初一年级实数所有知识点总结及常考题提高难题压轴题练习含答案及解析

合集下载

实数压轴题五种模型全攻略—2023-2024学年七年级数学上册(浙教版)(解析版)

实数压轴题五种模型全攻略—2023-2024学年七年级数学上册(浙教版)(解析版)

实数压轴题五种模型全攻略【考点导航】目录【典型例题】 (1)【类型一 实数与数轴】 (1)【类型二 实数的大小比较】 (3)【类型三 程序设计与实数运算】 (4)【类型四 新定义下的实数运算】 (6)【类型五 与实数运算相关的规律题】 (7)【过关检测】 (10)【典型例题】【类型一 实数与数轴】 例题:(2023·福建泉州·统考二模)如图,小明将一个直径为1个单位长度的圆环(厚度忽略不计)从原点沿数轴向右滚动一周,圆上的一点由原点到达O '点,则下列实数与点O '表示的数最接近的是( )【答案】C【分析】根据题意,滚动一周,在数轴上的长度为圆的周长,由圆周长公式计算得到2π1π 3.14⨯=≈,从而3 3.144<< 3.14<<【详解】解:由题意可知,OO '=2π1π 3.14⨯=≈,3 3.144<<,()23.149.859610=≈,<<3.14与点O'表示的数最接近,故选:C.【点睛】本题考查无理数的估算,读懂题意,得到OO'的长度,掌握无理数估算的方法是解决问题的关键.【变式训练】A.点M B.点N C.点P D.点Q【答案】A【分析】首先根据数的算术平方根估出之间,从而找到其对应的点.<<,【详解】解:∵91316<,∴34∴的点可能是点M.故选:A.【点睛】本题考查无理数的估算以及数轴上的点和数之间的对应关系,解题的关键利用算术平方根估算出A.53+B.53−C.【答案】D【分析】设点C所对应的实数是x,根据中心对称的性质,即对称点到对称中心的距离相等,即可列方程求解.【详解】解:设点C所对应的实数是x.则有()3 x−=−−,解得3x=,故D正确.故选:D.【点睛】本题主要考查的是数轴上两点间距离的定义,根据题意列出关于x的方程是解答此题的关键.【类型二实数的大小比较】【答案】<<【分析】根据被开方数越大,其算术平方根越大可比较根据比较近似值的方法可比较3.14,π的大小,从而可得答案.3.14π<,故答案为:<,<【点睛】本题考查的是实数的大小比较,掌握比较的方法是解本题的关键.【变式训练】【答案】>1,即可得出结果.【详解】解:1,∴12>;故答案为:>.【点睛】本题考查比较实数大小.熟练掌握无理数的估算,是解题的关键.【答案】>【分析】利用作差法进行求解即可.【详解】解:12−=, ∵46<,∴2∴0>,即102−>,∴12>, 故答案为:>.【点睛】本题主要考查了实数比较大小,熟知作差法比较大小是解题的关键.【类型三 程序设计与实数运算】【答案】2【分析】根据程序框图进行运算求解即可.【详解】解:由题意知,64x =8=,82=,2y【点睛】本题考查了算术平方根、立方根,无理数、有理数,程序框图.解题的关键在于理解框图以及对知识的熟练掌握.【变式训练】 1.(2023秋·七年级单元测试)如图是小明用计算机设计的计算小程序,当输入x 为64−时,输出的值是____________【分析】将64x =−代入程序进行计算即可求解.【详解】解:当64x =−时,4y ==,当4x =时,2y ,当2x =时,y ,输出,【点睛】本题考查了实数的计算,掌握求一个数的立方根,算术平方根是解题的关键.【答案】2【分析】根据程序图及算术平方根的计算方法,依次计算即可.【详解】解:第一次运算,输入16,取算术平方根为4,返回继续运算;第二次运算,输入4,取算术平方根为2,返回继续运算;第三次运算,输入2【点睛】本题考查算术平方根及程序图的计算,理解程序图的运算顺序是解题的关键.【类型四新定义下的实数运算】【答案】1−【分析】读懂新定义,利用新定义计算.()3−2(3)2(3)6231=⨯−+−−=−++=−,故答案为:1−.【点睛】本题考查新定义实数的运算,解题的关键是理解新定义的运算方法.【变式训练】【答案】4−【分析】根据题目所给的定义得到)()(22111=+−※,据此求解即可.【详解】解:∵()221a b a b=+−※,∴)(1※)2211=+−27=−37=−4=−,故答案为:4−.【点睛】本题主要考查了新定义下的实数运算,正确理解题意是解题的关键.【答案】1x=或49x=【分析】直接利用当27x<时,当27x≥时,分别得出等式,进而得出答案.【详解】解:274x=⊗,当27x<时,∴4,34=,解得:1x =,当27x ≥时,274x =⊗,∴4,34=,解得:49x =,综上所述:1x =或49x =.故答案为:1x =或49x =.【点睛】此题主要考查了新定义运算,实数的运算,正确分情况讨论是解题关键.【类型五 与实数运算相关的规律题】【答案】(1)6,7,7a≥0,b≥0)32 【分析】(1)根据算术平方根的定义进行计算;(2)比较得到的等式发现两个非负数的算术平方根的积等于这两个数的积的算术平方根,根据此规律得到=【详解】(16=155=77⨯57;故答案为:6,57,57;(2)比较得到的等式发现两个非负数的算术平方根的积等于这两个数的积的算术平方根.用字母表示为:=a≥0,b≥0).32 ==(a≥0,b≥0),3 2【点睛】本题考查了实数的运算:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.【变式训练】【答案】45=(2)150【分析】(1)仿照已知等式确定出所求即可;(2)原式变形后,仿照上式得出结果即可.【详解】(1)解:根据题意得:∴第445===;45=;(299)(12500−24012500=⨯⨯=150=.【点睛】本题考查了实数的运算,规律型:数字的变化类,弄清题中的规律是解本题的关键.【答案】(1)120(2)()111n n++,49【分析】(1)根据题干例举的等式,总结规律可得答案;(2()1111111n n n n=+−=+++,再利用规律进行计算即可.【详解】(1=1111144120+−=+;(2)由题干信息归纳可得:()1111111n n n n=+−=+++,∴⋅⋅⋅11111111112234950⎡⎤=+−++−+⋅⋅⋅+−⎢⎥⎣⎦ 1149150⎡⎤=+−⎢⎥⎣⎦ 494950⎡⎤=⎢⎥⎣⎦49=.【点睛】本题考查的是实数的运算规律的探究与运用,掌握“探究的方法以及灵活运用”是解本题的关键.【过关检测】一、单选题【答案】B 【分析】根据无理数的估算方法逐项判断即可.【详解】解:A <,正确,不符合题意;B 、∵459<<,∴23<,∴112<,∴12>,即>0.5,原式错误,符合题意; C 、∵459<<,∴23<,∴314<,∴32>,即 1.5>,正确,不符合题意;D 、∵250=,2749=,且5049>,7>,正确,不符合题意. 故选:B .【点睛】本题考查了实数的大小比较,熟练掌握实数大小比较的方法以及无理数的估算是解题的关键. 2.(2023春·山东临沂·七年级统考期中)如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A 点,则A 点表示的数是( )A .2π−B .1π−+C .12π−+D .π−【答案】D【分析】先求出圆的周长π,即得到OA π=,然后根据数轴上的点与实数一一对应的关系即可得到点A 表示的数.【详解】∵直径为单位1的圆的周长1ππ=⨯=, ∴OA π=,∴点A 表示的数为π−, 故选:D .【点睛】本题考查了实数与数轴,解题的关键是熟知数轴上的点与实数一一对应.A .3个数B .4个数C .5个数D .6个数【答案】C【分析】通过实数的分母有理化对每项化简,再根据计算器,可得每个数的值,根据有理数的加法求出大于3时,即可得答案.【详解】解:第一个数是10.71=≈,前两项和为1.71;0.56»,前三项和为2.27,10.52==,前四个数的和为2.77;0.44≈,前五个数的和为3.21满足条件;所以可以把这些数加起来,至少要5个数和才大于3,故选:C【点睛】本题属于探究类题型,主要是考察实数的化简和对计算器的使用,难度一般.4.(2023春·贵州黔西·七年级校考期中)有一个数值转换器,原理如图所示,当输入的x的值为81时,输出的y值是()【答案】A【分析】根据流程图进行求解即可.【详解】解:当81x=9=3=,是无理数,输出,∴输出的y故选A.【点睛】本题考查流程图和求一个数的算术平方根.解题的关键是熟练掌握算式平方根的定义,正确的计算.A.3个B.2个C.1个D.0个【答案】B【分析】根据推算过程分别计算并判断.【详解】解:①113⎯⎯⎯→=第一次,即对11进行一次操作后的结果是3,故正确;②2101431 →⎯⎯⎯→===⎯⎯⎯⎯⎯⎯→次第二次第一第三次,即对210进行三次操作后的结果是1,故正确;③正整数n 进行第31=,则a 的最大值为3,3,故b 的最大值为15,15=,故n 的最大值为255,故错误; 正确的为①,②, 故选:B .【点睛】此题考查了无理数的估算大小的应用,主要考查学生理解能力与计算能力. 二、填空题【答案】<【分析】根据与12分母相同,只需比较分子大小即可.【详解】解:12<Q ,011∴<<,12<,故答案为:<.【点睛】本题考查了实数的大小比较,运用估算法找出最接近取值范围的数值进行比较实数大小是解题的关键.【答案】3【分析】根据定义的新运输,将5a =,4b =代入化简即可得出答案.【详解】解:*0)a b a b =+>,∴5*43==,故答案为:3.【点睛】本题主要考查了实数的运算,在解题时要先明确新的运算表示的含义是本题的关键.8.(2023春·河南周口·七年级统考期中)如图,面积为3的正方形ABCD 的顶点A 在数轴上,对应的数为1,以点A 为圆心,AD 长为半径画弧交数轴于点E (点E 位于点A 的左侧),则点E 对应的数为 .【答案】1【分析】根据正方形的面积是3,先求出边长AD 的长度,再在数轴上求出点E 对应的数.【详解】解:23AD =,∴AD =AD =,点E 对应的数为:1)1−=故答案为:1【点睛】本题考查了开方的计算,关键知道正方形的边长是大于0的数.【答案】57=1n ≥的正整数),令7n =求出a 与b 的值,即可求得a b +的值.=1n ≥的正整数),=∴7a =,27150b =+=,则75057a b +=+=. 故答案为:57.1n ≥的正整数)是解本题的关键.(1)当输入的x 值为5时,则输出的y 值为 ;(2)若输出的y 是5且10100x ≤<,则输入的x 的值为 .【答案】27或23−【分析】(1)把5x =(2)根据题意可得:若经过一次转换,若经过两次转换,5=;若经过三次转换,25=,根据10100x ≤<,即可得出结论.【详解】解:(1)输入的x 值为5时,2523x −=−=,∴输出的y(2)根据题意可得:=则25x −=,解得:7x =或3−, ∵10100x ≤<,∴7x =或3−均不符合题意;5,则225x −=,解得:27x =或23−,25=,则2625x −=,解得:627x =或623−, ∵10100x ≤<,∴627x =或623−均不符合题意; 故答案为:27或23−.【点睛】本题主要考查了实数的混合运算,程序图,解题的关键是理解题目所给程序的运算顺序以及实数混合运算的运算顺序和运算法则. 三、解答题(1)当输入的x 值为16时,输出的y 值是______;y【答案】(2)0,1(3)25x =,5x =【分析】(1)根据运算规则即可求解;(2)根据0的算术平方根是0,1的算术平方根是1即可判断;(3)根据运算法则,进行逆运算即可求得无数个满足条件的数.【详解】(1)解:当16x =4=,不是无理数,2=,不是无理数,,是无理数,所以输出的y(2)解:当0x =,1时,始终输不出y 值.因为0的算术平方根是0,1的算术平方根是1,一定是有理数; 故答案为:0,1;(3)解:25的算术平方根为5,5 ∴25x =,5x =都满足要求.【点睛】本题考查了算术平方根的计算和无理数的判断,正确理解给出的运算方法是关键.【答案】23> 【分析】根据作差法即可比较大小.【详解】解:2639==,因为9481>9,90>,所以0 >,所以23>.【点睛】考查了实数大小比较,关键是熟练掌握比较大小的作差法.1591166400−【答案】(1)5,7(2)180【分析】(1)根据算术平方根,即可解答;(2)归纳总结得到一般性规律,利用其规律将每个算术平方根化简,再利用分数的乘法的法则运算即可.【详解】(145==,67=;故答案为:45,67;(21nn=+,15916400−12378792347980=⨯⨯⨯⨯⨯180=.【点睛】本题主要考查了实数的运算,数式规律探究,发现数字运算的规律并熟练应用是解题的关键.(1)7的整数部分是__________(2)若43+的整数部分是x ,小数部分是【答案】(1)221;②1−【分析】(1)根据无理数的估算可得23,由此即可得;(2)①先根据无理数的估算可得12<<,从而可得546<,由此即可得;②先求出5x = 【详解】(1)解:479<<,23∴<<,22,故答案为:22. (2)解:①134<<,12∴<<,546∴<,4∴451y ==,1;②由(2)①可知,4+5x =,∴∵正方形的一个顶点和表示1−的点重合,一条边恰好落在数轴正方向上,其另一个顶点为数轴上的点A,∴点A表示的数为1−【点睛】本题考查了无理数的估算、实数与数轴、算术平方根,熟练掌握无理数的估算是解题关键.【答案】(1)2,5(2)1,2,3(3)3(4)625【分析】(1)先估算和的大小,再由并新定义可得结果;(2)根据定义可知4x<,可得满足题意的x的整数值;(3)根据定义对100进行连续求根整数,可得3次之后结果为1;(4)根据根整数的定义分别计算相加,即可得出答案.【详解】(1)解:][422⎡⎤==⎣⎦;5266<5∴=;故答案为:2,5.(2)解:221124==,,且1x =,为整数, x ∴可以取123,,, 故答案为:1,2,3.(3)解:第一次求根整数:10=,第二次求根整数:3=,第三次求根整数:1=.故答案为:3.(4)解:+++⋯+ 1325374951161371581791910=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+3102136557810513617110=+++++++++625=.【点睛】本题考查了取整函数、估算无理数的大小、阅读能力和猜想能力,准确的估算无理数的大小是解题关键.【答案】(1)13⎛ ⎝,13⎫⎪⎭, (2)116y =(3)1x =【分析】(1)利用对称数对”的规定解答即可;(2)利用对称数对”的定义列出关于y 的等式解答即可;(3)利用对称数对”的定义列出关于x 的等式解答即可.【详解】(1)1139m ==,n =∴数对()9,5的一对“对称数对”是13⎛ ⎝与1.3⎫⎪⎭故答案为:13⎛ ⎝;13⎫⎪⎭. (2)数对()16,y 的一对“对称数”相同,=116y ∴=.(3)数对(),3x 的一个“对称数对”是),1=, 1x ∴=.【点睛】本题主要考查了算术平方根的意义,本题是新定义型,理解新定义的规定并熟练应用是解题的关键.。

七年级初一数学第六章 实数知识归纳总结附解析

七年级初一数学第六章 实数知识归纳总结附解析

七年级初一数学第六章 实数知识归纳总结附解析一、选择题1.下列说法中正确的是( )A .4的算术平方根是±2B .平方根等于本身的数有0、1C .﹣27的立方根是﹣3D .﹣a 一定没有平方根2.圆的面积增加为原来的m 倍,则它的半径是原来的( )A .m 倍B .2m 倍C 倍D .2m 倍3.下列命题中,真命题是( )A .实数包括正有理数、0和无理数B .有理数就是有限小数C .无限小数就是无理数D .无论是无理数还是有理数都是实数4.2-是( )A .负有理数B .正有理数C .自然数D .无理数 5.下列数中,有理数是( )A B .﹣0.6 C .2π D .0.151151115… 6.若2a a a -=,则实数a 在数轴上的对应点一定在( )A .原点左侧B .原点或原点左侧C .原点右侧D .原点或原点右侧7.有四个有理数1,2,3,﹣5,把它们平均分成两组,假设1,3分为一组,2,﹣5分为另一组,规定:A =|1+3|+|2﹣5|,已知,数轴上原点右侧从左到右有两个有理数m 、n ,再取这两个数的相反数,那么,所有A 的和为( )A .4mB .4m +4nC .4nD .4m ﹣4n8.下列各数中,属于无理数的是( )A .227B .3.1415926C .2.010010001D .π3- 9.下列说法中不正确的是( )A .是2的平方根B 2的平方根C .2D .2 10.估计20的算术平方根的大小在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间 二、填空题11.定义一种对正整数n 的“F”运算:①当n 为奇数时,结果为3n+5;②当n 为偶数时,结果为2k n (其中k 是使2kn 为奇数的正整数),并且运算重复进行.例如:取n=26,则:若449n =,则第201次“F”运算的结果是 .12.观察下列各式: 123415⨯⨯⨯+=; 2345111⨯⨯⨯+=; 3456119⨯⨯⨯+=;121314151a ⨯⨯⨯+=,则a =_____.13.对于三个数a ,b ,c ,用M{a ,b ,c}表示这三个数的平均数,用min{a ,b ,c}表示这三个数中最小的数.例如:M{-1,2,3}=123433-++=,min{-1,2,3}=-1,如果M{3,2x +1,4x -1}=min{2,-x +3,5x},那么x =_______.14.如果一个数的平方根和它的立方根相等,则这个数是______. 15.定义新运算a ☆b =3a ﹣2b ,则(﹣2)☆1=_____.16.规定用符号[]x 表示一个实数的整数部分,如[3.65]3,31⎡==⎣,按此规定113⎡=⎣_____. 17.34330035.12=30.3512x =-,则x =_____________.18.下列说法: ()210-10-=;②数轴上的点与实数成一一对应关系;③两条直线被第三条直线所截,同位角相等;④垂直于同一条直线的两条直线互相平行;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,其中正确的个数有 ___________19.任何实数,可用[a]表示不超过a 的最大整数如[4]=4,5=2,现对72进行如下操作:72[72]8[8]2[2]1→=→=→=,这样对72只需进行3次操作后变为1,类似地,对正整数x 只进行3次操作后的结果是1,则x 在最大值是_____. 20.如果36a =b 7的整数部分,那么ab =_______.三、解答题21.数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:39.众人感觉十分惊奇,请华罗庚给大家解读其中的奥秘. 你知道怎样迅速准确的计算出结果吗?请你按下面的问题试一试: ①3310001000000100==,又1000593191000000<<,31059319100∴<<,∴能确定59319的立方根是个两位数.②∵59319的个位数是9,又39729=,∴能确定59319的立方根的个位数是9. ③如果划去59319后面的三位319得到数59,<<34<<,可得3040<<,由此能确定59319的立方根的十位数是3因此59319的立方根是39.(1)现在换一个数195112,按这种方法求立方根,请完成下列填空.①它的立方根是_______位数.②它的立方根的个位数是_______.③它的立方根的十位数是__________.④195112的立方根是________.(2)请直接填写....结果:=________.=________.22.定义:如果2b n =,那么称b 为n 的布谷数,记为()b g n =.例如:因为328=,所以()3(8)23g g ==, 因为1021024=,所以()10(1024)210g g ==. (1)根据布谷数的定义填空:g (2)=________________,g (32)=___________________. (2)布谷数有如下运算性质:若m ,n 为正整数,则()()()=+g mn g m g n ,()()m g g m g n n ⎛⎫=-⎪⎝⎭. 根据运算性质解答下列各题:①已知(7) 2.807g =,求 (14)g 和74g ⎛⎫⎪⎝⎭的值; ②已知(3)g p =.求(18)g 和316g ⎛⎫⎪⎝⎭的值. 23.观察下列等式: ①111122=-⨯, ②1112323=-⨯, ③1113434=-⨯. 将以上三个等式两边分别相加,得1111111113111223342233444++=-+-+-=-=⨯⨯⨯. (1)请写出第④个式子 (2)猜想并写出:1n(n 1)+= . (3)探究并计算:111244668+++⨯⨯⨯ (1100102)⨯. 24.我们规定:a p -=1p a (a ≠0),即a 的负P 次幂等于a 的p 次幂的倒数.例:24-=214 (1)计算:25-=__;22-(﹣)=__;(2)如果2p -=18,那么p =__;如果2a -=116,那么a =__; (3)如果a p -=19,且a 、p 为整数,求满足条件的a 、p 的取值.25.z 是64的方根,求x y z -+的平方根26.对非负实数x “四舍五入”到各位的值记为x <>.即:当n 为非负整数时,如果12n x -≤<1n 2+,则x n <>=;反之,当n 为非负整数时,如果x n <>=,则1122n x n -<+≤. 例如: 00.480<>=<>=,0.64 1.491, 3.5 4.124<>=<>=<>=<>=.(1)计算: 1.87<>= ;= ;(2)①求满足12x <->=的实数x 的取值范围, ②求满足43x x <>=的所有非负实数x 的值; (3)若关于x 的方程21122a x x -<>+-=-有正整数解,求非负实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据立方根与平方根的定义即可求出答案.【详解】解:A 、4的算术平方根是2,故A 错误;B 、平方根等于本身的数是0,故B 错误;C 、(-3)3=-27,所以-27的立方根是-3,故C 正确;D 、﹣a 大于或等于0时,可以有平方根,故D 错误.故选:C.【点睛】本题考查了算术平方根、平方根、立方根的定义,熟记定义是解决此题的关键.注意平方根和算术平方根的异同.2.C解析:C【分析】设面积增加后的半径为R,增加前的半径为r,根据题意列出关系式计算即可.【详解】设面积增加后的半径为R,增加前的半径为r,根据题意得:πR2=mπr2,∴,故选:C.【点睛】此题主要考查了实数的运算,要注意,圆的面积和半径之间是平方关系而非正比例关系.3.D解析:D【分析】直接利用实数以及有理数、无理数的定义分析得出答案.【详解】A、实数包括有理数和无理数,故此命题是假命题;B、有理数就是有限小数或无限循环小数,故此命题是假命题;C、无限不循环小数就是无理数,故此命题是假命题;D、无论是无理数还是有理数都是实数,是真命题.故选:D.【点睛】此题主要考查了命题与定理,正确掌握相关定义是解题关键.4.A解析:A【解析】【分析】由于开不尽方才是无理数,无限不循环小数为无理数,根据有理数和无理数的定义及分类作答.【详解】∵2-是整数,整数是有理数,∴D错误;∵2-小于0,正有理数大于0,自然数不小于0,∴B、C错误;∴2-是负有理数,A正确.故选:A.【点睛】本题考查了有理数和实数的定义及分类,其中开不尽方才是无理数,无限不循环小数为无理数.5.B解析:B【分析】根据有理数的定义选出即可.【详解】解:A是无理数,故选项错误;B、﹣0.6是有理数,故选项正确;C、2π是无理数,故选项错误;D、0.l51151115…是无理数,故选项错误.故选:B.【点睛】本题考查了实数,注意有理数是指有限小数和无限循环小数,包括整数和分数.6.B解析:B【分析】根据非正数的绝对值是它的相反数,可得答案.【详解】解:由a-|a|=2a,得|a|=-a,故a是负数或0,∴实数a在数轴上的对应点在原点或原点左侧故选:B.【点睛】本题考查了实数与数轴,利用了非负数的绝对值,非正数与数轴的关系:非正数位于原点及原点的左边.7.C解析:C【分析】根据题意得到m,n的相反数,分成三种情况⑴m,n;-m,-n ⑵m,-m;n,-n ⑶m,-n;n,-m 分别计算,最后相加即可.【详解】解:依题意,m,n(m<n)的相反数为﹣m,﹣n,则有如下情况:m,n为一组,﹣m,﹣n为一组,有A=|m+n|+|(﹣m)+(﹣n)|=2m+2nm,﹣m为一组,n,﹣n为一组,有A=|m+(﹣m)|+|n+(﹣n)|=0m,﹣n为一组,n,﹣m为一组,有A=|m+(﹣n)|+|n+(﹣m)|=2n﹣2m所以,所有A的和为2m+2n+0+2n﹣2m=4n故选:C.【点睛】本题主要考查了新定义的理解,注意分类讨论是解题的关键.8.D解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A、227是有理数,故选项A不符合题意;B、3.1415926是有理数,故选项B不符合题意;C、2.010010001是有理数,故选项C不符合题意;D、π3是无理数,故选项D题意;故选:D.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.9.C解析:C【详解】解:A. 是2的平方根,正确;是2的平方根,正确;C. 2的平方根是±,故原选项不正确;D. 2,正确.故选C.10.C解析:C【解析】试题分析:∵16<20<25,∴∴4<5.故选C.考点:估算无理数的大小.二、填空题11..【详解】第一次:3×449+5=1352,第二次:,由题意k=3时结果为169;第三次:3×169+5=512,第四次:因为512是2的9次方,所以k=9,计算结果是1;第五次:1×3+5解析:8.【详解】第一次:3×449+5=1352,第二次:13522k,由题意k=3时结果为169;第三次:3×169+5=512,第四次:因为512是2的9次方,所以k=9,计算结果是1;第五次:1×3+5=8;第六次:82k,因为8是2的3次方,所以k=3,计算结果是1,此后计算结果8和1循环.因为201是奇数,所以第201次运算结果是8.故答案为8.12.181【分析】观察各式得出其中的规律,再代入求解即可.【详解】由题意得将代入原式中故答案为:181.【点睛】本题考查了实数运算类的规律题,掌握各式中的规律是解题的关键.解析:181【分析】观察各式得出其中的规律,再代入12n=求解即可.【详解】由题意得()31n n=⨯++将12n=代入原式中12151181a==⨯+=故答案为:181.【点睛】本题考查了实数运算类的规律题,掌握各式中的规律是解题的关键.13.或【解析】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}==2x+1解析:12或13【解析】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}=321413x x+++-=2x+1,∵M{3,2x+1,4x-1}=min{2,-x+3,5x},∴有如下三种情况:①2x+1=2,x=12,此时min{2,-x+3,5x}= min{2,52,52}=2,成立;②2x+1=-x+3,x=23,此时min{2,-x+3,5x}= min{2,73,103}=2,不成立;③2x+1=5x,x=13,此时min{2,-x+3,5x}= min{2,83,53}=53,成立,∴x=12或13,故答案为12或13.【点睛】本题考查了阅读理解题,一元一次方程的应用,分类讨论思想的运用等,解决问题的关键是读懂题意,依题意分情况列出一元一次方程进行求解.14.0【解析】试题解析:平方根和它的立方根相等的数是0.解析:0【解析】试题解析:平方根和它的立方根相等的数是0.15.﹣8【分析】原式利用题中的新定义计算即可得到结果.【详解】解:根据题中的新定义得:(﹣2)☆1=3×(−2)−2×1=−6−2=−8,故答案为−8.【点睛】此题考查了有理数的混合运算,解析:﹣8【分析】原式利用题中的新定义计算即可得到结果.【详解】解:根据题中的新定义得:(﹣2)☆1=3×(−2)−2×1=−6−2=−8,故答案为−8.【点睛】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.16.-3【分析】先确定的范围,再确定的范围,然后根据题意解答即可.【详解】解:∵3<<4∴-3<<-2∴-3故答案为-3.【点睛】本题考查了无理数整数部分的有关计算,确定的范围是解答本解析:-3【分析】1⎡⎣的范围,然后根据题意解答即可.【详解】解:∵34∴-3<1--2∴1⎡=⎣-3故答案为-3.【点睛】17.-0.0433【分析】三次根式变化规律为:三次根号内的式子扩大或缩小1000倍,则得到的结果扩大或缩小10倍,根据规律可得x的值.【详解】从35.12变为-0.3512,缩小了100倍,且添解析:-0.0433【分析】三次根式变化规律为:三次根号内的式子扩大或缩小1000倍,则得到的结果扩大或缩小10倍,根据规律可得x的值.【详解】从35.12变为-0.3512,缩小了100倍,且添加了“-”∴根据规律,三次根式内的式子应该缩小1000000倍,且添加“-”故答案为:-0.0433【点睛】本题考查三次根式的规律,二次根式规律类似:二次根号内的式子扩大或缩小100倍,则得到的结果扩大或缩小10倍.18.2个【分析】①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平行线的性质即可判断;根据平行公理的推论对④进行判断;⑤根据无理数的性质即可判定;⑥根据无理数的定义即解析:2个【分析】①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平行线的性质即可判断;根据平行公理的推论对④进行判断;⑤根据无理数的性质即可判定;⑥根据无理数的定义即可判断.【详解】=,故①错误;①10②数轴上的点与实数成一一对应关系,故说法正确;③两条平行直线被第三条直线所截,同位角相等;故原说法错误;④在同一平面内,垂直于同一条直线的两条直线互相平行,故原说法错误;与的和是0,是有理数,故说法错误;⑥无理数都是无限小数,故说法正确.故正确的是②⑥共2个.故答案为:2个.此题主要考查了有理数、无理数、实数的定义及其关系.有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,分数可以化为有限小数或无限循环小数;无理数是无π也是无理数. 19.255【分析】根据规律可知,最后的取整是1,则操作前的一个数字最大是3,再向前一步推,操作前的最大数为15,再向前一步推,操作前的最大数为255;据此得出答案即可.【详解】解:∵,,,∴只解析:255【分析】根据规律可知,最后的取整是1,则操作前的一个数字最大是3,再向前一步推,操作前的最大数为15,再向前一步推,操作前的最大数为255;据此得出答案即可.【详解】解:∵1=,3=,15=,∴只进行3次操作后变为1的所有正整数中,最大的是255,故答案为:255.【点睛】本题考查了估算无理数大小的应用,主要考查学生的阅读能力和逆推思维能力. 20.12【分析】先根据算术平方根的定义求出a 的值,再根据无理数的估算得出b 的值,然后计算有理数的乘法即可.【详解】,即的整数部分是2,即则故答案为:.【点睛】本题考查了算术平方根的解析:12先根据算术平方根的定义求出a 的值,再根据无理数的估算得出b 的值,然后计算有理数的乘法即可.【详解】6a ==479<<<<23<<∴的整数部分是2,即2b =则6212ab =⨯=故答案为:12.【点睛】本题考查了算术平方根的定义、无理数的估算,根据无理数的估算方法得出b 的值是解题关键.三、解答题21.(1)①两;②8;③5;④58;(2)①24;②56.【分析】(1)①根据例题进行推理得出答案;②根据例题进行推理得出答案;③根据例题进行推理得出答案;④根据②③得出答案;(2)①先判断它的立方根是几位数,再判断个位、十位上的数字,即可得到结论; ②先判断它的立方根是几位数,再判断个位、十位上的数字,即可得到结论.【详解】(1)①31000100==,10001951121000000<< ,∴10100<<,∴能确定195112的立方根是一个两位数,故答案为:两;②∵195112的个位数字是2,又∵38512=,∴能确定195112的个位数字是8,故答案为:8;③如果划去195112后面三位112得到数195,<<∴56<<,可得5060<<,由此能确定195112的立方根的十位数是5,故答案为:5;④根据②③可得:195112的立方根是58,故答案为:58;(2)①13824的立方根是两位数,立方根的个位数是4,十位数是2,∴13824的立方根是24,故答案为:24;②175616的立方根是两位数,立方根的个位数是6,十位数是5,∴175616的立方根是56,故答案为:56.【点睛】此题考查立方根的性质,一个数的立方数的特点,正确理解题意仿照例题解题的能力,掌握一个数的立方数的特点是解题的关键.22.(1)1;5;(2)①3.807,0.807;②12p +;4p -.【分析】(1)根据布谷数的定义把2和32化为底数为2的幂即可得出答案;(2)①根据布谷数的运算性质, g (14)=g (2×7)=g (2)+g (7),7(7)(4)4g g g ⎛⎫=- ⎪⎝⎭,再代入数值可得解; ②根据布谷数的运算性质, 先将两式化为2(18)(2)(3)g g g =+,3()(3)(16)16g g g =-,再代入求解.【详解】解:(1)g (2)=g (21)=1,g (32)=g (25)=5;故答案为1,32;(2)①g (14)=g (2×7)=g (2)+g (7),∵g (7)=2.807,g (2)=1,∴g (14)=3.807;7(7)(4)4g g g ⎛⎫=- ⎪⎝⎭g (4)=g (22)=2, ∴74g ⎛⎫ ⎪⎝⎭=g (7)-g (4)=2.807-2=0.807; 故答案为3.807,0.807;②∵()3g p =.∴22(18)(23)(2)(3)12g g g g p =⨯=+=+; 3()(3)(16)416g g g p =-=-. 【点睛】本题考查有理数的乘方运算,新定义;能够将新定义的运算转化为有理数的乘方运算是解题的关键.23.(1)1114545=-⨯;(2)111(1)1n n n n =-++;(3)2551. 【解析】试题分析:(1)规律:相邻的两个数的积的倒数等于它们的倒数的差,故第四个式子为:1114545=-⨯; (2)根据以上规律直接写出即可;(3)各项提出12之后即可应用(1)中的方法进行计算. 解:(1)答案为:1114545=-⨯; (2)答案为:()11111n n n n =-++; (3)111244668+++⨯⨯⨯ (1100102)⨯ =12×(111122334++⨯⨯⨯+…+15051⨯) =12×5051=2551. 点睛:本题是一道找规律问题.解题的重点要根据所给式子中的数字变化归纳出规律,而难点在于第(3)问中要灵活应用所总结出来的公式.24.(1)125;14;(2)3;±4.(3)当a =9时,p =1;当a =3时,p =2;当a =﹣3时,p =2.【分析】(1)根据题意规定直接计算.(2)将已知条件代入等式中,倒推未知数.(3)根据定义,分别讨论当a 为不同值时,p 的取值即可解答.【详解】解:(1)5﹣2=125;(﹣2)﹣2=14; (2)如果2﹣p =18,那么p =3;如果a ﹣2=116,那么a =±4; (3)由于a 、p 为整数,所以当a =9时,p =1;当a =3时,p =2;当a =﹣3时,p =2.故答案为(1)125;14;(2)3;±4.(3)当a =9时,p =1;当a =3时,p =2;当a =﹣3时,p =2.【点睛】 本题考查新定义,能够理解a 的负P 次幂等于a 的p 次幂的倒数这个规定定义是解题关键.25.【分析】根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列方程求出x 、y 的值,然后求出z 的值,再根据平方根的定义解答.【详解】,∴x+1=0,2-y=0,解得x=-1,y=2,∵z 是64的方根,∴z=8所以,x y z -+=-1-2+8=5,所以,x y z -+的平方根是【点睛】此题考查非负数的性质,相反数,平方根的定义,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.26.(1)2,3 (2)①5722x ≤<②330,,42(3)00.5a ≤< 【分析】(1)根据新定义的运算规则进行计算即可;(2)①根据新定义的运算规则即可求出实数x 的取值范围;②根据新定义的运算规则和43x 为整数,即可求出所有非负实数x 的值; (3)先解方程求得22x a =-<>,再根据方程的解是正整数解,即可求出非负实数a 的取值范围.【详解】(1) 1.87<>=2;=3;(2)①∵12x <->= ∴1121222x --<+≤解得5722x ≤<; ②∵43x x <>=∴41413232x x x -<+≤ 解得3322x -<≤ ∵43x 为整数 ∴333,0,,442x =- 故所有非负实数x 的值有330,,42; (3)21122a x x -<>+-=- 1241a x x -<>+-=-22x a =-<>∵方程的解为正整数∴21a -<>=或2①当21a -<>=时,2x =是方程的增根,舍去 ②当22a -<>=时,00.5a ≤<.【点睛】本题考查了新定义下的运算问题,掌握新定义下的运算规则是解题的关键.。

人教版数学七年级下册第六章实数所有知识点总结和常考题提高难题压轴题练习(含答案解析)

人教版数学七年级下册第六章实数所有知识点总结和常考题提高难题压轴题练习(含答案解析)

人教版数学七年级下册第六章实数常考题提高难题压轴题练习(含答案解析).doc:一.选择题(共13小题)1.9的平方根为()A.3 B.﹣3 C.±3 D.2.的算术平方根是()A.2 B.±2 C.D.±3.下列各组数中,互为相反数的一组是()A.﹣2与B.﹣2与C.﹣2与﹣D.|﹣2|与24.如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()A.a+b>0 B.ab>0 C.a﹣b>0 D.|a|﹣|b|>05.估算﹣2的值()A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间6.估计的值()A.在3到4之间B.在4到5之间C.在5到6之间D.在6到7之间7.估计+3的值()A.在5和6之间B.在6和7之间C.在7和8之间D.在8和9之间8.一个正方形的面积是15,估计它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间9.如图,在数轴上表示实数的点可能是()A.点P B.点Q C.点M D.点N10.数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C所表示的数是()A.﹣1 B.1﹣C.2﹣D.﹣211.下列说法不正确的是()A.1的平方根是±1 B.﹣1的立方根是﹣1C.是2的平方根D.﹣3是的平方根12.下列各数中,3.14159,,0.131131113…(相邻两个3之间1的个数逐次加1个),﹣π,,,无理数的个数有()A.1个 B.2个 C.3个 D.4个13.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.﹣a﹣c>﹣b﹣c二.填空题(共13小题)14.的平方根是.15.﹣8的立方根是.16.的算术平方根是.17.﹣()2=.18.已知a、b为两个连续的整数,且,则a+b=.19.已知一个正数的平方根是3x﹣2和5x+6,则这个数是.20.若实数a、b满足|a+2|,则=.21.比较大小:﹣3﹣2.22.=.23.5﹣的小数部分是.24.比较大小:(填“>”“<”“=”).25.若x,y为实数,且,则(x+y)2010的值为.26.若将三个数表示在数轴上,其中能被如图所示的墨迹覆盖的数是.三.解答题(共14小题)27.计算:(﹣2)2+(﹣3)×2﹣.28.计算:(﹣2)2+|﹣1|﹣.29.求值:+()2+(﹣1)2015.30.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵,即,∴的整数部分为2,小数部分为.请解答:(1)如果的小数部分为a,的整数部分为b,求的值;(2)已知:,其中x是整数,且0<y<1,求x﹣y的相反数.31.已知:x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.32.已知,a、b互为倒数,c、d互为相反数,求的值.33.设2+的整数部分和小数部分分别是x、y,试求x、y的值与x﹣1的算术平方根.34.计算:(﹣2)2﹣(3﹣5)﹣+2×(﹣3)35.(1)有这样一个问题:与下列哪些数相乘,结果是有理数?A、;B、;C、;D、;E、0,问题的答案是(只需填字母):;(2)如果一个数与相乘的结果是有理数,则这个数的一般形式是什么(用代数式表示).36.求值:已知y=x2﹣5,且y的算术平方根是2,求x的值.37.画一条数轴,把﹣1,,2各数和它们的相反数在数轴上表示出来,并比较它们的大小,用“<”号连接.38.求x的值:(1)4x2=25;(2)(x﹣0.7)3=0.027.39.已知2a﹣1的平方根是±3,3a+b﹣1的算术平方根是4,求12a+2b的立方根.40.已知M=是m+3的算术平方根,N=是n﹣2的立方根,试求M﹣N的值.(含答案解析)参考答案与试题解析一.选择题(共13小题)1.9的平方根为()A.3 B.﹣3 C.±3 D.【分析】根据平方根的定义求解即可,注意一个正数的平方根有两个.【解答】解:9的平方根有:=±3.故选C.【点评】此题考查了平方根的知识,属于基础题,解答本题关键是掌握一个正数的平方根有两个,且互为相反数.2.的算术平方根是()A.2 B.±2 C.D.±【分析】先求得的值,再继续求所求数的算术平方根即可.【解答】解:∵=2,而2的算术平方根是,∴的算术平方根是,故选:C.【点评】此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.3.下列各组数中,互为相反数的一组是()A.﹣2与B.﹣2与C.﹣2与﹣D.|﹣2|与2【分析】根据相反数的概念、性质及根式的性质化简即可判定选择项.【解答】解:A、=2,﹣2与2互为相反数,故选项正确;B、=﹣2,﹣2与﹣2不互为相反数,故选项错误;C、﹣2与不互为相反数,故选项错误;D、|﹣2|=2,2与2不互为相反数,故选项错误.故选A.【点评】本题考查的是相反数的概念,只有符号不同的两个数叫互为相反数.如果两数互为相反数,它们的和为0.4.如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()A.a+b>0 B.ab>0 C.a﹣b>0 D.|a|﹣|b|>0【分析】本题要先观察a,b在数轴上的位置,得b<﹣1<0<a<1,然后对四个选项逐一分析.【解答】解:A、∵b<﹣1<0<a<1,∴|b|>|a|,∴a+b<0,故选项A错误;B、∵b<﹣1<0<a<1,∴ab<0,故选项B错误;C、∵b<﹣1<0<a<1,∴a﹣b>0,故选项C正确;D、∵b<﹣1<0<a<1,∴|a|﹣|b|<0,故选项D错误.故选:C.【点评】本题考查了实数与数轴的对应关系,数轴上右边的数总是大于左边的数.5估算﹣2的值()A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间【分析】先估计的整数部分,然后即可判断﹣2的近似值.【解答】解:∵5<<6,∴3<﹣2<4.故选C.【点评】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.6.估计的值()A.在3到4之间B.在4到5之间C.在5到6之间D.在6到7之间【分析】应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的范围.【解答】解:∵5<<6,∴在5到6之间.故选:C.【点评】此题主要考查了估算无理数的那就,“夹逼法”是估算的一般方法,也是常用方法.7.估计+3的值()A.在5和6之间B.在6和7之间C.在7和8之间D.在8和9之间【分析】先估计的整数部分,然后即可判断+3的近似值.【解答】解:∵42=16,52=25,所以,所以+3在7到8之间.故选:C.【点评】此题主要考查了估算无理数的大小的能力,理解无理数性质,估算其数值.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.8.一个正方形的面积是15,估计它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间【分析】先根据正方形的面积是15计算出其边长,在估算出该数的大小即可.【解答】解:∵一个正方形的面积是15,∴该正方形的边长为,∵9<15<16,∴3<<4.故选B.【点评】本题考查的是估算无理数的大小及正方形的性质,根据题意估算出的取值范围是解答此题的关键.9.如图,在数轴上表示实数的点可能是()A.点P B.点Q C.点M D.点N【分析】先对进行估算,再确定是在哪两个相邻的整数之间,然后确定对应的点即可解决问题.【解答】解:∵≈3.87,∴3<<4,∴对应的点是M.故选C【点评】本题考查实数与数轴上的点的对应关系,应先看这个无理数在哪两个有理数之间,进而求解.10数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C所表示的数是()A.﹣1 B.1﹣C.2﹣D.﹣2【分析】首先根据数轴上表示1,的对应点分别为A,B可以求出线段AB的长度,然后由AB=AC利用两点间的距离公式便可解答.【解答】解:∵数轴上表示1,的对应点分别为A,B,∴AB=﹣1,∵点B关于点A的对称点为C,∴AC=AB.∴点C的坐标为:1﹣(﹣1)=2﹣.故选:C.【点评】本题考查的知识点为:求数轴上两点间的距离就让右边的数减去左边的数.知道两点间的距离,求较小的数,就用较大的数减去两点间的距离.11.下列说法不正确的是()A.1的平方根是±1 B.﹣1的立方根是﹣1C.是2的平方根D.﹣3是的平方根【分析】A、根据平方根的定义即可判定;B、根据立方根的定义即可判定;C、根据平方根的定义即可判定;D、根据平方根的定义即可判定.【解答】解:A、1的平方根是±1,故A选项正确;B、﹣1的立方根是﹣1,故B选项正确;C、是2的平方根,故C选项正确;D、=3,3的平方根是±,故D选项错误.故选:D.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.下列各数中,3.14159,,0.131131113…(相邻两个3之间1的个数逐次加1个),﹣π,,,无理数的个数有()A.1个 B.2个 C.3个 D.4个【分析】无限不循环小数为无理数,由此可得出无理数的个数.【解答】解:由定义可知无理数有:0.131131113…,﹣π,共两个.故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.13.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.﹣a﹣c>﹣b﹣c【分析】先根据各点在数轴上的位置比较出其大小,再对各选项进行分析即可.【解答】解:∵由图可知,a<b<0<c,∴A、ac<bc,故A选项错误;B、∵a<b,∴a﹣b<0,∴|a﹣b|=b﹣a,故B选项错误;C、∵a<b<0,∴﹣a>﹣b,故C选项错误;D、∵﹣a>﹣b,c>0,∴﹣a﹣c>﹣b﹣c,故D选项正确.故选:D.【点评】本题考查的是实数与数轴,熟知数轴上各点与实数是一一对应关系是解答此题的关键.二.填空题(共13小题)14.的平方根是±2.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:的平方根是±2.故答案为:±2【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.15.﹣8的立方根是﹣2.【分析】利用立方根的定义即可求解.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案为:﹣2.【点评】本题主要考查了平方根和立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a叫做被开方数,3叫做根指数.16.的算术平方根是3.【分析】首先根据算术平方根的定义求出的值,然后即可求出其算术平方根.【解答】解:∵=9,又∵(±3)2=9,∴9的平方根是±3,∴9的算术平方根是3.即的算术平方根是3.故答案为:3.【点评】此题主要考查了算术平方根的定义,解题的关键是知道,实际上这个题是求9的算术平方根是3.注意这里的双重概念.17.﹣()2=﹣3.【分析】直接根据平方的定义求解即可.【解答】解:∵()2=3,∴﹣()2=﹣3.【点评】本题考查了数的平方运算,是基本的计算能力.18已知a、b为两个连续的整数,且,则a+b=11.【分析】根据无理数的性质,得出接近无理数的整数,即可得出a,b的值,即可得出答案.【解答】解:∵,a、b为两个连续的整数,∴<<,∴a=5,b=6,∴a+b=11.故答案为:11.【点评】此题主要考查了无理数的大小,得出比较无理数的方法是解决问题的关键.19.已知一个正数的平方根是3x﹣2和5x+6,则这个数是.【分析】由于一个非负数的平方根有2个,它们互为相反数.依此列出方程求解即可.【解答】解:根据题意可知:3x﹣2+5x+6=0,解得x=﹣,所以3x﹣2=﹣,5x+6=,∴()2=故答案为:.【点评】本题主要考查了平方根的逆运算,平时注意训练逆向思维.20.若实数a、b满足|a+2|,则=1.【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【解答】解:根据题意得:,解得:,则原式==1.故答案是:1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.21.比较大小:﹣3<﹣2.【分析】先把两数平方,再根据实数比较大小的方法即可比较大小.【解答】解:∵(3)2=18,(2)2=12,∴﹣3<﹣2.故答案为:<.【点评】此题主要考查了实数的大小的比较,实数大小比较法则:(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小.22.=3.【分析】33=27,根据立方根的定义即可求出结果.【解答】解:∵33=27,∴;故答案为:3.【点评】本题考查了立方根的定义;掌握开立方和立方互为逆运算是解题的关键.23.5﹣的小数部分是2﹣.【分析】根据1<<2,不等式的性质3,可得﹣的取值范围,再根据不等式的性质1,可得答案.【解答】解:由1<<2,得﹣2<﹣<﹣1.不等式的两边都加5,得5﹣2<5﹣<5﹣1,即3<5﹣<4,5﹣的小数部分是(5﹣)﹣3=2﹣,故答案为:2﹣.【点评】本题考查了估算无理数的大小,利用了不等式的性质:不等式的两边都乘以或除以同一个负数,不等号的方向改变,不等式的两边都加同一个数,不等号的方向不变.24.比较大小:>(填“>”“<”“=”).【分析】因为分母相同所以比较分子的大小即可,可以估算的整数部分,然后根据整数部分即可解决问题.【解答】解:∵﹣1>1,∴>.故填空结果为:>.【点评】此题主要考查了实数的大小的比较,比较两个实数的大小,可以采用作差法、取近似值法、比较n次方的方法等.当分母相同时比较分子的大小即可.25.若x,y为实数,且,则(x+y)2010的值为1.【分析】先根据非负数的性质列出方程组,求出x、y的值,然后代入(x+y)2010中求解即可.【解答】解:由题意,得:x+2=0,y﹣3=0,解得x=﹣2,y=3;因此(x+y)2010=1.故答案为:1.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.26.若将三个数表示在数轴上,其中能被如图所示的墨迹覆盖的数是.【分析】首先利用估算的方法分别得到﹣,,前后的整数(即它们分别在那两个整数之间),从而可判断出被覆盖的数.【解答】解:∵﹣2<﹣<﹣1,2<<3,3<<4,且墨迹覆盖的范围是1﹣3,∴能被墨迹覆盖的数是.【点评】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力.三.解答题(共14小题)27.计算:(﹣2)2+(﹣3)×2﹣.【分析】原式第一项利用乘方的意义化简,第二项利用异号两数相乘的法则计算,最后一项利用平方根定义化简,计算即可得到结果.【解答】解:原式=4﹣6﹣3=﹣5.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.28.计算:(﹣2)2+|﹣1|﹣.【分析】原式第一项利用乘方的意义化简,第二项利用绝对值的代数意义化简,最后一项利用立方根定义计算即可得到结果.【解答】解:原式=4+﹣1﹣3=.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.29.求值:+()2+(﹣1)2015.【分析】原式第一项利用算术平方根定义计算,第二项利用乘方的意义化简,第三项利用乘方的意义化简,计算即可得到结果.【解答】解:原式=+﹣1=﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.30.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵,即,∴的整数部分为2,小数部分为.请解答:(1)如果的小数部分为a,的整数部分为b,求的值;(2)已知:,其中x是整数,且0<y<1,求x﹣y的相反数.【分析】(1)先估计、的近似值,然后判断的小数部分a,的整数部分b,最后将a、b的值代入并求值;(2)先估计的近似值,然后判断的整数部分并求得x、y的值,最后求x ﹣y的相反数.【解答】解:∵4<5<9,∴2<<3,∴的小数部分a=﹣2 ①∵9<13<16,∴3<<4,∴的整数部分为b=3 ②把①②代入,得﹣2+3=1,即.(2)∵1<3<9,∴1<<3,∴的整数部分是1、小数部分是,∴10+=10+1+(=11+(),又∵,∴11+()=x+y,又∵x是整数,且0<y<1,∴x=11,y=;∴x﹣y=11﹣()=12﹣,∴x﹣y的相反数y﹣x=﹣(x﹣y)=.【点评】此题主要考查了估算无理数的大小,注意首先估算无理数的值,再根据不等式的性质进行计算.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.31.已知:x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.【分析】根据平方根、立方根的定义和已知条件可知x﹣2=4,2x+y+7=27,列方程解出x、y,最后代入代数式求解即可.【解答】解:∵x﹣2的平方根是±2,∴x﹣2=4,∴x=6,∵2x+y+7的立方根是3∴2x+y+7=27把x的值代入解得:y=8,∴x2+y2的算术平方根为10.【点评】本题主要考查了平方根、立方根的概念,难易程度适中.32.已知,a、b互为倒数,c、d互为相反数,求的值.【分析】由a、b互为倒数可得ab=1,由c、d互为相反数可得c+d=0,然后将以上两个代数式整体代入所求代数式求值即可.【解答】解:依题意得,ab=1,c+d=0;∴==﹣1+0+1=0.【点评】本题主要考查实数的运算,解题关键是运用整体代入法求代数式的值,涉及到倒数、相反数的定义,要求学生灵活掌握各知识点.33.设2+的整数部分和小数部分分别是x、y,试求x、y的值与x﹣1的算术平方根.【分析】先找到介于哪两个整数之间,从而找到整数部分,小数部分让原数减去整数部分,然后代入求值即可.【解答】解:因为4<6<9,所以2<<3,即的整数部分是2,所以2+的整数部分是4,小数部分是2+﹣4=﹣2,即x=4,y=﹣2,所以==.【点评】此题主要考查了无理数的估算能力,解题关键是估算出整数部分后,然后即可得到小数部分.34.计算:(﹣2)2﹣(3﹣5)﹣+2×(﹣3)【分析】根据实数的运算顺序计算即可求解.注意实数混合运算的顺序:先算乘方、开方,再算乘除,最后算加减,遇有括号,先算括号内的.【解答】解:原式=4﹣(﹣2)﹣2﹣6=﹣2.【点评】此题主要考查了实数的运算,解题要注意实数的混合运算顺序.35.(1)有这样一个问题:与下列哪些数相乘,结果是有理数?A、;B、;C、;D、;E、0,问题的答案是(只需填字母):A、D、E;(2)如果一个数与相乘的结果是有理数,则这个数的一般形式是什么(用代数式表示).【分析】(1)根据实数的乘法法则和有理数、无理数的定义即可求解;(2)根据(1)的结果可以得到规律.【解答】解:(1)A、D、E;(2)设这个数为x,则x•=a(a为有理数),所以x=(a为有理数).【点评】此题主要考查了实数的运算,也考查了有理数、无理数的定义,文字阅读比较多,解题时要注意审题,正确理解题意.36.求值:已知y=x2﹣5,且y的算术平方根是2,求x的值.【分析】由于被开方数应等于它算术平方根的平方.那么由此可求得y,然后即可求出x.【解答】解:∵y的算术平方根是2,∴∴y=4;又∵y=x2﹣5∴4=x2﹣5∴x2=9∴x=±3.【点评】此题主要考查了平方根的性质:被开方数应等于它算术平方根的平方.正数的平方根有2个.37.画一条数轴,把﹣1,,2各数和它们的相反数在数轴上表示出来,并比较它们的大小,用“<”号连接.【分析】根据相反数的定义写出各数的相反数,再画出数轴即可解决问题.【解答】解:﹣1的相反数是1;的相反数是﹣;2的相反数是﹣2;∴﹣2<﹣<﹣<<<2.【点评】此题主要考查了实数的大小的比较,比较简单,解答此题的关键是熟知相反数的概念,只有符号不同的两个数叫互为相反数.38.求x的值:(1)4x2=25;(2)(x﹣0.7)3=0.027.【分析】(1)可用直接开平方法进行解答;(2)可用直接开立方法进行解答.【解答】解:(1)x2==,∴x=±.(2)(x﹣0.7)3=0.027=(0.3)3,∴x﹣0.7=0.3,故x=1.【点评】本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,0的立方根是0.39.已知2a﹣1的平方根是±3,3a+b﹣1的算术平方根是4,求12a+2b的立方根.【分析】分别根据2a﹣1的平方根是±3,3a+b﹣1的算术平方根是4,求出a、b的值,再求出12a+2b的值,求出其立方根即可.【解答】解:∵2a﹣1的平方根是±3,∴2a﹣1=(±3)2,解得a=5;∵3a+b﹣1的算术平方根是4,∴3a+b﹣1=16,把a=5代入得,3×5+b﹣1=16,解得b=2,∴12a+2b=12×5+4=64,∴=4,即12a+2b的立方根是4.【点评】本题考查的是立方根、平方根及算术平方根的定义,根据题意列出关于a、b的方程,求出a、b的值是解答此题的关键.40.已知M=是m+3的算术平方根,N=是n﹣2的立方根,试求M﹣N的值.【分析】根据算术平方根及立方根的定义,求出M、N的值,代入可得出M﹣N 的平方根.【解答】解:因为M=是m+3的算术平方根,N=是n﹣2的立方根,所以可得:m﹣4=2,2m﹣4n+3=3,解得:m=6,n=3,把m=6,n=3代入m+3=9,n﹣2=1,所以可得M=3,N=1,把M=3,N=1代入M﹣N=3﹣1=2.【点评】本题考查了立方根、平方根及算术平方根的定义,属于基础题,求出M、N的值是解答本题的关键.。

部编数学七年级下册专题04《实数》解答题重点题型分类(解析版)含答案

部编数学七年级下册专题04《实数》解答题重点题型分类(解析版)含答案

专题04《实数》解答题重点题型分类专题简介:本份资料专攻《实数》中“化简求值题型”、“利用平方根与立方根的性质解方程题型”、“计算解答题型”、“数轴比较大小题型”、“整数部分与小数部分题型”、“创新题型”重点题型;适用于老师给学生作复习培训时使用或者考前刷题时使用。

考点1:化简求值题型方法点拨:1.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应(数形结合)。

2.数的相反数是-;一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.3.有理数的运算法则和运算律在实数范围内仍然成立.实数混合运算的运算顺序:先乘方、开方、再乘除,最后算加减.同级运算按从左到右顺序进行,有括号先算括号里.4.绝对值、平方、算术平方根的双重非负性的应用。

1.若0,0a ab <<,化简a b a --【答案】【分析】由0,0a ab <<判断b >0,再判断绝对值里的数的正负,由绝对值的定义去掉绝对值,再计算即可.【详解】解:∵0,0a ab <<,∴b >0,∴0,0a b b a --<->∴a b a --((a b b a =-----a b b a =-+++=【点睛】本题考查二次根式的化简,正确的对含绝对值号的代数式的化简是解题的关键.分类的标准应按正实数,负实数,零分类考虑.掌握好分类标准,不断加强分类讨论的意识.2.先化简后求值:()()()()222232x y y x y x y x y -----+-,其中x ,y满足30x y +=.【答案】xy -,1-【分析】直接利用整式的混合运算法则以及绝对值、算术平方根的性质得出x ,y 的值,进a a而计算得出答案.【详解】解:原式2222244432x xy y x y xy y =-+-++-xy =-,30x y +=Q ,\3402350x y x y +-=ìí--=î,解得:313x y =ìïí=ïî,\原式1313=-´=-.【点睛】本题主要考查了整式的混合运算,绝对值的非负性,算术平方根,解题的关键是正确掌握相关运算法则.3.先化简,再求值:[(3x +y )(3x ﹣y )﹣2x (y +2x )+(y ﹣2x )2]÷(﹣3x ),其中x 、y满足1y =.【答案】﹣3x +2y ,﹣26【分析】原式中括号利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并后利用多项式除以单项式法则计算得到最简结果,利用非负数的性质求出x 与y 的值,代入计算即可求出值.【详解】解:原式=(9x 2﹣y 2﹣2xy ﹣4x 2+y 2﹣4xy +4x 2)÷(﹣3x )=(9x 2﹣6xy )÷(﹣3x )=﹣3x +2y ,∵1y =,∴x ﹣8≥0且8﹣x ≥0,解得:x =8,∴11y ==-,∴原式=﹣3×8+2×(﹣1)=﹣24﹣2=﹣26.【点睛】此题考查了整式的混合运算﹣化简求值,以及非负数的性质,熟练掌握相关运算法则是解本题的关键.4.已知多项式A =x 2+2xy ﹣3y 2,B =2x 2﹣3xy +y 2,先化简3A +2B ;再求当x ,y 为有理数且满足x 2y +2y =﹣+17时,3A +2B 的值.【答案】2277,63x y -【分析】根据多项式的加减运算进行化简,进而根据x ,y 为有理数求得,x y 的值,代入求解即可.【详解】Q A =x 2+2xy ﹣3y 2,B =2x 2﹣3xy +y 2,\()()222232323223A B x xy y x xy y +=+-++-2222369462x xy y x xy y =+-+-+2277x y =-()227x y =-Q x 2+2y =﹣,x ,y 为有理数,22x y \+==-,4,5y x \=-=±2225169x y \-=-=\原式7963=´=【点睛】本题考查了整式的加减化简求值,实数的性质,求得,x y 的值是解题的关键.5.(1)化简:a 2+(5a 2﹣2a )﹣2(a 2﹣3a );(2)先化简,再求值:14(﹣4x 2+2x ﹣8y )﹣(﹣x ﹣2y ),其中x =23,y =2018.【答案】(1)244a a +;(2)232x x -+,59【分析】(1)去括号后合并同类项即可;(2)利用乘法分配律化简,进而合并同类项,再把已知数据代入得出答案.【详解】解:(1)a 2+(5a 2﹣2a )﹣2(a 2﹣3a ),2225226a a a a a =+--+ ,244a a =+ ;(2)14(﹣4x 2+2x ﹣8y )﹣(﹣x ﹣2y ),()()21114282444x x y x y =´-+´+´-++ ,21222x x y x y =-+-++ ,232x x =-+ ,当x =23,y =2018时,原式2232323æö=-+´ç÷èø ,419=-+ ,59= .【点睛】此题主要考查了整式的化简求值和实数运算,正确掌握整式的混合运算法则是解题关键.6.已知数a a【答案】2【分析】直接利用数轴得出a 的取值范围,进而化简得出答案.【详解】解:由数轴得:0.50a -<<,a =121a a a-+++=2.【点睛】本题主要考查了实数的运算与数轴,算术平方根的非负性,化简绝对值等知识点,正确化简各式是解本题的关键.7.实数a 、b 、c 在数轴上的对应点位置如图所示,化简:【答案】3b【详解】解:原式=|-c |+|a -b |+a +b -|b -c |,=c +(-a +b )+a +b -(-b +c ),=c -a +b +a +b +b -c ,=3b .【点睛】此题主要考查了实数的运算,关键是掌握绝对值的性质和二次根式的性质.8.若一个正数的两个平方根分别为1a -,27a +,请先化简再求值:()()222123a a a a -+--+.【答案】25a +,9【分析】根据正数的两个平方根互为相反数可求得a 的值,再对原式去括号合并同类项化简后,代入a 的值求解即可.【详解】解:∵一个正数的两个平方根分别为1a -,27a +,∴(a -1)+(2a +7)=0,解得a =-2.()()222123a a a a -+--+2222223a a a a =-+-++25a =+,当a =-2时,原式()2259=-+=.【点睛】本题主要考查了平方根的性质,整式的加减求值.利用正数的两个平方根互为相反数列等式求值是解题的关键.9.我们可以把根号外的数移到根号内,从而达到化简的目的.例如:(1)请仿照上例化简.①②;(2)请化简【答案】(1);②2)【分析】(1)①根据题意仿照求解即可;②根据题意仿照求解即可;(2)先根据被开方数的非负性判断a 的正负,然后根据题意求解即可.【详解】解:(1)①;②===(2)∵∴10a -³,∴0a <∴==【点睛】本题主要考查了实数的运算,解题的关键在于能够熟练掌握相关知识进行求解.10.数形结合是一种重要的数学方法,如在化简a 时,当a 在数轴上位于原点的右侧时,a a =;当a 在数轴上位于原点时,0a =;当a 在数轴上位于原点的左侧时,a a =-.当a ,b ,c 三个数在数轴上的位置如图所示,试用这种方法解决下列问题,(1)当1a =时,求aa =______,当2b =-时,求bb =______.(2)请根据a ,b ,c 三个数在数轴上的位置,求abca b c ++的值.(3)请根据a ,b ,c 三个数在数轴上的位置,化简:a c c a b b c ++++--.【答案】(1)1;1- ;(2)1-;(3)c -.【分析】(1)当1a =时,点a 在原点右边,由题意可知,此时a a =,代入a a 即可求值;当2b =- 时,点b 在原点左边,由题意可知,此时b b =-,代入bb 即可求值;(2)由图中获取a b c 、、三点的位置信息后,结合题意即可求原式的值;(3)由图获取a b c 、、的正、负信息和三个数绝对值的大小后,就可确定原式中绝对值符号里面式子的值的符号,就可化简原式.【详解】解:(1)当1a =时,111a a ==;当2b =-时,212b b ==--,故答案是:1,-1;(2)由数轴可得:0b < ,0c < ,0a > ,∴abca b c ++=1111a b c a b c--++=--=-;(3)由数轴可知:0b c a <<<且c a b <<,∴000a c a b b c +>+<-<,,,∴a c c a b b c++++--()[()][()]a c c a b b c =++-+-+---a c c ab b c=+---+-c =-.【点睛】本题考查了数轴,解决本题的关键是熟记正数的绝对值是它本身,负数的绝对值是它的相反数.在解第3小问这类题时,需注意以下两点:(1)根据在数轴上表示的数中,左边的总小于右边的,确定好所涉及数的大小关系及每个数的正、负信息(涉及异号两数相加的还要获取它们绝对值的大小关系);(2)根据有理数加、减法法则确定好需化简式子中绝对值符号里的式子的正、负,然后再根据绝对值的代数意义将绝对值符号去掉.考点2:利用平方根与立方根的性质解方程题型方法点拨:解方程时应把平方部分看成一个整体,先根据等式基本性质把方程化为平方部分等什么。

实数必刷常考题七年级数学下学期期中期末满分必刷常考压轴题人教版

实数必刷常考题七年级数学下学期期中期末满分必刷常考压轴题人教版

专题02 实数必刷常考题选择题必练1.4的平方根是( )A.±2B.2C.﹣2D.162.能与数轴上的点一一对应的是( )A.整数B.有理数C.无理数D.实数3.下列各组数中,互为相反数的一组是( )A.﹣2与B.﹣2与C.﹣2与﹣D.|﹣2|与24.如图,在数轴上表示实数的点可能是( )A.点P B.点Q C.点M D.点N5.下列各数中,3.14159,,0.131131113…(相邻两个3之间1的个数逐次加1个),﹣π,,,无理数的个数有( )A.1个B.2个C.3个D.4个6.设n为正整数,且n<<n+1,则n的值为( )A.5B.6C.7D.87.有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④是17的平方根.其中正确的有( )A.0个B.1个C.2个D.3个8.已知|a|=5,=7,且|a+b|=a+b,则a﹣b的值为( )A.2或12B.2或﹣12C.﹣2或12D.﹣2或﹣12 9.估算﹣2的值( )A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间10.若a2=4,b2=9,且ab<0,则a﹣b的值为( )A.﹣2B.±5C.5D.﹣511.若0<a<1,则a,,a2从小到大排列正确的是( )A.a2<a<B.a<<a2C.<a<a2D.a<a2<12.已知一个表面积为12dm2的正方体,则这个正方体的棱长为( )A.1dm B.dm C.dm D.3dm 13.如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是( )A.a+b>0B.ab>0C.a﹣b>0D.|a|﹣|b|>0填空题必练14.16的平方根是.15.的平方根是.16.的算术平方根是.17.化简:||= .18.比较大小:.(填“>”、“=”、“<”).19.比较大小:(填“>”“<”“=”).20.若实数a、b满足|a+2|,则= .21.已知一个正数的平方根是3x﹣2和5x+6,则这个数是 .23.若|a﹣2|++(c﹣4)2=0,则a﹣b+c= .24.若的整数部分是a,小数部分是b,则a﹣b= .解答题必练25.计算:|﹣3|﹣×+(﹣2)2.26.计算:﹣12+(﹣2)3×﹣×(﹣)27.计算.28.求下列各式中x的值:①(x﹣2)2=25;②﹣8(1﹣x)3=27.29.解方程:(1)3(x﹣2)2=27 (2)2(x﹣1)3+16=0.30.已知2a+1的平方根是±3,5a+2b﹣2的算术平方根是4,求3a﹣4b的平方根.31.已知5a+2的立方根是3,3a+b﹣1的算术平方根是4,c是的整数部分.(1)求a,b,c的值;(2)求3a﹣b+c的平方根.32.已知4a+7的立方根是3,2a+2b+2的算术平方根是4.(1)求a,b的值;(2)求6a+3b的平方根.33.已知一个正数的两个平方根是m+3和2m﹣15.(1)求这个正数是多少?(2)的平方根又是多少?34.如图1,这是由8个同样大小的立方体组成的魔方,体积为64.(1)求出这个魔方的棱长.(2)图中阴影部分是一个正方形ABCD,求出阴影部分的面积及其边长.(3)把正方形ABCD放到数轴上,如图2,使得A与﹣1重合,那么D在数轴上表示的数为 .专题02 实数必刷常考题选择题必练1.4的平方根是( )A.±2B.2C.﹣2D.16【答案】A【解答】解:∵(±2 )2=4,∴4的平方根是±2.故选:A.2.能与数轴上的点一一对应的是( )A.整数B.有理数C.无理数D.实数【答案】D【解答】解:根据实数与数轴上的点是一一对应关系.故选:D.3.下列各组数中,互为相反数的一组是( )A.﹣2与B.﹣2与C.﹣2与﹣D.|﹣2|与2【答案】A【解答】解:A、=2,﹣2与2互为相反数,故选项正确;B、=﹣2,﹣2与﹣2不互为相反数,故选项错误;C、﹣2与不互为相反数,故选项错误;D、|﹣2|=2,2与2不互为相反数,故选项错误.故选:A.4.如图,在数轴上表示实数的点可能是( )A.点P B.点Q C.点M D.点N【答案】C【解答】解:∵9<15<16,∴3<<4,∴对应的点是M.故选:C.5.下列各数中,3.14159,,0.131131113…(相邻两个3之间1的个数逐次加1个),﹣π,,,无理数的个数有( )A.1个B.2个C.3个D.4个【答案】B【解答】解:由定义可知无理数有:0.131131113…,﹣π,共两个.故选:B.6.设n为正整数,且n<<n+1,则n的值为( )A.5B.6C.7D.8【答案】D【解答】解:∵<<,∴8<<9,∵n<<n+1,∴n=8,故选:D.7.有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④是17的平方根.其中正确的有( )A.0个B.1个C.2个D.3个【答案】B【解答】解:①实数和数轴上的点一一对应,故①说法错误;②不带根号的数不一定是有理数,如π,故②说法错误;③负数有立方根,故③说法错误;④∵17的平方根±,∴是17的一个平方根.故④说法正确.故选:B.8.已知|a|=5,=7,且|a+b|=a+b,则a﹣b的值为( )A.2或12B.2或﹣12C.﹣2或12D.﹣2或﹣12【答案】D【解答】解:∵|a|=5,∴a=±5,∵=7,∴b=±7,∵|a+b|=a+b,∴a+b>0,所以当a=5时,b=7时,a﹣b=5﹣7=﹣2,当a=﹣5时,b=7时,a﹣b=﹣5﹣7=﹣12,所以a﹣b的值为﹣2或﹣12.故选:D.9.估算﹣2的值( )A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间【答案】C【解答】解:∵5<<6,∴3<﹣2<4.故选:C.10.若a2=4,b2=9,且ab<0,则a﹣b的值为( )A.﹣2B.±5C.5D.﹣5【答案】B【解答】解:∵a2=4,b2=9,∴a=±2,b=±3,∵ab<0,∴a=2,则b=﹣3,a=﹣2,b=3,则a﹣b的值为:2﹣(﹣3)=5或﹣2﹣3=﹣5.故选:B.11.若0<a<1,则a,,a2从小到大排列正确的是( )A.a2<a<B.a<<a2C.<a<a2D.a<a2<【答案】A【解答】解:∵0<a<1,∴设a=,=2,a2=,∵<<2,∴a2<a<.故选:A.12.已知一个表面积为12dm2的正方体,则这个正方体的棱长为( )A.1dm B.dm C.dm D.3dm【答案】B【解答】解:因为正方体的表面积公式:s=6a2,可得:6a2=12,解得:a=.故选:B13.如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是( )A.a+b>0B.ab>0C.a﹣b>0D.|a|﹣|b|>0【答案】C【解答】解:A、∵b<﹣1<0<a<1,∴|b|>|a|,∴a+b<0,故选项A错误;B、∵b<﹣1<0<a<1,∴ab<0,故选项B错误;C、∵b<﹣1<0<a<1,∴a﹣b>0,故选项C正确;D、∵b<﹣1<0<a<1,∴|a|﹣|b|<0,故选项D错误.故选:C.填空题必练14.16的平方根是.【答案】±4【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.15.的平方根是.【答案】±2【解答】解:∵=4∴的平方根是±2.故答案为:±216.的算术平方根是.【答案】2【解答】解:∵=4,∴的算术平方根是=2.故答案为:2.17.化简:||= .【答案】【解答】解:∵<0∴||=2﹣.故答案为:2﹣.18.比较大小:.(填“>”、“=”、“<”).【答案】<【解答】解:∵=∴∴故答案为:<.19.比较大小:(填“>”“<”“=”).【答案】>【解答】解:∵﹣1>1,∴>.故填空结果为:>.20.若实数a、b满足|a+2|,则= .【答案】1【解答】解:根据题意得:,解得:,则原式==1.故答案是:1.21.已知一个正数的平方根是3x﹣2和5x+6,则这个数是 .【答案】【解答】解:根据题意可知:3x﹣2+5x+6=0,解得x=﹣,所以3x﹣2=﹣,5x+6=,∴()2=故答案为:.23.若|a﹣2|++(c﹣4)2=0,则a﹣b+c= .【答案】3【解答】解:∵|a﹣2|++(c﹣4)2=0,∴a﹣2=0,b﹣3=0,c﹣4=0,∴a=2,b=3,c=4.∴a﹣b+c=2﹣3+4=3.故答案为:324.若的整数部分是a,小数部分是b,则a﹣b= .【答案】1【解答】解:因为,所以a=1,b=.故===1.故答案为:1.解答题必练25.计算:|﹣3|﹣×+(﹣2)2.【答案】2【解答】解:原式=3﹣4+×(﹣2)+4=3﹣4﹣1+4=2.26.计算:﹣12+(﹣2)3×﹣×(﹣)【答案】-3【解答】解:原式=﹣1﹣8×+3×(﹣)=﹣1﹣1﹣1=﹣3.27.计算.【答案】-5【解答】解:原式=﹣1+﹣5=1﹣1﹣5=﹣5.28.求下列各式中x的值:①(x﹣2)2=25;②﹣8(1﹣x)3=27.【答案】①x1=7,x2=﹣3②x=【解答】解:①x﹣2=±5∴x﹣2=5或x﹣2=﹣5∴x1=7,x2=﹣3;②(1﹣x)3=﹣∴1﹣x=﹣∴x=.29.解方程:(1)3(x﹣2)2=27 (2)2(x﹣1)3+16=0.【答案】(1)x=5或﹣1 (2)x=﹣1.【解答】解:(1)3(x﹣2)2=27,∴(x﹣2)2=9,∴x﹣2=±3,∴x=5或﹣1.(2)2(x﹣1)3+16=0.2(x﹣1)3=﹣16,(x﹣1)3=﹣8,x﹣1=﹣2,∴x=﹣1.30.已知2a+1的平方根是±3,5a+2b﹣2的算术平方根是4,求3a﹣4b的平方根.【答案】±4【解答】解:∵2a+1的平方根是±3,∴2a+1=9,解得a=4,∵5a+2b﹣2的算术平方根是4,∴5a+2b﹣2=16,解得b=﹣1,∴3a﹣4b=3×4﹣4×(﹣1)=12+4=16,∴3a﹣4b的平方根是±4.31.已知5a+2的立方根是3,3a+b﹣1的算术平方根是4,c是的整数部分.(1)求a,b,c的值;(2)求3a﹣b+c的平方根.【答案】(1)a=5,b=2,c=3.(2)±4【解答】解:(1)∵5a+2的立方根是3,3a+b﹣1的算术平方根是4,∴5a+2=27,3a+b﹣1=16,∴a=5,b=2,∵c是的整数部分,∴c=3.(2)将a=5,b=2,c=3代入得:3a﹣b+c=16,∴3a﹣b+c的平方根是±4.32.已知4a+7的立方根是3,2a+2b+2的算术平方根是4.(1)求a,b的值;(2)求6a+3b的平方根.【答案】(1)a=5,b=2;(2)±6【解答】解:(1)∵4a+7的立方根是3,2a+2b+2的算术平方根是4,∴4a+7=27,2a+2b+2=16,∴a=5,b=2;(2)由(1)知a=5,b=2,∴6a+3b=6×5+3×2=36,∴6a+3b的平方根为±6.33.已知一个正数的两个平方根是m+3和2m﹣15.(1)求这个正数是多少?(2)的平方根又是多少?【答案】(1)49 (2)±.【解答】解:(1)∵m+3和2m﹣15是同一个正数的平方根,则这两个数互为相反数.即:(m+3)+(2m﹣15)=0解得m=4.则这个正数是(m+3)2=49.(2)=3,则它的平方根是±.34.如图1,这是由8个同样大小的立方体组成的魔方,体积为64.(1)求出这个魔方的棱长.(2)图中阴影部分是一个正方形ABCD,求出阴影部分的面积及其边长.(3)把正方形ABCD放到数轴上,如图2,使得A与﹣1重合,那么D在数轴上表示的数为 .【答案】(1)4 (2)阴影部分的面积是8,边长是2.(3)﹣1﹣2.【解答】解:(1).答:这个魔方的棱长为4.(2)∵魔方的棱长为4,∴小立方体的棱长为2,∴阴影部分面积为:×2×2×4=8,边长为:=2.答:阴影部分的面积是8,边长是2.(3)D在数轴上表示的数为﹣1﹣2.故答案为:﹣1﹣2.。

(完整版)七年级下册实数知识点总结及常见题,推荐文档

(完整版)七年级下册实数知识点总结及常见题,推荐文档

D.81
2、若 a 2 =25, b =3,则 a+b=
2.下列计算正确的是( )
3、已知一个正数的两个平方根分别是 2a﹣2 和 a﹣4,则 a 的值是
A. 4 =±2
B. (9)2 81 =9
4、 3 4 = ____________
C. 36 6
D. 92 9
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙龙课反倒是龙卷风前一天 2
6.非负数的重要性质:若几个非负数之和等于 0,则每一个非负数都为 0(此性质
的相反数,根据它的算术平方根可以立即写出它的负平方根。(3)0 的算术平方
应用很广,务必掌握)。
根与平方根同为 0。 5. 如果 x3=a,则 x 叫做 a 的立方根,记作“ a” (a 称为被开方数)。 6. 正数有一个正的立方根;0 的立方根是 0;负数有一个负的立方根。
【典型例题】 1.下列语句中,正确的是( )
7. 求一个数的平方根(立方根)的运算叫开平方(开立方)。 8. 立方根与平方根的区别:
A.一个实数的平方根有两个,它们互为相反数
一个数只有一个立方根,并且符号与这个数一致;只有正数和 0 有平方根,负数
B.负数没有立方根
没有平方根,正数的平方根有 2 个,并且互为相反数,0 的平方根只有一个且为 0. C.一个实数的立方根不是正数就是负数
七年级下册第六章实数
建议收藏下载本文,以便随时学习! 3、若 x 1 (3x y 1)2 0,求 5x y2 的值。
4、若 a、b、c 满足 a 3 (5 b)2 c 1 0 ,求代数式 b c 的值。 a
y 2x x 2 25
5、已知
0 ,求 7(x+y)-20 的立方根。

(完整版)七年级实数知识点、典型例题及练习题单元复习

(完整版)七年级实数知识点、典型例题及练习题单元复习

和 1 的大小
2
t a 2 的画法:画边长为 1 的正方形的对角线 ing a 3
ethin 练习:
om 一、比较下列各组数的大小:
for s ① 2 和 3

4 15 和 3
5
re good ④ 7 和-2.45
⑤ 72与1 33
1.当 x= _________时, 3 5x 2 有意义; 2.若 x 4 16 ,则 x=_________;若 3n 81,则 n= ________。 3.若 3 x 2 ,则 x= __________; 若 3 64 x ,则 x =__________;
(1)-a2 一定是负数吗?-a 一定是正数吗?
(2)大家都知道 是一个无理数,那么 -1 在哪两个整数之间?
(3) 15 的整数部分为 a,小数部分为 b,则 a=
, b=
(4)判断下面的语句对不对?并说明判断的理由。 ① 无限小数都是无理数; ② 无理数都是无限小数; ③ 带根号的数都是无理数; ④ 有理数都是实数,实数不都是有理数; ⑤ 实数都是无理数,无理数都是实数; ⑥ 实数的绝对值都是非负实数; ⑦ 有理数都可以表示成分数的形式。
for so 例 2.若 y x 1 1 x 1,求 x,y 的值。
re good 例 3.若 3 2a 1 和 3 1 3b 互为相反数,求 a 的值。 b
ing a 跟踪练习: be 1. y 2 x x 2 x2 5 ,求 y x 的平方根和算术平方根。
their 3.若 x 1 | y 2 | 0 ,求 x+y 的值。
g a 根, a 叫做 a 的负平方根。
ein ⑵一个正数有两个平方根: a (根指数2省略)

七年级下册实数知识点概括及常见题目

七年级下册实数知识点概括及常见题目

七年级下册实数知识点概括及常见题目
一、知识点概括
1.实数的概念
实数是包括有理数和无理数的数的集合,它们可以表示在数轴
上的位置。

实数具有加法、减法、乘法和除法等运算规则。

2.有理数
有理数是可以表示为两个整数之比的数,包括正整数、负整数、零、正分数和负分数。

有理数之间可以进行加减乘除运算,还可以
比较大小。

3.无理数
无理数是不能表示为两个整数之比的数,它们的十进制表示是
无限不循环的小数。

无理数包括根号2、根号3等。

4.实数的分布
实数可以在数轴上表示出来,正数在右侧,负数在左侧。

实数
之间可以进行大小比较。

二、常见题目
以下是七年级下册实数部分常见的题目类型:
1.判断题:给出一个数,判断它是有理数还是无理数。

2.计算运算结果:计算两个实数的和、差、积、商。

3.比较大小:给出两个实数,判断它们的大小关系。

4.补全数轴:给出数轴上的几个点,补全数轴上其它的实数点。

5.排序实数:给出几个实数,按大小顺序排列它们。

6.选择题:根据题目描述选择符合条件的实数。

以上是七年级下册实数知识点的概括及常见题目类型。

通过熟
练掌握这些知识点和题目类型,可以提高对实数的理解和应用能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精品文档初一实数所有知识点总结和常考题知识点:一、实数的概念及分类1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数整数包括正整数、零、负整数。

正整数又叫自然数。

正整数、零、负整数、正分数、负分数统称为有理数。

2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:3等;1)开方开不尽的数,如(2,7π(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;3(3)有特定结构的数,如0.1010010001…等;二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b互为相反数,则有a+b=0,a=—b,反之亦成立。

2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数如果a与b互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

4. 实数与数轴上点的关系:每一个无理数都可以用数轴上的一个点表示出来,数轴上的点有些表示有理数,有些表示无理数,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数。

三、平方根、算数平方根和立方根1、平方根(1)平方根的定义:如果一个数x的平方等于a,那么这个数x就叫做a的平方根.即:2x?a,那么x叫做如果a的平方根.精品文档.精品文档被开方数叫做开平方.开平方运算的2()开平方的定义:求一个数的平方根的运算,非负数才有意义。

必须是??33的平方等于9,9(3)平方与开平方互为逆运算:的平方根是;正数进行开平方运算有两个结果(4)一个正数有两个平方根,即运算负数没有平方根,即负数不能进行开平方一个aa的表示,算术平方根;的(5)符号:正数a正的平方根也是可用a a平方根可用表示-.a正数的负的2a??xax?—> <(6) a x的平方是a是x的平方x a的平方根是x是a的平方根2、算术平方根2ax?,那么这即1()算术平方根的定义:一般地,如果一个正数x的平方等于a,a,读作“根a的算术平方根记为个正数x叫做a的算术平方根.被开方数.a叫做号a”,0.的算术平方根是规定:02ax?ax?中,规定。

也就是,在等式(x≥0)a a,(2)有限数;的结果有两种情况:当a是完全平方数时是一个a时,无限不循环小数。

a当不是一个完全平方数是一个扩大;时,它的算术平方根也(3)当被开方数扩大时与它的算术平方根也缩小。

当被开方数缩小)夹值法及估计一个(无理)数的大小(42a?xax? > )(x≥0) <—(5 ax的平方是a是x的平方xa的算术平方根是x是a的算术平方根)正数和零的算术平方根都只有一个,零的算术平方根是零。

6(a?0aa?()02a?aa?的双重非负性:;注意aaa?0)(<0-(7)平方根和算术平方根两者既有区别又有联系:区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的正平方根就是它的算术平方根,而正数的负平方根是它的算术平方根的相反数。

3、立方根aa的立方根这个数叫做(也叫做三x(1)立方根的定义:如果一个数的立方等于,3xaax?的立方根)次方根,即如果那么,叫做精品文档.精品文档3aa a,(2)一个数读作:“三次根号的立方根,,记作”a。

叫根指数,不能省略其中,若省略表示平方叫被开方数,3立方根;正数有一个正的(3)一个有一个立方根,是它本身;0 立方根有一个负的;一个负数唯一的立方根。

任何数都有关系,求一个数的立方根,就可以利用这种互逆关)利用开立方和立方互为逆运算(4求负数的立方根,可以先求出这个负数的绝对值的立方根,再取其相反系,检验其正确性,?? 330??a??aa数,即。

33ax?a?x—> (5)< a 的立方是x的立方xa是x的立方根a a的立方根是x是33a??a?,这说明三次根号内的负号可以移到根号外面。

)(6四、科学记数法和近似数1、有效数字一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。

2、科学记数法n10??a10??a1是整数,这种记数法叫做科学记数的形式,其中把一个数写做n,法。

五、实数大小的比较、数轴1 。

(画数轴时,要注意三要素缺一不可)规定了原点、正方向和单位长度的直线叫做数轴并能灵活运用。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,、实数大小比较的几种常用方法2 1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。

(b是实数,2)求差比较:设a、(a?b?0?a?b,a?b?0?a?b,a?b?0?a?baaa?1?a?b;?1?a?bb1??a?;;、b是两正实数,a求商比较法:3()设bbba?b?a?b。

是两负实数,则ba4()绝对值比较法:设、22b?a?ba? 5()平方法:设。

是两负实数,则ba、六、实数的运算精品文档.精品文档a?b?b?a、加法交换律1(a?b)?c?a?(b?c) 2、加法结合律ab?ba3、乘法交换律(ab)c?a(bc)4、乘法结合律a(b?c)?ab?ac5、乘法对加法的分配律6、实数混合运算时,对于运算顺序有什么规定?实数混合运算时,将运算分为三级,加减为一级运算,乘除为二能为运算,乘方为三级运算。

同级运算时,从左到右依次进行;不是同级的混合运算,先算乘方,再算乘除,而后才算加减;运算中如有括号时,先做括号内的运算,按小括号、中括号、大括号的顺序进行。

7、有理数除法运算法则就什么?两有理数除法运算法则可用两种方式来表述:第一,除以一个不等于零的数,等于乘以这个数的倒数;第二,两数相除,同号得正,异号得负,并把绝对值相除。

零除以任何一个不为零的数,商都是零。

8、什么叫有理数的乘方?幂?底数?指数?相同因数相乘积的运算叫乘方,乘方的结果叫幂,相同因数的个数叫指数,这个因数叫n底数。

记作: a9、有理数乘方运算的法则是什么?负数的奇次幂是负数,负数的偶次幂是正数。

正数的任何次幂都是正数。

零的任何正整数幂都是零。

10、加括号和去括号时各项的符号的变化规律是什么?去(加)括号时如果括号外的因数是正数,去(加)括号后式子各项的符号与原括号内的式子相应各项的符号相同;括号外的因数是负数去(加)括号后式子各项的符号与原括号内式子相应各项的符号相反。

常考题:一.选择题(共13小题)1.9的平方根为().3 D.﹣3 C.±A.3 B.的算术平方根是()2.±D.2 B.±2 C .A3.下列各组数中,互为相反数的一组是()与﹣D.|﹣2|22与C.﹣与2A.﹣2B与.﹣4.如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()A.a+b>0 B.ab>0 C.a﹣b>0 D.|a|﹣|b|>0.估算﹣2的值(5 )A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间.估计的值(6)A.在3到4之间B.在4到5之间C.在5到6之间D.在6到7之间精品文档.精品文档.估计+3的值()7A.在5和6之间B.在6和7之间C.在7和8之间D.在8和9之间8.一个正方形的面积是15,估计它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间.如图,在数轴上表示实数的点可能是()9A.点P B.点Q C.点M D.点N,的对应点分别为A,B,点B关于点A10.数轴上表示1的对称点为C,则点C所表示的数是().﹣D22﹣1 B.1 ﹣CA..﹣11.下列说法不正确的是()A.1的平方根是±1 B.﹣1的立方根是﹣1是3的平方根的平方根DC.﹣.是2,,0.131131113…(相邻两个33.14159之间1的个数12.下列各数中,,无理数的个数有(,﹣π,个),)逐次加1A.1个B.2个C.3个D.4个13.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.﹣a﹣c>﹣b﹣c小题)13二.填空题(共.14的平方根是..15.﹣8的立方根是.16.的算术平方根是2.= )17 .﹣(,则a+b= 18.已知a、b为两个连续的整数,且.19.已知一个正数的平方根是3x﹣2和5x+6,则这个数是.,则= b满足.|a+2|a20.若实数、.213﹣.比较大小:﹣2.22.=.523.﹣的小数部分是.比较大小:(填“>”“<”“=”).242010为实数,且y.的值为x+y,则()x25.若,精品文档.精品文档.若将三个数表示在数轴上,其中能被如图所示的墨迹覆盖26.的数是三.解答题(共14小题)2﹣.)×)2+(﹣327.计算:(﹣22.﹣+|﹣1|28.计算:(﹣2)22015.)(﹣()1+29.求值:+30.阅读下面的文字,解答问题:是无理数,而无理数是无限不循环小数,因此的小数部分我们不大家知道来表示的小数部分,你同意小明的表示可能全部地写出来,于是小明用方法吗?因为的整数部分是1事实上,小明的表示方法是有道理,,将这个数减去其整数部分,差就是小数部分.,即又例如:∵,,小数部分为2.∴的整数部分为,求b的值;,的整数部分为请解答:(1)如果的小数部分为a)已知:,其中x是整数,且0<y<1,求x﹣y(2的相反数.22的算术平方根.,求x+y的平方根是±2,2x+y+7的立方根是3x31.已知:﹣2互为相反数,求的值.c、d.已知,a、b互为倒数,322+的整数部分和小数部分分别是x、y,试求x、y的值与33.设x﹣1的算术平方根.2)﹣+2×(﹣33﹣534.计算:(﹣2))﹣()有这样一个问题:1与下列哪些数相乘,结果是有理数?35.(、;E、0,D问题的答案是(只需填字母):A 、;B;、C;、;)如果一个数与相乘的结果是有理数,则这个数的一般形式是什么(用代(2数式表示).2﹣5,且y的算术平方根是y=x2,求x的值.36.求值:已知,,237.画一条数轴,把﹣各数和它们的相反数在数轴上表示出来,并1比较它们的大小,用“<”号连接.38.求x的值:2=254x;(1)3=0.027.0.7)﹣(2)(x39.已知2a﹣1的平方根是±3,3a+b﹣1的算术平方根是4,求12a+2b的立方根.N=是n﹣m+3.已知40M=是的算术平方根,2的立方根,试求精品文档.精品文档M﹣N的值.精品文档.精品文档初一实数所有知识点总结和常考题提高难题压轴题练习(含答案解析)参考答案与试题解析一.选择题(共13小题)1.(2017?武汉模拟)9的平方根为()..±3 DB.﹣3 CA.3【分析】根据平方根的定义求解即可,注意一个正数的平方根有两个.的平方根有:=±93.【解答】解:故选C.【点评】此题考查了平方根的知识,属于基础题,解答本题关键是掌握一个正数的平方根有两个,且互为相反数.日照)的算术平方根是()2.(2015?.±D..±.2 B2 C A先求得的值,再继续求所求数的算术平方根即可.【分析】解:∵=2【解答】,的算术平方根是,而2的算术平方根是,∴故选:C.【点评】此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.3.(2002?杭州)下列各组数中,互为相反数的一组是()与﹣D.|.﹣2﹣2|与.﹣A22与B.﹣2与C【分析】根据相反数的概念、性质及根式的性质化简即可判定选择项.、=2,﹣2解:A与2互为相反数,故选项正确;【解答】=B﹣、2,﹣2与﹣2不互为相反数,故选项错误;与、﹣2不互为相反数,故选项错误;CD、|﹣2|=2,2与2不互为相反数,故选项错误.故选A.【点评】本题考查的是相反数的概念,只有符号不同的两个数叫互为相反数.如果两数互为相反数,它们的和为0.4.(2009?江苏)如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()精品文档.精品文档0>|a|﹣|b|ba﹣>0 D.A.a+b>0 B.ab>0 C.,然后对四1<a<在数轴上的位置,得b<﹣1<0【分析】本题要先观察a,b 个选项逐一分析.错误;A<0,故选项|b|>|a|,∴a+b、∵Ab<﹣1<0<a<1,∴【解答】解:错误;B0,故选项1a<,∴ab<B、∵b<﹣1<0<正确;C0,故选项,∴a﹣b>、∵b<﹣1<0<a<1C错误.D0,故选项|a|﹣|b|<<﹣1<0<a<1,∴bD、∵.C故选:数轴上右边的数总是大于左边的数.本题考查了实数与数轴的对应关系,【点评】)新疆)估算﹣220155.(?的值(之间到5 D.在4 C.在3到4之间之间A.在1到2 B.在2到3之间的近似值.﹣先估计2【分析】的整数部分,然后即可判断,<56<【解答】解:∵.<4<﹣∴32.C故选估算应现实生活中经常需要估算,【点评】此题主要考查了无理数的估算能力,是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.)营口)估计的值(6.(2014?之间76到6之间D.在.在4到5之间C.在5到之间A.在3到4 B然后判断出所求应先找到所求的无理数在哪两个和它接近的整数之间,【分析】的无理数的范围.,<6【解答】解:∵5<之间.到6∴在5.故选:C也此题主要考查了估算无理数的那就,“夹逼法”是估算的一般方法,【点评】是常用方法.)+3沈阳)估计的值(7.(2006?之间98和之间D.在8和B.在67之间C.在7和5A.在和6之间的近似值.【分析】的整数部分,然后即可判断先估计+322,5=16,【解答】解:∵4=25,所以之间.87到所以+3在.故选:C估算其数此题主要考查了估算无理数的大小的能力,理解无理数性质,【点评】“夹逼法”是估估算应是我们具备的数学能力,值.现实生活中经常需要估算,算的一般方法,也是常用方法.)15?(8.2012义乌市)一个正方形的面积是,估计它的边长大小在(精品文档.精品文档A.2与3之间B.3与4之间C.4与5之间D.5与6之间【分析】先根据正方形的面积是15计算出其边长,在估算出该数的大小即可.【解答】解:∵一个正方形的面积是15,∴该正方形的边长为,∵9<15<16,<<4∴3.故选B.本题考查的是估算无理数的大小及正方形的性质,根据题意估算出【点评】的取值范围是解答此题的关键.遵义)如图,在数轴上表示实数的点可能是(2008?)9.(A.点P B.点Q C.点M D.点N进行估算,再确定先对【分析】是在哪两个相邻的整数之间,然后确定对应的点即可解决问题.解:∵≈3.87【解答】,<<34,∴∴对应的点是M.故选C【点评】本题考查实数与数轴上的点的对应关系,应先看这个无理数在哪两个有理数之间,进而求解.,的对应点分别为A,B,点B关于点A?10.(2006西岗区)数轴上表示1的对称点为C,则点C所表示的数是().﹣2﹣1B.D﹣C.A2.﹣1,的对应点分别为A,B可以求出线段【分析】首先根据数轴上表示1AB的长度,然后由AB=AC利用两点间的距离公式便可解答.,的对应点分别为A,B【解答】解:∵数轴上表示1,AB=﹣∴1,∵点B关于点A的对称点为C,∴AC=AB.﹣=2.﹣(﹣1的坐标为:∴点C1)故选:C.【点评】本题考查的知识点为:求数轴上两点间的距离就让右边的数减去左边的数.知道两点间的距离,求较小的数,就用较大的数减去两点间的距离.11.(2012秋?安新县期末)下列说法不正确的是()A.1的平方根是±1 B.﹣1的立方根是﹣1是的平方根D .﹣3的平方根是C.2【分析】A、根据平方根的定义即可判定;精品文档.精品文档B、根据立方根的定义即可判定;C、根据平方根的定义即可判定;D、根据平方根的定义即可判定.【解答】解:A、1的平方根是±1,故A选项正确;B、﹣1的立方根是﹣1,故B选项正确;、是2的平方根,故CC选项正确;的平方根是±,故D,、=33D选项错误.故选:D.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.,,0.13安顺)下列各数中,3.141591131113…(相邻两个312.(2013?,无理数的个数有(1个),﹣π,,)之间1的个数逐次加A.1个B.2个C.3个D.4个【分析】无限不循环小数为无理数,由此可得出无理数的个数.【解答】解:由定义可知无理数有:0.131131113…,﹣π,共两个.故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.13.(2015?枣庄)实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.﹣a﹣c>﹣b﹣c【分析】先根据各点在数轴上的位置比较出其大小,再对各选项进行分析即可.【解答】解:∵由图可知,a<b<0<c,∴A、ac<bc,故A选项错误;B、∵a<b,∴a﹣b<0,∴|a﹣b|=b﹣a,故B选项错误;C、∵a<b<0,∴﹣a>﹣b,故C选项错误;D、∵﹣a>﹣b,c>0,∴﹣a﹣c>﹣b﹣c,故D选项正确.故选:D.【点评】本题考查的是实数与数轴,熟知数轴上各点与实数是一一对应关系是解答此题的关键.二.填空题(共13小题)庆阳)的平方根是±2 2015.14(?.精品文档.精品文档2=a,,使得x根据平方根的定义,求数a的平方根,也就是求一个数x【分析】则x就是a的平方根,由此即可解决问题.解:的平方根是±2.【解答】故答案为:±2【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.15.(2015?茂名)﹣8的立方根是﹣2 .【分析】利用立方根的定义即可求解.3=﹣82),【解答】解:∵(﹣∴﹣8的立方根是﹣2.故答案为:﹣2.【点评】本题主要考查了平方根和立方根的概念.如果一个数x的立方等于a,3=a),那么这个数xx就叫做a的立方根,也叫做三次方根.读a即x的三次方等于(作“三次根号a”其中,a叫做被开方数,3叫做根指数.峨边县模拟)的算术平方根是3 .16.(2009?首先根据算术平方根的定义求出的值,【分析】然后即可求出其算术平方根.解:∵=9【解答】,2=9,3)又∵(±∴9的平方根是±3,∴9的算术平方根是3.即的算术平方根是3.故答案为:3.此题主要考查了算术平方根的定义,解题的关键是知道【点评】,实际上这个题是求9的算术平方根是3.注意这里的双重概念.2= ﹣)江苏)﹣(3 17.(2009?.【分析】直接根据平方的定义求解即可.2=3,解:∵()【解答】2=﹣3.∴﹣()【点评】本题考查了数的平方运算,是基本的计算能力.且,则a+b= 11 .a(2012?枣庄)已知、b为两个连续的整数,18.【分析】根据无理数的性质,得出接近无理数的整数,即可得出a,b的值,即可得出答案.解:∵,a、【解答】b为两个连续的整数,<,∴<∴a=5,b=6,∴a+b=11.故答案为:11.【点评】此题主要考查了无理数的大小,得出比较无理数的方法是解决问题的关精品文档.精品文档键.19.(2009?凉山州)已知一个正数的平方根是3x﹣2和5x+6,则这个数是.【分析】由于一个非负数的平方根有2个,它们互为相反数.依此列出方程求解即可.﹣,2+5x+6=0,解得x=【解答】解:根据题意可知:3x﹣5x+6=,﹣,所以3x﹣2=2=∴()故答案为:.【点评】本题主要考查了平方根的逆运算,平时注意训练逆向思维.,则= 1 b满足.|a+2|a20.(2013?东莞市)若实数、【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.解:根据题意得:【解答】,,解得:==1.则原式故答案是:1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.2.<2014?射阳县三模)比较大小:﹣﹣3 21.(【分析】先把两数平方,再根据实数比较大小的方法即可比较大小.22=12),=18,解:∵(【解答】(3)22<﹣∴﹣.3故答案为:<.【点评】此题主要考查了实数的大小的比较,实数大小比较法则:(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小.南平)= 3 2013?.(22.3=27,根据立方根的定义即可求出结果.【分析】33=27,【解答】解:∵3∴;精品文档.精品文档.3故答案为:掌握开立方和立方互为逆运算是解题的关键.本题考查了立方根的定义;【点评】的小数部分是2﹣.23.(2014?辽阳)5﹣根据1<<2,不等式的性质3【分析】,可得﹣的取值范围,再根据不等式的性质1,可得答案.【解答】解:由1<<2,得﹣2<﹣<﹣1.不等式的两边都加5,得5﹣2<5﹣<5﹣1,即3<5﹣<4,﹣的小数部分是(5﹣)﹣53=2﹣,故答案为:2﹣.【点评】本题考查了估算无理数的大小,利用了不等式的性质:不等式的两边都乘以或除以同一个负数,不等号的方向改变,不等式的两边都加同一个数,不等号的方向不变.较大小:>级校自(主招生)比填.24(2014?岳麓区.“>”“<”“=”)的整数部分,然因为分母相同所以比较分子的大小即可,可以估算【分析】后根据整数部分即可解决问题.,【解答】解:∵﹣1>1.∴>故填空结果为:>.【点评】此题主要考查了实数的大小的比较,比较两个实数的大小,可以采用作差法、取近似值法、比较n次方的方法等.当分母相同时比较分子的大小即可.20102010?成都)若x,y为实数,且,25.(则(x+y)的值为1 .2010【分析】先根据非负数的性质列出方程组,求出x、y的值,然后代入(x+y)中求解即可.【解答】解:由题意,得:x+2=0,y﹣3=0,解得x=﹣2,y=3;2010=1.x+y)因此(故答案为:1.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.26.(2010?河南)若将三个数表示在数轴上,其中能被如图所.示的墨迹覆盖的数是精品文档.精品文档,前后的整数(即它们分【分析】,首先利用估算的方法分别得到﹣别在那两个整数之间),从而可判断出被覆盖的数.<<4,且墨迹覆盖的范围<32,<﹣<﹣1,23<【解答】解:∵﹣是1﹣3,∴能被墨迹覆盖的数是.【点评】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力.三.解答题(共14小题)2﹣2.+(﹣32014?钦州)计算:(﹣2))×27.(【分析】原式第一项利用乘方的意义化简,第二项利用异号两数相乘的法则计算,最后一项利用平方根定义化简,计算即可得到结果.【解答】解:原式=4﹣6﹣3=﹣5.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.2﹣.+|(﹣?乌鲁木齐)计算:2)﹣1|28.(2015【分析】原式第一项利用乘方的意义化简,第二项利用绝对值的代数意义化简,最后一项利用立方根定义计算即可得到结果.3=.﹣1【解答】解:原式﹣=4+【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22015.)(﹣()129.(2015?+大庆)求值:+【分析】原式第一项利用算术平方根定义计算,第二项利用乘方的意义化简,第三项利用乘方的意义化简,计算即可得到结果.﹣1=﹣=.+【解答】解:原式【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.30.(2014春?嘉祥县期末)阅读下面的文字,解答问题:是无理数,而无理数是无限不循环小数,因此大家知道的小数部分我们不来表示可能全部地写出来,于是小明用的小数部分,你同意小明的表示方法吗?因为的整数部分是1小明的表示方法是有道理,,将这个数减去其整事实上,数部分,差就是小数部分.,即,又例如:∵,小数部分为.∴的整数部分为2,求b的整数部分为的小数部分为a的值;1请解答:(,)如果)已知:,其中x是整数,且0<y<1,求x﹣y的相反数.(2,a)先估计的整数、的小数部分(【分析】1的近似值,然后判断的值代入并求值;a,最后将、b部分b的近似值,然后判断的整数部分并求得x、y的值,最后求2()先估计x﹣y的相反数.精品文档.精品文档【解答】解:∵4<5<9,<<3,∴2a=﹣2 ①∴的小数部分∵9<13<16,<<4,∴3∴的整数部分为b=3 ②把①②代入,得,即=1﹣.2+3(2)∵1<3<9,<<3∴1,、小数部分是1,∴的整数部分是(),(∴=11+10+=10+1+又∵,()=x+y∴11+,又∵x是整数,且0<y<1,y=;∴x=11,﹣,﹣()∴x﹣y=11=12=.y)﹣x=﹣(x﹣∴x﹣y的相反数y【点评】此题主要考查了估算无理数的大小,注意首先估算无理数的值,再根据不等式的性质进行计算.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.31.(2015秋?偃师市期中)已知:x﹣2的平方根是±2,2x+y+7的立方根是3,22的算术平方根.+y求x【分析】根据平方根、立方根的定义和已知条件可知x﹣2=4,2x+y+7=27,列方程解出x、y,最后代入代数式求解即可.【解答】解:∵x﹣2的平方根是±2,∴x﹣2=4,∴x=6,∵2x+y+7的立方根是3∴2x+y+7=27把x的值代入解得:y=8,22的算术平方根为10∴x.+y【点评】本题主要考查了平方根、立方根的概念,难易程度适中.32.(2013秋?滨湖区校级期末)已知,a、b互为倒数,c、d互为相反数,求的值.【分析】由a、b互为倒数可得ab=1,由c、d互为相反数可得c+d=0,然后将以上两个代数式整体代入所求代数式求值即可.【解答】解:依题意得,ab=1,c+d=0;∴精品文档.精品文档=1+0+1﹣=.=0本题主要考查实数的运算,解题关键是运用整体代入法求代数式的值,【点评】涉及到倒数、相反数的定义,要求学生灵活掌握各知识点.,试yx吉安校级期末)设、2+的整数部分和小数部分分别是33.(2015秋?的算术平方根.﹣1、xy的值与x求介于哪两个整数之间,从而找到整数部分,小数部分让原数先找到【分析】减去整数部分,然后代入求值即可.,<,所以23<【解答】解:因为4<6<9,的整数部分是2即,﹣﹣22+的整数部分是4,小数部分是4=2+所以.,所以,=y=﹣2=即x=4然解题关键是估算出整数部分后,【点评】此题主要考查了无理数的估算能力,后即可得到小数部分.2)3)﹣+2﹣(3﹣5234.(2009?江西)计算:(﹣)×(﹣先算乘注意实数混合运算的顺序:【分析】根据实数的运算顺序计算即可求解.方、开方,再算乘除,最后算加减,遇有括号,先算括号内的..26=﹣﹣(﹣2)﹣2﹣【解答】解:原式=4此题主要考查了实数的运算,解题要注意实数的混合运算顺序.【点评】结果是有理数?有这样一个问题:与下列哪些数相乘,佛山)(1)35.(2009?,问题的答案是(只需填字母):E、CD、;0、AB、;;、;;、E A、D相乘的结果是有理数,则这个数的一般形式是什么(用代(2)如果一个数与.数式表示))根据实数的乘法法则和有理数、无理数的定义即可求解;1【分析】()的结果可以得到规律.1(2)根据(;ED、(1)A、【解答】解:.为有理数)x=(ax?=a(a为有理数),所以)设这个数为(2x,则此题主要考查了实数的运算,也考查了有理数、无理数的定义,文字阅【点评】读比较多,解题时要注意审题,正确理解题意.。

相关文档
最新文档