圆锥的高AO 的中点'O 作平行于圆锥底面的截面,求截得的圆台的体积.17.(本小题满分14分)已知()f x 是定义在R 上的偶函数,当0x ≥时,()(1)x f x a a =>. (1)求函数()f x 的解析式;(2)若不等式()4f x ≤的解集为[2,2]-,求a 的值.18.(本小题满分14分)某市一家庭今年一月份、二月份和三月份煤气用量和支付费用如下表所示:该市煤气收费的方法是:煤气费=基本费十超额费十保险费.若每月用气量不超过最低额度)4(>A A 立方米时,只付基本费3元和每户每月定额保险费)50(≤<C C 元;若用气量超过A 立方米时,超过部分每立方米付B 元.(1)根据上面的表格求C B A ,,的值;(2)记用户第四月份用气为x 立方米,求他应交的煤气费y (元).19.(本小题满分14分)已知四棱锥P ABCD -的底面ABCD 为平行四边形,,M N 分别是棱,AB PC 的中点,平面CMN 与平面PAD 交于PE ,求证: (1)//MN 平面PAD ; (2)//MN PE .20.(本小题满分14分)已知函数2()2(3)12f x x a x a =-+++-,()(12)g x x x a =-+,其中a R ∈. (1)若函数()f x 是偶函数,求函数()f x 在区间[1,3]-上的最小值;(2)用函数的单调性的定义证明:当1a ≤时,()f x 在区间[1,)+∞上为减函数; (3)当[1,3]x ∈-,函数()f x 的图象恒在函数()g x 图象上方,求实数a 的取值范围.2012年冬季阳东一中广雅中学两校联考高一年级数学科参考答案16.(本小题满分12分) 解:(1)由题意可知2BC AC ==cm ,则1OC =cm ,即该圆锥的底面半径1r =cm ,母线2l =cm .所以该圆锥的表面积为2221123S r rl cm πππππ=+=⨯+⨯⨯=表面;………………………………4分(2)在Rt AOC ∆中,2,1AC OC ==,AO ∴=.……………………………………………… 6分'O 是AO 的中点,'AO ∴=cm . ∴小圆锥的高h '=23cm ,小圆锥的底面半径r '=21cm ,则截得的圆台的体积为223111()1323V V V cm ππ=-=⨯⨯⨯⨯=台大小.…………………12分17.(本小题满分14分)解: (1) 当0x <时,0x ->,∴1()()xx f x aa --==.…………………………3分 ∵()f x 为偶函数,()()f x f x ∴-=,则1()()(0)xf x x a=<,……………………4分∴0,()1()0x xa x f x x a⎧≥⎪=⎨<⎪⎩,……………………………………6分(2)∵1,a >∴()4f x ≤等价于04x x a ≥⎧⎨≤⎩或01()4x x a <⎧⎪⎨≤⎪⎩,………………8分∴0log 4a x ≤≤或log 40a x -≤<, 即log 4log 4a a x -≤≤……………12分 由条件知log 42a =,∴2a =. ………………………………………………14分18.(本小题满分14分)解:(1)1月份的用气量没有超过最低额度A ,所以43=+C 1=⇒C …………2分3,2月份的用气量超过了最低额度A ,所以⎩⎨⎧=-+=-+19)35(414)25(4B A B A ,解得5,21==A B (6)分(2)当5≤x 时,需付费用为413=+元 …………………………………………8分 当5>x 时,需付费用为232121)5(4+=⨯-+x x 元 …………………………………12分 所以应交的煤气费4(05)13(5)22x y x x <≤⎧⎪=⎨+>⎪⎩ ……………………………………14分19.(本小题满分14分)证明:(1)如图,取DC 的中点Q ,连接,MQ NQ .,N Q 分别是,PC DC 的中点, //NQ PD ∴.……………………………………2分NQ ⊄平面PAD ,PD ⊂平面PAD , //NQ ∴平面PAD .…………………………………4分 M 是AB 的中点,四边形ABCD 是平行四边形,//MQ AD ∴.……………………………………5分又MQ ⊄平面PAD ,AD ⊂平面PAD ,//MQ ∴平面PAD .…………………………7分 MQNQ Q =,∴平面//MNQ 平面PAD .……………………9分MN ⊂平面MNQ ,//MN ∴平面PAD . ……………… ………………………………10分 (2)平面//MNQ 平面PAD ,且平面PEC平面MNQ MN =,平面PEC 平面PAD PE = …………………………13分//MN PE ∴ ……………………………………………14分20.(本小题满分14分) 解:(1)函数()f x 是偶函数,()()f x f x ∴-=,222()(3)()122(3)12x a x a x a x a ∴--++⋅-+-=-+++-(3)3,3a a a ∴-+=+∴=-2()27f x x ∴=-+ …………………………………………………………1分即函数()f x 的图象是顶点为(0,7),对称轴为y 且开口向下的抛物线,()f x ∴在区间[1,0]-上递增,在区间[0,3]上递减又22(3)23711,(1)2(1)75f f =-⨯+=--=-⨯-+=∴ 函数()f x 在区间[1,3]-上的最小值为11-. …………………………………3分(3)对于[1,3]x ∈-,函数()f x 的图象恒在函数()g x 图象上方,等价不等式 22(3)12x a x a -+++->(12)x x a -+在[1,3]x ∈-上恒成立, 即(2)130a x a ++->在[1,3]x ∈-上恒成立,……………………………………9分(2)(1)130(2)3130a a a a +⋅-+->⎧∴⎨+⋅+->⎩,解得14a <- ……………………………………13分 ∴所求实数a 的取值范围为1(,)4-∞- ……………………………………………14分。

人教B版(2019)高中数学必修第一册第一章《集合与常用逻辑用语》检测卷(含答案)

人教B版(2019)高中数学必修第一册第一章《集合与常用逻辑用语》检测卷(含答案)

人教B 版(2019)高中数学必修第一册第一章《集合与常用逻辑用语》检测卷一、单选题(本题有12小题,每小题5分,共60分)1.设全集为实数集R ,集合{}3,2,1,0,1,2,3A =---,{}2B x x =≥,则()RA B =( )A .{}2,3B .{}2,1,0,1--C .{}3,2,1,0---D .{}3,2,1,0,1---2.设x 、y R ∈,则“x y ≥”是“x y ≥”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件3.“1x >"是“11x<”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.下列结论中,错误的是( ) A .“1x =”是“20x x -=”的充分不必要条件B .已知命题2:,10p x R x ∀∈+>,则2:,10p x R x ⌝∃∈+≤C .“220x x +->”是“1x >”的充分不必要条件;D .命题:“x R ∀∈,sin 1x ≤”的否定是“0x R ∃∈,0sin 1x >”;5.已知:p :1x ,2x 是方程2560x x +-=的两根,q :126x x ⋅=-,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.已知命题:1p x ∀>,4220212022x x +>,则p ⌝为( )A .1x ∃≤,4220212022x x +≤B .1x ∀>,4220212022x x +≤C .1x ∃>,4220212022x x +≤D .1x ∀≤,4220212022x x +>7.命题“()0,x ∀∈+∞,x 3+3x ≥1”的否定是( ). A .()0,x ∃∈+∞,x 3+3x <1 B .()0,x ∃∈+∞,x 3+3x ≥1 C .()0,x ∀∈+∞,x 3+3x <1D .x 3+3x ≤18.已知集合{|25}M x x =-<<,{}33N x x =-≤≤,则M N ⋃=( ) A .{}3,2,1,0,1,2,3,4--- B .{}1,0,1,2,3- C .[)3,5-D .(]2,3-9.设集合{0,1,2,3,4,5}U =,{0,2,3,5}M =,则UM =( )A .{1,4}B .{1,5}C .{0,4,5}D .{1,4,5}10.已知集合{}1,2A =,{},,B x x a b a A b A ==-∈∈,则集合B 中元素个数为( ) A .1B .2C .3D .411.设a ∈R ,则“3a >”是“23a a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件12.已知全集{}2,1,0,1U =--,集合{}220A x x x =+-=,{}0,1B =,则()U A B ⋃=( )A .{}2,1,0--B .{}2,1,1--C .2,0,1D .{}2,1,0,1--二、填空题(本题有4小题,每小题5分,共20分)13.命题“2000,230x x x ∃∈-+<R ”,此命题的否定是________命题.(填“真”或“假”)14.设命题:p n N ∀∈,22n n >,则p ⌝为________.15.,A B 是集合{}1,2,3,4的非空子集,则满足A B =∅的有序集合对(),A B 共有_______个. 16.设集合{}1,2,3,4A =,[)1,3B =,则A B =________.三、解答题(本题有6小题,共70分)17.(10分)已知集合{|2A x x =-或3}x ,{}B |05x x =<<,{}|12C x m x m =-≤≤ (1)求A B ,()R A B ;(2)若B C C ⋂=,求实数m 的取值范围.18.(12分)设全集为R ,集合P ={x |3<x ≤13},非空集合Q ={x |a +1≤x <2a -5}, (1)若a =10,求P ∩Q ; ()R P Q ; (2)若()Q P Q ⊆,求实数a 的取值范围19.(12分)设集合{}250A x x ax =-+>,{}25B x x =<<.(1)若集合R A =,求实数a 的取值范围;(2)若“x A ∈”是“x B ∈”的必要条件,求实数a 的取值范围.20.(12分)已知0m >,()():150p x x +-≤,:11q m x m -≤≤+. (1)若5m =,p q ∨为真命题,p q ∧为假命题,求实数x 的取值范围; (2)若p 是q 的充分不必要条件,求实数m 的取值范围.21.(12分)已知集合{|25},{|121}A x x B x m x m =-<<=+≤≤- (1)当3m =时,求()R A B ;(2)若A B A ⋃=,求实数m 的取值范围.22.(12分)设集合{}2=40A x R x x ∈+=,{}22=2(1)10,B x R x a x a a R ∈+++-=∈,若B A ⊆,求实数a 的值.参考答案1.D 【分析】先求得B R ,再根据交集运算即可得出结果. 【详解】 {}2B x x =≥,{}2B x x ∴=<R ,{}3,2,1,0,1,2,3A =---()RAB ∴={}3,2,1,0,1---.故选:D. 2.A 【分析】根据充要条件的定义,结合不等式的性质,举实例,可得答案. 【详解】解:①若x y ,||x x ,||x y ∴成立,∴充分性成立,②当3x =-,2y =时,||x y 成立,但x y 不成立,∴必要性不成立,x y ∴是||x y 的充分不必要条件,故选:A . 3.A 【分析】 由11x<得10x x -<,即1x >或0x <可进行判断.【详解】 由11x<得10xx -<,即1x >或0x <,所以1x >能够得到11x <,但是11x<不一定得到1x >, “1x >”是“11x<”成立的充分不必要条件. 故选:A.【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等; (4)p 是q 的既不充分又不必要条件,q 对的集合与p 对应集合互不包含 4.C 【分析】根据充分必要条件和全称量词的否定形式判断即可. 【详解】当1x =时,20x x -=.当20x x -=时,1x =或0x =.“1x =”是“20x x -=”的充分不必要条,A 对.对于含有一个量词的全称命题p :“任意的”x M ∈,()p x 的否定,p ⌝是:“存在”x M ∈,()p x ⌝.B 对.同理,D 对.当220x x +->时,1x >或2x <-.当1x >时,220x x +->.“220x x +->”是“1x >”的必要不充分条件,C 错. 故选:C. 5.A 【分析】利用充分条件和必要条件的定义判断即可 【详解】解:由2560x x +-=,得(1)(6)0x x -+=,解得1x =或6x =-, 因为1x ,2x 是方程2560x x +-=的两根,所以126x x ⋅=-, 当126x x ⋅=-时,1x ,2x 也可以不是方程260x x --=的两个根, 所以p 是q 的充分不必要条件, 故选:A 6.C 【分析】根据全称命题的否定为特称命题可得. 【详解】根据全称命题的否定为特称命题,可知命题p 的否定为1x ∃>,4220212022x x +≤. 故选:C. 7.A 【分析】将“任意”改为“存在”,只否定结论. 【详解】“()0,x ∀∈+∞,x 3+3x ≥1”的否定是“()0,x ∃∈+∞,x 3+3x <1”. 故选:A. 8.C 【分析】由已知集合,应用集合的并运算,求M N ⋃即可. 【详解】由题意,M N ⋃={}{|25}33{|35}x x x x x x -<<⋃-≤≤=-≤<, ∴M N ⋃=[)3,5-. 故选:C 9.A 【分析】根据补集的定义计算可得; 【详解】解:因为{0,1,2,3,4,5}U =,{0,2,3,5}M =,所以{}1,4UM =故选:A 10.C 【分析】由集合B 的描述知{1,2}a ∈、{1,2}b ∈,可求出x a b =-,即得集合B 的元素个数. 【详解】解:由题意知:{1,2}a ∈,{1,2}b ∈,{}{}|,,0,1,1B x x a b a A b A ==-∈∈=-,∴集合B 中元素个数为3. 故选:C. 11.A 【分析】由23a a >,解得0a <或3a >.利用充分、必要条件的定义即可判断出. 【详解】解:由23a a >,解得0a <或3a >. ∴ “3a >”是“23a a >”的充分不必要条件.故选:A . 12.B 【分析】解一元二次方程用列举法表示集合A ,然后求出U B ,最后按集合的并集概念进行运算即可. 【详解】{}{}2201,2A x x x =+-==-,U{2,1}B =--,∴()U {2,1,1}A B ⋃=--.故选:B 13.真 【分析】写出命题的否定形式,再判断真假即可. 【详解】命题“2000,230x x x ∃∈-+<R ”,此命题的否定为“2,230x x x ∀∈-+≥R ”,由()2223120x x x -+=-+≥,显然成立,所以命题的否定是真命题. 故答案为:真 14.2,2n n N n ∃∈≤【分析】根据命题的否定的定义求解. 【详解】命题:p n N ∀∈,22n n >的否定是:2,2n n N n ∃∈≤. 故答案为:2,2n n N n ∃∈≤. 15.50 【分析】根据题意可知{}1,2,3,4U =,当集合A 确定后,集合B 是UA 的非空子集,分别计算A 中有1、2、3个元素时有序集合对(),A B 的个数之和即可. 【详解】设{}1,2,3,4U =,因为A B =∅,所以B 是UA 的非空子集,当A 中只有一个元素时,(),A B 的个数为()342128⨯-=个,当A 中只有2个元素时,(),A B 的个数为()262118⨯-=个,当A 中只有3个元素时,(),A B 的个数为()14214⨯-=个,所以共有2818450++=个, 故答案为:50. 16.[]{}1,34⋃ 【分析】直接根据并集的定义计算可得; 【详解】解:因为{}1,2,3,4A =,[)1,3B = 所以[]{}1,34A B =⋃ 故答案为:[]{}1,34⋃17.(1){}|35A B x x =≤<,(){25}R A B x x ⋃=-<<∣;(2)()5,11,2⎛⎫-∞- ⎪⎝⎭.【分析】(1)进行根据交集、并集和补集的定义运算即可; (2)根据BC C =可得出C B ⊆,然后讨论C 是否为空集:C =∅时,12m m ->;C ≠∅时得到不等式组,然后解出m 的范围即可. 【详解】解:(1)因为{|2A x x =-或3}x ,{}B |05x x =<< 所以{}|35A B x x =≤<,{}|23RA x x =-<<(){}{}{}|23|05|25RA B x x x x x x =-<<<<=-<<(2)由B C C =,则C B ⊆ 当C =∅时,12m m ->,所以1m <- 当C ≠∅时,101225m m m m ->⎧⎪-≤⎨⎪<⎩,所以512m <<综上:实数m 的取值范围为()5,11,2⎛⎫-∞- ⎪⎝⎭18.(1){|1113}x x ,{|1315}x x <<;(2) (]6,9. 【分析】(1)把a 的值代入求出集合Q ,再由交集、补集的运算求出P Q ,(R P Q ⋂; (2)由()Q P Q ⊆得Q P ⊆,再由子集的定义列出不等式组,求出a 的范围. 【详解】(1)当10a =时,{|1115}Q x x =<, 又集合{|313}P x x =<,所以{|313}{|1115}{|1113}P Q x x x x x x ⋂=<⋂<=,{|3RP x x =或13}x >,则(){|1315}R P Q x x ⋂=<<; (2)由()Q P Q ⊆得,Q P ⊆,因为Q φ≠,则125132513a a a a +<-⎧⎪+>⎨⎪-⎩,解得69a <,综上所述:实数a 的取值范围是(]6,9.19.(1)a -<;(2)a < 【分析】(1)由判别式小于0可得;(2)题意说明B A ⊆,即250x ax -+>在(2,3)上恒成立,分离参数后,由基本不等式求得函数的最小值可得结论. 【详解】解:(1)∵{}250A x x ax R =-+>=,∴2200a ∆=-<,∴a -<(2)∵x A ∈是x B ∈的必要条件,∴B A ⊆,∵250x ax -+>,∴min 5a x x ⎛⎫<+ ⎪⎝⎭,()2,5x ∈,∵5x x +≥5x x+,即x =∴min 5x x ⎛⎫+= ⎪⎝⎭∴a <20.(1){41x x -≤<-或}56x <≤;(2)[)4,+∞ 【分析】(1)由p q ∨为真命题,p q ∧为假命题,可得p 与q 一真一假,然后分p 真q 假、p 假q 真两种情况,分别列出关系式,求解即可;(2)由p 是q 的充分条件,可得[][]1,51,1m m -⊆-+,则有01115m m m >⎧⎪-≤-⎨⎪+≥⎩,从而可求出实数m的取值范围. 【详解】(1)当5m =时,:46q x -≤≤,由()()150x x +-≤,可得15x -≤≤,即P :15x -≤≤. 因为p q ∨为真命题,p q ∧为假命题,故p 与q 一真一假,若p 真q 假,则1564x x x -≤≤⎧⎨><-⎩或,该不等式组无解;若p 假q 真,则1546x x x <->⎧⎨-≤≤⎩或,得41x -≤<-或56x <≤.综上所述,实数x 的取值范围为{41x x -≤<-或}56x <≤.(2)由题意,P :15x -≤≤,:11q m x m -≤≤+,因为p 是q 的充分不必要条件,故[][]1,51,1m m -⊆-+,故111115m m m m -<+⎧⎪-≤-⎨⎪+≥⎩,得4m ≥,故实数m 的取值范围为[)4,+∞.21.(1)(){}5R A B =;(2)3m <.【分析】(1)根据集合的运算法则计算;(2)由A B A ⋃=得B A ⊆,然后分类B =∅和B ≠∅求解.【详解】(1)当3m =时,B 中不等式为45x ≤≤,即{}|45B x x =≤≤,∴{|2R A x x =≤-或5}x ,则(){}5R A B =(2)∵A B A ⋃=,∴B A ⊆,①当B =∅时,121m m +>-,即2m <,此时B A ⊆;②当B ≠∅时,12112215m m m m +≤+⎧⎪+>-⎨⎪-<⎩,即23m ≤<,此时B A ⊆.综上m 的取值范围为3m <.22.a ≤-1或a =1.【分析】先求出集合A ,当A =B 时,满足B A ⊆,再由根与系数的关系可求出实数a 的值;当B A ≠时,分B ≠∅和B =∅两种情况求解即可【详解】∵A ={0,-4},B ⊆A ,于是可分为以下几种情况.(1)当A =B 时,B ={0,-4},∴由根与系数的关系,得22(1)410a a -+=-⎧⎨-=⎩解得a =1. (2)当B A ≠时,又可分为两种情况. ①当B ≠∅时,即B ={0}或B ={-4},当x =0时,有a =±1; 当x =-4时,有a =7或a =1.又由Δ=4(a +1)2-4(a 2-1)=0,解得a =-1,此时B ={0}满足条件; ②当B =∅时,Δ=4(a +1)2-4(a 2-1)<0, 解得a <-1.综合(1)(2)知,所求实数a 的取值为a ≤-1或a =1.。

【2019版新教材】高中数学A版必修第一册第一章全章节教案教学设计+课后练习及答案(名师推荐精编版)

【2019版新教材】高中数学A版必修第一册第一章全章节教案教学设计+课后练习及答案(名师推荐精编版)

【新教材】人教统编版高中数学A版必修第一册第一章教案教学设计+课后练习及答案1.1 《集合的概念》教案教材分析集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础.许多重要的数学分支,都是建立在集合理论的基础上.此外,集合理论的应用也变得更加广泛.教学目标【知识与能力目标】1.通过实例,了解集合的含义,体会元素与集合的属于关系;2.知道常用数集及其专用记号;3.了解集合中元素的确定性、互异性、无序性;4.会用集合语言表示有关数学对象;5.培养学生抽象概括的能力.【过程与方法目标】1.让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.2.让学生归纳整理本节所学知识.【情感态度价值观目标】使学生感受学习集合的必要性和重要性,增加学生对数学学习的兴趣.教学重难点【教学重点】集合的含义与表示方法.【教学难点】对待不同问题,表示法的恰当选择.课前准备学生通过预习,自主学习、思考、交流、讨论和概括,从而更好地完成本节课的教学目标.教学过程(一)创设情景,揭示课题请分析以下几个实例:1.正整数1,2,3,;2.中国古典四大名著;3.2018足球世界杯参赛队伍;4.《水浒》中梁山108 好汉;5.到线段两端距离相等的点.在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体.(二)研探新知1.集合的有关概念(1)一般地,我们把研究对象统称为元素(element),把一些元素组成的总体叫做集合(set)(简称为集).思考:上述5 个实例能否构成集合?如果是集合,那么它的元素分别是什么?练习1:下列指定的对象,是否能构成一个集合?①很小的数②不超过30 的非负实数③直角坐标平面的横坐标与纵坐标相等的点④ 的近似值⑤高一年级优秀的学生⑥所有无理数⑦大于2 的整数⑧正三角形全体(2)关于集合的元素的特征(a)确定性:设A一个给定的集合,对于一个具体对象a,则a或者是集合A 的元素,或者不是集合 A 的元素,两种情况必有一种且只有一种成立.(b)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素.一元素.(c)无序性:集合中的元素是没有顺序关系的,即只要构成两个集合的元素一样,我们称这两个集合是相等的,跟顺序无关.(3)思考1:列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题.答案:(a)把3-11内的每一个偶数作为元数,这些偶数全体就构成一个集合.(b)不能组成集合,因为组成它的元素是不确定的.( 4)元素与集合的关系;(a)如果a是集合A的元素,就说a属于(belongto) A,记作a € A(b)如果a不是集合A的元素,就说a不属于(not belong to) A,记作a A例如:A表示方程x2=1的解. 2 A, 1CA( 5)集合的表示方法我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合.(a)列举法:把集合中的元素一一列举出来,并用花括号”。

2019-2020学年高一数学上学期第一次质检试题(含解析)

2019-2020学年高一数学上学期第一次质检试题(含解析)

2019-2020学年高一数学上学期第一次质检试题(含解析)一、选择题:本题共10小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列表示正确是( )A. B. C. D.【答案】A【解析】【分析】利用元素与集合的关系直接求解.【详解】在A中,0∈N,故A正确;在B中,,故B错误;在C中,﹣3∉N,故C错误;在D中,π∉Q,故D错误.故选:A.【点睛】本题考查命题真假的判断,考查元素与集合的关系等基础知识,考查运算求解能力,是基础题.2.函数的定义域是( )A. B. C. D.【答案】C【解析】【分析】根据函数成立的条件即可求出函数定义域.【详解】要使函数有意义,则2﹣x≥0,即x≤2.故函数的定义域为.故选:C.【点睛】本题主要考查函数定义域的求法,要求熟练掌握常见函数成立的条件,比较基础.3.设集合,则=A. B. C. D.【答案】C【解析】试题分析:由补集的概念,得,故选C.【考点】集合的补集运算【名师点睛】研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具辅助解题.一般地,对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续的集合间的运算及关系,可借助数轴的直观性,进行合理转化.4.函数的单调递增区间为( )A. B. C. D.【答案】C【解析】【分析】判断函数的对称轴以及开口方向,然后求解即可.【详解】函数的开口向下,对称轴为x=1,函数的单调递增区间是.故选:C.【点睛】本题考查二次函数的简单性质的应用,考查计算能力.5.已知集合,,则( )A. B. 或C. 或D. 或【答案】B【解析】【分析】可以求出集合A,B,然后进行交集的运算即可.【详解】∵A={x|x≤﹣2,或x≥2},B={x|x<0,或x>3},∴A∩B={x|x≤﹣2,或x>3}.故选:B.【点睛】考查描述法的定义,绝对值不等式和一元二次不等式的解法,以及交集的运算.6.以下选项正确的是()A. 是的充分条件B. 是的必要条件C. 是的必要条件D. 是的充要条件【答案】B【解析】若,此时,但是不满足,选项A错误;若,此时,但是不满足,选项C错误;若,此时,但是不满足,选项D错误;本题选择B选项.7.下列各式中成立是( )A. B.C. D.【答案】D【解析】【分析】由指数的运算法则和根式与分数指数幂的互化,A中应为;B中等式左侧为正数,右侧为负数;C中x=y=1时不成立,排除法即可得答案.详解】A中应为;B中等式左侧为正数,右侧为负数;C,x=y=1时不成立错误.D中正确;故选:D.【点睛】本题考查根式与分数指数幂的互化、指数的运算法则,考查运算能力.8.下列四个函数中,在上为增函数的是().A. B.C. D.【答案】C【解析】【分析】A,B可直接通过一次函数的单调性和二次函数的单调性进行判断;C利用以及平移的思路去判断;D根据的图象的对称性判断.【详解】A.在上是减函数,不符合;B.在上是减函数,在上是增函数,不符合;C.可认为是向左平移一个单位所得,所以在上是增函数,符合;D.图象关于轴对称,且在上是增函数,在上是减函数,不符合;故选C.【点睛】(1)一次函数、反比例函数的单调性直接通过的正负判断;(2)二次函数的单调性判断要借助函数的对称轴和开口方向判断;(3)复杂函数的单调性判断还可以通过平移、翻折等变换以及图象进行判断.9.已知函数,,则函数的最小值为()A. 3B. 2C. 6D. 0【答案】B【解析】【分析】根据函数在给定区间上的单调性可求得最小值.【详解】由题意得,∴函数在区间上单调递减,在区间上单调递增,∴当时,函数取得最小值,且.故选B.【点睛】求二次函数在给定区间上的最值时,一般要根据函数图象的开口方向和对称轴与区间的关系,运用数形结合的方法求解,考查分析判断能力和数形结合方法的运用.10.已知函数是定义在上的奇函数,且满足,当时,,则当时,的最小值为()A. B. C. D.【答案】B【解析】【分析】根据题意,求得函数是以4为周期的周期函数,进而利用时,函数的解析式和函数的奇偶性,即可求解上的最小值,得到答案.【详解】由题意知,即,则,所以函数是以4为周期的周期函数,又当时,,且是定义在上的奇函数,∴时,,∴当时,,所以当时,函数的最小值为.故选B.【点睛】本题主要考查了函数周期性的判定及应用,以及函数的奇偶性的应用,其中解答中熟练应用函数周期性的判定方法,得出函数的周期是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本题共4小题,每小题5分.11.函数是定义在上的奇函数,当时,,则当时,__________.【答案】【解析】【分析】根据题意由﹣x>0及f(﹣x)=﹣f(x)可求.【详解】∵当x>0时,,设x<0则﹣x>0∴f(﹣x)=由函数f(x)为奇函数可得﹣f(﹣x)=f(x)∴f(x)=故答案为:【点睛】本题主要考查了利用函数的奇偶性求解函数的解析式,解题中要注意函数的定义域是R,不用漏掉对x=0时的考虑.12.若函数,且,则.【答案】3【解析】试题分析:考点:函数值13.已知函数在上单调递增,则的取值范围是________.【答案】【解析】【分析】由分段函数在各子区间单调递增,衔接点处满足递增,可得关于的不等式组,,由此求得实数的取值范围.【详解】函数在上单调递增,又函数的对称轴;解得;故答案为.【点睛】本题考查分段函数单调性,已知分段函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间上单调,则该函数在此区间的任意子区间上都是单调的;(2)在分段函数的衔接点的取值也满足单调性.14.已知函数,若互不相等实数满足,则的取值范围是________.【答案】【解析】【分析】作函数的图象,从而利用数形结合求解即可.【详解】作函数的图象,不妨设,则,当则故答案为:【点睛】本题考查了函数与方程的应用,考查数形结合的思想应用,利用二次函数对称性及寻找临界位置是关键三、解答题:共50分,解答应写出文字说明、证明过程或演算步骤.15.已知函数的定义域为集合,集合(1)当时,求;(2)若,求实数的取值范围.【答案】(1)A∪B=[﹣4,3];(2)m≤﹣2【解析】【分析】(1)先求出集合A,再将m=﹣2代入集合B,最后求A∪B;(2)根据集合包含关系可求;【详解】由题得,故A={x|1<x≤3},(1)当m=﹣2时,B={x|﹣4≤m≤3},所以A∪B=[﹣4,3];(2)因为A⊆B,则B≠∅,所以,解得m≤﹣2;【点睛】本题考查集合包含关系的判定,涉及函数定义域,含参数集合的取值判定,属于基本题.16.已知关于的不等式(1)若时,求不等式的解集(2)为常数时,求不等式的解集【答案】(1);(2)答案见解析.【解析】【分析】(1)结合二次不等式对应的二次函数及二次方程进行求解即可得到所求解集;(2)对参数进行分类讨论,并结合“三个二次”的关系求解.【详解】(1)当时,不等式为,即(,解得.所以不等式的解集为.(2)当为常数时,由题意得原不等式为,不等式对应方程的两根为,.①当时,则,解得;②当时,不等式为,解得;③当时,则,解得.综上可得,当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为.【点睛】(1)解一元二次不等式时,当二次项系数为负时要先化为正,再根据判别式符号判断对应方程根的情况,然后结合相应二次函数的图象写出不等式的解集.(2)解含参数的一元二次不等式,要把握好分类讨论的层次,一般按下面次序进行讨论:首先根据二次项系数的符号进行分类,其次根据不等式的判别式的符号进行分类,最后在根存在的条件下,再根据根的大小进行分类.17.已知函数是奇函数,且.(1)求实数的值;(2)判断函数在上的单调性,并加以证明.【答案】(1)a=1;b=0(2)函数f(x)在(﹣∞,)上单调递增;证明见解析【解析】【分析】(1)运用奇函数的定义,可得b=0;再由代入法,解方程可得a;(2)函数f(x)在(﹣∞,上单调递增;运用定义法证明,注意取值、作差和变形、定符号和下结论.【详解】(1)函数是奇函数,且,可得f(﹣x)=﹣f(x),即为,可得﹣3x+b=﹣3x﹣b,解得b=0;又,解得a=1;(2)函数f(x)在(﹣∞,)上单调递增;理由:设x1<x2,则f(x1)﹣f(x2)(x1)(x2)(x1﹣x2)(),由x1<x2可得x1﹣x2<0,x1x2>2,则f(x1)﹣f(x2)<0,即f(x1)<f(x2),则f(x)在(﹣∞,上单调递增.【点睛】本题考查函数的奇偶性的定义和运用,考查单调性的判断和证明,运用定义法解题是关键,属于中档题.18.已知函数,若在区间上有最大值1.(1)求的值;(2)若在上单调,求数的取值范围.【答案】(1)-1;(2).【解析】【分析】(1)根据函数的开口方向和对称轴,求出函数的单调区间,从而求出函数的最大值是f(2)=1,求出a的值即可;(2)求出f(x)的解析式,求出g(x)的表达式,根据函数的单调性求出m的范围即可.【详解】因为函数的图象是抛物线,,所以开口向下,对称轴是直线,所以函数在单调递减,所以当时,,因为,,所以,,在上单调,,或.从而,或所以,m的取值范围是.【点睛】本题考查了二次函数的性质,考查函数的单调性、最值问题,是一道中档题;二次函数在小区间上的单调性,需要讨论二次函数对称轴和区间的位置关系,结合函数图像的特点得到函数的单调性,进而得到最值.19.已知函数,且的解集为.(1)求函数的解析式;(2)设,若对任意的都有,求的最小值.【答案】(1);(2)1.【解析】【分析】(1)根据不等式解集,结合不等式与方程的关系,即可求得的值,可得函数解析式.(2)将的解析式代入,求得的解析式.根据奇函数的性质,分类讨论的不同取值情况,求得与.根据即可求得的最小值.【详解】(1)因为的解集为所以,是方程的两根则由韦达定理可得,解得所以(2),为上的奇函数当时,当时,,则函数在上单调递增,在上单调递减,且时,,在时,取得最大值,即;当时,,则函数在上单调递减,在上单调递减,且时,,在时,取得最小值,即;对于任意的都有则等价于即所以的最小值为1.【点睛】本题考查了二次函数解析式的求法,分类讨论思想的综合应用,利用函数单调性求函数的最值,属于中档题.2019-2020学年高一数学上学期第一次质检试题(含解析)一、选择题:本题共10小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列表示正确是( )A. B. C. D.【答案】A【解析】【分析】利用元素与集合的关系直接求解.【详解】在A中,0∈N,故A正确;在B中,,故B错误;在C中,﹣3∉N,故C错误;在D中,π∉Q,故D错误.故选:A.【点睛】本题考查命题真假的判断,考查元素与集合的关系等基础知识,考查运算求解能力,是基础题.2.函数的定义域是( )A. B. C. D.【答案】C【解析】【分析】根据函数成立的条件即可求出函数定义域.【详解】要使函数有意义,则2﹣x≥0,即x≤2.故函数的定义域为.故选:C.【点睛】本题主要考查函数定义域的求法,要求熟练掌握常见函数成立的条件,比较基础.3.设集合,则=A. B. C. D.【答案】C【解析】试题分析:由补集的概念,得,故选C.【考点】集合的补集运算【名师点睛】研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具辅助解题.一般地,对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续的集合间的运算及关系,可借助数轴的直观性,进行合理转化.4.函数的单调递增区间为( )A. B. C. D.【答案】C【解析】【分析】判断函数的对称轴以及开口方向,然后求解即可.【详解】函数的开口向下,对称轴为x=1,函数的单调递增区间是.故选:C.【点睛】本题考查二次函数的简单性质的应用,考查计算能力.5.已知集合,,则( )A. B. 或C. 或D. 或【答案】B【解析】【分析】可以求出集合A,B,然后进行交集的运算即可.【详解】∵A={x|x≤﹣2,或x≥2},B={x|x<0,或x>3},∴A∩B={x|x≤﹣2,或x>3}.故选:B.【点睛】考查描述法的定义,绝对值不等式和一元二次不等式的解法,以及交集的运算.6.以下选项正确的是()A. 是的充分条件B. 是的必要条件C. 是的必要条件D. 是的充要条件【答案】B【解析】若,此时,但是不满足,选项A错误;若,此时,但是不满足,选项C错误;若,此时,但是不满足,选项D错误;本题选择B选项.7.下列各式中成立是( )A. B.C. D.【答案】D【解析】【分析】由指数的运算法则和根式与分数指数幂的互化,A中应为;B中等式左侧为正数,右侧为负数;C中x=y=1时不成立,排除法即可得答案.详解】A中应为;B中等式左侧为正数,右侧为负数;C,x=y=1时不成立错误.D中正确;故选:D.【点睛】本题考查根式与分数指数幂的互化、指数的运算法则,考查运算能力.8.下列四个函数中,在上为增函数的是().A. B.C. D.【答案】C【解析】【分析】A,B可直接通过一次函数的单调性和二次函数的单调性进行判断;C利用以及平移的思路去判断;D根据的图象的对称性判断.【详解】A.在上是减函数,不符合;B.在上是减函数,在上是增函数,不符合;C.可认为是向左平移一个单位所得,所以在上是增函数,符合;D.图象关于轴对称,且在上是增函数,在上是减函数,不符合;故选C.【点睛】(1)一次函数、反比例函数的单调性直接通过的正负判断;(2)二次函数的单调性判断要借助函数的对称轴和开口方向判断;(3)复杂函数的单调性判断还可以通过平移、翻折等变换以及图象进行判断.9.已知函数,,则函数的最小值为()A. 3B. 2C. 6D. 0【答案】B【解析】【分析】根据函数在给定区间上的单调性可求得最小值.【详解】由题意得,∴函数在区间上单调递减,在区间上单调递增,∴当时,函数取得最小值,且.故选B.【点睛】求二次函数在给定区间上的最值时,一般要根据函数图象的开口方向和对称轴与区间的关系,运用数形结合的方法求解,考查分析判断能力和数形结合方法的运用.10.已知函数是定义在上的奇函数,且满足,当时,,则当时,的最小值为()A. B. C. D.【答案】B【解析】【分析】根据题意,求得函数是以4为周期的周期函数,进而利用时,函数的解析式和函数的奇偶性,即可求解上的最小值,得到答案.【详解】由题意知,即,则,所以函数是以4为周期的周期函数,又当时,,且是定义在上的奇函数,∴时,,∴当时,,所以当时,函数的最小值为.故选B.【点睛】本题主要考查了函数周期性的判定及应用,以及函数的奇偶性的应用,其中解答中熟练应用函数周期性的判定方法,得出函数的周期是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本题共4小题,每小题5分.11.函数是定义在上的奇函数,当时,,则当时,__________.【答案】【解析】【分析】根据题意由﹣x>0及f(﹣x)=﹣f(x)可求.【详解】∵当x>0时,,设x<0则﹣x>0∴f(﹣x)=由函数f(x)为奇函数可得﹣f(﹣x)=f(x)∴f(x)=故答案为:【点睛】本题主要考查了利用函数的奇偶性求解函数的解析式,解题中要注意函数的定义域是R,不用漏掉对x=0时的考虑.12.若函数,且,则.【答案】3【解析】试题分析:考点:函数值13.已知函数在上单调递增,则的取值范围是________.【答案】【解析】【分析】由分段函数在各子区间单调递增,衔接点处满足递增,可得关于的不等式组,,由此求得实数的取值范围.【详解】函数在上单调递增,又函数的对称轴;解得;故答案为.【点睛】本题考查分段函数单调性,已知分段函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间上单调,则该函数在此区间的任意子区间上都是单调的;(2)在分段函数的衔接点的取值也满足单调性.14.已知函数,若互不相等实数满足,则的取值范围是________.【答案】【解析】【分析】作函数的图象,从而利用数形结合求解即可.【详解】作函数的图象,不妨设,则,当则故答案为:【点睛】本题考查了函数与方程的应用,考查数形结合的思想应用,利用二次函数对称性及寻找临界位置是关键三、解答题:共50分,解答应写出文字说明、证明过程或演算步骤.15.已知函数的定义域为集合,集合(1)当时,求;(2)若,求实数的取值范围.【答案】(1)A∪B=[﹣4,3];(2)m≤﹣2【解析】【分析】(1)先求出集合A,再将m=﹣2代入集合B,最后求A∪B;(2)根据集合包含关系可求;【详解】由题得,故A={x|1<x≤3},(1)当m=﹣2时,B={x|﹣4≤m≤3},所以A∪B=[﹣4,3];(2)因为A⊆B,则B≠∅,所以,解得m≤﹣2;【点睛】本题考查集合包含关系的判定,涉及函数定义域,含参数集合的取值判定,属于基本题.16.已知关于的不等式(1)若时,求不等式的解集(2)为常数时,求不等式的解集【答案】(1);(2)答案见解析.【解析】【分析】(1)结合二次不等式对应的二次函数及二次方程进行求解即可得到所求解集;(2)对参数进行分类讨论,并结合“三个二次”的关系求解.【详解】(1)当时,不等式为,即(,解得.所以不等式的解集为.(2)当为常数时,由题意得原不等式为,不等式对应方程的两根为,.①当时,则,解得;②当时,不等式为,解得;③当时,则,解得.综上可得,当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为.【点睛】(1)解一元二次不等式时,当二次项系数为负时要先化为正,再根据判别式符号判断对应方程根的情况,然后结合相应二次函数的图象写出不等式的解集.(2)解含参数的一元二次不等式,要把握好分类讨论的层次,一般按下面次序进行讨论:首先根据二次项系数的符号进行分类,其次根据不等式的判别式的符号进行分类,最后在根存在的条件下,再根据根的大小进行分类.17.已知函数是奇函数,且.(1)求实数的值;(2)判断函数在上的单调性,并加以证明.【答案】(1)a=1;b=0(2)函数f(x)在(﹣∞,)上单调递增;证明见解析【解析】【分析】(1)运用奇函数的定义,可得b=0;再由代入法,解方程可得a;(2)函数f(x)在(﹣∞,上单调递增;运用定义法证明,注意取值、作差和变形、定符号和下结论.【详解】(1)函数是奇函数,且,可得f(﹣x)=﹣f(x),即为,可得﹣3x+b=﹣3x﹣b,解得b=0;又,解得a=1;(2)函数f(x)在(﹣∞,)上单调递增;理由:设x1<x2,则f(x1)﹣f(x2)(x1)(x2)(x1﹣x2)(),由x1<x2可得x1﹣x2<0,x1x2>2,则f(x1)﹣f(x2)<0,即f(x1)<f(x2),则f(x)在(﹣∞,上单调递增.【点睛】本题考查函数的奇偶性的定义和运用,考查单调性的判断和证明,运用定义法解题是关键,属于中档题.18.已知函数,若在区间上有最大值1.(1)求的值;(2)若在上单调,求数的取值范围.【答案】(1)-1;(2).【解析】【分析】(1)根据函数的开口方向和对称轴,求出函数的单调区间,从而求出函数的最大值是f(2)=1,求出a的值即可;(2)求出f(x)的解析式,求出g(x)的表达式,根据函数的单调性求出m的范围即可.【详解】因为函数的图象是抛物线,,所以开口向下,对称轴是直线,所以函数在单调递减,所以当时,,因为,,所以,,在上单调,,或.从而,或所以,m的取值范围是.【点睛】本题考查了二次函数的性质,考查函数的单调性、最值问题,是一道中档题;二次函数在小区间上的单调性,需要讨论二次函数对称轴和区间的位置关系,结合函数图像的特点得到函数的单调性,进而得到最值.19.已知函数,且的解集为.(1)求函数的解析式;(2)设,若对任意的都有,求的最小值.【答案】(1);(2)1.【解析】【分析】(1)根据不等式解集,结合不等式与方程的关系,即可求得的值,可得函数解析式.(2)将的解析式代入,求得的解析式.根据奇函数的性质,分类讨论的不同取值情况,求得与.根据即可求得的最小值.【详解】(1)因为的解集为所以,是方程的两根则由韦达定理可得,解得所以(2),为上的奇函数当时,当时,,则函数在上单调递增,在上单调递减,且时, ,在时,取得最大值,即;当时,,则函数在上单调递减,在上单调递减,且时, ,在时,取得最小值,即;对于任意的都有则等价于即所以的最小值为1.【点睛】本题考查了二次函数解析式的求法,分类讨论思想的综合应用,利用函数单调性求函数的最值,属于中档题.。

北京市朝阳区2019-2020学年度第一学期期末质量检测高一年级数学试卷(解析版)

北京市朝阳区2019-2020学年度第一学期期末质量检测高一年级数学试卷(解析版)

北京市朝阳区2019-2020学年高一(上)期末数学试卷选择题:本大题共10小题,每小题5分,共50分.1.已知集合A={﹣1,0,1},集合B={x∈Z|x2﹣2x≤0},那么A∪B等于()A.{﹣1}B.{0,1}C.{0,1,2}D.{﹣1,0,1,2} 2.已知命题p:∀x<﹣1,x2>1,则¬p是()A.∃x<﹣1,x2≤1B.∀x≥﹣1,x2>1C.∀x<﹣1,x2>1D.∃x≤﹣1,x2≤1 3.下列命题是真命题的是()A.若a>b>0,则ac2>bc2B.若a>b,则a2>b2C.若a<b<0,则a2<ab<b2D.若a<b<0,则4.函数f(x)=cos2x﹣sin2x的最小正周期是()A.B.πC.2πD.4π5.已知函数f(x)在区间(0,+∞)上的函数值不恒为正,则在下列函数中,f(x)只可能是()A.f(x)=xB.f(x)=sin x+2C.f(x)=ln(x2﹣x+1)D.f(x)=6.已知a,b,c∈R,则“a=b=c”是“a2+b2+c2>ab+ac+bc”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.通过科学研究发现:地震时释放的能量E(单位:焦耳)与地震里氏震级M之间的关系为lgE=4.8+1.5M.已知2011年甲地发生里氏9级地震,2019年乙地发生里氏7级地震,若甲、乙两地地震释放能量分别为E1,E2,则E1和E2的关系为()A.E1=32E2B.E1=64E2C.E1=1000E2D.E1=1024E2 8.已知函数f(x)=x+﹣a(a∈R),g(x)=﹣x2+4x+3,在同一平面直角坐标系里,函数f(x)与g(x)的图象在y轴右侧有两个交点,则实数a的取值范围是()A.{a|a<﹣3}B.{a|a>﹣3}C.{a|a=﹣3}D.{a|﹣3<a<4} 9.已知大于1的三个实数a,b,c满足(lga)2﹣2lgalgb+lgblgc=0,则a,b,c的大小关系不可能是()A.a=b=c B.a>b>c C.b>c>a D.b>a>c10.已知正整数x1,x2,…,x10满足当i<j(i,j∈N*)时,x i<x j,且x12+x22+…+x102≤2020,则x9﹣(x1+x2+x3+x4)的最大值为()A.19B.20C.21D.22二.填空题:本大题共6小题,每空5分,共30分.11.(5分)计算sin330°=.12.(5分)若集合A={x|x2﹣ax+2<0}=∅,则实数a的取值范围是.13.(5分)已知函数f(x)=log2x,在x轴上取两点A(x1,0),B(x2,0)(0<x1<x2),设线段AB的中点为C,过A,B,C作x轴的垂线,与函数f(x)的图象分别交于A1,B1,C1,则点C1在线段A1B1中点M的.(横线上填“上方”或者“下方”)14.(5分)给出下列命题:①函数是偶函数;②函数f(x)=tan2x在上单调递增;③直线x=是函数图象的一条对称轴;④将函数的图象向左平移单位,得到函数y=cos2x的图象.其中所有正确的命题的序号是.15.(5分)已知在平面直角坐标系xOy中,点A(1,1)关于y轴的对称点A'的坐标是.若A和A'中至多有一个点的横纵坐标满足不等式组,则实数a的取值范围是.16.(5分)在物理学中,把物体受到的力(总是指向平衡位置)正比于它离开平衡位置的距离的运动称为“简谐运动”.可以证明,在适当的直角坐标系下,简谐运动可以用函数y=A sin(ωx+φ),x∈[0,+∞)表示,其中A>0,ω>0.如图,平面直角坐标系xOy中,以原点O为圆心,r为半径作圆,A为圆周上的一点,以Ox为始边,OA为终边的角为α,则点A的坐标是,从A点出发,以恒定的角速度ω转动,经过t秒转动到点B (x,y),动点B在y轴上的投影C作简谐运动,则点C的纵坐标y与时间t的函数关系式为.三.解答题:本大题共4小题,共70分.解答应写出文字说明,演算步骤或证明过程. 17.(14分)已知集合A={x|x2﹣5x﹣6≤0},B={x|m+1≤x≤2m﹣1,m∈R}.(Ⅰ)求集合∁R A;(Ⅱ)若A∪B=A,求实数m的取值范围;18.(18分)已知函数f(x)=sin2x﹣2.(Ⅰ)若点在角α的终边上,求tan2α和f(α)的值;(Ⅱ)求函数f(x)的最小正周期;(Ⅲ)若,求函数f(x)的最小值.19.(18分)已知函数f(x)=(x≠a).(Ⅰ)若2f(1)=﹣f(﹣1),求a的值;(Ⅱ)若a=2,用函数单调性定义证明f(x)在(2,+∞)上单调递减;(Ⅲ)设g(x)=xf(x)﹣3,若函数g(x)在(0,1)上有唯一零点,求实数a的取值范围.20.(20分)已知函数f(x)=log2(x+a)(a>0).当点M(x,y)在函数y=g(x)图象上运动时,对应的点M'(3x,2y)在函数y=f(x)图象上运动,则称函数y=g(x)是函数y=f(x)的相关函数.(Ⅰ)解关于x的不等式f(x)<1;(Ⅱ)对任意的x∈(0,1),f(x)的图象总在其相关函数图象的下方,求a的取值范围;(Ⅲ)设函数F(x)=f(x)﹣g(x),x∈(0,1).当a=1时,求|F(x)|的最大值2019-2020学年北京市朝阳区高一(上)期末数学试卷参考答案与试题解析选择题:本大题共10小题,每小题5分,共50分.1.(5分)已知集合A={﹣1,0,1},集合B={x∈Z|x2﹣2x≤0},那么A∪B等于()A.{﹣1}B.{0,1}C.{0,1,2}D.{﹣1,0,1,2}【分析】先分别求出集合A,B,再由并集定义能求出A∪B.【解答】解:∵集合A={﹣1,0,1},集合B={x∈Z|x2﹣2x≤0}={x∈Z|0≤x≤2}={0,1,2},∴A∪B={﹣1,0,1,2}.故选:D.【点评】本题考查并集的求法,考查并集定义等基础知识,考查运算求解能力,是基础题.2.(5分)已知命题p:∀x<﹣1,x2>1,则¬p是()A.∃x<﹣1,x2≤1B.∀x≥﹣1,x2>1C.∀x<﹣1,x2>1D.∃x≤﹣1,x2≤1【分析】根据全称命题的否定是特称命题进行判断.【解答】解:命题是全称命题,则命题的否定为:∃x<﹣1,x2≤1,故选:A.【点评】本题主要考查含有量词的命题的否定,根据全称命题的否定是特称命题,特称命题的否定是全称命题是解决本题的关键.3.(5分)下列命题是真命题的是()A.若a>b>0,则ac2>bc2B.若a>b,则a2>b2C.若a<b<0,则a2<ab<b2D.若a<b<0,则【分析】利用不等式的基本性质,判断选项的正误即可.【解答】解:对于A,若a>b>0,则ac2>bc2,c=0时,A不成立;对于B,若a>b,则a2>b2,反例a=0,b=﹣2,所以B不成立;对于C,若a<b<0,则a2<ab<b2,反例a=﹣4,b=﹣1,所以C不成立;对于D,若a<b<0,则,成立;故选:D.【点评】本题考查命题的真假的判断与应用,不等式的基本性质的应用,是基本知识的考查.4.(5分)函数f(x)=cos2x﹣sin2x的最小正周期是()A.B.πC.2πD.4π【分析】利用二倍角的余弦公式求得y=cos2x,再根据y=A cos(ωx+φ)的周期等于T =,可得结论.【解答】解:∵函数y=cos2x﹣sin2x=cos2x,∴函数的周期为T==π,故选:B.【点评】本题主要考查三角函数的周期性及其求法,二倍角的余弦公式,利用了y=A sin (ωx+φ)的周期等于T=,属于基础题.5.(5分)已知函数f(x)在区间(0,+∞)上的函数值不恒为正,则在下列函数中,f(x)只可能是()A.f(x)=xB.f(x)=sin x+2C.f(x)=ln(x2﹣x+1)D.f(x)=【分析】结合基本初等函数的性质分别求解选项中函数的值域即可判断.【解答】解:∵x>0,根据幂函数的性质可知,y=>0,不符合题意,∵﹣1≤sin x≤1,∴2+sin x>0恒成立,故选项B不符合题意,C:∵x2﹣x+1=,而f(x)=ln(x2﹣x+1),故值域中不恒为正数,符合题意,D:当x>0时,f(x)=2x﹣1>0恒成立,不符合题意,故选:C.【点评】本题主要考查了基本初等函数的值域的求解,属于基础试题.6.(5分)已知a,b,c∈R,则“a=b=c”是“a2+b2+c2>ab+ac+bc”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】先化简命题,再讨论充要性.【解答】解:由a,b,c∈R,知:∵a2+b2+c2﹣ab﹣ac﹣bc=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a﹣b)2+(b﹣c)2+(a﹣c)2],∴“a=b=c”⇒“a2+b2+c2=ab+ac+bc”,“a2+b2+c2>ab+ac+bc”⇒“a,b,c不全相等”.“a=b=c”是“a2+b2+c2>ab+ac+bc”的既不充分也不必要条件.故选:D.【点评】本题考查充分条件、必要条件、充要条件的判断,考查不等式的性质等基础知识,考查运算求解能力,是基础题.7.(5分)通过科学研究发现:地震时释放的能量E(单位:焦耳)与地震里氏震级M之间的关系为lgE=4.8+1.5M.已知2011年甲地发生里氏9级地震,2019年乙地发生里氏7级地震,若甲、乙两地地震释放能量分别为E1,E2,则E1和E2的关系为()A.E1=32E2B.E1=64E2C.E1=1000E2D.E1=1024E2【分析】先把数据代入已知解析式,再利用对数的运算性质即可得出.【解答】解:根据题意得:lgE1=4.8+1.5×9 ①,lgE2=4.8+1.5×7 ②,①﹣②得lgE1﹣lgE2=3,lg()=3,所以,即E1=1000E2,故选:C.【点评】本题考查了对数的运用以及运算,熟练掌握对数的运算性质是解题的关键.8.(5分)已知函数f(x)=x+﹣a(a∈R),g(x)=﹣x2+4x+3,在同一平面直角坐标系里,函数f(x)与g(x)的图象在y轴右侧有两个交点,则实数a的取值范围是()A.{a|a<﹣3}B.{a|a>﹣3}C.{a|a=﹣3}D.{a|﹣3<a<4}【分析】作出函数f(x)与函数g(x)的图象,数形结合即可判断出a的取值范围【解答】解:在同一坐标系中作出函数f(x)与g(x)的示意图如图:因为f(x)=x+﹣a≥2﹣a=4﹣a(x>0),当且仅当x=2时取等号,而g(x)的对称轴为x=2,最大值为7,根据条件可知0<4﹣a<7,解得﹣3<a<4,故选:D.【点评】本题考查函数图象交点问题,涉及对勾函数图象在第一象限的画法,二次函数最值等知识点,属于中档题.9.(5分)已知大于1的三个实数a,b,c满足(lga)2﹣2lgalgb+lgblgc=0,则a,b,c 的大小关系不可能是()A.a=b=c B.a>b>c C.b>c>a D.b>a>c【分析】因为三个实数a,b,c都大于1,所以lga>0,lgb>0,lgc>0,原等式可化为lgalg+lgblg=0,分别分析选项的a,b,c的大小关系即可判断出结果.【解答】解:∵三个实数a,b,c都大于1,∴lga>0,lgb>0,lgc>0,∵(lga)2﹣2lgalgb+lgblgc=0,∴(lga)2﹣lgalgb+lgblgc﹣lgalgb=0,∴lga(lga﹣lgb)+lgb(lgc﹣lga)=0,∴lgalg+lgblg=0,对于A选项:若a=b=c,则lg=0,lg=0,满足题意;对于B选项:若a>b>c,则,0<<1,∴lg>0,lg<0,满足题意;对于C选项:若b>c>a,则0<<1,>1,∴lg<0,lg>0,满足题意;对于D选项:若b>a>c,则0<<1,0<<1,∴lg<0,lg<0,∴lgalg+lgblg <0,不满足题意;故选:D.【点评】本题主要考查了对数的运算性质,是中档题.10.(5分)已知正整数x1,x2,…,x10满足当i<j(i,j∈N*)时,x i<x j,且x12+x22+…+x102≤2020,则x9﹣(x1+x2+x3+x4)的最大值为()A.19B.20C.21D.22【分析】要使x9﹣(x1+x2+x3+x4)取得最大值,结合题意,则需前8项最小,第9项最大,则第10项为第9项加1,由此建立不等式,求出第9项的最大值,进而得解.【解答】解:依题意,要使x9﹣(x1+x2+x3+x4)取得最大值,则x i=i(i=1,2,3,4,5,6,7,8),且x10=x9+1,故,即,又2×292+2×29﹣1815=﹣75<0,2×302+2×30﹣1815=45>0,故x9的最大值为29,∴x9﹣(x1+x2+x3+x4)的最大值为29﹣(1+2+3+4)=19.故选:A.【点评】本题考查代数式最大值的求法,考查逻辑推理能力及创新意识,属于中档题.二.填空题:本大题共6小题,每空5分,共30分.11.(5分)计算sin330°=﹣.【分析】所求式子中的角变形后,利用诱导公式化简即可得到结果.【解答】解:sin330°=sin(360°﹣30°)=﹣sin30°=﹣.故答案为:﹣【点评】此题考查了诱导公式的作用,熟练掌握诱导公式是解本题的关键.12.(5分)若集合A={x|x2﹣ax+2<0}=∅,则实数a的取值范围是[﹣2,2].【分析】根据集合A的意义,利用△≤0求出实数a的取值范围.【解答】解:集合A={x|x2﹣ax+2<0}=∅,则不等式x2﹣ax+2<0无解,所以△=(﹣a)2﹣4×1×2≤0,解得﹣2≤a≤2,所以实数a的取值范围是[﹣2,2].故答案为:[﹣2,2].【点评】本题考查了一元二次不等式的解法与应用问题,是基础题.13.(5分)已知函数f(x)=log2x,在x轴上取两点A(x1,0),B(x2,0)(0<x1<x2),设线段AB的中点为C,过A,B,C作x轴的垂线,与函数f(x)的图象分别交于A1,B1,C1,则点C1在线段A1B1中点M的上方.(横线上填“上方”或者“下方”)【分析】求出点C1,M的纵坐标,作差后利用基本不等式即可比较大小,进而得出结论.【解答】解:依题意,A1(x1,log2x1),B1(x2,log2x2),则,则=,故点C1在线段A1B1中点M的上方.故答案为:上方.【点评】本题考查对数运算及基本不等式的运用,考查逻辑推理能力,属于基础题.14.(5分)给出下列命题:①函数是偶函数;②函数f(x)=tan2x在上单调递增;③直线x=是函数图象的一条对称轴;④将函数的图象向左平移单位,得到函数y=cos2x的图象.其中所有正确的命题的序号是①②③.【分析】利用三函数的奇偶性、单调性、对称轴、图象的平移等性质直接求解.【解答】解:在①中,函数=cos2x是偶函数,故①正确;在②中,∵y=tan x在(﹣,)上单调递增,∴函数f(x)=tan2x在上单调递增,故②正确;在③中,函数图象的对称轴方程为:2x+=kπ+,k∈Z,即x=,k=0时,x=,∴直线x=是函数图象的一条对称轴,故③正确;在④中,将函数的图象向左平移单位,得到函数y=cos(2x+)的图象,故④错误.故答案为:①②③.【点评】本题考查命题真假的判断,考查三函数的奇偶性、单调性、对称轴、图象的平移等基础知识,考查运算求解能力,是中档题.15.(5分)已知在平面直角坐标系xOy中,点A(1,1)关于y轴的对称点A'的坐标是(﹣1,1).若A和A'中至多有一个点的横纵坐标满足不等式组,则实数a 的取值范围是{a|a≥0或a≤﹣1}.【分析】先求出对称点的坐标,再求出第二问的对立面,即可求解.【解答】解:因为点A(1,1)关于y轴的对称点A'的坐标是(﹣1,1);A和A'中至多有一个点的横纵坐标满足不等式组,其对立面是A和A'中两个点的横纵坐标都满足不等式组,可得:且⇒a<0且﹣1<a<2⇒﹣1<a<0故满足条件的a的取值范围是{a|a≥0或a≤﹣1}.故答案为:(﹣1,1),{a|a≥0或a≤﹣1}.【点评】本题主要考查对称点的求法以及二元一次不等式组和平面区域之间的关系,属于基础题.16.(5分)在物理学中,把物体受到的力(总是指向平衡位置)正比于它离开平衡位置的距离的运动称为“简谐运动”.可以证明,在适当的直角坐标系下,简谐运动可以用函数y=A sin(ωx+φ),x∈[0,+∞)表示,其中A>0,ω>0.如图,平面直角坐标系xOy中,以原点O为圆心,r为半径作圆,A为圆周上的一点,以Ox为始边,OA为终边的角为α,则点A的坐标是A(r cosα,r sinα),从A点出发,以恒定的角速度ω转动,经过t 秒转动到点B(x,y),动点B在y轴上的投影C作简谐运动,则点C的纵坐标y与时间t的函数关系式为y=r sin(ωt+α).【分析】由任意角三角函数的定义,A(r cosα,r sinα),根据题意∠BOx=ωt+α,进而可得点C的纵坐标y与时间t的函数关系式.【解答】解:由任意角三角函数的定义,A(r cosα,r sinα),若从A点出发,以恒定的角速度ω转动,经过t秒转动到点B(x,y),则∠BOx=ωt+α,点C的纵坐标y与时间t的函数关系式为y=r sin(ωt+α).故答案为:A(r cosα,r sinα),y=r sin(ωt+α).【点评】本题考查任意角三角函数的定义,三角函数解析式,属于中档题.三.解答题:本大题共4小题,共70分.解答应写出文字说明,演算步骤或证明过程. 17.(14分)已知集合A={x|x2﹣5x﹣6≤0},B={x|m+1≤x≤2m﹣1,m∈R}.(Ⅰ)求集合∁R A;(Ⅱ)若A∪B=A,求实数m的取值范围;【分析】(Ⅰ)容易求出A={x|﹣1≤x≤6},然后进行补集的运算即可;(Ⅱ)根据A∪B=A可得出B⊆A,从而可讨论B是否为空集:B=∅时,m+1>2m﹣1;B≠∅时,,解出m的范围即可.【解答】解:(Ⅰ)A={x|﹣1≤x≤6},∴∁R A={x|x<﹣1或x>6},(Ⅱ)∵A∪B=A,∴B⊆A,∴①B=∅时,m+1>2m﹣1,解得m<2;②B≠∅时,,解得,∴实数m的取值范围为.【点评】本题考查了描述法的定义,一元二次不等式的解法,并集、补集的定义及运算,子集的定义,考查了计算能力,属于基础题.18.(18分)已知函数f(x)=sin2x﹣2.(Ⅰ)若点在角α的终边上,求tan2α和f(α)的值;(Ⅱ)求函数f(x)的最小正周期;(Ⅲ)若,求函数f(x)的最小值.【分析】(Ⅰ)直接利用三角函数的定义的应用和函数的关系式的应用求出结果.(Ⅱ)利用三角函数关系式的恒等变换,把函数的关系式变形成正弦型函数,进一步求出函数的最小正周期.(Ⅲ)利用函数的定义域的应用求出函数的值域和最小值.【解答】解:(Ⅰ)若点在角α的终边上,所以,,故,所以tan2α===.f(α)==2.(Ⅱ)由于函数f(x)=sin2x﹣2=.所以函数的最小正周期为.(Ⅲ)由于,所以,所以当x=时,函数的最小值为.【点评】本题考查的知识要点:三角函数的定义的应用,三角函数关系式的变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.19.(18分)已知函数f(x)=(x≠a).(Ⅰ)若2f(1)=﹣f(﹣1),求a的值;(Ⅱ)若a=2,用函数单调性定义证明f(x)在(2,+∞)上单调递减;(Ⅲ)设g(x)=xf(x)﹣3,若函数g(x)在(0,1)上有唯一零点,求实数a的取值范围.【分析】(Ⅰ)由已知,建立关于a的方程,解出即可;(Ⅱ)将a=2代入,利用取值,作差,变形,判号,作结论的步骤证明即可;(Ⅲ)问题转化为h(x)=2x2﹣3x+3a在(0,1)上有唯一零点,由二次函数的零点分布问题解决.【解答】解:(Ⅰ)由2f(1)=﹣f(﹣1)得,,解得a=﹣3;(Ⅱ)当a=2时,,设x1,x2∈(2,+∞),且x1<x2,则,∵x1,x2∈(2,+∞),且x1<x2,∴x2﹣x1>0,(x1﹣2)(x2﹣2)>0,∴f(x1)>f(x2),∴f(x)在(2,+∞)上单调递减;(Ⅲ),若函数g(x)在(0,1)上有唯一零点,即h(x)=2x2﹣3x+3a在(0,1)上有唯一零点(x=a不是函数h(x)的零点),且二次函数h(x)=2x2﹣3x+3a的对称轴为,若函数h(x)在(0,1)上有唯一零点,依题意,①当h(0)h(1)<0时,3a(3a﹣1)<0,解得;②当△=0时,9﹣24a=0,解得,则方程h(x)=0的根为,符合题意;③当h(1)=0时,解得,则此时h(x)=2x2﹣3x+1的两个零点为,符合题意.综上所述,实数a的取值范围为.【点评】本题考查函数单调性的证明及二次函数的零点分布问题,考查推理论证及运算求解能力,属于中档题.20.(20分)已知函数f(x)=log2(x+a)(a>0).当点M(x,y)在函数y=g(x)图象上运动时,对应的点M'(3x,2y)在函数y=f(x)图象上运动,则称函数y=g(x)是函数y=f(x)的相关函数.(Ⅰ)解关于x的不等式f(x)<1;(Ⅱ)对任意的x∈(0,1),f(x)的图象总在其相关函数图象的下方,求a的取值范围;(Ⅲ)设函数F(x)=f(x)﹣g(x),x∈(0,1).当a=1时,求|F(x)|的最大值【分析】(Ⅰ)利用对数函数的性质可得,解出即可;(Ⅱ)根据题意,求得,依题意,在(0,1)上恒成立,由此得解;(Ⅲ)结合(Ⅱ)可知,,则只需求出的最大值即可.【解答】解:(Ⅰ)依题意,,则,解得﹣a<x<2﹣a,∴所求不等式的解集为(﹣a,2﹣a);(Ⅱ)由题意,2y=log2(3x+a),即f(x)的相关函数为,∵对任意的x∈(0,1),f(x)的图象总在其相关函数图象的下方,∴当x∈(0,1)时,恒成立,由x+a>0,3x+a>0,a>0得,∴在此条件下,即x∈(0,1)时,恒成立,即(x+a)2<3x+a,即x2+(2a﹣3)x+a2﹣a<0在(0,1)上恒成立,∴,解得0<a≤1,故实数a的取值范围为(0,1].(Ⅲ)当a=1时,由(Ⅱ)知在区间(0,1)上,f(x)<g(x),∴,令,则,令μ=3x+1(1<μ<4),则,∴,当且仅当“”时取等号,∴|F(x)|的最大值为.【点评】本题考查对数函数的图象及性质,考查换元思想的运用,考查逻辑推理能力及运算求解能力,属于中档题.。

2019-2020学年新版高中数学必修第一册综合测试题及答案

2019-2020学年新版高中数学必修第一册综合测试题及答案

2019-2020学年新版高中数学必修第一册综合测试题(时间:120分钟满分:150分)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目的要求)1.已知集合A={x∣(2+x)(a-2x)>0},Z为整数集,若A∩Z={-1,0,1,2},则实数a的取值范围是( ).A.{a∣a≥4}B.{a∣a>4}C.{a∣4<a≤6}D.{a∣4<a<6}2.已知α为第二象限角,sin α+cos α,则cos 2α=( ).A B C D3.已知函数f(x)=x2+bx+c(b,c R),则“xR,使f(x0)<0”是“c<0”的( ).A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件4.下列不等式一定成立的是( ).A.lg(x2+14)>lg x(x>0)B.sin x+1sin x≥2(x≠πk,k Z)C.x2+1≥2∣x∣(x R)D.21 1x+>1(x R)5.已知x=lnπ,y=log52,z=12e-,则( ).A.x<y<z B.z<x<y C.z<y<x D.y<z<x6.已知函数f(x)=sin22x xx--,g(x)=cos22x xx--,则f(x) g(x)( ).A.是奇函数且在[3π2,7π4]上单调递增B.是偶函数且在[5π4,7π4]上单调递增C.是奇函数且在[5π4,3π2]上单调递减D.是偶函数且在[5π4,3π2]上单调递减7.已知函数⎩⎨⎧>--≤-=,1,32,1,44)(x x x x x f g (x )=tan π2x ,则函数h (x )=f (x )-g (x )在区间 (-1,5)内的零点个数为( ). A .2B .3C .4D .58.函数y =a x -1a(a >0,且a ≠1)的图象可能是( ).A B C D9.已知a >1,若函数f (x )=log a x 在区间[a ,2a ]上的最大值与最小值之差为12,则a 的值为( ).AB .2C .D .410.已知函数f (x )=2sin (13x -π6),x ∈R .设α,β [0,π2],f (3α+π2)=1013,f (3β+2π)=65,则cos (α+β)的值为( ). A .5665B .1665C .6365D .336511.已知函数21,(,1],12()1e ,(1,).x x x f x x x ⎧∈-⎪+=⎨-⎪∈+∞⎩g (x )=-x 2+4x -3.若有实数a ,b 满足f (a )=g (b ),则b 的取值范围是( ).A .(-∞,2(2) B .(1,3)C .(22D .(-∞,1)∪(3, +∞)12.已知两条平行直线l 1:y =m 和l 2:y =821m +(m >0),l 1与函数y =∣log 2x ∣的图象从左至右相交于A ,B 两点,l 2与函数y =∣log 2x ∣的图象从左至右相交于C ,D 两点.设A ,B ,C ,D 四点的横坐标分别为a ,b ,c ,d ,,当m 变化时,∣b da c --∣的最小值为( ).A .B .C .16D .8。

2019-2020学年高一数学上学期期末考试联考试题(含解析)

2019-2020学年高一数学上学期期末考试联考试题(含解析)

2019-2020学年高一数学上学期期末考试联考试题(含解析)注意事项:1. 本试卷满分150分,考试时间120分钟.2. 答卷前,考生务必将自己的姓名、考生号等信息填写在答题卡指定位置上.3. 回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.第Ⅰ卷一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B. C. D.【答案】D【解析】分析】根据并集定义求解.【详解】由题意.故选:D.【点睛】本题考查集合的并集运算,属于基础题.2.直线的倾斜角是( )A. B. C. D.【答案】B【解析】【分析】先求斜率,即倾斜角的正切值,易得.【详解】,可知,即,故选B【点睛】一般直线方程求倾斜角将直线转换为斜截式直线方程易得斜率,然后再根据直线的斜率等于倾斜角的正切值易得倾斜角,属于简单题目.3.下列函数中,与函数是同一函数的是()A. B. C. D.【答案】C【解析】【分析】判断函数解析式和定义域是否与函数相同,即可求解.【详解】选项A,,所以不正确;选项B,但定义域为,而函数的定义域为,所以不正确;选项C,,定义域为,所以正确;选项D,,但定义域为,所以不正确.故选:C.【点睛】本题考查对函数定义的理解,判断两个函数是否相同,不仅要解析式相同,而且定义域也要一样,属于基础题.4.函数的定义域是()A. B. C. D.【答案】D【解析】【分析】由对数真数大于0可得.【详解】由题意,,即定义域为.故选:D.【点睛】本题考查对数型复合函数的定义域,即求使对数式有意义的自变量的取值范围.5.若集合,集合,则集合与的关系是()A. B. C. D.【答案】B【解析】【分析】先确定集合中的元素,然后根据子集定义判断.【详解】由题意,,显然集合中的元素都属于,所以.故选:B.【点睛】本题考查集合的包含关系,根据子集定义判断.6.以点为圆心,且经过点圆的方程为( )A. B.C. D.【答案】B【解析】【分析】通过圆心设圆标准方程,代入点即可.【详解】设圆的方程为:,又经过点,所以,即,所以圆的方程:.故选B【点睛】此题考查圆的标准方程,记住标准方程的一般设法,代入数据即可求解,属于简单题目.7.已知集合,,则图中阴影部分所表示的集合是()A. B.C. D.【答案】B【解析】【分析】用集合的运算表示出阴影部分后可得结论.【详解】阴影部分为,由题意,故选:B.【点睛】本题考查集合的混合运算,考查Venn图,掌握集合运算的定义是解题关键.8.函数的图象是()A. B. C.D.【答案】A【解析】【分析】确定函数的奇偶性与单调性,用排除法确定正确结论.【详解】,是偶函数,可排除C,D,又时,是增函数,排除B.故选:A.【点睛】本题考查由解析式选函数图象问题,可由解析式研究函数的性质,如奇偶性,单调性,对称性等等,研究函数值的变化规律,特殊的函数值等等用排除法确定正确选项.9.经过圆上一点的切线方程是()A. B.C. D.【答案】D【解析】【分析】由过切点的半径与切线垂直求出切线斜率,可得切线方程.【详解】由题意圆心,,所以切线斜率为,切线方程,即.故选:D.【点睛】本题考查求圆的切线方程,关键是求出切线斜率.这可利用切线性质:切线与过切点的半径垂直.10.如图,两条直线与的图象可能是()A. B. C.D.【答案】A【解析】【分析】显然,考虑直线的斜率,同时分和进行讨论.【详解】直线过原点,直线的斜率为1,排除B、D,直线的横截是,若,A不合题意,C也不合题意,若,C不合题,A符合题意.故选:A.【点睛】本题考查直线方程,由方程选择可能图象,从直线的特征研究,直线的斜率,直线的纵截距和横截距等等.11.设偶函数的定义域为,当时是增函数,则,,的大小关系是()A. B.C. D.【答案】B【解析】【分析】由偶函数把函数值的自变量转化到同一单调区间上,然后由单调性得出结论.【详解】因为是偶函数,所以,又,且在上是增函数,所以,即.故选:B.【点睛】本题考查函数的奇偶性与单调性,属于基础题.12.曲线y=1+与直线y=k(x-2)+4有两个交点,则实数k的取值范围是( )A. (,+∞)B. (,]C. (0,)D. (,]【答案】D【解析】【分析】根据直线的点斜式方程可得直线经过点,曲线表示以圆心半径为2的圆的上半圆,由此作出图形,求出半圆切线的斜率和直线与半圆相交时斜率的最小值,数形结合可得结果.【详解】根据题意画出图形,如图所示:由题意可得:直线过A(2,4),B(-2,-1),又曲线y=1+图象为以(0,1)为圆心,2为半径的半圆,当直线与半圆相切,C为切点时,圆心到直线的距离d=r=2,由解得:k=;当直线过B点时,直线的斜率为=,则直线与半圆有两个不同的交点时,实数k的取值范围为(,],故答案为(,].故选D.【点睛】本题主要考查圆的方程与性质,直线与圆的位置关系,考查了数形结合思想的应用,属于中档题. 数形结合就是把抽象数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”即通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的.第Ⅱ卷二、填空题:本题共4小题,每小题5分,共20分.13.函数的零点是______.【答案】【解析】【分析】解方程得出.【详解】由得,所以函数的零点是.故答案为:.【点睛】本题考查函数零点概念,掌握零点定义是解题关键.14.以点为圆心,且与直线相切的圆的方程是______.【答案】【解析】【分析】求出圆心到切线的距离即为圆半径,可得方程.【详解】由题意圆的半径为,所求圆的方程为.故答案为:.【点睛】本题考查圆的方程,解题关键是求出圆的半径,根据是圆的切线的性质:圆心到切线的距离等于圆的半径.15.如果直线的纵截距为正,且与两坐标轴围成的三角形的面积为8,则______.【答案】8【解析】【分析】先求出横、纵截距,由纵截距为正得出的范围,由三角形面积可求得.【详解】直线与轴的交点是,与轴交点是,由题意,,又,所以(-8舍去).故答案为:8.【点睛】本题考查直线方程,由直线方程求出它与坐标轴的交点即可求解.16.已知圆的方程为,对于圆有下列判断:①圆关于直线对称;②圆关于直线对称;③圆的圆心在轴上,且过原点;④圆的圆心在轴上,且过原点.其中叙述正确的判断是______.(写出所有正确判断的序号)【答案】②【解析】【分析】配方求出圆心坐标和圆的半径,然后判断.【详解】圆的标准方程是,圆心为,半径为,显然原点坐标适合圆的方程,因此原点一定在圆上,圆心在直线上,因此圆关于直线对称,圆心不可能在直线和坐标轴上,否则,此时不合题意.故答案为:②.【点睛】本题考查圆的标准方程,利用配方法易求得圆心坐标和半径.要注意所有过圆心的直线都是圆的对称轴.三、解答题:共70分,解答应写出文字说明,证明过程或演算步骤.17.(1)已知幂函数的图象经过点,求函数的解析式;(2)计算:.【答案】(1);(2)33.【解析】【分析】(1)设,代入已知点坐标计算;(2)由幂的运算法则和对数运算法则计算.【详解】(1)设,因为的图象经过点,所以,,所以;(2).【点睛】本题考查幂函数的解析式,考查幂的运算法则和对数运算法则,属于基础题.18.已知两条直线:,:.(1)若,求的值;(2)若,求的值.【答案】(1)1;(2).【解析】【分析】(1)由求解,同时要检验是否重合;(2)由求解.【详解】(1)由于,所以,解得或,时两直线方程分别为,,两直线平行,时,两直线方程分别为,,即,两直线重合,不合题意,舍去.所以;(2)若,则,.【点睛】本题考查两直线平行与垂直的条件.在由两直线平行求参数时要进行检验,排除重合的情形.19.已知圆:,直线过点.(1)判断点与圆的位置关系;(2)当直线与圆相切时,求直线的方程;(3)当直线的倾斜角为时,求直线被圆所截得的弦长.【答案】(1)圆外;(2)和;(3).【解析】【分析】(1)把点坐标代入圆的方程可判断;(2)讨论斜率不存在的直线是否为切线,斜率存在时设切线方程为,由圆心到切线距离等于半径求出,得切线方程.(3)写出直线方程,求得圆心到直线的距离,由勾股定理计算弦长.【详解】(1)因为,所以点在圆外.(2)过与轴垂直的直线是圆的切线,过与轴不垂直的直线设方程为,即,,所以,解得,切线方程为,即.所以所求切线方程为和;(3)由题意直线方程为,即,圆心到直线的距离为,又所以弦长为.【点睛】本题考查点与圆的位置关系和直线与圆的位置关系.过圆上的点的圆的切线只有一条,过圆外一点的圆的切线有两条,可分类讨论,分斜率存在和不存在两类.在求直线与圆相交弦长时,一般用几何方法求解,即求出圆心到直线的距离,由勾股定理计算.20.已知直线:,点到直线的距离为.(1)若直线过原点,求直线的方程;(2)若直线不过原点,且两坐标轴上的截距相等,求直线的方程.【答案】(1)和;(2)和.【解析】【分析】(1)设直线方程为,由点到直线距离公式求得参数;(2)设直线方程为,再由点到直线距离公式求得参数;【详解】(1)直线过原点,设直线方程为,即,由题意,整理得,解得,所以直线方程为和;(2)直线不过原点且截距相等,设其方程为,即,由题意,解得或,所以直线方程为和.【点睛】本题考查求直线方程,掌握直线方程的各种形式是解题关键.21.已知圆:和圆:,点,分别在圆和圆上.(1)求圆的圆心坐标和半径;(2)求的最大值.【答案】(1),半径为;(2).【解析】【分析】(1)圆方程配方后化为标准方程,可得圆心坐标和半径;(2)求出圆心距,圆心距加上两个半径即为的最大值.【详解】(1)圆标准方程是,圆心为,半径为,(2)圆的标准方程是,圆心为,半径为.由(1),所以.【点睛】本题考查圆的一般方程,考查两圆位置关系问题.圆的一般方程配方后成标准方程可得圆心坐标和半径,两圆上的点间距离的最值可由圆心距离与半径运算求得.22.某支上市股票在30天内每股的交易价格(单位:元)与时间(单位:天)组成有序数对,点落在如图所示的两条线段上.该股票在30天内(包括30天)的日交易量(单位:万股)与时间(单位:天)的部分数据如下表所示:第天4(万股)36(Ⅰ)根据所提供的图象,写出该种股票每股的交易价格与时间所满足的函数解析式;(Ⅱ)根据表中数据确定日交易量与时间的一次函数解析式;(Ⅲ)若用(万元)表示该股票日交易额,请写出关于时间的函数解析式,并求出在这30天中,第几天的日交易额最大,最大值是多少?【答案】(Ⅰ);(Ⅱ);(Ⅲ)第15天交易额最大,最大值为125万元.【解析】【分析】(Ⅰ)由一次函数解析式可得与时间所满足的函数解析式;(Ⅱ)设,代入已知数据可得;(Ⅲ)由可得,再根据分段函数性质分段求得最大值,然后比较即得.【详解】(Ⅰ)当时,设,则,解得,当时,设,则,解得所以.(Ⅱ)设,由题意,解得,所以.(Ⅲ)由(Ⅰ)(Ⅱ)得即,当时,,时,,当时,,它在上是减函数,所以.综上,第15天交易额最大,最大值为125万元.【点睛】本题考查函数模型应用,解题时只要根据所给函数模型求出函数解析式,然后由解析式求得最大值.只是要注意分段函数必须分段计算最大值,然后比较可得.2019-2020学年高一数学上学期期末考试联考试题(含解析)注意事项:1. 本试卷满分150分,考试时间120分钟.2. 答卷前,考生务必将自己的姓名、考生号等信息填写在答题卡指定位置上.3. 回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.第Ⅰ卷一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B. C. D.【答案】D【解析】分析】根据并集定义求解.【详解】由题意.故选:D.【点睛】本题考查集合的并集运算,属于基础题.2.直线的倾斜角是( )A. B. C. D.【答案】B【解析】【分析】先求斜率,即倾斜角的正切值,易得.【详解】,可知,即,故选B【点睛】一般直线方程求倾斜角将直线转换为斜截式直线方程易得斜率,然后再根据直线的斜率等于倾斜角的正切值易得倾斜角,属于简单题目.3.下列函数中,与函数是同一函数的是()A. B. C. D.【答案】C【解析】【分析】判断函数解析式和定义域是否与函数相同,即可求解.【详解】选项A,,所以不正确;选项B,但定义域为,而函数的定义域为,所以不正确;选项C,,定义域为,所以正确;选项D,,但定义域为,所以不正确.故选:C.【点睛】本题考查对函数定义的理解,判断两个函数是否相同,不仅要解析式相同,而且定义域也要一样,属于基础题.4.函数的定义域是()A. B. C. D.【答案】D【解析】【分析】由对数真数大于0可得.【详解】由题意,,即定义域为.故选:D.【点睛】本题考查对数型复合函数的定义域,即求使对数式有意义的自变量的取值范围.5.若集合,集合,则集合与的关系是()A. B. C. D.【答案】B【解析】【分析】先确定集合中的元素,然后根据子集定义判断.【详解】由题意,,显然集合中的元素都属于,所以.故选:B.【点睛】本题考查集合的包含关系,根据子集定义判断.6.以点为圆心,且经过点圆的方程为( )A. B.C. D.【答案】B【解析】【分析】通过圆心设圆标准方程,代入点即可.【详解】设圆的方程为:,又经过点,所以,即,所以圆的方程:.故选B【点睛】此题考查圆的标准方程,记住标准方程的一般设法,代入数据即可求解,属于简单题目.7.已知集合,,则图中阴影部分所表示的集合是()A. B.C. D.【答案】B【解析】【分析】用集合的运算表示出阴影部分后可得结论.【详解】阴影部分为,由题意,故选:B.【点睛】本题考查集合的混合运算,考查Venn图,掌握集合运算的定义是解题关键.8.函数的图象是()A. B. C.D.【答案】A【解析】【分析】确定函数的奇偶性与单调性,用排除法确定正确结论.【详解】,是偶函数,可排除C,D,又时,是增函数,排除B.故选:A.【点睛】本题考查由解析式选函数图象问题,可由解析式研究函数的性质,如奇偶性,单调性,对称性等等,研究函数值的变化规律,特殊的函数值等等用排除法确定正确选项.9.经过圆上一点的切线方程是()A. B.C. D.【答案】D【解析】【分析】由过切点的半径与切线垂直求出切线斜率,可得切线方程.【详解】由题意圆心,,所以切线斜率为,切线方程,即.故选:D.【点睛】本题考查求圆的切线方程,关键是求出切线斜率.这可利用切线性质:切线与过切点的半径垂直.10.如图,两条直线与的图象可能是()A. B. C.D.【答案】A【解析】【分析】显然,考虑直线的斜率,同时分和进行讨论.【详解】直线过原点,直线的斜率为1,排除B、D,直线的横截是,若,A不合题意,C也不合题意,若,C不合题,A符合题意.故选:A.【点睛】本题考查直线方程,由方程选择可能图象,从直线的特征研究,直线的斜率,直线的纵截距和横截距等等.11.设偶函数的定义域为,当时是增函数,则,,的大小关系是()A. B.C. D.【答案】B【解析】【分析】由偶函数把函数值的自变量转化到同一单调区间上,然后由单调性得出结论.【详解】因为是偶函数,所以,又,且在上是增函数,所以,即.故选:B.【点睛】本题考查函数的奇偶性与单调性,属于基础题.12.曲线y=1+与直线y=k(x-2)+4有两个交点,则实数k的取值范围是( )A. (,+∞)B. (,]C. (0,)D. (,]【答案】D【解析】【分析】根据直线的点斜式方程可得直线经过点,曲线表示以圆心半径为2的圆的上半圆,由此作出图形,求出半圆切线的斜率和直线与半圆相交时斜率的最小值,数形结合可得结果.【详解】根据题意画出图形,如图所示:由题意可得:直线过A(2,4),B(-2,-1),又曲线y=1+图象为以(0,1)为圆心,2为半径的半圆,当直线与半圆相切,C为切点时,圆心到直线的距离d=r=2,由解得:k=;当直线过B点时,直线的斜率为=,则直线与半圆有两个不同的交点时,实数k的取值范围为(,],故答案为(,].故选D.【点睛】本题主要考查圆的方程与性质,直线与圆的位置关系,考查了数形结合思想的应用,属于中档题. 数形结合就是把抽象数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”即通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的.第Ⅱ卷二、填空题:本题共4小题,每小题5分,共20分.13.函数的零点是______.【答案】【解析】【分析】解方程得出.【详解】由得,所以函数的零点是.故答案为:.【点睛】本题考查函数零点概念,掌握零点定义是解题关键.14.以点为圆心,且与直线相切的圆的方程是______.【答案】【解析】【分析】求出圆心到切线的距离即为圆半径,可得方程.【详解】由题意圆的半径为,所求圆的方程为.故答案为:.【点睛】本题考查圆的方程,解题关键是求出圆的半径,根据是圆的切线的性质:圆心到切线的距离等于圆的半径.15.如果直线的纵截距为正,且与两坐标轴围成的三角形的面积为8,则______.【答案】8【解析】【分析】先求出横、纵截距,由纵截距为正得出的范围,由三角形面积可求得.【详解】直线与轴的交点是,与轴交点是,由题意,,又,所以(-8舍去).故答案为:8.【点睛】本题考查直线方程,由直线方程求出它与坐标轴的交点即可求解.16.已知圆的方程为,对于圆有下列判断:①圆关于直线对称;②圆关于直线对称;③圆的圆心在轴上,且过原点;④圆的圆心在轴上,且过原点.其中叙述正确的判断是______.(写出所有正确判断的序号)【答案】②【解析】【分析】配方求出圆心坐标和圆的半径,然后判断.【详解】圆的标准方程是,圆心为,半径为,显然原点坐标适合圆的方程,因此原点一定在圆上,圆心在直线上,因此圆关于直线对称,圆心不可能在直线和坐标轴上,否则,此时不合题意.故答案为:②.【点睛】本题考查圆的标准方程,利用配方法易求得圆心坐标和半径.要注意所有过圆心的直线都是圆的对称轴.三、解答题:共70分,解答应写出文字说明,证明过程或演算步骤.17.(1)已知幂函数的图象经过点,求函数的解析式;(2)计算:.【答案】(1);(2)33.【解析】【分析】(1)设,代入已知点坐标计算;(2)由幂的运算法则和对数运算法则计算.【详解】(1)设,因为的图象经过点,所以,,所以;(2).【点睛】本题考查幂函数的解析式,考查幂的运算法则和对数运算法则,属于基础题.18.已知两条直线:,:.(1)若,求的值;(2)若,求的值.【答案】(1)1;(2).【解析】【分析】(1)由求解,同时要检验是否重合;(2)由求解.【详解】(1)由于,所以,解得或,时两直线方程分别为,,两直线平行,时,两直线方程分别为,,即,两直线重合,不合题意,舍去.所以;(2)若,则,.【点睛】本题考查两直线平行与垂直的条件.在由两直线平行求参数时要进行检验,排除重合的情形.19.已知圆:,直线过点.(1)判断点与圆的位置关系;(2)当直线与圆相切时,求直线的方程;(3)当直线的倾斜角为时,求直线被圆所截得的弦长.【答案】(1)圆外;(2)和;(3).【解析】【分析】(1)把点坐标代入圆的方程可判断;(2)讨论斜率不存在的直线是否为切线,斜率存在时设切线方程为,由圆心到切线距离等于半径求出,得切线方程.(3)写出直线方程,求得圆心到直线的距离,由勾股定理计算弦长.【详解】(1)因为,所以点在圆外.(2)过与轴垂直的直线是圆的切线,过与轴不垂直的直线设方程为,即,,所以,解得,切线方程为,即.所以所求切线方程为和;(3)由题意直线方程为,即,圆心到直线的距离为,又所以弦长为.【点睛】本题考查点与圆的位置关系和直线与圆的位置关系.过圆上的点的圆的切线只有一条,过圆外一点的圆的切线有两条,可分类讨论,分斜率存在和不存在两类.在求直线与圆相交弦长时,一般用几何方法求解,即求出圆心到直线的距离,由勾股定理计算.20.已知直线:,点到直线的距离为.(1)若直线过原点,求直线的方程;(2)若直线不过原点,且两坐标轴上的截距相等,求直线的方程.【答案】(1)和;(2)和.【解析】【分析】(1)设直线方程为,由点到直线距离公式求得参数;(2)设直线方程为,再由点到直线距离公式求得参数;【详解】(1)直线过原点,设直线方程为,即,由题意,整理得,解得,所以直线方程为和;(2)直线不过原点且截距相等,设其方程为,即,由题意,解得或,所以直线方程为和.【点睛】本题考查求直线方程,掌握直线方程的各种形式是解题关键.21.已知圆:和圆:,点,分别在圆和圆上.(1)求圆的圆心坐标和半径;(2)求的最大值.【答案】(1),半径为;(2).【解析】【分析】(1)圆方程配方后化为标准方程,可得圆心坐标和半径;(2)求出圆心距,圆心距加上两个半径即为的最大值.【详解】(1)圆标准方程是,圆心为,半径为,(2)圆的标准方程是,圆心为,半径为.由(1),所以.【点睛】本题考查圆的一般方程,考查两圆位置关系问题.圆的一般方程配方后成标准方程可得圆心坐标和半径,两圆上的点间距离的最值可由圆心距离与半径运算求得.22.某支上市股票在30天内每股的交易价格(单位:元)与时间(单位:天)组成有序数对,点落在如图所示的两条线段上.该股票在30天内(包括30天)的日交易量(单位:万股)与时间(单位:天)的部分数据如下表所示:第天4(万36股)(Ⅰ)根据所提供的图象,写出该种股票每股的交易价格与时间所满足的函数解析式;(Ⅱ)根据表中数据确定日交易量与时间的一次函数解析式;(Ⅲ)若用(万元)表示该股票日交易额,请写出关于时间的函数解析式,并求出在这30天中,第几天的日交易额最大,最大值是多少?【答案】(Ⅰ);(Ⅱ);(Ⅲ)第15天交易额最大,最大值为125万元.【解析】【分析】(Ⅰ)由一次函数解析式可得与时间所满足的函数解析式;(Ⅱ)设,代入已知数据可得;(Ⅲ)由可得,再根据分段函数性质分段求得最大值,然后比较即得.【详解】(Ⅰ)当时,设,则,解得,当时,设,则,解得所以.(Ⅱ)设,由题意,解得,所以.(Ⅲ)由(Ⅰ)(Ⅱ)得即,当时,,时,,当时,,它在上是减函数,所以.综上,第15天交易额最大,最大值为125万元.【点睛】本题考查函数模型应用,解题时只要根据所给函数模型求出函数解析式,然后由解析式求得最大值.只是要注意分段函数必须分段计算最大值,然后比较可得.。

高中数学练习题 2019-2020学年人教B新版高一(上)模块数学试卷(必修1) -有答案

高中数学练习题 2019-2020学年人教B新版高一(上)模块数学试卷(必修1) -有答案

2019-2020学年人教B新版高一(上)模块数学试卷(必修1)一.选择题(每小题5分,共50分)A .30°B .60°C .120°D .150°1.(5分)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2-b 2=3bc ,sinC =23sinB ,则A 等于( )√√A .99B .66C .144D .2972.(5分)等差数列{a n }中,a 1+a 4+a 7=39,a 3+a 6+a 9=27,则数列{a n }前9项的和S 9等于( )A .30B .25C .20D .153.(5分)某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为( )A .1,2,3B .2,3,1C .2,3,2D .3,2,14.(5分)下列程序运行的结果是( )A .11B .5C .-8D .-115.(5分)设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2等于( )A .k >4?B .k >5?C .k >6?D .k >7?6.(5分)某程序框图如图所示,若输出的S =57,则判断框内为( )二.填空题(每小题5分,共25分)三.解答题(共-75分16题13分,17题13分,18题13分,19题12分,20题12分,21题12分)A .79B .87C .1920D .787.(5分)若两个等差数列{a n }、{b n }的前n 项和分别为A n 、B n ,且满足A nB n =4n +25n −5,则a 5+a 13b 5+b 13的值为( )A .x >3B .0<x <2C .3<x <2D .3<x ≤28.(5分)已知△ABC 中,a 、b 分别是角A 、B 所对的边,且a =x (x >0),b =2,A =60°,若三角形有两解,则x 的取值范围是( )√√√A .49B .29C .23D .139.(5分)如图所示,在两个圆盘中,指针在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是( )A .-2B .0C .1D .210.(5分)若实数x ,y 满足不等式组V Y Y W Y Y X x −2≤0y −1≤0x +2y −a ≥0,目标函数t =x -2y 的最大值为2,则实数a 的值是( )11.(5分)从五件正品,一件次品中随机取出两件,则取出的两件产品中恰好是一件正品,一件次品的概率是 .12.(5分)已知a ,b 为正数,且满足2<a +2b <4,那么3a -b 的取值范围是 .13.(5分)函数y =x 2+3x 2+2的最小值是.设x 、y ∈R +且1x +9y =1,则x +y 的最小值为 .√14.(5分)设x ,y 满足约束条件V Y Y W Y Y X 3x −y −6≤0x −y +2≥0x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的值是最大值为12,则2a +3b 的最小值为 .15.(5分)等差数列{a n }中,a 11a 10<-1,且其前n 项和S n 有最小值,以下命题正确的是 .①公差d >0; ②{a n }为递减数列; ③S 1,S 2…S 19都小于零,S 20,S 21…都大于零;④n =19时,S n 最小;⑤n =10时,S n 最小.16.(13分)已知等差数列{a n}满足a3=7,a5+a7=26.{a n}的前n项和为S n.(1)求a n及S n;(2)令b n=-1a n2−1(n∈N*),求数列{b n}的前n项和T n.17.(13分)已知a∈R,解不等式xx−1>a+1.18.(13分)现有8名奥运会志愿者,其中志愿者A1,A2,A3通晓日语,B1,B2,B3通晓俄语,C1,C2通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.(Ⅰ)求A1被选中的概率;(Ⅱ)求B1和C1不全被选中的概率.19.(12分)经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y(千辆/小时)与汽车的平均速度υ(千米/小时)之间的函数关系为:y=920υυ2+3υ+1600(υ>0).(1)在该时段内,当汽车的平均速度υ为多少时,车流量最大?最大车流量为多少?(保留分数形式)(2)若要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应在什么范围内?20.(12分)数列{a n}的首项a1=1,前n项和S n与a n之间满足a n=2S2n2S n−1(n≥2).(1)求证:数列{1S n}是等差数列;(2)设存在正数k,使(1+S1)(1+S2)…(1+S n)≥k2n+1对一切n∈N*都成立,求k的最大值.√21.(12分)已知a1=2,点(a n,a n+1)在函数f(x)=x2+2x的图象上,其中n=1,2,3,…(1)证明数列{lg(1+a n)}是等比数列;(2)设T n=(1+a1)(1+a2)…(1+a n),求T n及数列{a n}的通项;(3)记b n=1a n+1a n+2,求数列{b n}的前n项S n,并证明S n+23T n−1=1.22.已知数列{a n}中,a1=1,na n+1=2(a1+a2+…+a n)(n∈N*).(1)求a2,a3,a4;(2)求数列{a n}的通项a n;(3)设数列{b n}满足b1=12,b n+1=1a kb n2+b n,求证:b n<1(n≤k).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年高一上学期数学(必修1)过关检测(6) 含答案
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上
一、单项选择
1. 已知0.3
12a ⎛⎫
= ⎪⎝⎭,20.3b -=,12
log 2c =,则,,a b c 的大小关系是( )
A .a b c >>
B .a c b >>
C .c b a >>
D .b a c >>
2. 设⎭
⎬⎫

⎨⎧
----∈α3,2,1,2
1,31,21,1,2,3,则使αx y =为奇函数且在(0,+∞)上单调递减的α值
的个数为( ) A. 1 B. 2 C. 3 D. 4
3. 已知函数y =(m 2-3m +3)·2
2
m m x --是幂函数,则实数m 的值为( )
A .1
B .2
C .1或2
D .无法确定
4. 幂函数35
m y x -=,其中m N ∈,且在(0,+∞)上是减函数,又()()f x f x -=,则m =( )
A. 0
B. 1
C. 2
D. 3
5. 给定一组函数解析式:
223333
342
2
113
3
y x ;y x ;y x y x y x ;y x ;y x ;;,
-
-
-=======①②③④⑤⑥⑦
如图所示一组函数图象.图象对应的解析式号码顺序正确的是(
)
A.⑥③④②⑦①⑤
B.⑥④②③⑦①⑤
C.⑥④③②⑦①⑤
D.⑥④③②⑦⑤①
6. 若幂函数()f x 的图象经过点1(3,)9
,则其定义域为( )
A .{|,0}x x R x ∈>
B .{|,0}x x R x ∈<
C .{|,x x R ∈且0}x ≠
D .R
二、填空题
7. 点(2,2)在幂函数)(x f 的图象上,()f x =_________。

8. 已知幂函数2
23
()()m
m f x x m Z -++=∈为偶函数,且在区间(0,)+∞上是单调增函数.则函数()f x 的
解析式为
9.
10. 若0,x >则
131114242
2
-
(2x +3)(2x -3)-4x = .
三、解答题
11. 已知幂函数()f x x α=的图象经过点A(2
1
,2). (1)求实数α的值;
(2)求证:()f x 在区间(0,+∞)内是减函数. 12. 己知,当m 取什么值时
⑴是正比例函数;
(2)
是反比例函数;
(3)
是幂函数.
参考答案
一、单项选择 1.【答案】
D
01,1,0a b c <<><,b a c ∴>>.
【解析】
2.【答案】B
【解析】根据幂函数性质得α取-3,-1两个。

3.【答案】C 【解析】 4.【答案】B 【解析】
根据题意,由于幂函数35
m y x -=,其中m N ∈,且在(0,+∞)上是减函数,又
()()f x f x -=,因此是偶函数,那么对于选项A,不能符合题意,选项B ,满足题意。


项C,由于是奇函数,不成立,选项D ,由于m=3,函数y=x ,是递增的,故选B.
5.【答案】C 【解析】观察前三个图象,由于在第一象限内,函数值随x 的增大而减小,知幂指数应小于零,其中第一个函数图象关于原点对称,第二个函数图象关于y 轴对称,而第三个函数的定义域为x>0,因此,第一个图象应对应函数y=x - ,第三个图象对应y=x - ;后四个图象都通过(0,0)和(1,1)两点,故知幂指数应大于0,第四个图象关于y 轴对称,第五个图象关于原点对称,定义域都是R,因此,第四个图象对应函数23
y x =,第五个图象对应13
y x =.由最后两个图象知函数定义域为x ≥0,而第六个图象呈上凸状,幂指数应小于1,第七个图象呈下凹状,幂指数应大于1,故第六个图象对应34
y x =,第七个图象对应32
y x =.
6.【答案】C
【解析】设()f x x α=,∵ 图象过点1(3,)9,∴
139α=,即2α=,则221()f x x x
-==,∴ 20x ≠,即0x ≠,其定义域为{|,x x R ∈且0}x ≠
二、填空题
7.【答案】2)(x x f =
【解析】设)(x f αx =,由于点(2,2)在幂函数)(x f 的图象上,
将点(2,2)代入)(x f αx =中,得α)2(2=,解得2=α,则2)(x x f =。

8.【答案】4)(x x f = 因为幂函数2
23
()()m
m f x x m Z -++=∈为偶函数,说明了幂指数为偶数,在区间(0,)+∞上
是单调增函数.说明是幂指数为负数,因此可知对m 令值,得到m=1,幂指数为4,符合题意,故解析式为4)(x x f =
【解析】
9.【答案】4 因为
1
4)8+⨯
【解析】
10.【答案】23-
【解析】1313114
2
4
2
2
2
(23)(23)4()x x x x x -+---=113
2
2
434423x x --+=-
三、解答题
11.【答案】(1)∵ f(x)=x α
的图象经过点A(21,2),∴(2
1
)α=2,即2-α=221
,解得
α=-2
1
; (2)任取x 1,x 2∈(0,+∞),且x 1<x 2,则
f(x 2)-f(x 1)=2
11
2
12
-
--x x 1
21
1x x -
=
2
121x x x x -=)
(21212
1x x x x x x +⋅-=
.
∵x 2>x 1>0,∴x 1-x 2<0,0)(2121>+⋅x x x x ,于是f(x 2)-f(x 1)<0. 即f(x 2)<f(x 1),所以f(x)= x 2
1-在区间(0,+∞)内是减函数.
【解析】
12.【答案】。

相关文档
最新文档